Operating System Extensions for the Teradata Parallel VLDB

John Catozzi — Senior Teradata Architect

NCR
17095 Via Del Campo
San Diego
CA 92127, USA
[ohn.Catozzi@NCR.com|

Abstract

This paper describes the new architecture for
supporting the Teradata commercial VLDB on
several new operating environments. We start
with an overview of the Teradata database
software architecture, specifically the Parallel
Database Extensions (PDE) that serve as a layer
between the NCR Unix OS and the database
software. We then describe the challenges of
implementing an Open PDE for several new
platforms, (Microsoft Windows 2000, Linux,
HP-UX, and Microsoft Windows XP). Finally
we show some performance data to compare the
original NCR Unix version with the new Open
Version of PDE for Teradata using published
one-terabyte TPC-R data.

1. Introduction

Teradata is the leading commercial VLDB for
datawarehousing and decision support applications. Itisa
parallel database originally implemented on a proprietary
operating system and hardware platform from 1980-1994.
Version 2 of Teradata was created on NCR’s MP-RAS
SVR4 Unix platform. That version (presented at VLDB
’95) embodies a collection of Unix kernel-mode operating
system extensions known as the Parallel Database
Extensions (PDE) for Teradata. Packaged up as a
standard “package add” feature, these extensions allow
the former proprietary Teradata Database to run on
NCR’s standard Unix platform. Recently these Parallel
Database Extensions were re-architected in an open

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment

Proceedings of the 27th VLDB Conference,

Roma, Italy, 2001

Sorana Rabinovici — Senior Teradata Architect

NCR
100 N Sepulveda Blvd
El Segundo
CA 90245, USA
Sorana.Rabinovici@NCR.com

manner to allow the deployment of the Teradata Database
on multiple open platforms. The first implementation of
this new Open PDE was for the Microsoft Windows NT
4.0 (now Windows 2000) platform. This version was first
deployed in the marketplace in 1998. Today there are
dozens of systems running on this Microsoft Windows
2000 version. This Open PDE is now being further ported
to multiple platforms including the 64 bit versions of
Linux, HP-UX, Solaris, and the 32 and 64-bit versions of
the Microsoft Windows XP operating system. The
challenge in architecting Open PDE was in making the
porting process affordable and the results maintainable,
without compromising the world class performance
achieved by the original specific = MP-RAS
implementation.

2. MPP Platform for Teradata

Teradata is a shared-nothing parallel database which runs
primarily on massively parallel processor (MPP) shared
nothing hardware. On the MPP platforms sold by NCR
this MPP hardware consists of four-way standard Intel
server nodes with typically two gigabytes of memory each
connected by the Bynet, NCR’s high speed interconnect.
The collection of nodes is divided into small groups called
cliques that enjoy shared access to disk arrays. Figure 1
shows a typical small system with two cliques of four
nodes each. This size system would usually support about
1.5 — 6.0 terabytes of storage. The disk sharing capability
is only used in the case of a node failure. In normal
operation, unlike some clustered database systems, each
node is solely responsible for a subset of the disk farm.
The disk storage is divided up into many “vdisks” or
virtual disks which contain the data for a single partition
of the database. This vdisk is managed by a collection of
processes known (for historical reasons) as an Access
Module Processor Virtual Processor (AMP vproc). The
tasks that comprise this AMP vproc are the only ones
which ever access this partition of the database. If a node
were to fail, the AMP vproc would be moved to another

mailto:John.Catozzi@NCR.com

Host channel and LAN connections

. “ “ ‘
| BYNET IJ

ﬁlp ﬁi ﬁlp ii ﬁlp ii ﬁlp 'i)DlE [jMP ﬁlp ii ﬁlp ﬁi ﬁnp ii
PDE PDE PDE PDE PDE PDE PDE PDE
UNIX/W2K UNIX/W2K UNIX/W2K UNIX/W2K UNIX/W2K UNIX/W2K UNIX/W2K UNIX/W2K

I

a8

N7

0000 |-

Qaa0 =
0000

0000
0000

Disk
Arrays

|

7

0000 |
0000
0000 |
0000
0000 |

Figure 1. NCR MPP Platform for Teradata

node of the clique where it can still access the same
storage.

3. Architecture of Teradata Database

The Teradata Database software is really two distinct
collections of code. The first, comprising the database
engine, consists of three million lines of “C” code which
are the same for all hardware and operating system
environments. A second set of software called the
Parallel Database Extensions, or PDE, provides the actual
interface logic between the database and the platform
software and hardware. This relationship is shown in
Figure 2.

Teradata Applications

Teradata Database Engine

Parallel Database Extensions

Operating System

Underlying Hardware

Figure 2. Teradata Software Layers

4. Features of Parallel Database Extensions

Teradata achieves its unmatched performance and much
of its parallel nature through a set of operating system
extensions called Parallel Database Extensions. These
enhancements to the base operating system extend and
parallelize the standard OS environment, providing the
over 400 services used by the Teradata Database. These

services consist of functions such as memory
management, database data block access and cache
management, messaging system, process management
(start up, shut down, abort processing), priority
scheduling, and the whole parallel infrastructure that
allows the Teradata Database to run on a collection of
one, four, or hundreds of independent SMP nodes as if it
was all one system.

5. MP-RAS Implementation of PDE

In order to achieve the highest performance level possible,
the original MP-RAS version of PDE was coded
completely as kernel mode extensions to the NCR MP-
RAS SVR4 Unix operating system. These extensions
were built upon the SVR4 extensible objects of
scheduling class and segment driver. This architecture is
described more fully in “OS Support for VLDBs: Unix
Enhancements for the Teradata Data Base”, VLDB’95,
Proceedings of 21st International Conference on Very
Large Data Bases, September 11-15, 1995, Zurich,
Switzerland. This implementation was very specific to
SVR4 Unix and NCR’s MP-RAS operating system in

particular, and is not readily portable to other
environments.

6. Open PDE

The desire to run Teradata on other operating

environments, and specifically, Microsoft Windows NT,
led in 1998 to the re-architecting of PDE in a more open,
portable manner. In this new architecture for PDE, some
of the code runs in kernel mode, installed as a “driver”,

while much of the code operates in user mode. The new
PDE is also implemented with a layered approach to
enhance portability.

The outer layer provides the actual interface to the
database software and implements the services required.
It is mostly unchanged from one operating system
environment to another. The lower layer comprises the
primitive functions, or “bricks”, out of which the upper
layer is built. These functions are implemented in the
most performant fashion for each operating system. They
include routines for implementing the low-level
user-mode and kernel-mode multi-processor locks,
memory “zone” allocation schemes, offset queues, wait
objects, names, and daemons. In the following sections,
several of these areas are described along with the
problems they presented and the solutions used.

6.1 User-mode Vs. Kernel Mode

In the original MP-RAS implementation, the entire PDE
was coded as kernel mode extensions to the underlying
Unix operating system. This was easy and natural to do,
since the original proprietary Teradata Operating System
which was being replaced by PDE was all kernel mode
and the target Unix operating system was owned by NCR
and readily available to the PDE developers. In
re-architecting PDE for portability with several target
platforms this decision was resurfaced. The
implementation of at least some of the PDE code in user
mode was a fairly easy decision. User-mode code is
generally easier to debug and maintain, and if underlying
OS services are not required, can be made to perform as
well as or better than a kernel-mode equivalent. Whether
or not any of the Open PDE code would be placed inside
the kernel was a much larger debate. In the end, the
desire for maximum performance won out over the ease
of implementation with several of the PDE sub-systems
being placed in a kernel mode “driver”. There are two
major performance advantages allowed a kernel mode
implementation that dictated its use for a few of the major
sub-systems. One of these is the ability inside the kernel
of providing an efficient low-level spin lock for access to
shared context that must be protected from simultaneous
access by the multiple CPUs of an SMP complex. There
is simply no efficient means of providing this protection
in user-mode. The other clear advantage to coding a
service in kernel mode is when the routine must make two
or more calls to the underlying operating system
kernel-mode code to accomplish the desired action. If the
service is already operating in kernel-mode, the repeated
transitions from user-mode to kernel-mode and back can
be avoided.

6.2 Processes Vs. Threads Vs. Fibers

In the original MP-RAS implementation of PDE the
individual tasks of the database software were
implemented as complete heavyweight processes, each

with its own memory map and kernel context including
registers values. The reason for this was simple: NCR’s
MP-RAS Unix does not have any other construct such as
lightweight processes (threads) or no-weight processes
(fibres). While re-architecting PDE, we looked at how to
best instantiate the Teradata Database tasks and after
some considerable investigation decided to use a
combination of multiple heavyweight processes and
kernel threads.

The Teradata database tasks can be readily placed into
groups that have a large amount of shared context. Each
of these groups is instantiated as a process, with the
individual members of the group being the separate
threads of the process. As true kernel threads, each has its
own kernel context, and thread local storage. However,
the threads all share the process’ memory map. This
makes sharing of context automatic while still allowing
for private data, albeit at a reduced level of protection
from wild stores by other threads. Sharing of data
between different processes is accomplished through
some form of shared memory mechanism as available on
each operating environment.

A typical 4-way, 2 GB node running Teradata will
have about 80 processes with around 2000 total threads.
Only 10 of the processes with about 120 threads each
handle the vast bulk of the database work. These 10
processes are each responsible for one partition of the
database, with the 120 threads within each process
handling the simultaneous operations for one or more
queries involving that partition of data. All of the other
processes are for handling administration, start-up, shut-
down, aborting, debugging, tracing, error logging, and
other seldom-occurring events where the performance
requirements are not so stringent.

An argument was put forward that if the over-head of
context switching of processes was an undo burden than
we might be better off with instantiating the database
tasks as fibres rather than threads. Fibres are completely
instantiated in user mode. Fibres are lightweight entities
that all share not only the same memory map but utilise
the same kernel context. Because of this, only one fibre at
a time can be executing. The slightly reduced context
switch time from not leaving user mode does not
overcome the obvious drawback of not executing in
parallel, thus precluding their use for implementing the
Teradata Database.

6.3 Implementation of PDE Primitives

To give an idea of how PDE primitives are architected
in as portable a manner as possible, we describe here one
of those functions. PDE needs the ability to perform
thread synchronisation actions. In order to do this PDE
defines an entity called a synchronisation event. A
synchronisation event can be any arbitrary happening that
a thread desires to wait for or be notified of. After
establishing the event object we define the operations

upon the object such as create, init, wait, wakeup, reset,
and destroy. A structure is created to hold the
components of the synchronisation event’s context, most
of which are completely system independent. We then
look at the facilities available in each of the operating
systems of interest with which we can cause the necessary
behaviour. In this case we used Solaris conditional
variables, Linux wait queues, and Windows events. The
portion of the function that is unique to each operating
system is then coded to interact with the underlying OS
and act upon the commonly defined object.

The rest of PDE then uses the synchronisation event
functions for all of its thread synchronisation needs. The
rest of the code need not be aware of the different way the
function is implemented for each operating system.

In a similar manner PDE has implemented primitive
functions for a vast array of activities including: raw I/O
capability, memory locking, shared memory support,
inter-processor locking, and process and thread
management.

7.0 Performance of Open PDE

After creating all the primitive functions, the rest of PDE
is coded using these operations in order to supply the
hundreds of services required to support the Teradata
Database software. After getting it all to work, the next
question is: How well does it perform compared to the
specific, dedicated version on MP-RAS? The first
implementation of Open PDE was for Microsoft Windows
NT 4.0. Surprisingly, Teradata running on this version of
Open PDE performed within 10% of the then current MP-
RAS Unix version. The Windows version of Open PDE
has now been in production since 1999 and has since been
converted to Windows 2000. Several potential problem
areas were identified using the many debugging and
performance-monitoring features built into PDE. We
present here two of these areas along with the solutions
implemented.

7.1 SMP Locking Protocol for Global Resourses

One very important aspect of performance for programs
running on an SMP computer is the locking protocol that
is used to protect global resources from improper updates
by threads running simultaneously on the various CPUs.
It is very easy for locks on resources used by many
threads to be a major bottleneck. Upon investigation, it
was found that several of our global resources such as the
free disk space structures were being accessed enough
that their global locks were bottlenecks. To solve this
problem we created a general method for reducing the
collisions on a single lock by partitioning the resource
into n separate pools, each with its own lock. A central
index cell is incremented to decide which pool to acquire
a resource from, and the resource control element has an
index value pointing to the appropriate pool for later
return. In this way the contention for a single lock is

eliminated, resulting in some cases, more than an order of
magnitude less spin lock contention.

7.2 Eliminating Data Copying

Another common source of performance degradation in
any system handling a large amount of data is
unnecessary copying of data from one buffer to another.
In Teradata a buffer is often broadcast to all vprocs over
the Bynet as part of table duplication. Upon receipt by
the node, the buffer must be made available to one
process in each of the vprocs on the node. In order to
accomplish this without copying the data several times we
utilize a daemon that supplies the Bynet with an available
queue of offsets into a special buffer area. This buffer
area is contained in a shared file. As each message
arrives, the offset is mapped into the shared spaces of the
destination processes and the offset is placed on each
receiver’s mailbox. Upon awakening, each process “sees’
the buffer in his own space at the specified offset.

7.3 Performance of MP-RAS Vs. Windows 2000

Figure 3 is a table showing the query times for each of the
queries in published one terabyte TPC-R benchmarks.
Most of the queries run in about the same or better time in
the new Open PDE implementation on Microsoft
Windows 2000 as they did on the dedicated MP-RAS
Unix version. (Query 21 and query 22 show vastly
improved times due to a new feature in the database that
was added between the two benchmark runs.)

TPC-R MP/RAS | Windows

Query # Time Time
1] 05 05
Q2 1.7 11.0
Q3 156.7 164.0
Q4 27.2 234
Q5 0.9 0.9
Q6 05 06
Q7 11 11
Q8 1.3 1.5
Q9 491.2 4838
Q10 585.8 6414
Qi 185.2 193.4
Q12 05 05
Q13 1460.2 1571.8
Q14 05 05
Q15 1782 187.1
Q16 180.1 184.8
Q17 26.0 29.2
Q18 488 432
Q19 815.6 720.7
Q20 384.0 419.4
Q21 2490.8 1084.1
Q22 214.4 67.3

Figure 3. TPC-R Comparison Data

8.0 Summary

We have demonstrated that with care it is possible to
architect a portable set of OS extensions for vastly
different operating systems such as Solaris, Linux and
Windows 2000 that will perform as well as the original
dedicated extensions on NCR’s MP-RAS Unix.

	MP/RAS�Time

