Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Storage and Retrieval of XML
Data Using Relational Databases

Surajit Chaudhuri Kyuseok Shim
Microsoft Research KAIST
About this Tutorial

= Tutorial presented based solely on
publicly available information

= Information is incomplete and could be
inaccurate

= Our presentation reflects our
understanding which may be erroneous

= Does not reflect views of our employers

© Surajit Chaudhuri & Kyuseok Shim
2001 2

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

What's the big deal about
XML?

© Surajit Chaudhuri & Kyuseok Shim
2001 3

Disconnected Empires

» Before XML

= No “universal” programming language

= Various wire interoperation protocols based
on RPC
» Based on CORBA, DCOM
= Corporate firewalls block DCOM, CORBA
traffic
» But allows HTTP in

© Surajit Chaudhuri & Kyuseok Shim
2001 4

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

XML: A Wire Protocol

= XML = A minimal wire representation for data
and storage exchange
= A low-level wire transfer format — like IP in networking
= Minimal level of standardization for

distributed components to interoperate
= Platform, language and vendor agnostic
= Easy to understand and is extensible

= Data exchange enabled via XML
transformations

© Surajit Chaudhuri & Kyuseok Shim
2001 5

SOAP

= Facilitate Platform independent
distributed computing

= Protocol that defines a uniform way to
perform RPC with
= HTTP as wire protocol
= Data encoded as XML

© Surajit Chaudhuri & Kyuseok Shim
2001 6

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example (SOAP)

POST /cgi-bin/purchase-book.cgi HTTP/1.1
Methodname: Purchasebook

InterfaceName:
soap:cdl:com.develop.demos.purchase_book

MessgeType: Call
Content-Type: text-xm|-SOAP
<Purchasebook>
<ISBN>0201379369</ISBN>
</Purchasebook>

© Surajit Chaudhuri & Kyuseok Shim
2001 7

Core XML Technologies

= Validation of XML
= Schema and namespaces

= XML API: Programmatic Access to XML
= DOM, SAX

= Transformation Technology: For Data
Exchange and Display
= XSL, XSLT, XQuery

© Surajit Chaudhuri & Kyuseok Shim
2001 8

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Implications of XML for
Databases

= Data stored in SQL databases need to
be published in XML for data exchange
= Core requirement
= Specification schemes for publishing
needed
= Storage and retrieval of native XML for
“document-centric” applications

= Need to support XML API-s

© Surajit Chaudhuri & Kyuseok Shim
2001 9

Architectural Alternatives for
Storing Native XML

= Relational Approach — exploit traditional
benefits of databases

= Other Architectures (not discussed)
= File Systems

= Native semistructured store
» €.g. eXcelon, LORE, NATIX

© Surajit Chaudhuri & Kyuseok Shim
2001 10

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Rationale for Relational
Representation for Native XML

Relational and native XML data can co-exist

RDBMS are scalable and offers many services
= Transaction Management, Query optimization

XML Schema/DTD can help guide relational
representation

= Incremental update and partial retrieval enabled

LOB storage and indexing complements

structured XML (“shredded”) representation
= Fast for storing and retrieving whole documents
= Incremental update is difficult

© Surajit Chaudhuri & Kyuseok Shim
2001 11

Outline of Tutorial

= XML and Related Technologies

= Examples of XML Support in
Commercial Systems

a Publication of Relational Data in XML

= Storage of Native XML in Relational
Databases

= Final Thoughts

© Surajit Chaudhuri & Kyuseok Shim
2001 12

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

XML and Related Technologies

© Surajit Chaudhuri & Kyuseok Shim
2001 13

XML

= Tagged elements describe the
semantics of the data

= An element may have attributes to
provide additional information

= An element can contain a sequence of
nested sub-elements

= Sub-elements may themselves be tagged
elements or character data

© Surajit Chaudhuri & Kyuseok Shim
2001 14

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

An XML Document

<?xml version="1.0"?>
<IDOCTYPE sigmodRecord SYSTEM “sigmodRecord.dtd">
<sigmodRecord>
<issue>
<volume>1</volume>
<number>1</number>
<articles>
<article>
<title> XML Research Issues</title>
<initPage>1</initPage>
<endPage>5</endPage>
<authors>
<author AuthorPosition="00">Tom Hanks</author>
</authors>
</article>
<article>

</authors>
</article>
</articles>
<[issue> © Surajit Chaudhuri & Kyuseok Shim
</sigmodRecord> 2001 15

Document Type Definition
| (DTD)

= An XML document may have a DTD

= Grammar for describing the structure of XML
document
= Terminology
= well-formed: if tags are correctly closed
= valid: if it has a DTD and conforms to it
= For exchanges of data, validation is useful

© Surajit Chaudhuri & Kyuseok Shim
2001 16

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

A DTD Example (SIGMOD
Record)

<?xml version="1.0"?>

<I- SIGMOD Record DTD -->

<IELEMENT SigmodRecord (issue)* >

<IELEMENT issue (volume,number,articles) >
<IELEMENT volume (#PCDATA)>

<IELEMENT number (#PCDATA)>

<IELEMENT articles (article)* >

<IELEMENT article (title, initPage, endPage, authors) >
<IELEMENT title (#PCDATA)>

<IELEMENT initPage (#PCDATA)>

<IELEMENT endPage (#PCDATA)>

<IELEMENT authors (author)* >

<IELEMENT author (#PCDATA)>

<IATTLIST author AuthorPosition CDATA #IMPLIED>

© Surajit Chaudhuri & Kyuseok Shim
2001 17

DTD Specification

comma: sequence
|: or

(): grouping

?, *, +: zero or one, zero or more, one or
more occurrences

ANY: allows an arbitrary XML fragment to be
nested within the element

PCDATA: parsed character data.
CDATA: character data.

© Surajit Chaudhuri & Kyuseok Shim
2001 18

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

XML Schema

= Schema
= http://www.w3c.org/TR/xmlschema-i (i=0..2)
= Specifies structure of XML documents
= Datatypes for elements/attributes
= string, int, float
» Unordered set is also allowed
= Derivation of types are allowed
= Constraints/Keys

= Replaces DTDs
= Removes syntactic distinctions between DTD and XML
= Richer types compared to DTD

© Surajit Chaudhuri & Kyuseok Shim
2001 19

XML Schema Example

| <xsd:element name="article" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="initPage" type="xsd:string"/>
<xsd:element name="endPage" type="xsd:string"/>
<xsd:element name="author" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

DTD

<!ELEMENT article (title, initPage, endPage, author) >
<!ELEMENT title (#PCDATA)>

<IELEMENT initPage (#PCDATA)>

<!ELEMENT endPage (#PCDATA)>

<!ELEMENT author (#PCDATA)>
© Surajit Chaudhuri & Kyuseok Shim
2001 20

10

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

XML API: DOM

» Characteristics

= Hierarchical (tree) object model for XML
documents

= Associate a list of children with every node
(or text value)

= Preserves the sequence of the elements in
the XML document

= May be expensive to materialize for a
large XML collection

© Surajit Chaudhuri & Kyuseok Shim
2001 21

XML API: SAX

= Characteristics

= Event-driven: fire an event for every open
tag/end tag

= Does not require full parsing
= Enables custom object model building

= Could be significantly faster for a simple
object model

© Surajit Chaudhuri & Kyuseok Shim
2001 22

11

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

XSL

» Styling is rendering information for
consumption

= XSL = A language to express styling
("Stylesheet language”)

= Two components of a stylesheet

» Transform: Source to a target tree using
template rules expressed in XSLT

= Format: Controls appearance

© Surajit Chaudhuri & Kyuseok Shim
2001 23

XSLT

= XPATH acts as the pattern language
(more later)

Primary goal is to transform XML
vocabularies to XSL formatting
vocabularies

= But, often adequate for many
transformation needs

© Surajit Chaudhuri & Kyuseok Shim
2001 24

12

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

XQuery: An XML Query
‘ Language

= Focused on expressing transformation
» XPATH is a starting point
= Unlike XSLT, no need to write stylesheet
= Make “database queries” easy to
express (and hopefully to optimize)
= Strong Typing

© Surajit Chaudhuri & Kyuseok Shim
2001 25

XPATH

s [www.w3.0rg/TR/xpath]
= Used as a building block for
= XSL Transformations (XSLT)
= XQuery
= Syntax for tree navigation and node selection

= Navigation is described using location
paths

© Surajit Chaudhuri & Kyuseok Shim
2001 26

13

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

XPATH

= . :current node
: parent of the current node

/ :root node, or a separator between steps in a
path

= // :descendants of the current node

= @ : attributes of the current node

= ¥ :"any" (node with unrestricted name)
= [] :a predicate for a given step

= [n] : the element with the given ordinal nhumber
from a list of elements

© Surajit Chaudhuri & Kyuseok Shim
2001 27

XPATH Example

» List the titles of articles in which the author
has “Tom Hanks”

//article[//author="Tom Hanks"]/title

= Find the titles of articles authored by “Tom
Hanks” in volume 1.

//issue[/volume="1"]/articles/article/[//author="Tom
Hanks"]/title

© Surajit Chaudhuri & Kyuseok Shim
2001 28

14

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

‘ XQuery

Origin: Quilt [Chamberlin, Jobie, Florescu: WebDB
00]

A functional language

= query is an expression

= expressions are recursively constructed
Features

= Includes XPATH as a sub-language

= SQL-like FLWR expression

Borrows features from many other
languages: XQL, XML-QL, ML,..

© Surajit Chaudhuri & Kyuseok Shim
2001 29

‘ XQuery

» FLWR expression

= FOR/LET Clauses

= Ordered list of tuples of bound variables
= WHERE Clause

= Pruned list of tuples of bound variables
= RETURN Clause

= Instance of XML Query data model

© Surajit Chaudhuri & Kyuseok Shim
2001 30

15

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: XQuery

= List the titles of the articles authored by “Tom Hanks”

Query Expression

for $b IN document(“sigmodRecord.xml")//article
where $b//author = “Tom Hanks"
return <title> $bytitle.text() </title>

1 Query Result
<title>XML Research Issues</title>

© Surajit Chaudhuri & Kyuseok Shim
2001 31

Example: XQuery

» List the articles authored by “Tom Hanks”.

<articles>

Query Expression
for $b IN document(“sigmodRecord.xml")//article

where $b//author = “Tom Hanks"
return $b
<articles>
<article>
<title>XML: Where are we heading for?</title>
<initPage>6</initPage>
<endPage>10</endPage> Query Result
<authors>
<author AuthorPosition="00">Tom Hanks</author>
</authors>

</article>
</articles>

</articles>

© Surajit Chaudhuri & Kyuseok Shim
2001 32

16

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Examples of XML Support in
Commercial Systems

© Surajit Chaudhuri & Kyuseok Shim
2001 33

Microsoft SQL Server:
Publishing

= Provide extensions on SQL to return results as XML
document (FOR XML clause)

= RAW mode: Converts each row in the SQL result into an
XML without subelements

= AUTO mode: Produce query result as nested XML
document

= EXPLICIT mode: the most general
= Can control the shape of XML document
= Expected nesting is explicitly specified as part of the query

= Generation of XML view using XDR
= Templates

© Surajit Chaudhuri & Kyuseok Shim
2001 34

17

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

RAW Mode

= Returns Flat XML documents

= Each row in the query result becomes an XML element with
the name row

= Each non-NULL column value is mapped to an attribute
(column name becomes the attribute name)

= Q: select Customers.CustomerID, Orders.OrderID, Orders.OrderDate
from Customers, Orders
where Customers.CustomerID = Orders.CustomerID
order by Customers.CustomerID
for XML RAW

s A: <row CustomerID="ALFKI” OrderID="10643" OrderDate="1997-08-25"/>
<row CustomerID="ANATR"” OrderID="10308" OrderDate="1996-09-18"/>

© Surajit Chaudhuri & Kyuseok Shim
2001 35

AUTO Mode

= Returns nested XML elements.

» Each table in the FROM clause is represented as
an XML element
= Table-list determines element nesting

= The columns listed in the SELECT clause are
mapped to the attributes

= When the ELEMENTS option is specified, the table
columns are mapped to sub-elements

© Surajit Chaudhuri & Kyuseok Shim
2001 36

18

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: AUTO Mode

select Customers.CustomerID, Orders.OrderID,
Customers.ContactName

from Customers, Orders
where Customers.CustomerID = Orders.CustomerID
for XML AUTO

<Customers CustomerID="ALFKI" ContactName="Maria Ansers”>
<Orders OrderID="10643"/>
<Orders OrderID="10692"/>
<Orders OrderID="10702"/>
<Orders OrderID="10835"/>
<Orders OrderID="10952"/>
<Orders OrderID="11011"/>

</Customers>
© Surajit Chaudhuri & Kyuseok Shim
2001 37

Example: AUTO Mode (2)

select Customers.CustomerID, Orders.OrderID,
Customers.ContactName

from Customers, Orders
where Customers.CustomerID = Orders.CustomerID
for XML AUTO, ELEMENTS

<Customers>
<CustomerID>ALFKI</CustomerID>
<ContactName>Maria Ansers</ContactNAme>
<Orders><0OrderID>10643</0rderID></Orders>
<Orders><0OrderID>10835</0rderID></Orders>
<Orders><0rderID>10952</OrderID></Orders>
<Orders><0rderID>11011</OrderID></Orders>

</Customers>
© Surajit Chaudhuri & Kyuseok Shim
2001 38

19

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

EXPLICIT Mode
I

= Motivation: Flexible publishing of relational

data
= Unlike RAW, AUTO modes

= Steps
= Define a SQL view to assemble relevant rows

» The rowset (universal table) must have certain
format
= Special Columns: Tag and Parent
= Column names
= Row ordering

© Surajit Chaudhuri & Kyuseok Shim
2001 39

Explicit Mode: Universal
Relation Format

= 1st column
» Column name: Tag
« Tag number of the current element
= 2nd column:
» Column name: Parent
» Tag number of the parent element
» If the value is 0 or NULL, the row is placed on the top
level
= Ordering of Rows: Parent must be followed immediately
by its children

© Surajit Chaudhuri & Kyuseok Shim
2001 40

20

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Examplel: EXPLICIT Mode

select 1 as Tag,
NULL as Parent,
Customers.CustomerID as [Customer!1!CustomerID]
NULL as [Order!2!0rderID]

from Customers

UNION ALL

select 2,

L,

Customers, Orders
where Customers.CustomerID = Orders.CustomerID
order by [Customer!1!CustomerID], [Order!2!OrderID]
for XML EXPLICIT

© Surajit Chaudhuri & Kyuseok Shim
2001 41

Examplel: EXPLICIT Mode (2)

Tag Parent Customer!1!CustomerID Order!2!OrderlD

1 | NULL ALFK] NULL
2 1 ALFK] 10643
2 1 ALFK| 10692
2 1 ALFK| 10702
2 1 ALFK| 11011
2 1 ALFK]

1 | NULL ANATR NULL
2 1 ANATR 10308
2 1 ANATR 10625
2 1 ANATR

© Surajit Chaudhuri & Kyuseok Shim
2001 42

21

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Examplel: EXPLICIT Mode (3)

<Customer CustomerID="ALFKI">
<Order OrderID="10643" />
<Order OrderID="10692" />
<Order OrderID="10702" />
<Order OrderID="11011" />

</Customer>

<Customer CustomerID="ANATR">
<Order OrderID="10308" />
<Order OrderID="10625" />

</Customer>

© Surajit Chaudhuri & Kyuseok Shim
2001 43

Example2: EXPLICIT Mode (1)

select 1 as Tag,
NULL as Parent,
Customers.CustomerID as [Customer!1!CustomerID]
NULL as [Order!2!OrderID!element]

from Customers
UNION ALL

select 2,
1,
Customers, Orders
where Customers.CustomerID = Orders.CustomerID
order by [Customer!1!CustomerID], [Order!2!0OrderID!element]
for XML EXPLICIT

© Surajit Chaudhuri & Kyuseok Shim
2001 44

22

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example2: EXPLICIT Mode (2)

<Customer CustomerID="ALFKI">
<Order> <OrderID>10643 </OrderID </Order>
<Order> <OrderID>10692</OrderID>
<Order> <OrderID>10702</OrderID>

</Customer>

<Customer CustomerID="ANATR">

</Customer>

© Surajit Chaudhuri & Kyuseok Shim
2001 45

Defining XML Views

= Annotated schema using XDR (XML-
Data Reduced Data)

= Description similar to DTD
= Also includes mapping to SQL
= Views may be consumed by XML tools
= Queried by XQuery
= Processed by XSLT

© Surajit Chaudhuri & Kyuseok Shim
2001 46

23

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: XML Views using
XDR

<schema xmins = ..

Xmlns:sqgl = ..>

<ElementType name = “Customer”
sql:relation = “Customers”>
<AttributeType name = “ID" />

<attribute type ="ID" Sql:field
="CustomerID”/>

</ElementType
</schema>

© Surajit Chaudhuri & Kyuseok Shim
2001 47

MS SQL Server:
| Support for Native XML

= Alternatives using OpenXML rowset
provider
= Edge Table: A graph representation of the

XML (parent-child hierarchy)
= Select * from OpenXML(@doc, ‘/ROOT/Customer”)

» Shredded Rowset . Derive custom rowset

from XML

» A Flag determines alternatives:
= Columns = Attributes or Columns = Elements

© Surajit Chaudhuri & Kyuseok Shim
2001 48

24

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: Shredded Rowset

Attribute-Centric Mapping

Select * from

OpenXML(@doc, ‘/ROOT/Customer’, 1)

WITH (CustomerID varchar(10)
Contactname varchar(20))

Retrieval from Different levels
Select * from
OpenXML(@doc, ‘/ROOT/Customer/Order/OrderDetail’, 2)
WITH (OrderDate datetime *../@OrderDate’,
ProdID int ‘@ProductID’)

© Surajit Chaudhuri & Kyuseok Shim
2001 49

IBM DB2

= Publishing

= Mapping from SQL to XML specified in Data
Access Definition (DAD) files

= Storage of Native XML

= Provides two primary storage and access
methods for native XML
« XML column and XML collection

= Mapping specified using DAD files as well

© Surajit Chaudhuri & Kyuseok Shim
2001 50

25

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Using DAD File for Publishing

™ a Defines the mapping to XML view
= An XML document itself
= Used also for native storage of XML (discussed later)

= Two ways to specify mapping
= SQL Mapping
= RDB_node Mapping
» Use dxxGenXML() Stored Procedure to

generate XML

= Input: DAD

= Output: Output_Table (single-column)
= Additional customization parameters

© Surajit Chaudhuri & Kyuseok Shim
2001 51

Example: DAD-SQL Mapping

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM “dxx_install/dtd/dad.dtd”>
<dad>
<dtdid>dxx_install/dtd/getstart.dtd</dtdid>
<validation>YES</validation>
<Xcollection>
<SQL_stmt>

select o.order_key, customer_name, customer_email, p.part_key, color,
quantity, price, tax, ship_id, date, mode

from order_tab o, part_tab p,
(select db2xml.generate_unique() as ship_id, date, mode, part_key
from ship_tab) as s
where o.order_key = 1 and p.price > 20000 and p.order_key =
o.order_key and s.part_key = p.part_key
order by order_key, part_key, ship_id
</SQL_stmt>

© Surajit Chaudhuri & Kyuseok Shim
2001 52

26

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: DAD-SQL Mapping
‘ (Contd.)
I

<prolog>?xml version="1.0"?</prolog>
<root_node>
<element_node name="Order”>
<attribute_node name="key">
<column name="order_key"/>
</attribute_node>
<element_node name="Customer”>
<element_node name="Name">
<text node>
<column name="customer_name"/>
</text node>
</element_node>
</element_node>
</element_node>
</root_node>
</Xcollection>
</dad>

© Surajit Chaudhuri & Kyuseok Shim
2001 53

Example: DAD-RDB_node
Mapping

| <DAD> <Xcollection> <root_node>
<element_node name = “Order”>
<RDB_node>
<table_name = “order_tab"/>
<table_name = “part_tab"/>
<table_name = “ship_tab"/>
<condition>
Order_tab.order_key = part_tab_order_key AND
Part_tab.part_key = ship_tab.part_key
</condition>
</RDB_node>
<attribute_node name ="key”>
<RDB_node>
<table_name= “order_tab"/>
<column name = “order_key” />
</RDB_node> </attribute_node>

© Surajit Chaudhuri & Kyuseok Shim
2001 54

27

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: DAD-RDB_NODE
Mapping (2)

<element_node name = “ShipDate”
<text_node>
<RDB_node>
<table_name= “ship_tab"/>
<column name= “date” />
<condition>
Date > “1966-01-01"
</condition>
</RDB_node>
</text_node>
</element_node>

</root_name>
</Xcollection>

</DAD>
© Surajit Chaudhuri & Kyuseok Shim
2001 55

IBM DB2: Storing Native XML

in a Column

» Store DTD in DTD repository
Register a XML column with type:

» XMLCLOB: for large XML documents; XMLVARCHAR: for small
XML documents, XMLFile. for XML documents stored outside
DB2

Create a DAD file

» To specify any “side tables” for indexing

Enable the XML column

» Creates side tables as per DAD
= Add necessary triggers and other meta information

Insert XML document
= Side tables get automatically updated

© Surajit Chaudhuri & Kyuseok Shim
2001 56

28

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

DAD for Side Table
Specification

.. <dad>
<dtdid>dxx_install/dtd/getstart.dtd</dtdid>
<validation>YES</validation>
<Xcolumn>
<table name="order_side_tab”> </table>
<table name="part_side_tab">
<column name="price” type="decimal(10,2)"
path="/Order/Part/ExtendedPrice” multi_occurrence="YES"/>
</table>
<table name="ship_side_tab">
<column name="date” type="DATE"

path="/Order/Part/Shipment/ShipDate”
multi_occurrence="YES"/>

</table>
</Xcolumn>
</dad>

© Surajit Chaudhuri & Kyuseok Shim
2001 57

Stored Procedures for
Handling XML Columns

Storage:Type conversion
« XMLVarCharFromFile(),..

= Retrieval: Cast Functions
» Varchar(XMLVarChar)

= Update
» Cast functions or storage UDFs
» Update(xmlobj, path,value)

= Selection using XPATH

» WHERE Extractvarchar(order, ‘/order/Customer”) LIKE
“%IBM%’

= Or, use side tables

© Surajit Chaudhuri & Kyuseok Shim
2001 58

29

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Native XML Storage: XML
Collection Option

= Allows to decompose an XML document into a set of
DB2 tables
= A subset of data requires frequent update
= Strongly related to other relational data
= Retrieve only a subset of data

= DAD is used to define the mapping of DTD to
relational tables and columns
= Using RDB_Node mapping in DAD
= Need primary key for each table and column types
= To decompose an incoming XML document, use
dxxShredXML (uses DAD)

= To compose a shredded XML, use dxxGenXML() as in
publishing phase
© Surajit Chaudhuri & Kyuseok Shim
2001 59

Oracle

= XML SQL Utility (XSU) supports publishing and
native storage/retrieval
= Publishing Relational Data
= The desired hierarchy in XML output can be specified
by object views
= Exploits the object-relational support in Oracle
= Mapping is implicit for the object table/view
= Result can be in text or a DOM tree
= Native storage of XML
= System Provided XMLTYPE with supporting methods
= Shredding by mapping to an object table or view

© Surajit Chaudhuri & Kyuseok Shim
2001 60

30

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Publishing Relational Data

= Mapping Rules
= Columns map to top level elements
= Scalar values map to a elements with text only content

= Object types are mapped to elements with its attributes appearing
as sub-elements. Collections map to lists of elements

= Object references and referential constraints can be mapped to
IDREFs in the XML document
= Steps (From [Bannerjee et al.])
« Initialize
= OracleXMLQuery gry = new OracleXMLQuery(conn, query)
= Set document and row element names
= gry.setRowsetTag("str”), gqry.setRowTag(“str")
= Get XML

= gry.getXMLString()
© Surajit Chaudhuri & Kyuseok Shim
2001 61

Example: Object of Publishing

CREATE TYPE EmployeeType AS OBJECT (
EMPNO NUMBER,
ENAME VARCHAR2(20),
SALARY NUMBER);

CREATE TYPE EmployeeListType AS TABLE OF EmployeeType;

CREATE TABLE Dept (
DEPTNO NUMBER,
DEPTNAME VARCHAR2(20),
EMPLIST EmployeeListType);

© Surajit Chaudhuri & Kyuseok Shim
2001 62

31

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: Corresponding XML

<?xml version="'1.0"?>
<ROWSET>
<ROW num="1">
<DEPTNO>100</DEPTNO>
<DEPTNAME>Sports</DEPTNAME>
<EMPLIST>
<EMPLOYEE_TYPE num="1">
<EMPNO>7369</EMPNO>
<ENAME>John</ENAME>
<SALARY>10000</SALARY>
</EMPLOYEE_TYPE>
<!-- additional employee types within the employee list -->
</EMPLIST>
</ROW>
</ROWSET>

© Surajit Chaudhuri & Kyuseok Shim
2001 63

Native Storage of XML using
XMLType

= Oracle9i introduces XMLType as a new server
datatype

= Currently allows only CLOB storage natively
= Enables Strong Typing and XPATH functionality
= Unsuitable for piecewise updates

» Create an XMLType instance
= Sys.XMLType.createXML(‘*xml_as_string’)
= Use techniques for XML Publishing from database rows

© Surajit Chaudhuri & Kyuseok Shim
2001 64

32

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Selecting/Extracting XMLType
Instance

= Extract()
= Obtains the node/nodes from the document identified by the XPath
(subset of) expression
= Use getStringVal() or getNumberVal() to get scalar content
Select p.poDoc.extract(’/PO/PONO/text()").getnumberval()
From po_xml_tab p;

= ExistsNode()
= Checks if the given XPath evaluates in at least a single XML
element or text node
= Useful for filtering as well as for functional indexes
Select e.poDoc.extract(‘//PONO/text()").getNumberVal() as pono
From po_xml_tab e
Where e.podoc.existsnode(*/Po/PONO’) = 1 and poid > 1
= Functions to convert from XMLType to other types

© Surajit Chaudhuri & Kyuseok Shim
2001 65

Indexing XMLType

» Functional Indexes using ExistsNode or
Extract

» Create Index city_index ON po_xml_tab
(poDoc.extract(‘//PONO/text()").getNumberVal())

s Text Indexes
= Supports CONTAINS

= CONTAINS has been extended using INPATH
= <text query> INPATH(<path expression>)

© Surajit Chaudhuri & Kyuseok Shim
2001 66

33

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Storage of Native XML in
Structured Fashion

» Shredded storage

= Can be mapped to an object table if “mapping rules”|
(discussed earlier) are satisfied
String xmldoc = "..”
OracleXMLSave sav = new OracleXMLSave(conn, tablename)
Sav.insertXML(xmldoc)

= Decompose using custom XSLT

© Surajit Chaudhuri & Kyuseok Shim
2001 67

Commercial Systems: Other
Aspects of XML Support

|
= Enabling specification for custom
publishing
= XSLT support for rendering
= Updates, Bulkloading
» HTTP Access , Security
= Use of File systems

© Surajit Chaudhuri & Kyuseok Shim
2001 68

34

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Publication of Relational
Data in XML

© Surajit Chaudhuri & Kyuseok Shim
2001 69

Approaches to Publication

= Publishing without full support for views

» Published XML cannot be composed with XQuery
without materialization
= [Shanmugasundaram et al. VLDB 00]

= Publishing with support for views

= SilkRoute

= [Fernandez, Tan, Suciu: WWW 00]

= [Fernandez, Morishima, Suciu: SIGMOD 01]
= XPERANTO

= [Shanmugasundaram et. al.: VLDB 01]

© Surajit Chaudhuri & Kyuseok Shim
2001 70

35

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Publishing without support for
Views

W [Shanmugasundaram et al.: VLDB 00]
mExplores different execution plans for
generating the contents of XML documents
m Conclusion
B Constructing XML document inside the

relational engine best for performance
BWhen the result fits in main memory, Unsorted
outer union approach
mOtherwise,Sorted outer union approach

B Need extensions to SQL

© Surajit Chaudhuri & Kyuseok Shim
2001 71

Example: Desired XML

<article id = "a1”">
<title> XML Research Issues</title>
<authors>
<author>Tom Hanks</author>
</authors>
</author>
<article id = "a2">
<title>Storage and Retrieval of XML Data Using Relational DBMS< /title>
<authors>
<author>Surajit Chaudhuri</author>
<author>Kyuseok Shim</author>
</authors>
</author>

© Surajit Chaudhuri & Kyuseok Shim
2001 72

36

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: Query Syntax

select art.name, ARTICLE(art.id, art.title,
(select XMLAGG(AUTH(auth.ID, auth.name))
from authors auth
where art.ID=auth.IDfrom))
from articles art

= XML element is created by calling ARTICLE()
constructor

= XMLAGG() concatenates the XML fragments

= XMLAGG aggregate function needs to work on
ordered inputs.

© Surajit Chaudhuri & Kyuseok Shim
2001 73

Example: Defining User
Defined Function

define XML constructor ARTICLE(
artld:integer, titl:varchar(20), authorList:xml) AS {

<article id = $artld>
<title> $titl</name>
<authors> $acclist</authors>
</article>

© Surajit Chaudhuri & Kyuseok Shim
2001 74

37

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Implementation Alternatives

» Early Tagging and Early Structuring

= Stored Procedure Approach
= Process queries for each nested structure
= A fixed join ordering and join technique

» CLOB Approach

= Need to support XML constructors and XML aggregation
functions

= Represents the XML fragments generated by
constructors as Character Large Objects (CLOBs)

= Correlated or De-correlated

© Surajit Chaudhuri & Kyuseok Shim
2001 75

Implementation Alternatives

» Late Tagging and Late Structuring

» Redundant Relation Approach
= Represents a hierarchical structure as a single table
= Number of tuples grows as product of relations —
inefficient!
» Unsorted Outer Union Approach

= Computes each path from root level table to a leaf level
table and outer union them

= A separate tuple describing an ancestor is needed if
ancestor has no children

= NULL is used to fill the columns of other children
= Hash-based tagging is used

© Surajit Chaudhuri & Kyuseok Shim
2001 76

38

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Implementation Alternatives

» Late Tagging and Early Structuring

= Sorted Outer Union Approach
= Sort on its id fields

= The children of a parent nodes are grouped together
after the parent

= Tuples having NULL values in sort field are placed before
tuples having non-NULL values

= Scales well for large data sets
= Tagging requires only memory to keep the parent
ids of the last tuple seen

© Surajit Chaudhuri & Kyuseok Shim
2001 77

Publishing with support for Views

» Provide XML views over relational data

» Allow queries on these views using an XML
query language
= Steps
= Query composition with view definition
= Query optimization
» Various structuring and tagging techniques
» Generation of XML

© Surajit Chaudhuri & Kyuseok Shim
2001 78

39

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

‘ Query Composition
I

= XML view is not necessarily materialized
» Materializing the entire XML view incurs
unnecessary computations
= Retrieve only the required fragment of
relational data

» Push computation into relational engine as much
as possible

© Surajit Chaudhuri & Kyuseok Shim
2001 79

SilkRoute

= XML view is defined using a declarative RXL
query language
= Allows complex structure and arbitrary
levels of nesting

= Do not address the ordering issue in XML
document

= Accept XML-QL queries over the defined view

= XML-QL queries are composed with the view
= Generates another RXL query

© Surajit Chaudhuri & Kyuseok Shim
2001 80

40

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

| XML-QL

= [Deutch, Fernandez, Florescu, Suciu: WWW 99]

Similar structure to SQL: "WHERE-IN-CONSTRUCT"”
= WHERE - specify XML pattern to search
= IN — specify data sources to search
= CONSTRUCT - specify the format of XML result

Support nested query
Can express selection, projection, join, grouping
Can construct deeply nested XML elements

© Surajit Chaudhuri & Kyuseok Shim
2001 81

Example: Sample Relational
Schema

Issues(ID, volume, number, articleID)
Articles(ID, title, initPage, endPage, authorID)
Authors(ID, name, authorPosition)

© Surajit Chaudhuri & Kyuseok Shim
2001 82

41

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: Desired XML Output

<articles>
<article id = “a1”>
<title> XML Research Issues</title>
<authors>
<author>Tom Hanks</author>
</authors>
</author>
<article id = “a2">
<title>Storage and Retrieval of XML Data Using Relational DBMS</title>
<authors>
<author>Surajit Chaudhuri</author>
<author>Kyuseok Shim</author>
</authors>
</author>
<articles>

© Surajit Chaudhuri & Kyuseok Shim
2001 83

Example: View Definition
using RXL

= Allow nested and block structures
= A left-outer join

= Skolem function is used to group elements
construct
<articles ID=Articles()>
from articles $a
construct
{ <article ID=Article($a.ID)>
<title>$a.title</title>
<authors>
{ from authors $b
where $a.authorID = $b.ID
construct
<author>$b.name</author>

</authors>
</article>

</articles>

© Surajit Chaudhuri & Kyuseok Shim
2001 84

42

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

| XML-QL Query on the View

construct
<result> {
where <articles>
<article>
<title> $t </title>
<authors>
<author>
<name $n</name>
</author>
</authors>
</article>
<articles> in “sigmodRecord.xml”,
$n = "Tom Hanks”
construct
<title> $t </title>
} </result>

© Surajit Chaudhuri & Kyuseok Shim
2001 85

Composed RXL query

construct

<result>

{
from articles $a, authors $b
where $a.authorID = $b.ID,

$b.name ="Tom Hanks”
construct
<title> $t </title>
} </result>

© Surajit Chaudhuri & Kyuseok Shim
2001 86

43

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

‘ Query Composition
I

= Construct the view tree consisting of a global
template and a set of Datalog rules

= Obtain the global template by merging templates
from all construct clause

= Two template are merged if and only if they share
the same Skolem function

» Construct one Datalog rule for each Skolem
function

» Datalog rules are non-recursive

© Surajit Chaudhuri & Kyuseok Shim
2001 87

‘ Query Composition
I

= The composed query is the union of all
possible matches
= Construct one block for each match

» Perform minimization to eliminate redundancies
for each block (could be expensive)

© Surajit Chaudhuri & Kyuseok Shim
2001 88

44

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

‘ Query Processing
I

= Sorted outer-union approach

= Construct one large SQL query from XML query
and XML view

» The SQL query consists of several left-outer joins,
which are combined in outer unions
= Fully partitioned strategy

= Construct multiple SQL queries without outer joins
and unions

= Each result is sorted to permit merging and
tagging

© Surajit Chaudhuri & Kyuseok Shim
2001 89

‘ Query Processing
I

= The optimal plan lies between two extreme
strategies
= Need to optimize!

= The number of possible translations of an RXL
query into SQL is 2F where E is the number of
edges in the view tree

= SilkRoute uses heuristic to choose a good plan

© Surajit Chaudhuri & Kyuseok Shim
2001 90

45

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example

From supplier $s
Construct
<supplier>
<name>$s.name</name>
{ from nation $n
where $s.nationkey = $n.nationkey
construct
<nation>$n.name</nation> }
{ from PartSupp $ps, Part $p
where $s.suppkey = $ps.suppkey,
$ps.partkey = $p.partkey
construct
<part><name>$p.name</name></part> }
</supplier>

© Surajit Chaudhuri & Kyuseok Shim
2001 91

‘ Execution Plans

supplier supplier
o)
/ \ 1

o © o, o

nation part nation part
supplier
pop supplier
[¢]
*

0. © ° o

nation part nation part

© Surajit Chaudhuri & Kyuseok Shim
2001 92

46

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

‘ Transformed SQLs

supplier supplier
O,
/ \ 1
o o o,)
nation part nation part

select s.superkey, n.name

from supplier s, nation n

where s.nationkey = n.nationkey
order by s.suppkey

select s.superkey, n.name, Q.partkey, Q.name
from supplier s, nation n
where s.nationkey = n.nationkey
left outer join
(select ps.suppkey as suppkey, p.name as pname
from PartSupp ps, Part p select s.suppkey, p.name
where ps.partkey = p.partkey from supplier s, Part p, PartSupp ps
)as Q where s.suppkey = ps.suppkey and
on s.suppkey = Q.suppkey ps.partkey = p.partkey
order by s.suppkey order by s.suppkey

© Surajit Chaudhuri & Kyuseok Shim
2001 93

XPERANTO

= Automatically creates a default XML view
= Top-level elements correspond to table names

» Row elements are nested under the table
elements

= Within a row element, column names appear as
tags and column values appears as text
= Then, transform the default view into desired
XML format

= XQuery language is used to express the desired
XML view

© Surajit Chaudhuri & Kyuseok Shim
2001 94

47

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

XPERANTO

= XML Query Graph Model (XQGM) is used as an
internal representation
= XQGM is a generalization of QGM model used for DB2
= Enables translation of XQuery queries to SQL
= Exploits XML query algebra

= Removes all XML navigation operators

= Thus avoids construction of unnecessary intermediate XML
fragments

= Composition rules are used for elimination

= Pushes down join and selections into relational
engine
= Query Decorrelation
= Tagger Pull-up

© Surajit Chaudhuri & Kyuseok Shim
2001 95

Example: Desired XML

<article id = "al1”">
<title> XML Research Issues</title>
<authors>
<author>Tom Hanks</author>
</authors>
</article>
<article id = “a2">
<title>Storage and Retrieval of XML Data Using Relational DBMS< /title>
<authors>
<author>Surajit Chaudhuri</author>
<author>Kyuseok Shim</author>
</authors>
</article>

© Surajit Chaudhuri & Kyuseok Shim
2001 96

48

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: Default XML View

<db>
<Issues>
<row>
<ID>1</ID><volume>1</volume><number>1</number><articleID>al</articleID>
</row>
</Issues>
<Articles>
<row>
<ID>al1</ID><title>XML Research Issues</title>
<initPage>1</initPage><endPage>5</endPage><authurID>1</authorID>
</row>

</Articles>
<Authors>
<row>
<ID>1</ID><name>Tom Hanks</name><authorPosition>1</authorPosition>
</row>
<Authors>
</db>

© Surajit Chaudhuri & Kyuseok Shim
2001 97

Example: XML View Definition
and Query

| Create view articles as (
for $article in view(“default”)/Articles/row
return
<article id = $article/ID>
<title>$article/title> </title>
<authors>
for $auth in view(“default”)/Authors/row
where $article/authorID = $auth/ID
return
<author>$auth/name</author>
</authors>
</article>

Query

for $articles in view(“articles”)

where $articles/article/authors/author/text() = “Tom Hanks”
return $articles/article/title

© Surajit Chaudhuri & Kyuseok Shim
2001 98

49

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Storage of Native XML in
Relational Databases

© Surajit Chaudhuri & Kyuseok Shim
2001 99

How to store Native XML Data?

» Generic Mapping
= No user-defined mapping, no DTD, no use of data

» User provides mapping to relational tables
(discussed for commercial products)

» Infer mapping from DTD or XML Schema
= Analyze XML data and query workload

© Surajit Chaudhuri & Kyuseok Shim
2001 100

50

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Generic Mapping

» [Florescu, Kossmann: IEEE Data Eng. Bulletin 99]

= Alternative ways to store edges for graphs

= Edge Approach

= Stores all edges in a single table
= Binary Approach

= Group all edges with the same label into one table
= Universal Table

= Result of a full outer join of all binary tables

= Many fields with null

= A lot of redundancy

© Surajit Chaudhuri & Kyuseok Shim
2001 101

Generic Mapping (2)

= Alternative ways to map values
= Separate Value Table
= Inlining
» Keep columns for all types together
= Thus, there could be many null values
= Binary approach + inlining shows the best overall
= Most of data in a single edge table is irrelevant for a query

= Universal table approach performs poorly for query with
large results

= Binary approach processes only relevant data
= Inlining saves the cost of the joins with the Value tables

© Surajit Chaudhuri & Kyuseok Shim
2001 102

51

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

A Edge Table with Separate
Edge Table
Source Ordinal Tag Fag Target
&1 1 siamodRecod ref &2
&02 1 issue ref &3
&03 1 volume string &4
&03 2 number string &5
&03 3 articles ref &6
&06 1 article ref &7
&06 2 article ref &8
&7 1 title string &9
&7 2 initPage string &10
Vstring
Node Value
&4 1
&5 1
&9 XML Research Issues
« " &010 1
XML .. &o11 5
i “Tom Hanksn &013 Tom Hanks
© Surajit Chaudhuri & Kyuseok Shim
2001 103

I
Aauthor
Source Ordinal intValue stringValue Target
8012 1 null Tom Hanks 8013
Aarticle
Source Ordinal intValue stringValue Target
&06 1 null null &7
&06 2 null null &08
“XML ..”"
“Tom Hanks”
© Surajit Chaudhuri & Kyuseok Shim
2001 104

52

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

‘ XML Query Translation to SQL

= A single edge table

= For every projection and selection attributes,
perform self joins

» Simple path expressions: self-joins
» Kleene closures (*): recursive SQL
» Normalized Tables

» Use SilkRoute or XPERANTO
» Limited for certain class of XML queries

© Surajit Chaudhuri & Kyuseok Shim
2001 105

A Single Edge Table

= [Tian, DeWitt, Chen, Zhang: Wisconsin TR 00]

SourcelD| Ordinal Tag TargetlD Data
1 1 sigmodRecord 2
2 1 issue 3
3 1 volume 4 "1
3 2 number 5 "1
3 3 articles 6
6 1 article 7
6 2 article 8
7 1 title 9 XML Research Issues
7 2 initPage 10 "
7 3 endPage 11 "5"
7 4 authors 12
12 1 author 13 "Tom Hanks"

© Surajit Chaudhuri & Kyuseok Shim
2001 106

53

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

‘ Query Transformation
I

XQuery: for $b IN document(“sigmodRecord.xml")/sigmodRecord/issue
where $b/volume = “1"
return $b/articles/article/title

SQL: select t6.value

from edges t1, edges t2, edges t3, edges t4, edges t5, edges t6

where t1.TargetID = t2.SourceID and t2.TargetID = t3.sourcelD
and t2.TargetID = t4.sourcelD and t4.TargetID = t5.sourcelD
and t5.TargetID = t6.sourcelD
and tl.tag = “sigmodRecord” and t2.tag = “issue”
and t3,tag = “volume” and t3.value = “1”
and t4.tag = “articles” and t5.tag = “article” and t6.tag = “title”

© Surajit Chaudhuri & Kyuseok Shim
2001 107

Infers Mapping from DTD

» [Shanmugasundaram et al. 99]

= Use DTD to generate a relational schema
= DTD graph is generated from DTD
= Element graph is generated by depth first
traversal of the DTD graph for each element
= Viable Approaches
» Shared
= Hybrid

© Surajit Chaudhuri & Kyuseok Shim
2001 108

54

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Shared and Hybrid Inlining
Technique

» Shared Inlining
= An element node is represented in exactly one relation

= Relations are created for all elements having in-degree
greater than one in DTD graph
= Nodes with an in-degree of one are inlined

= Nodes with an in-degree of zero are made into separate
relations

= Nodes below a * node are made into separate relations

» Of mutually recursive elements all having in-degree one, one
of them is made a separate relation

= Hybrid Inlining
= Additionally inlines elements with in-degree greater than one
that are not recursive or reached through a “*” node

© Surajit Chaudhuri & Kyuseok Shim
2001 109

Example: DTD
‘ (SIGMOD Record)

<?xml version="1.0"?>

<l— DTD -->

<IELEMENT proceeding (article)* >
<IELEMENT article (title, author) >
<IELEMENT title (#PCDATA)>
<IELEMENT author (#PCDATA)>
<VELEMENT book (editor, title) >
<IELEMENT editor (#PCDATA)>

© Surajit Chaudhuri & Kyuseok Shim
2001 110

55

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example: Shared Inlining
Technique

book book proceeding proceeding
book.ID | book.editor.isroot ' boo k.veditor / proceeding.ID
Inteaer Boolean Strina Integer
*
title editor \'

article

title.ID _ title. ParentID| _title. ParentCODE | title
Integer Integer Integer String

title author
article
article.ID | article.parentlD | article.parentCODE | article.author.isroot | article.author
Integer Integer Integer Boolean String

© Surajit Chaudhuri & Kyuseok Shim
2001 111

Example: Hybrid Inlining
Technique

book proceeding
book

book.ID | book.editor.isroot |book.editor book.title.isroot| book. title
Integer Boolean String

*

/ proceeding

editor article proceeding.ID

Inteaer
titte author

article

article.ID | article.parentlD | article.parentCODE | article.author.isroot | article.author article.title.isroot _article.title
Integer Integer Integer Boolean String Boolean String

© Surajit Chaudhuri & Kyuseok Shim
2001 112

56

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

STORED: Analyze XML Data

= [Deutsch, Fernandez, Suciu: SIGMOD'99]

= Semistructured data into relational data

= Integrate both relational and overflow systems

= Use data mining algorithm to find out frequent
subtrees
= There is no notion of DTD in semistructured data

= Overflow mapping is used to insure no loss of
information

= Overflow objects or object parts are stored in a separate
semistructured data object repository

© Surajit Chaudhuri & Kyuseok Shim
2001 113

STORED: Overview of
Technique

= Compute minimal path prefixes
= Generates all prefixes l1....Ik with min support
= Discover frequent subtrees (patterns)
= Use WL's algorithm
= Select Ko patterns
= Greedily choose a subset of Ko patterns
= Select required attributes
= Generate mapping of Ko patterns using STORED
query languages
= Generate overflow mapping

© Surajit Chaudhuri & Kyuseok Shim
2001 114

57

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example

= Assume
= The semistructured data has either

= One author with string type
= Or author having first name and last name

» One author type appears frequently

= One relation for frequent structure and
overflow relations G1 and G2 are generated

© Surajit Chaudhuri & Kyuseok Shim
2001 115

Example: Relational Schema

paper

ID title author

2

3

4

G2
G1
source tag dest
paperiD 3 firstName 4
3 3 lastName 5
© Surajit Chaudhuri & Kyuseok Shim
116

2001

58

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Structural Summary and
Indexing for XML

© Surajit Chaudhuri & Kyuseok Shim
2001 117

Structural Summary and Index

= Structural summary only
« DTD
= XML Schema
= Representative Objects
= Structural summary and Index
= Strong Dataguide
= T-index: 1-index, 2-index
= Index only
= Extensions of Inverted index
= Access Support Relations
= ToXin
= Index Fabric

© Surajit Chaudhuri & Kyuseok Shim
2001 118

59

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Why Structural Summary?

= Can help users to formulate meaningful queries

= Allows query processor to restrict the search space to
only relevant portions of XML data
= Can be used to design an efficient relational
representations for XML data
= XML document may not always have an accompanying DTD
or XML Schema

= Can be stored as a single edge table representation

© Surajit Chaudhuri & Kyuseok Shim
2001 119

Representative Objects

= [Nestorov, Ullman, Wiener, Chawathe: ICDE'97]

= Provides a concise representation of the inherent
schema of semistructured data

= Full Representative Objects (FRO)
= Describe the global structure of the data
= Similar to Dataguide

= Degree-K Representative Objects

= Describe the local aspects of the data by considering only
paths of length K

= Take less space than FRO
= Construction time may be less than that of FRO

© Surajit Chaudhuri & Kyuseok Shim
2001 120

60

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

XTRACT

» [Garofalakis, Gionis, Rastogi, Seshadri, Shim: SIGMOD 00]

» Infers concise and semantically meaningful DTDs for XML
documents

= Generalization

= Generate zero or more candidate DTDs by replacing patters in the
data with meta-characters like *

= e.g. abab => (ab)*, bbbe => b*e
= Factorization
= Factors common subexpressions from the candidate DTDs
= e.g.b*d| b*e=>b*(d]e)
= Minimum Description Length (MDL) Principle
= MDL choose the minimum cost candidate DTD

© Surajit Chaudhuri & Kyuseok Shim
2001 121

Strong Dataguide

= [Goldman, Widom: VLDB 97]

= Summary of path structure from the root

= Concise: describes every label path in the data
once

» Accurate: every label path in the data appears in
the data guide
= Representation of the equivalent classes
based on a deterministic automata (DFA)

© Surajit Chaudhuri & Kyuseok Shim
2001 122

61

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Strong Dataguide

» All label paths reaching the same node in
dataguide belong to the same equivalence
class

= Construction is equivalent to the conversion
of non-deterministic automata (NFA) into
deterministic automata (DFA)

» Linear time for tree structured data
» Exponential time for graph structured data
= The size may be exponential in database size

© Surajit Chaudhuri & Kyuseok Shim
2001 123

T-index

Fa [Milo and Suciu: ICDT 99]

» 1-index

= To support queries of soP vi

» So: root

« P: aregular expression

« E.g. sO//title
Summary of path structure from the root
Representation of the equivalent classes based on a
non-deterministic automata using bisimulation
Extents are disjoint

More compact size than dataguides

« The size is at most linear in database size
© Surajit Chaudhuri & Kyuseok Shim
2001 124

62

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

T-index

= 2-index
= To support queries of so viP v2
= E.g. sO//articles//title

» Summary of path structure between two arbitrary
nodes in database

» Intended to find pairs of nodes matching some
arbitrary path expression

= T-index
» To support queries of So Vi P1 V2 P2 v3 Ps ... Pava

© Surajit Chaudhuri & Kyuseok Shim
2001 125

Strong Dataguide 1l-index
© Surajit Chaudhuri & Kyuseok Shim
2001 126

63

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Access Support Relations

[Kemper, Moerkotte: IS 92]

To support join along arbitrary reference
chains between two object instances
Not straight-forward to use with XML
document without schema information

» They are based on the paths in the schema

Materialize access paths of arbitrary length

© Surajit Chaudhuri & Kyuseok Shim
2001 127

ToXin

[Rizzolo: MS Thesis 01]

Supports navigation of forward and backward
traversals

= Strong dataguide and 1-index support only forward traversal
from the root

Supports not only regular path expressions but also
predicates over values

= Access support relations and T-index store only predefined
subsets of paths

The index size is linear w.r.t. the size of database
= Strong dataguide has exponential growth

© Surajit Chaudhuri & Kyuseok Shim
2001 128

64

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Extension to Inverted Index

"« Can be implemented as an edge table in RDBMS
= Assign a range to each element

= Containment is used to decide ancestor-descendant
relationship

= [Chun Zhang at al. :SIGMOD'01]
» Text words: T-index - (docno, wordno, level)
» Elements: E-inde - (docno, begin:end, level)

= [Quanzhong Li and Bongki Moon: VLDB'01]
» Each element in XML has a pair of numbers <order, size>
« If xis a parent of y,
« order(x) < order(y)
= order(y) + size(y) <= order(x) + size(x)

© Surajit Chaudhuri & Kyuseok Shim
2001 129

Example: T-index and E-index

<articles> E-index
<article> <articles> (1, 1:15,0)
<title> XML Research <article> (1, 2:14, 1)
Issues</title> <title> 1, 3:7,2)
<authors> <authors> (1,8:13,2)
< > 1,9:12
Hanlfslit?aol,rlth-gcr)g] <author> 223
</authors> T-index
</article>
<ar£icles> XML (1,4, 3)
Research 1,5,3)
Tom (1,10, 4)
Hanks (1,11, 4)

© Surajit Chaudhuri & Kyuseok Shim
2001 130

65

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Example

= XPath Expression: articles//author
= The inverted list of articles and author are retrieved
= The containment is checked for both lists

select *

from ELEMENTS el, ELEMENTS e2

where el.term = ‘articles’ and e2.term = ‘author’ and
el.docno = e2.docno and
el.begin < 2.begin and e2.end < el.end

© Surajit Chaudhuri & Kyuseok Shim
2001 131

Index Fabric

= [Cooper at al.: VLDB'01]
= Encodes paths in XML data as strings
= Insert these strings into an efficient index for strings

» The index block and XML data are both stored in
relational database system

= Evaluation of queries encode the desired path
traversal as a search key string and perform a lookup

= Use Patricia trie to index a large number of strings

© Surajit Chaudhuri & Kyuseok Shim
2001 132

66

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

Final Thoughts

| = XML enables data exchange and interoperability

» Efficient and flexible publishing of relational
information will continue to be important

= More work on query processing infrastructure as application
needs evolve

= Middleware v.s. server
= Native XML storage in the crossroads
= Document Storage, LOB and structured search all play roles
= Current support in RDBMS not yet sophisticated
= Applications need to frame performance criteria

» Eventually performance yardsticks and benchmarks
will be necessary

© Surajit Chaudhuri & Kyuseok Shim
2001 133

References

Serge Abiteboul, Sophie Cluet, Tova Milo: Querying and Updating the File. VLDB 1993

= Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, Janet L. Wiener: The Lorel
Query Language for Semistructured Data. Int. J. on Digital Libraries 1(1), 1997

» S. Abiteboul, P.Buneman, D. Suciu: Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann, 1999

» D. Barbosa, A. Barta, A. Mendelzon, G. Mihaila, F. Rizzolo, P. Rodriguez-Gianolli: ToX - The

gor__?nto‘XMliéfonlgine, International Workshop on Information Integration on the Web, Rio

e Janeiro, .

. I1E|9I%a9 Bertino, Won Kim: Indexing Techniques for Queries on Nested Objects. TKDE 1(2),

» Ronald Bourret, XML and Databases, http://www.rpbourret.com/xml/XMLAndDatabases.htm
» Ronald Bourret, Mapping DTDs to Databases, http://www.rpbourret.com/xml/

= Michael J. Carey, Jerry Kiernan, Jayavel Shanmugasundaram, Eugene J. Shekita, Subbu N.
Subramanian: XPERANTO: Middleware for Publishing Object-Relational Data as XML
Documents. VLDB 2000

= Donald D. Chamberlin, Jonathan Robie, Daniela Florescu: Quilt: An XML Query Language for
Heterogeneous Data Sources. WebDB 2000

= Qiming Chen, Yahiko Kambayashi: Nested Relation Based Database Knowledge
Representation. SIGMOD Conference 1991

= Vassilis Christophides, Sophie Cluet, Jérome Siméon: On Wrapping Query Languages and
Efficient XML Integration. SIGMOD Conference 2000: 141-152

© Surajit Chaudhuri & Kyuseok Shim
2001 134

67

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

References

= Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, Moshe Shadmon: A fast
index for semistructured data. VLDB 2001

» Alin Deutsch, Mary F. Fernandez, Dan Suciu: Storing Semistructured Data with STORED.
SIGMOD Conference 1999

» Alin Deutsch, Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, Dan Suciu: A Query
Language for XML. WWW, 1999

= Mary F. Fernandez, Dan Suciu: Optimizing Regular Path Expressions Using Graph Schemas.
ICDE 1998

= Mary F. Fernandez, Wang Chiew Tan, Dan Suciu: SilkRoute: trading between relations and
XML. WWW 2000

» Mary F. Fernandez, Atsuyuki Morishima, Dan Suciu: Efficient Evaluation of XML Middle-ware
Queries. SIGMOD 2001

= Minos N. Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri, Kyuseok Shim: XTRACT:
A System for Extractmg Document Type Descriptors from XML Documents. SIGMOD
Conference 2000

= Roy Goldman, Jennifer Widom: DataGwdes Enabling Query Formulation and Optimization
in Semistructured Databases. VLDB 1997

» Roy Goldman, Jason McHugh, Jennifer Widom: From Semistructured Data to XML: Migrating
the Lore Data Model and Query Language. WebDB, 1999

© Surajit Chaudhuri & Kyuseok Shim
2001 135

References

= Carl-Christian Kanne, Guido Moerkotte: Efficient Storage of XML Data . Technical Report
8/99, University of Mannhe|m 1999

» Alfons Kemper, Guido Moerkotte: Access Support Relations: An Indexing Method for Object
Bases. IS 17(2)

= Quanzhong Li, Bongki Moon: Indexing and querying XML data for regular path expressions.
VLDB 2001

» Hartmut Liefke, Dan Suciu: XMILL: An Efficient Compressor for XML Data. SIGMOD
Conference 2000

= Jason McHugh, Jennifer Widom: Query Optimization for XML. VLDB 1999
= Tova Milo, Dan Suciu: Index Structures for Path Expressions. ICDT 1999

» Svetlozar Nestorov, Jeffrey D. Ullman, Janet L. Wiener, Sudarshan S. Chawathe:
Fliggresentatlve Ob]ects Concise Representatlons of Semlstructured Hierarchial Data. ICDE

= F. Rizzolo, A. Mendelzon: Indexing XML Data with ToXin, Fourth International Workshop on
the Web and Databases, Santa Barbara, CA. 2001

= Michael Rys: Bringing the Internet to Your Database: Using SQLServer 2000 and XML to
Build Loosely-Coupled Systems. ICDE 2001

» Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. DeWitt, Jeffrey
F. Naughton: Relational Databases for Querylng XML Documents: Limitations and
Opportunities. VLDB 1999

© Surajit Chaudhuri & Kyuseok Shim
2001 136

68

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

References

» Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey, Bruce G.
Lindsay, Hamid Pirahesh, Berthold Reinwald: Efficiently Publishing Relational Data as XML
Documents. VLDB 2000

» Jayavel Shanmugasundaram, Jerry Kiernan, Eugene J. Shekita, Catalina Fan, John
Funderburk: Efficiently Publishing Relational Data as XML Documents. VLDB 2001

. FenP Tian, David J. DeWitt, Jianjun Chen, and Chun Zhang: The Design and Performance
Evaluation of Various XML Storage Strategies, Technical report, University of Wisconsin

» F. Rizzolo. ToXin: An Indexing Scheme for XML Data. M.Sc. Thesis, Department of
Computer Science, University of Toronto, Canada. January 2001.

= Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, Guy M. Lohman: On
gggportmg Containment Queries in Relational Database Management Systems. SIGMOD

1

» Justin Zobel, James A. Thom, Ron Sacks-Davis: Efficiency of Nested Relational Document
Database Systems. VLDB 1991

© Surajit Chaudhuri & Kyuseok Shim
2001 137

References (W3C)

» W3C Recommendation. Extensible Markup Language (XML) 1.0 (Second Edition) In
http://www.w3.0rg/TR/REC-xml. 2000

. \ll\é?;gcg Recommendation. Namespaces in XML In http://www.w3.0rg/TR/REC-xml-names.

. \1/\56% Recommendation. XML Path Language (XPath) 1.0. In http://www.w3.0rg/TR/xpath.

= W3C XML representation of a relational database In http://www.w3.0rg/XML/RDB.html
. \2/\630C1 Recommendation. XML Shcema Part 0: Primer In http://www.w3.0rg/TR/xnlschema-0.

» W3C Recommendation. XML Shcema Part 1: Structure In
http://www.w3.0rg/TR/xnlschema-1. 2001

= W3C Recommendation. XML Shcema Part 1: Datatypes In
http://www.w3.0rg/TR/xnlschema-2. 2001

. \{\é?;gcg Recommendation. XSL Transformations (XSLT) 1.0. In http://www.w3.0rg/TR/xslt.

= W3C Working Draft. XQuery 1.0: An XML Query Language In
http://www.w3.0rg/TR/xquery. 2001

© Surajit Chaudhuri & Kyuseok Shim
2001 138

69

Storage and Retrieval of XML Data using Relational Databases - Chaudhuri, Shim

References (Products)

» Sandeepan Banerjee, Vishu Krishnamurthy, Muralidhar Krishnaprasad, Ravi Murthy: Oracle8i
- The XML Enabled Data Management System. ICDE 2000

» Michael Rys: Bringing the Internet to Your Database: Using SQLServer 2000 and XML to
Build Loosely-Coupled Systems. ICDE 2001

» Josephine M. Cheng, Jane Xu: XML and DB2. ICDE 2000

» Ronald Bourret: XML Database Products: In
http://www.rpbourret.com/xml/XMLDatabaseProds.htm, July 2001

» Michael Rys: Bringing the Internet to Your Database: Using SQLServer 2000 and XML to
Build Loosely-Coupled Systems. ICDE 2001: 465-472

» Josephine M. Cheng, Jane Xu: XML and DB2. ICDE 2000: 569-573
= eXcelon: Extensible Information Server White Paper. eXcelon Corporation, 2001

» IBM DB2 Universal Database for AS/400 XML Extender Administration and Programming
Version 7. 2001

=« Microsoft SQL Server Books Online
» Oracle8i Application Developer's Guide — XML Release 3 (8.1.7). 2000

© Surajit Chaudhuri & Kyuseok Shim
2001 139

70

