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Outline
• Intro & Approximate Query Answering Overview

– Synopses, System architecture, Commercial offerings

• One-Dimensional Synopses
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Introduction & Motivation

• Exact answers  NOT always required
– DSS applications usually exploratory: early feedback to help 

identify “interesting” regions

– Aggregate queries: precision to “last decimal” not needed
• e.g., “What are the total sales of product X in NJ?”

– Base data can be remote or unavailable: approximate processing 
using locally-cached  data synopses is the only option

SQL Query

Exact Answer

Decision
Support 
Systems
(DSS) 

Long Response Times!
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Fast Approximate Answers
• Primarily for Aggregate queries

• Goal is to quickly report the leading digits of answers
– In seconds instead of minutes or hours
– Most useful if can provide error guarantees

E.g., Average salary
$59,000 +/- $500 (with 95% confidence) in 10 seconds

vs.   $59,152.25 in 10 minutes

• Achieved by answering the query based on samples or other 
synopses of the data

• Speed-up obtained because synopses are orders of 
magnitude smaller than the original data
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Approximate Query Answering
Basic Approach 1:  Online Query Processing

– e.g., Control Project [HHW97, HH99, HAR00]

– Sampling at query time

– Answers continually improve, under user control
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Approximate Query Answering
Basic Approach 2:  Precomputed Synopses

– Construct & store synopses prior to query time
– At query time, use synopses to answer the query

– Like estimation in query optimizers, but 
• reported to the user (need higher accuracy)
• more general queries

– Need to maintain synopses up-to-date

– Most work in the area based on the precomputed approach 
• e.g., Sample Views [OR92, Olk93], Aqua Project [GMP97a, 

AGP99,etc]
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The Aqua Architecture

Data
Warehouse

(e.g., 
Oracle)

SQL
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Data
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• Picture without Aqua: User poses a query Q
• Data Warehouse executes Q and returns result
• Warehouse is periodically updated with new data
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The Aqua Architecture

• Picture with Aqua: Aqua is middleware                             
that sits between the user and the warehouse 

• Aqua Synopses are stored in the warehouse

• Aqua intercepts the user query and rewrites it to be a query 
Q’ on the synopses.  Data warehouse returns approx answer

Rewriter

Data
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[GMP97a, AGP99]
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Online vs. Precomputed
Online:

+ Continuous refinement of answers (online aggregation)
+ User control: what to refine, when to stop
+ Seeing the query is very helpful for fast approximate results
+ No maintenance overheads
+ See [HH01] Online Query Processing tutorial for details

Precomputed:
+ Seeing entire data is very helpful (provably & in practice)

(But must construct synopses for a family of queries)
+ Often faster: better access patterns, 

small synopses can reside in memory or cache
+ Middleware: Can use with any DBMS, no special index striding
+ Also effective for remote or streaming data
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Commercial DBMS
• Oracle, IBM Informix: Sampling operator  (online)

• IBM DB2: “IBM Almaden is working on a prototype version 
of DB2 that supports sampling. The user specifies a priori 
the amount of sampling to be done.”

• Microsoft SQL Server: “New auto statistics extract 
statistics [e.g., histograms] using fast sampling, enabling 
the Query Optimizer to use the latest information.”             
The index tuning wizard uses sampling to build statistics.
– see [CN97, CMN98, CN98]

In summary, not much announced yet
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Outline
• Intro & Approximate Query Answering Overview

• One-Dimensional Synopses
– Histograms: Equi-depth, Compressed, V-optimal, Incremental 

maintenance, Self-tuning

– Samples: Basics, Sampling from DBs, Reservoir Sampling

– Wavelets: 1-D Haar-wavelet histogram construction & maintenance

• Multi-Dimensional Synopses and Joins

• Set-Valued Queries

• Advanced Techniques & Future Directions

• Conclusions
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Histograms
• Partition attribute value(s) domain into a set of buckets

• Issues: 
– How to partition

– What to store for each bucket

– How to estimate an answer using the histogram

• Long history of use for selectivity estimation within a query 
optimizer [Koo80], [PSC84], etc

• [PIH96] [Poo97] introduced a taxonomy, algorithms, etc
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1-D Histograms: Equi-Depth

• Goal: Equal  number of rows per bucket (B buckets in all)
• Can construct by first sorting then taking B-1 equally-spaced splits
• Faster construction: Sample, take equally-spaced splits in sample

– Nearly equal buckets
– Can also use one-pass quantile algorithms (e.g., [GK01])

• Can maintain using one-pass algorithms (insertions only), or
• Use a backing sample [GMP97b]: Keep bucket counts up-to-date 

– Merge adjacent buckets with small counts
– Split any bucket with a large count, using the sample to select a split 

value (keeps counts within a factor of 2; for more equal buckets, can
recompute from the sample)

1  2  3 4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

Count in
bucket
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1-D Histograms: Compressed

• Create singleton buckets for largest values, equi-depth over the rest

• Improvement over equi-depth since get exact info on largest values, 
e.g., join estimation in DB2 compares largest values in the relations 

• Construction: Sorting + O(B log B) + one pass; can use sample

• Maintenance: Split & Merge approach as with equi-depth, but must also 
decide when to create and remove singleton buckets [GMP97b]

1  2  3 4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

[PIH96]
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1-D Histograms: Equi-Depth

Answering queries:

• select count(*) from R where 4 <= R.A <= 15

• approximate answer: F * |R|/B, where
– F = number of buckets, including fractions, that overlap the range

– error guarantee:  ± 2 * |R|/B

1  2  3 4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

4 ≤ R.A ≤ 15

±  0.5 * |R|/6answer: 3.5 * |R|/6
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1-D Histograms
• Answering queries from histograms:

– (Implicitly) map the histogram back to an approximate relation, 
apply the query to the approximate relation

– Continuous value mapping  [SAC79]:

– Uniform spread mapping  [PIH96]:

1  2   3 4  5  6  7  8  910 11 12 13 14 15 16 17 18 19 20

1  2   3 4  5 6  7 8  9  10 11 12 13 14 15 16 17 18 19 20

Need number
of distinct in
each bucket

3                2            1      2                  3       1

Count spread
evenly among
bucket values
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1-D Histograms: V-Optimal
• [IP95] defined V-optimal & showed it minimizes the average selectivity 

estimation error for equality-joins & selections

– Select buckets to minimize frequency variance within buckets

• [JKM98] gave an O(B*N^2) time dynamic programming algorithm

– F[k] = freq. of value k;  AVGF[i:j] = avg freq for values i..j

– SSE[i:j] = sum{k=i..j} (F[k]^2 – (j-i+1)*AVGF[i:j]^2)

– For i=1..N, compute P[i] = sum{k=1..i} F[k] & Q[i] = sum{k=1..i} F[k]^2

– Then can compute any SSE[i:j] in constant time

– Let SSEP(i,k) = min SSE for F[1]..F[i] using k buckets

– Then SSEP(i,k) = min{j=1..i-1} (SSEP(j,k-1) + SSE[j+1:i]),  i.e.,

suffices to consider all possible left boundaries for kth bucket

– Also gave faster approximation algorithms
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Self-Tuning 1-D Histograms
• Tune Bucket Frequencies: 

– Compare actual selectivity to histogram estimate

– Use to adjust bucket frequencies

– Divide d*Error proportionately, d=dampening factor

[AC99]
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Self-Tuning 1-D Histograms
2.  Restructure: 

– Merge buckets of near-equal frequencies

– Split large frequency buckets
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Sampling: Basics
• Idea:  A small random sample S of the data often well-

represents the entire data
– For a fast approx answer, apply the query to S & “scale” the result
– E.g., S is a 20% sample

select count(*) from R where R.a = 0
select 5 * count(*) from S where S.a = 0

– For expressions involving count, sum, avg: the estimator is unbiased, 
i.e., the expected value of the answer is the actual answer, even for 
(most) queries with predicates!

– Leverage extensive literature on confidence intervals for sampling
• Actual answer is within the interval [a,b] with a given probability

– E.g.,  54,000 ± 600  with probability ≥ 90%

1 1 0 1 
1 1 1 1 0 0 0

0 1 1 1 1 1 0 1
1 1 0 1 0 1 1

0 1 1 0

Red 0,1: in S

Count = 10
Est. count = 

5*2 = 10
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Sampling: Confidence Intervals

• If predicates, S above is subset of sample that satisfies the predicate
• Quality of the estimate depends only on the variance in R & |S| after 

the predicate: So 10K sample may suffice for 10B row relation!
– Advantage of larger samples: can handle more selective predicates

Guarantees?90% Confidence Interval (±)Method

as σ(S) → σ(R)3.16 * σ(S) / sqrt(|S|)Chebychev (est. σ(R))

always3.16 * σ(R) / sqrt(|S|)Chebychev (known σ(R))

always1.22 * (MAX-MIN) / sqrt(|S|)Hoeffding

as |S| → ∞∞∞∞1.65 * σ(S) / sqrt(|S|)Central Limit Theorem

Confidence intervals for Average:  select avg(R.A) from R
(Can replace R.A with any arithmetic expression on the attributes in R)

σ(R) = standard deviation of the values of R.A;     σ(S) = s.d. for S.A
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Sampling from Databases
• Sampling disk-resident data is slow

– Row-level sampling has high I/O cost:
• must bring in entire disk block to get the row

– Block-level sampling: rows may be highly correlated
– Random access pattern, possibly via an index
– Need acceptance/rejection sampling to account for the variable 

number of rows in a page, children in an index node, etc

• Alternatives
– Random physical clustering: destroys “natural” clustering
– Precomputed samples: must incrementally maintain (at specified size)

• Fast to use: packed in disk blocks, can sequentially scan, can store 
as relation and leverage full DBMS query support, can store in 
main memory
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One-Pass Uniform Sampling
• Best choice for incremental maintenance

– Low overheads, no random data access

• Reservoir Sampling [Vit85]: Maintains a sample S of a fixed-size M
– Add each new item to S with probability M/N, where N is the 

current number of data items
– If add an item, evict a random item from S
– Instead of flipping a coin for each item, determine the number of 

items to skip before the next to be added to S

– To handle deletions, permit |S| to drop to L < M,  e.g., L = M/2
• remove from S if deleted item is in S, else ignore
• If |S| = M/2, get a new S using another pass  (happens only if 

delete roughly half the items & cost is fully amortized) [GMP97b]
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Biased Sampling
• Often, advantageous to sample different data at different 

rates (Stratified Sampling)
– E.g., outliers can be sampled at a higher rate to ensure they are 

accounted for;  better accuracy for small groups in group-by queries
– Each tuple j in the relation is selected for the sample S with some 

probability Pj  (can depend on values in tuple j)
– If selected, it is added to S along with its scale factor sf = 1/Pj

– Answering queries from S: e.g., 
select sum(R.a) from R where R.b < 5 
select sum(S.a * S.sf) from S where S.b < 5

• Unbiased answer. Good choice for Pj’s                                         
results in tighter confidence intervals

R.a  10  10   10  50  50
Pj       ⅓ ⅓ ⅓ ½ ½ 
S.sf    --- 3   --- --- 2

Sum(R.a) = 130
Sum(S.a*S.sf) = 

10*3 + 50*2 = 130
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One-Dimensional Haar Wavelets 
• Wavelets: mathematical tool for hierarchical decomposition 

of functions/signals 
• Haar wavelets:  simplest wavelet basis, easy to understand 

and implement 
– Recursive pairwise averaging and differencing at different 

resolutions

Resolution     Averages          Detail Coefficients
[2, 2, 0, 2, 3, 5, 4, 4]

[2,    1,  4,      4] [0, -1, -1, 0]

[1.5,   4] [0.5, 0]

[2.75] [-1.25]

----3

2

1

0

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]
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Haar Wavelet Coefficients 

Coefficient “Supports”

2              2   0            2   3            5 4               4

-1.25
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0.5 0

0 -1 0-1

+

-+

+

+ + +

+

+

- -

- - - -

+
-+

+ -
+ -

+-
+-

-+
+--1

-1

0.5

0

2.75 

-1.25

0

0

• Hierarchical decomposition structure 
(a.k.a. “error tree”)

Original data
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Wavelet-based Histograms [MVW98]

• Problem: range-query selectivity estimation 
• Key idea: use a compact subset of Haar/linear wavelet 

coefficients for approximating the data distribution
• Steps

– compute cumulative data distribution C
– compute Haar (or linear) wavelet transform of C
– coefficient thresholding :  only b<<|C| coefficients can be kept

• take largest coefficients in absolute normalized value
– Haar basis: divide coefficients at resolution j by 
– Optimal in terms of the overall Mean Squared (L2) Error

• Greedy heuristic methods
– Retain coefficients leading to large error reduction
– Throw away coefficients that give small increase in error

j2
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Using Wavelet-based Histograms  
• Selectivity estimation: sel(a<= X<= b) = C’[b] - C’[a-1]

– C’ is the (approximate) “reconstructed” cumulative distribution
– Time: O(min{b, logN}), where b = size of wavelet synopsis (no. of 

coefficients),  N= size of domain

• Empirical results over synthetic data 
– Improvements over random sampling and histograms (MaxDiff)

C[a]

• At most logN+1  coefficients are 
needed to reconstruct any C value
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Dynamic Maintenance of Wavelet-
based Histograms [MVW00]
• Build Haar-wavelet synopses on the original data distribution

– Similar accuracy with CDF, makes maintenance simpler

• Key issues with dynamic wavelet maintenance
– Change in single distribution value can affect the values of  many 

coefficients  (path to the root of the decomposition tree)

d d+

Change propagates 
up to the root 
coefficient

– As distribution changes, “most significant” (e.g., largest) coefficients 
can also change!

• Important coefficients can become unimportant, and vice-versa

∆
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Effect of Distribution Updates

• Key observation: for each coefficient c in the Haar 
decomposition tree
– c = ( AVG(leftChildSubtree(c)) - AVG(rightChildSubtree(c))  ) / 2

-++ -

d+∆d’+ '∆

h

c = c - /2^h∆'∆c’ = c’ +     /2^h

Only coefficients on 
path(d) are affected and 
each can be updated in 
constant time
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Maintenance Architecture 

• “Shake up” when log reaches max size: for each insertion at d

– for each coefficient c on path(d) and in H’ :  update c

– for each coefficient c on path(d) and not in H or H’:

• insert c into H’ with probability proportional to 1/2^h, where h is 
the “height” of c  (Probabilistic Counting [FM85])

– Adjust H and H’  (move largest coefficients to H)

m+m’ top 
coefficients

Histogram H

Auxiliary 
Histogram H’

Activity Log

m

m’

INSERTIONS/
DELETIONS
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Outline
• Intro & Approximate Query Answering Overview

• One-Dimensional Synopses

• Multi-Dimensional Synopses and Joins
– Multi-dimensional Histograms

– Join sampling

– Multi-dimensional Haar Wavelets

• Set-Valued Queries

• Advanced Techniques & Future Directions

• Conclusions
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Multi-dimensional Data Synopses 
• Problem: Approximate the  joint data distribution of 

multiple attributes
– Motivation

• Selectivity estimation for queries 
with multiple predicates

• Approximating OLAP data cubes and 
general relations

10

20

40

35

90

120

Age

Salary

• Conventional approach: Attribute-Value Independence (AVI) assumption

– sel(p(A1) & p(A2) & . . .)  =  sel(p(A1)) * sel(p(A2) * . . . 

– Simple -- one-dimensional marginals suffice

– BUT: almost always inaccurate, gross errors in practice (e.g., [Chr84, 
FK97, Poo97]
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Multi-dimensional Histograms 
• Use small number of  multi-dimensional buckets  to directly 

approximate the joint data distribution  

• Uniform spread & frequency  approximation within buckets
– n(i) = no. of distinct values along Ai,  F = total bucket frequency

– approximate data points on a  n(1)*n(2)*. . .   uniform grid, each 
with  frequency   F / (n(1)*n(2)*. . .)

10

20

40

35

90

120

16

Actual Distribution Approximate Distribution
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Multi-dimensional Histogram 
Construction 
• Construction problem is much harder even for two dimensions [MPS99]
• Multi-dimensional equi-depth histograms [MD88]

– Fix an ordering of the dimensions A1, A2, . . ., Ak,  let    kth root 
of desired no. of buckets,  initialize B = { data distribution }

– For i=1, . . ., k:  Split each bucket in B in      equi-depth partitions 
along   Ai;  return resulting buckets to B

– Problems: limited set of bucketizations;  fixed       and fixed 
dimension ordering can result in  poor partitionings

≈α

α

• MHIST-p  histograms [PI97]
– At each step

• Choose the bucket b in B  containing  the  attribute Ai  whose  
marginal  is the most in need of partitioning

• Split b along Ai into  p  (e.g., p=2)  buckets

α
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Equi-depth  vs.  MHIST Histograms 
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Equi-depth (a1=2,a2=3) [MD88]
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MHIST-2 (MaxDiff) [PI97]

• MHIST:  choose bucket/dimension to split based on its  criticality ;   
allows for much  larger class of bucketizations  (hierarchical space 
partitioning)

• Experimental results verify superiority over AVI and  equi-depth 
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Other Multi-dimensional Histogram 
Techniques -- GENHIST [GKT00]
• Key idea: allow for  overlapping histogram buckets

• Allows for a much larger no. of distinct frequency regions for a
given space budget (= #buckets) 

• Greedy construction algorithm: Consider increasingly-coarser grids
– At each step select the cell(s) c of highest density and move enough 

randomly-selected points from c  into a bucket to make c and its 
neighbors “close-to-uniform”

– Truly multi-dimensional “split decisions”  based on tuple density
-- unlike MHIST

d

a b

c

a+c

a b

c d

b+d

a
+
b

c
+
d

a+b+c+d

9 distinct frequencies  
(13 if different-size 
buckets are used) 
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Other Multi-dimensional Histogram 
Techniques -- STHoles [BCG01]
• Multi-dimensional, workload-based histograms

– Allow  bucket nesting (rather than arbitrary overlap) -- “bucket tree” 
– Intercept query result stream  and count |q    b| for each bucket b (< 10% 

overhead in MS SQL Server 2000)
– Drill “holes” in  b for regions of different tuple density and “pull” them out 

as children of b (first-class buckets)
– Consolidate/merge buckets of similar densities  (keep #buckets constant)  

I

b1

b2 b3

b4

|q&b|=160

200

100 300
150

q

40

100 300
150

160
b1

b2 b3

b4b5

Refine
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Sampling for Multi-D Synopses
• Taking a sample of the rows of a table captures the 

correlations in those (and only those) rows
– Answers are unbiased & confidence intervals apply

– Thus guaranteed accuracy for count, sum, and average queries on 
single tables, as long as the query not too selective

• Problem with joins [AGP99,CMN99]:
– Join of two uniform samples is not a uniform sample of the join

– Join of two samples typically has very few tuples

3 1 0 3
7 3 7 1 4 2 4

0 1 2 1 2 7 0 8
5 1 9 1 0 7 1

3 8 2 0

0 1 
2 3
4 5
6 7 
8 9

Foreign Key Join
40% Samples in Red

Size of Actual Join = 30
Size of Join of samples = 3
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Join Synopses for F-Key Joins
• Based on sampling from materialized foreign key joins

– Typically < 10% added space required

– Yet, can be used to get a uniform sample of ANY foreign key join

– Plus, fast to incrementally maintain

• Significant improvement over using just table samples
– E.g., for TPC-H query Q5 (4 way join)

• 1%-6% relative error vs. 25%-75% relative error,                           
for synopsis size = 1.5%, selectivity ranging from 2% to 10%

• 10% vs. 100% (no answer!) error,  for size = 0.5%, select. = 3%

[AGP99]
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Multi-dimensional Haar Wavelets

• Basic “pairwise averaging and differencing” ideas carry over 
to multiple data dimensions

• Two basic methodologies -- no clear “winner”  [SDS96]
– Standard Haar decomposition
– Non-standard Haar decomposition

• Discussion here: focus on  non-standard  decomposition
– See  [SDS96, VW99] for more details on  standard Haar

decomposition
– [MVW00] also discusses  dynamic maintenance of  standard 

multi-dimensional Haar wavelet synopses
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Two-dimensional  Haar Wavelets --
Non-standard decomposition 

c3 d3 c4 d4

a3 b3 a4 b4

c1 d1 c2 d2

a1 b1 a2 b2

A1 = (a1+b1+c1+d1)/4

Detail coeff = (a1+b1-c1-d1)/4

Detail coeff = (a1-b1+c1-d1)/4

Detail coeff = (a1-b1-c1+d1)/4

A = (A1+A2+A3+A4)/4

Detail coeff = (A1+A2-A3-A4)/4

Detail coeff = (A1-A2+A3-A4)/4

Detail coeff = (A1-A2-A3+A4)/4

-+
+ -

- -+
+

+
-
+

+ -
-

-+
+

A1 A2

A3 A4
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Two-dimensional Haar Wavelets --
Non-standard decomposition

c d

a b

Wavelet Transform Array:

Averaging &

Differencing

(a+b-c-d)/4

(a+b+c+d)/4

(a-b-c+d)/4

(a-b+c-d)/4

RECURSE
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Two-dimensional Haar Wavelets --
Non-standard decomposition

Data Array
3 4 3 4

1 2 1 2

3 4 3 4

1 2 1 2

After averaging and differencing

-1 0 -1 0

2.5 -.5 2.5 -.5

2.5 -.5 2.5 -.5

-1 0 -1 0

Final wavelet transform array

0 0

0 0

0 0

2.5 0

After distributing results 

RECURSE

0 0
-1 -1

-1 -1
0 0

-.5 -.5

-.5 -.52.5

2.52.5

-1 -1

-1 -1

-.5 -.5

-.5 -.52.5
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Non-standard Two-dimensional Haar 
Basis -- Coefficient Supports

+ + - + - + -

-
+

- -+
+ + - + -

-+ +

+ +

-

- -

- -+ + - -+ +

- -+ + - -+ +
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Constructing the Wavelet 
Decomposition 

Joint  Data Distribution         
Array

0        1        2         3
Attr1

3

2

1

0

Attr2

36
4

Attr1 Attr2 Count

2 0 4

1 1 6

3 1 3

Relation (ROLAP) 
Representation 

• Joint data distribution can be very sparse!
• Key to I/O-efficient decomposition algorithms:   Work  off the  

ROLAP representation
– Standard decomposition [VW99]
– Non-standard decomposition [CGR00]

• Typically require a small (logarithmic) number of passes over the data 
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Range-sum  Estimation  Using 
Wavelet  Synopses 
• Coefficient thresholding

– As in 1-d case, normalizing by appropriate constants and retaining 
the largest coefficients minimizes the overall  L2  error

• Range-sums: selectivity estimation or OLAP-cube aggregates [VW99] 
(“measure attribute” as count)

• Only coefficients with support regions intersecting the query hyper-
rectangle can contribute
– Many contributions can cancel  each other  [CGR00, VW99]

+ -

Query Range

Contribution to range sum = 0

Only nodes on the path to range endpoints 
can have nonzero contributions
(Extends naturally to multi-dimensional
range sums)

Decomposition
Tree  (1-d)
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Outline
• Intro & Approximate Query Answering Overview

• One-Dimensional Synopses

• Multi-Dimensional Synopses and Joins

• Set-Valued Queries
– Using Histograms

– Using Samples

– Using Wavelets

• Advanced Techniques & Future Directions

• Conclusions
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Approximating Set-Valued Queries
• Problem: Use synopses to produce “good” approximate answers to 

generic SQL queries -- selections, projections, joins, etc.
– Remember:  synopses try to capture the joint data distribution
– Answer (in general)  = multiset of tuples

• Unlike aggregate values,   NO  universally-accepted measures of 
“goodness” (quality of approximation) exist

Age

S
a
l
a
r
y

Query Answer Subset Approximation
(e.g.,  from 20% sample)

“Better” Approximation

50Garofalakis & Gibbons, VLDB 2001 # 

Error Metrics  for  Set-Valued 
Query Answers

• Need an error metric for (multi)sets that accounts for both
– differences in element frequencies
– differences in element values

• Traditional set-comparison metrics (e.g.,  symmetric set 
difference, Hausdorff distance)  fail

• Proposed Solutions
– MAC (Match-And-Compare) Error [IP99]: based on perfect 

bipartite graph matching
– EMD (Earth Mover’s Distance) Error [CGR00, RTG98]: based on 

bipartite network flows
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Using Histograms for Approximate 
Set-Valued Queries  [IP99]
• Store histograms as relations in a SQL database and define a 

histogram algebra  using simple SQL queries
• Implementation of the algebra operators (select, join, etc.) is fairly 

straightforward
– Each multidimensional histogram bucket directly corresponds to a set of 

approximate data tuples

• Experimental results demonstrate histograms to give much lower MAC 
errors than random sampling

• Potential problems
– For high-dimensional data, histogram effectiveness is unclear and 

construction costs are high [GKT00]
– Join algorithm requires  expanding into  approximate relations

• Can be as large  (or larger!)  than the original data set  
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Approximate Query Processing Using 
Wavelets [CGR00]

Wavelet 
Synopses

Approximate 
Relations

Query Results 
in Wavelet 
Domain

Final Approximate 
Results 

Render

Render

Querying 
in Wavelet 
Domain

Querying 
in Relation 
Domain

Compressed domain (FAST)

Relation domain (SLOW)

• Reduce relations into compact wavelet-coefficient synopses

Entire query processing in the compressed (wavelet) domain
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Wavelet Query Processing 

join

project

select select

set of 
coefficients

set of 
coefficients

set of coefficients

• Each operator (e.g., select, project, 
join, aggregates, etc.)

– input: set of wavelet coefficients

– output: set of wavelet coefficients

• Finally, rendering step

– input: set of wavelet coefficients

– output: (multi)set of tuples

render
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Selection -- Relational Domain

• In relational domain, interested in only those cells inside query range
• In wavelet domain, interested in only the coefficients that contribute  

to those cells

Dim D1
(Attr1)

Dim D2
(Attr2)

Count

0 6 6
1 2 3
1 3 4
1 5 6
1 6 8
2 6 7
3 0 1
4 2 3
5 2 2
6 1 3
6 2 2
6 5 1
6 6 3

Dim. D2

6

3

7
3

32
2

4

1

1

8
6

3

Query Range

Dim. 
D1

Joint Data Distribution Array
Relation
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Selection -- Wavelet Domain

-
-+
+

+ -
-+

+-

D2

-+

-
+-+

D2

D1D1

Query
Range
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Equi-join -- Relational Domain

• Relational domain: Join count= 7*3  = (A1-A3)*(B2+B3)
• Wavelet domain: A1*B2 + A1*B3 - A3*B2 - A3*B3
• Consider all pairs of coefficients: (1) check joinability (overlap in join 

dimension(s)),  (2) compute output coefficients 

3

Coefficients A1 (+) and A3 (-) 
contribute to this cell

Coefficients B2 (+), and B3 
(+) contribute to this cell Dim D1

(Attr1)
Dim D2
(Attr2)

Count

6 2 7
4 3 6

Dim D1
(Attr1)

Dim D3
(Attr3)

Count

6 3 3

Join along D1

Dim D1
(Attr1)

Dim D2
(Attr2)

Dim D3
(Attr3)

Count

6 2 3 21

Joint Data Distribution
of Relation 1

Joint Data Distr.
of Relation 2

7
6

Dim. D2 Dim. D3

Join Dim.
D1

Relation 1

Relation 2
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Equi-join -- Wavelet Domain

-+
D3

D1- -+
+

D2

D1

Join output coefficient:

D3

D1

+

D2

-

D1

v1 v2

v = v1 * v2
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Set-Valued Queries via Samples
• Applying the set-valued query to the sampled rows, we very 

often obtain a subset of the rows in the full answer
– E.g., Select all employees with 25+ years of service
– Exceptions include certain queries with nested subqueries           

(e.g., select all employees with above average salaries: but the
average salary is known only approximately)

• Extrapolating from the sample:
– Can treat each sample point as the center of a cluster of points
– Alternatively, Aqua [GMP97a, AGP99] returns an approximate count

of the number of rows in the answer and a representative subset of 
the rows (i.e., the sampled points)

• Keeps result size manageable and fast to display
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Outline
• Intro & Approximate Query Answering Overview

• One-Dimensional Synopses

• Multi-Dimensional Synopses and Joins

• Set-Valued Queries

• Advanced Techniques & Future Directions
– Biased/Stratified/Congressional Sampling

– Distinct-value queries

– Dependency-based synopses

– Streaming Data

• Conclusions
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Biased Sampling Techniques  --
ICICLES [GLR00]
• Biased sampling scheme that dynamically adapts to query workload

– Exploit data locality  -- more focus  (i.e., #sample points)  in  frequently-
queried regions   

• Let  Q = {q1, q2, . . .} be a query workload,   R(qi) = subset of R used in 
answering query qi
– L(R, Q)  =  Extension of R wrt Q  =   R        R(qi)     (multiset of tuples)

• Icicle: Uniform  random  sample of  L(R,Q)
• Incrementally maintained and adapt (“self-tune”) to workload through 

Reservoir Sampling technique [Vit85]
• Unbiased Icicle estimators: New formulas to account for duplicates 

and  bias in sample selection
• Provably better (smaller variance)  than uniform for  “focused” queries  

(that follow the workload model)

Qqi∈U
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Biased Sampling Techniques  --
Stratified Samples [CDN01]
• Formulate sample selection as an  optimization problem

– Minimize query-answering  error for a given workload model
• Technique for “lifting a fixed workload W” to produce  a probability 

distribution over all possible queries 
– Similar to kernel density estimation (queries in W = “sample points”)

“Fundamental regions” induced by W

q1
q2

R

q

W = { q1, q2 }

prob(q|W) = parametric 
function of q’s overlap 
with queries in W
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Biased Sampling Techniques  --
Stratified Samples [CDN01]
• Problem: Find sample of size  k  that minimizes expected error for a 

given “lifted” workload

• Solution: Stratified sampling [Coc77]
– Collection of uniform samples (of total size k) over disjoint subsets 

(“strata”) of the population
– Much better estimates when variance within strata is small [Coc77]

• Stratification: Selecting appropriate partitioning of R
– Using “fundamental regions”  as strata is  optimal for COUNT 
– For SUM, partition  “fundamental regions”  further to reduce variance 

of the aggregated attribute  (Neymann technique [Coc77])

• Allocation: Breaking  k  among strata
– Closed form solutions (valid under certain simplifying assumptions)
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Synopses for Group-By Queries
• Decision support queries routinely segment data into groups 

& then aggregate the information within each group
– Each table has a set of “grouping columns”: queries can group by any 

subset of these columns

• Goal: Maximize the accuracy for all groups (large or small) in 
each group-by query
– E.g., census DB with state (s), gender(g), and income (i)
– Q: Avg(i) group-by s : seek good accuracy for all 50 states
– Q: Avg(i) group-by s,g : seek good accuracy for all 100 groups

• Technique: Congressional Samples [AGP00]
– House: Uniform sample: good for when no group-by
– Senate: Same size sample per group when use all grouping columns: 

good for queries with all columns
– Congress: Combines House & Senate, but considers all subsets of 

grouping columns, and then scales down
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Distinct Values Queries

• select count(distinct target-attr)
• from rel
• where P

• select count(distinct o_custkey)
• from orders
• where o_orderdate >= ‘2001-01-01’

– How many distinct customers have placed orders this year?

• Includes: column cardinalities, number of species, number 
of distinct values in a data set / data stream

Template

TPCH example
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• Uniform Sampling-based approaches
– Collect and store uniform sample.  At query time, apply predicate to 

sample. Estimate based on a function of the distribution. Extensive
literature (see, e.g., [CCM00])

• Many functions proposed, but estimates are often inaccurate
• [CCM00] proved must examine (sample) almost the entire table 

to guarantee the estimate is within a factor of 10 with  
probability > 1/2, regardless of the function used!

• One pass approaches
– A hash function maps values to bit position according to an 

exponential distribution [FM85]  (cf. [Coh97,AMS96])
• 00001011111    estimate based on rightmost 0-bit
• Produces a single count: Does not handle subsequent predicates

Distinct Values Queries
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Distinct Values Queries
• One pass, sampling approach: Distinct Sampling [Gib01]:

– A hash function assigns random priorities to domain values
– Maintains  O(log(1/δ)/ε^2) highest priority values observed thus far, 

and a random sample of the data items for each such value
– Guaranteed within ε relative error with probability 1 - δ

– Handles ad-hoc predicates: E.g., How many distinct customers today 
vs. yesterday?

• To handle q% selectivity predicates, the number of values to be 
maintained increases inversely with q (see [Gib01] for details)

– Good for data streams: Can even answer distinct values queries over 
physically distributed data.  E.g., How many distinct IP addresses 
across an entire subnet? (Each synopsis collected independently!)

– Experimental results: 0-10% error vs. 50-250% error for previous 
best approaches, using  0.2% to 10% synopses
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Approximate Reports
– Distinct sampling also provides fast, highly-accurate approximate 

answers for report queries arising in high-volume, session-based 
event recording environments

– Environment: Record events, produce precanned reports
• Many overlapping sessions: multiple events comprise a session 

(single IP flow, single call set-up, single customer service call)

• Events are time-stamped and tagged with session id, and then 
dumped to append-only databases

• Logs sent to central data warehouse.  Precanned reports 
executed every minute or hour.  TPC-R benchmark

– Must maintain a uniform sample of the sessions & all the events in 
those sessions in order to produce good approximate reports. 
Distinct sampling provides this.  Improves accuracy by factor of 10+
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Dependency-based Histogram 
Synopses [DGR01]

• Extremes in terms of the underlying correlations!!
• Dependency-Based (DB) Histograms: explore space between 

extremes by explicitly identifying data correlations/independences
– Build a  statistical interaction model on data attributes
– Based on the model, build a collection of low-dimensional histograms
– Use this histogram collection to provide approximate answers

• General methodology, also applicable to other synopsis 
techniques (e.g., wavelets)

Attribute Value 
Independence
* simplistic
* inaccurate

Multi-dimensional histograms 
on joint data distribution
* expensive
* ineffective in high dimensions

Fully independent
attributes

Fully correlated
attributes
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More on  DB  Histograms
• Identify (end exploit) attribute correlation and independence

– Partial Independence :
p(salary, height, weight) =  p(salary) * p(height, weight) 

– Conditional Independence :
p(salary, age | YPE) =  p(salary| YPE) * p(age | YPE)

• Use forward selection to build a  decomposable  statistical  model  
[BFH75], [Lau96] on  the attributes
– A,D are conditionally independent given B,C 

• p(AD|BC) =  p(A|BC) * p(D|BC)
– Joint distribution

• p(ABCD) =  p(ABC) * p(BCD) / p(BC)
– Build histograms on model cliques

• Significant accuracy improvements over pure MHIST 
• More details,  construction & usage algorithms,  etc. 

in the paper

A

B C

D
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Data Streams
• Data is continually arriving.  Collect & maintain synopses on 

the data.  Goal: Highly-accurate approximate answers
– State-of-the-art: Good techniques for narrow classes of queries

– E.g., Any one-pass algorithm for collecting & maintaining a synopsis 
can be used effectively for data streams

• Alternative scenario: A collection of data sets. Compute a 
compact sketch of each data set & then answer queries 
(approximately) comparing the data sets
– E.g., detecting near-duplicates in a collection of web pages: Altavista

– E.g., estimating join sizes among a collection of tables [AGM99]
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Looking Forward...
• Optimizing queries for approximation

– e.g., minimize length of confidence interval at the plan root

• Exploiting mining-based techniques (e.g., decision trees) for 
data reduction and approximate query processing
– see, e.g.,  [BGR01], [GTK01], [JMN99]

• Dynamic maintenance of complex (e.g., dependency-based 
[DGR01] or mining-based [BGR01]) synopses

• Synopsis construction and approximate query processing 
over continuous data streams
– see, e.g., [GKS01a], [GKS01b], [GKM01b]
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Conclusions
• Commercial data warehouses: approaching several 100’s TB 

and continuously growing
– Demand for high-speed, interactive analysis  (click-stream 

processing,   IP traffic analysis)  also increasing

• Approximate Query Processing
– “Tame” these TeraBytes and satisfy the need for interactive 

processing and exploration

– Great promise

– Commercial acceptance still lagging,  but will most probably grow in 
coming years

– Still looots of interesting research to be done!!
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