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Abstract

The continued growth of very large data en-
vironments such as Westlaw, Dialog, and the
World Wide Web, increases the importance of
effective and efficient database selection and
searching. Recent research has focused on au-
tonomous and automatic collection selection,
searching, and results merging in distributed
environments. These studies often rely on
TREC data and queries for experimentation.
We have extended this work to West’s on-
line production environment where thousands
of legal, financial and news databases are ac-
cessed by up to a quarter-million professional
users each day. Using the WIN natural lan-
guage search engine, a cousin to UMass’s IN-
QUERY, along with a collection retrieval in-
ference network (CORI) to provide database
scoring, we examine the effect that a set of op-
timized parameters has on database selection
performance. We also compare current lan-
guage modeling techniques to this approach.
Traditionally, West’s information has been
structured over 15,000 online databases, rep-
resenting roughly 6 terabytes of textual data.
Given the expense of running global searches
in this environment, it is usually not practical
to perform full document retrieval over the en-
tire collection. It is therefore necessary to cre-
ate a new infrastructure to support automatic
database selection in the service of broader
searching. In this research, we represent our
operational environment in two distinct ways.
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First, we characterize the underlying physi-
cal databases that serve as a foundation for
the entire Westlaw search system. Second, we
create a rearchitected set of logical document
collections that corresponds to classes of high
level organizational concepts such as jurisdic-
tion, practice area, and document-type. Keep-
ing the end-user in mind, we focus on perfor-
mance issues relating to optimal database se-
lection, where domain experts have provided
complete pre-hoc relevance judgments for col-
lections characterized under each of our phys-
ical and logical database models.

1 Introduction

The proliferation of online textual information, mani-
fested in data residing on both the World Wide Web
and in commercial data environments, has placed em-
phasis on the growing importance of database selec-
tion techniques. Effective and efficient database selec-
tion techniques are increasingly critical today because,
given a user’s query, it is simply no longer practical to
perform comprehensive full-text searches over all of the
underlying data collections.! Moreover, it is a growing
challenge to provide high precision search results given
the vast scope of the Web or commercial databases.
This situation introduces the need for reliable, high
performance distributed searching.

Because of the work of Gravano, Callan, French,
and others [16, 5, 11, 26], aspects of distributed search
have been divided into four principle activities: (1)
collection ranking; (2) collection selection; (3) search-
ing the chosen collections; (4) merging the results
into a uniform set. Their approaches to these is-
sues have made considerable progress in terms of au-
tonomous systems functioning without user interac-
tion. These experiments rely largely on fully auto-
mated approaches that include database selection as
well as document retrieval and merging.

n this paper, we will use collection to refer to a database of
textual documents.



As an alternative to the four activites described
above, Fuhr describes a theoretic model that comprises
the first two steps and avoids the heuristic criteria of
the second step by employing a broker that estimates
the retrieval cost of each database. The broker in turn
determines whether and how many documents to re-
trieve from each database [14].

In the majority of our user sessions, legal re-
searchers are searching for information from a known,
familiar source. As the practice of law has evolved
over recent years, however, researchers are increasingly
turning to extra-legal sources to supplement their le-
gal research. Information venders such as West Group
and Lexis-Nexis have supplied this demand with more
business, medical and scientific information. Yet as
these information domains move away from the tra-
ditional domain of the legal researcher, information
providers need to offer additional assistance in choos-
ing the appropriate sources.

We have subsequently conducted experiments in
an environment that replicates our actual distributed
production resources where hundreds of thousands
of users access over 15,000 document collections
daily. We use a collection retrieval inference network
(CORI)[5] run against a set of physical database rep-
resentations. The bedrock of our system is the WIN
search engine? [30, 32, 31], a close relative to the IN-
QUERY engine developed at the Center for Intelli-
gent Information Retrieval at the University of Mas-
sachusetts [1, 2]. The performance of our system has
led us to conclude that there is a role for automatic
collection selection in the act of simplifying a user’s
interaction with massive data environments. In cer-
tain data environments, users are still required to re-
member cryptic database identifiers or abbreviations
in order to gain access to their desired sources. We
demonstrate that in massive online environments like
Thomson’s, state-of-the-art database selection tech-
niques can simplify required access mechanisms while
still delivering high performance results.

Our work is distinct in several significant ways.
Much of the research performed thus far has been
academic in nature rather than of production-caliber.
Some of it appears to be unrepresentative of real pro-
duction environments because (a) it is often too gen-
eral for specific problems; (b) it does not necessarily
scale to accommodate real problems; and (c) it is of-
ten driven by ideas rather than needs. Regarding the
problem at hand, much of the database selection work
performed to date has relied on data sets that (i) are of
identical or very similar size; (i) are discrete, having
no overlapping documents; (iii) represent sets of hun-
dreds, rather than thousands or tens of thousands of
databases; (iv) contain quantities of documents in the
10K range, rather than in the 100K or 1,000K range;
and (v) are characterized by an environment in the 100

2WIN stands for Westlaw Is Natural.

GB range, rather than the terabyte range.
By contrast, our work distinguishes itself as:

e it represents tens of thousands of collections;
e its collections contain documents in the millions;

e a single document can appear in ten or more col-
lections;

e its collection sizes vary by several magnitudes;

e its collections are designed to serve a real rather
than generic domain;

e it represents an operational environment with
data in the terabytes.

In mid-2000, analysis determined that there were
in excess of two billion unique, publicly accessible
“pages” on the Web, with an average of between 10-
15KB per page [24, 21]. With a rate of growth of over
seven million new pages added per day, the Web was
on track to double by mid-2001 [24]. These figures in-
dicate that there are currently in the range of 40 to 60
terabytes of indexable text on the Web. Since West
Group’s alliance with Dialog, their combined reposito-
ries now encompass roughly half that amount of data,
corresponding to tens of thousands of databases. The
majority of their new databases come from news and
non-legal domains, in contrast with West’s historically
legal focus. Although computational resources permit
comprehensive searches against global indexes—thus al-
lowing users to be the final filter—the scope of the prob-
lem exacts a non-trivial cost. Recent experiments have
focused on hundreds of collections, yet production en-
vironments provide over ten thousand databases, at
times with an order of a million documents in each.

Given the challenges of our operational environ-
ment, our research objectives focus on the following.

1. Discover how existing approaches would perform
in an industrial environment;

2. Examine competing database scoring models to
determine while are most reliable, e.g.,

(a) Collection Retrieval Inference Network vs.

(b) Language Modeling.

3. Compare performance using an existing physical
organization of databases with a rearchitected log-
ical organization of databases.

The remainder of this paper is organized as follows:
Section 2 reviews related work in collection selection
and contrasts our work with its core focus. Section 3
describes our experiments and how we evaluated our
methods. Section 4 addresses our database ranking al-
gorithms and how these are distinguished from related



approaches. Section 5 summarizes our results. We dis-
cuss special challenges associated with the Database
Selection problem in Section 6 and present our conclu-
sions in Section 7. In Section 8, we disclose plans for
future research. Lastly, in Section 9, we express our
gratitude to those contributing to this work.

2 Previous Work

The key components of distributed search have been
divided into four activities: (1) collection ranking; (2)
collection selection; (3) searching the chosen collec-
tions; (4) merging the results into a uniform set. In
our experiments, like those of Hawking, Yuwono, and
others, we investigate the first two activities [19, 3§]
and use the third as a validation step. Others such as
Voorhees and Craswell, et al. have focused specifically
on merging results [34, 9].

Gravano, et al. has called the challenge the text
database resource discovery problem [17, 23]. By con-
trast, Callan, et al. has referred to this as the collection
selection problem [5, 36]. Hawking, et al. has referred
to this as a server selection issue [19, 38]. And French,
et al. has termed this database selection [11, 26]. For
clarity and generality, we follow the database selection
terminology used in this last work and focus on all
but the results merging activity described above, since
there is evidence that improved collection recall can
lead to improved overall distributed retrieval [36, 26].

Gravano, et al. was one of the seminal investiga-
tors of the database selection problem for large data
environments, including the Internet, by way of a Glos-
sary of Servers Server (G1OSS) [17, 16, 18]. Originally
developed around a Boolean query retrieval model
(bGIOSS), he subsequently generalized his approach
to the vector-space retrieval model (vGlOSS) [16] and
demonstrated that this framework and its associated
goodness metric delivers effective document retrieval
in large data environments, including the Internet [18].
In a related study, Callan, Lu and Croft addressed the
difficulties of distributed vs. centralized information
retrieval by harnessing UMass’ INQUERY search en-
gine. They applied its inference net retrieval model
(CORI)? to multiple collections [5]. Other researchers
expanded this investigation while using the INQUERY
engine and CORI nets. Xu and Callan compared dis-
tributed with centralized retrieval and the role query
expansion can play in effective distributed IR [36].
Powell, et al. further quantified distributed vs. cen-
tralized retrieval by comparing the performance of
CORI against the best-case relevance-ranked retrieval
(RBR) [26]. French, Callan, et al. also evaluated the
scoring behind these models by comparing G1OSS’s
Goodness estimator and its so-called Ideal ranks with
RBR [13] and later performed direct CORI vs. GIOSS
and CVV* comparisons [11, 6]. CORI was the most ac-

3CORI stands for “Collection Retrieval Inference Net.”
4CVYV is the abbreviation for Cue Validity Variance.

curate and stable of the three algorithms and had fewer
problems with normalization biases than the other two
[e.g., no. of docs (GIOSS) and doc. length (CVV)].

Many of these techniques require extensive knowl-
edge of the term and concept distributions in available
collections either directly [26, 36, 5] or through prelim-
inary query-based sampling [4]. Some of these tech-
niques suggest that a reorganization of large amounts
of data, either by the clustering of different database
selection indexes or by topical organization, may im-
prove overall retrieval performance [37, 22, 12]. In
massive online data environments where the stream
of incoming data or the requirements for updates can
be daunting, such infrastructure issues can best be ad-
dressed in a logical, rather than physical, manner in
order to be practical for operational environments.

We have observed that few of these investigations
have focused on issues related to domain utility, es-
pecially for those domains that rely on closed vocab-
ularies. One recent exception is the work on query
augmentation by French, et al. that used a MeSH
(medical) closed vocabulary tied to the OHSUMED
collection’s MEDLINE articles [12]. Our work simi-
larly needs to handle features of the legal domain, in-
cluding the ability to treat legal citations (e.g., 583
Cal. App. 437), legal titles (e.g., Brown v. Board
of Education), and legal phrases (e.g., “the statute
of limitations” non-equivalence to “limitations of the
statute”).

Overall, the above approaches have been responsi-
ble for considerable performance gains for autonomous
systems with no user interaction [5, 36, 37, 17, 16, 18,
13, 11, 26, 38, 19, 23, 15]. Other approaches have asked
users to provide metadata concepts or applied thesauri
with semantic links to a query, either before or after
examining highly-ranked source documents [7, 10, 20].
The overwhelming focus of these studies has been on
completely automatic techniques, yet operational en-
vironments often also need to be able to accommodate
“users in the loop.” This is one of the overriding re-
quirements for our system, which we return to in sec-
tion 6.

3 Experimental Methodology

Our investigation consists of two phases. The first in-
volves a series of database selection experiments per-
formed on collections that correspond with physical
data sets obtained directly from our production en-
vironment. The second consists of a different series
of database selection tests, involving high-level logical
data sets which were produced by consolidating preex-
isting lower-level production-side databases. The sec-
ond phase is motivated by lessons learned in the first
phase, focuses on databases designed largely along top-
ical and jurisdictional lines, and is supplemented by
subsequent document selection trials.



3.1 Data
3.1.1 Physical Databases

From our production environment we obtained 100 of
approximately 1000 physical databases and their term
frequency distributions. These consisted of roughly
100,000 (unstemmed) terms and 6,000 (stemmed)
terms. In addition, we obtained the frequency distri-
butions for roughly 500 legal phrases. The 100 physical
databases we chose represented a broad cross-section
of the 15,000 logical databases available to Westlaw’s
online clients. They include primary law (case law,
statutes, and treatises), secondary law (law journals,
reviews, and annotated compendiums), specialized re-
sources (rulings and settlements, insurance and taxa-
tion documents, etc.), and news publications. In all,
the 100 physical databases covered nearly 38% of the
textual information available on Westlaw. (See Table
1) The creation of our physical databases is similar
to data partitioning approaches invoked by other re-
searchers [22, 37].

3.1.2 Logical Databases

In the second phase of our investigation, we con-
structed 128 high-level logical databases which cover
virtually all of the important content available on
Westlaw.? We thus reduced the complexity of Westlaw
collections by a factor of two magnitudes (down from
15,000 databases). These collections were designed to
address three metadata “views”: (1) jurisdictional (to
cover 60 state & federal-level court authorities); (2)
practice area (e.g., bankruptcy, employment, interna-
tional law, etc.); and (3) document-type (e.g., case law,
statutes, law reviews, news, etc.). As such, they rep-
resent collections generated by a type of topical clus-
tering and together comprise over 2 TB of data.

Unlike phase I, in phase II we did not have the ben-
efit of pre-constructed production-side indexes. We
consequently profiled these logical collections in two
ways. First, we used random sampling of the collec-
tions, using 500, 1,000, and 2,000 documents. Sec-
ondly, we compared these results with those produced
by a version of query-based sampling (QBS) [4] in
which we submitted to each of the collections under
consideration a single, short topic-specific, collection-
relevant query to obtain our document set.5

Callan and Connell used the Spearman Rank Cor-
relation Coefficient to determine the degree of simi-
larity in the ranks of terms when comparing complete
resource descriptors to acquired or learned resource
descriptors [27]. He found that after 250 documents,
about 80% of the word occurrences in the collection
have already been found and that the new vocabulary
being discovered is relatively rare [4]. Given larger

5Public Records were the only notable exception. This logical
database content more than doubled the physical databases’ cover-
age of Westlaw.

SA domain expert in a sponsoring dept. crafted these queries.

databases, our smallest samples consisted of 500 doc-
uments, and at this level nearly all of our spearman
coefficients tended to be at 0.8 or above when we
could perform comparisons between physical and log-
ical database correspondences (e.g., CTA, the “U.S.
Court of Appeals, ” “AZ-CA, Arizona Cases,” etc).

Collection Physical Logical
Information DBs DBs

No. of Collections 1000 128
Collections Profiled 100 128
Documents / Profile All 500/1000
Avg. Docs / Collection 298,935 378,468
Avg. Tokens / Profile 97,299 22,296/47,450

Table 1: Data Set Characteristics
3.2 Queries

3.2.1 Original Test Set

We obtained five sets of 50 real user queries from our
production-side database selection query logs. Our de-
cision to rely on sets of 50 or more queries was guided
by evidence that “for most [precision] measures, 50
[query] topics is sufficient to give an error rate less that
2% or 3% in these [IR] experiments” [3].” From these
we also produced two additional sets of phrasal queries
(20 queries in one; 10 in the other). These two query
subsets permitted us to test our phrase recognition and
processing techniques. Our queries were randomly se-
lected with the minimum requirement that they be at
least four terms in length.® The rationale for this min-
imum threshold is that if we could not handle queries
of at least four terms, there is less likelihood that we
could adequately handle shorter queries. In addition,
we varied the minimum query length from one set of
queries to another, as indicated in Figure 1 and Ta-
ble 2. Average query length per query set was varied
because we wanted to monitor to what extent perfor-
mance would change relative to query length, since it
has been shown that longer query statements reduce
ambiguity associated with very short queries [28].

3.2.2 Logical Test Set

In the second phase, we wanted to strengthen our ap-
proach by using a query set that was characterized
by (a) fewer positive relevance judgments per query
(i.e., sparser hits) and (b) slightly longer queries (thus
better simulating the issues-driven information needs
that representative legal practitioners tend to submit).
The resultant set of 100 queries was again derived from
actual user query logs and has a slightly larger aver-
age query length than the combined set from the first
phase (about 9 vs. 8 [Median: 8.0 vs. 7.0]; see Figure
2 and Table 2).

7Topic is used here in the sense of a Text REtrieval Conference
(TREC) query subject [35].
8St0p words were included in the term count.



Distribution of Query Lengths (5 sets of 50)
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3.3 Relevance Judgments

Our query sets were judged by two attorneys with
backgrounds in Library Science and who were well-
acquainted with our data sets. Together they pro-
vided us with complete relevance judgments (5 sets x
50 queries x 100 physical collections or 25,000 judg-
ments plus 1 set x 100 queries x 128 collections or
6,400 judgments). They made these judgments in a
prospective (versus retrospective) manner.

Distribution of Query Length for 100 Queries

Distribution of Positive Relevance Judgments for Queries (5 sets of 50)
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Training sessions were held in order to ensure that the
standard for judgments was consistent between the two
domain experts from one data set to another. The
first assessor largely trained the second assessor and
reviewed her judgments. The first assessor provided
judgments for the 5 sets of physical database queries.
The second assessor provided judgments for the logi-
cal database queries. So queries for each phase had a
single judge.

Distribution of Positive Relevance Judgments for 100 Queries
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uery Set | Number uery Length +Rel. Judgments/Qry || Top Average
g g g
of Queries | Mean | Median || Mean | Median Precision
1. 50 6.2 5.0 15.1 12.0 40.3
2. 50 8.0 5.0 18.4 18.0 43.1
3. 50 6.1 5.0 20.3 19.0 46.6
4. 50 11.8 10.5 18.2 19.0 42.1
3. 50 7.8 7.0 10.1 6.0 40.6
Combined 250 8.0 7.0 17.0 14.0 42.3
Logical | 100 || 8.8 | 8.0 || 9.1 | 9.0 || 53.9 |

Table 2: Query Set Characteristics



We proceeded with this approach to the judgments
because there is evidence that “comparative evaluation
of retrieval performance is stable despite substantial
differences in relevance judgments” [33]. It should be
noted that in these two phases, relevance judgments
are made at the database-level only. Document-level
relevance is examined in section 5.2.

Information on the distribution of relevance judg-
ments for each of the query sets is included in Figures
3 and 4. As indicated in Table 2, the average number
of databases judged relevant per query decreased for
the logical database set (from 17.0 to 9.1) [Median:
from 14.0 to 9.0].

For subsequent performance evaluation, we use av-
erage precision and precision at N profile documents
(databases) for N up to 20.

4 Database Ranking

Much of the database selection research is based on ap-
plications of IR techniques to distributions of the terms
and phrases that comprise the collections. Callan calls
these distributions “complete resource descriptions”
[4]. The metaphor invoked here suggests that each col-
lection can be treated as a meta-document consisting
of a set of collection-associated terms and phrases. The
resulting database searched is thus the set of resultant
meta-documents or collection profiles. It is assumed
that the term statistics that characterize collections
are readily available from the database indexes or can
be approximated through the iterative use of probing
queries [4]. It is also assumed to be too costly to query
all the available databases, so either a fixed number of
them are searched or a variable number whose score
surpasses a preset threshold.

4.1 Collection Retrieval Inference Network

INQUERY’s and WIN’s algorithms for ranking doc-
uments have been previously reported [32], [2], [1].
In our case, the document retrieval model still holds,
since we are working with meta-document representa-
tions of the collections in question. The ¢ f -idf scoring
model is applied to the database selection problem.
Only now term frequency, tf, is replaced by document
frequency, df, and inverse document frequency, idf, is
replaced by inverse collection frequency, icf.

We have conducted experiments with three varia-
tions of CORI net scoring. Equation (1) presents the
standard ‘belief’ score calculation for a Bayesian in-
ference net retrieval engine like WIN, with its term
frequency component, (¢f), and inverse document fre-
quency component, (idf). dp is the minimum belief
component. Equation (2) shows how the term fre-
quency component is calculated, where d; is the min-
imum term frequency component when term w; is
present in a collection representation, c;. df; is the
number of documents the term w; is found in and
df maz is the number of documents containing the most

frequent term in ¢;. Equation (3) shows how the in-
verse document frequency component is determined,
where c¢f represents the number of collection represen-
tations in which the query term w; appears while |C|
is the total number of collection representations. We
refer to these definitions as CORI Netl scoring.

Doeticf(wilc;) = dy + (1 —dy) - tfy - idfy (1)

log(df; + 0.5)

where tfb = dt + (]. — dt) . m
max -

(2)

log( ‘C‘C—;O.S)

e = Ca(ICT+1.0)

3)
Equation (4) is a modified version of equation (2)
where df + K is substituted for df,,,... It was inspired
by experiments in document retrieval. Callan, Lu, and
Croft defined K in terms of collection representation
length together with parameters b and k, (5), where
cw is the number of words in the collection and cw is
the mean of cw in the collections being ranked [5].°

tfb:dt‘*'(l_dt)'% (4)
K:k-[(l—b)+b-%] (5)
K=a - =+p (6)

cw

In the rest of the paper, we refer to equation (5) as ver-
sion CORI Net2 and our own equation (6) as version
CORI Net3.

4.2 Language Modeling Approaches

In addition to our investigations involving Inference
Net scoring, we conducted a series of parallel exper-
iments using language modeling techniques. These
were patterned after recent similar retrieval efforts
[25, 29, 37]. We used the weighted sum approach (an
additive model) to combine our language models.

Psum(w|d) =X\ Pdoc(w|d) + (]- - A) . Pdatabase (’LU) (7)

where A is a weighting factor between 0 and 1. A
language model based only on a profile document may
face sparse data problems when the probability of a
word, w, given a profile doc, d, is 0 (an unobserved
event). As a result, it may be useful to extend the
original document model with a database model. An
additive model can help by leveraging extra evidence
from the complete collection of profiles. By summing
in the contribution of a word, w, at this database level,
we can mitigate the uncertainty associated with sparse
data in the non-additive model.

9Callan, Lu and Croft found that b = 0.75 and k = 200 generally
produced optimal results; by contrast, we found that b = 0.6 and
k = 300 produced best results.



In addition, by treating the query as a sequence of
terms, with each term viewed as an independent event
and with the query representing the joined event, we
have,

Psequence (Q|d) = f[ P(wz|d) (8)

where wy,ws, ...w,, is the sequence of terms in query
Q. By treating the query as a sequence of terms in
this way, as did Song and Croft [29], we are able to
handle duplicate terms. Such treatment also permits
the construction of a model with phrases in local con-
texts. Smoothing techniques were also incorporated
to handle the issue of sparse data assocated with
unobserved events [8], yet our results with smooth-
ing surpassed those obtained from our WIN natural
language engine only in phase I for physical databases.

5 Results

5.1 Database Selection Performance

We conducted two test phases on significantly different
database infrastructures. The phases differ in terms
of physical vs. logical organization, content-type vs.
topic-type, and overall granularity. The first phase was
performed upon 100 physical databases whose profiles
were constructed directly from Westlaw collection in-
dexes. Against these profiles, we tested our various
scoring techniques. This approach helped us identify
the best candidate scoring algorithms, albeit in a par-
ticular context. In the second phase, we focused on
the most effective version of Cori Net scoring, compar-
ing stemmed and non-stemmed data obtained through
both random selection and query-based sampling. Re-
sults for the two phases are discussed below.

5.1.1 Physical Databases

In our experiments involving the physical databases,
histograms (or “complete resource descriptions”) of
term frequencies were constructed from complete col-
lection indexes. Performance was then measured based
on optimizations made on an assortment of key vari-
ables.!0 Several scoring methods were also evaluated
for their effectiveness, including variations of CORI
and Language Modeling. Some of these results are
shown on the next page. Performance fluctuations are
shown for the five query sets consisting of 50 queries
each.

Precision at the first recall point appears to vary
between 60% to 80% (Figure 5). Upon closer inspec-
tion of precision at Nth database retrieved (Figure 6),
performance at the top ranks is in the 40%-60%, which
we would consider only marginally acceptable from a
user perspective. These shallower gradients seem to

101f not otherwise stated, results presented use stemmed collec-
tions, a term scaling factor of 20, a minimum term frequency thresh-
old of 5, a stop word list of nearly 400 words, and cardinal numbers-
only indexing (e.g., for publication years, etc). Each of these param-
eters was determined empirically.

underscore the fact that our physical databases are not
organized along topical lines. There is thus a higher
likelihood that relevant documents may be distributed
among many collections.

We also examined the impact of phrasal processing
in our physical database environment. Figure 7 shows
six different phrasal combinations that were studied.!!
Although use of phrase recognition consistently pro-
duces the best results, performance improvements are
generally most pronounced in the middle to lower re-
call points and often not statistically significant. So it
is an open question how beneficial such added expense
would be for an operational system.

5.1.2 Logical Databases

For our experiments involving logical databases, his-
tograms (or “acquired resource descriptions”)!? of
term frequencies were constructed from documents
sampled in the actual collections. Callan concluded
that “the resource descriptions created by query-based
sampling are sufficiently similar to resource descrip-
tions created from complete information that it makes
little difference which is used for database selection,”
and, further, that “experimental results ... [are] ro-
bust with respect to variations in parameter settings”
[4]. Given these findings, it is possible to view random
sampling from cooperative systems as little more than
a more progressive variant of query-based sampling.
We examined both approaches and found that ran-
dom document selection generally performed slightly
better than QBS selection.

Because we were required to stem the acquired
documents ourselves, rather than rely on production-
provided stems, we needed to determine whether stem-
ming would again outperform unstemmed term repre-
sentations. Figure 9 illustrates that stemming con-
tinues to produce superior results to unstemmed col-
lections, particularly at the top recall points. This
was found to be true for virtually all pair-wise com-
parisons we ran. It was also determined that Cori
Net3 using values of @ = 1.0 and 8 = 400 provided
best overall performance (Figures 10 & 11). The base-
lines shown represent results from ranking databases
strictly by size (no. of docs). Performance using the
logical database infrastructure, especially precision at
the top recall points, appears to surpass results pro-
duced by the physical databases (by as much as 10%,
as indicated by Cori Net2 performance in Figures 8
vs. 12). We return to this comparison in Section 7.
A performance enhancing post-retrieval process based
on lexical patterns identified in the query is described
in the next section.

H Because of the associated initial overhead, the phrasal tests fo-
cus on an important subset of the overall physical databases, namely,
those containing judicial opinions (of which, there were 41 associ-
ated databases in all).

12Callan calls these “learned resource descriptions” [4]. We avoid
this name since we did not use hundreds of QBS queries to obtain
our sample, but rather, a short domain-relevant query.
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5.1.3 Jurisdictional Lexical Analysis

Following the retrieval of a set of candidate databases,
we discovered that performance can be enhanced by
a post-process that lexically analyzes the query for
jurisdictionally relevant content. That is, when no
such context is found, then the results are reranked
such that jurisdictionally biased collections are down-
weighted. The intuition behind this treatment is that
legal topics are still going to appear in collections orga-
nized around, for instance, a state jurisdiction’s corpus
of judicial opinions (e.g., for a query like “Arizona En-
vironmental Decisions.”). This semantically intuitive
process resulted in improvements in average precision
of as much as 20% at top recall points (Figures 10 &
11). The plots marked ‘Lex’ apply the reranking only
to those results for queries with no jurisdictional clues;
those maked ‘Lex+’ apply the reranking to results for
each query, but leave databases which match the lexi-
cal clues in their original rank(s).

Using the above results, we have also examined the
performance of our database selection process at the
query level, focusing on the role of query length. It is
generally accepted that the shorter the query, the more
difficult it is to disambiguate a query and produce high
precision retrieval. In the legal domain, we generally
believe that beyond a certain length, additional terms
do not always ensure improved disambiguation. For
instance, when queries change their focus from publi-
cations, regional courts, and practice areas to thorny
legal issues, another level of difficulty can be intro-
duced. Mean average precision in Table 3 tends to
support such behavior. As length of the queries in-
creases (following the removal of stopwords), so does
the average precision, up to roughly a dozen terms, af-
ter which performance drops. One sees a similar trend
with mean top-10 database precision, although per-
formance tends to drop earlier. These results tend
to correspond to our expectations, though given the
small sizes of the last three categories, no definitive
conclusions should be drawn from these samples.

5.1.4 Language Modeling Approaches

We discovered that our language modeling approach
worked best with our stemmed physical collections,
slightly surpassing the performance of WIN. When
we compare CORI Net2 scoring, implemented by our
WIN engine, to a Language Modeling approach using
the combined set of 250 queries (Figure 8), we see that
L.M. clearly outperforms WIN by at least 10% at the
top recall points (although the overall performance dif-
ference is not statistically significant at the 0.05 level
using the Wilcoxon test).

One of the reasons for this result is that the amount
of data used to construct the model was substantial,
representing extremely large collections and associated
documents, with almost no overlap of content between
these collections. The vast majority of query terms

could be found in the model; hence, sparse data was
minimized and little smoothing was necessary.

By contrast, the performance of our language model
for the profiled logical collections degraded relative to
WIN (Figure 12). In this particular case (query-based
sampling vs. random doc selection using 500 and 1000
documents), Random_500 outperforms the other L.M.
representatives, while QBS_1000 managed to outper-
form Random_500 for the middle recall points, but the
overall differences are not statistically significant. In
general, we witnessed little evidence that QBS selec-
tion warranted the added effort relative to Random
selection. As the above results suggest, we found evi-
dence that QBS may continue to improve slightly with
additional documents while performance from Ran-
dom selection appears to stabilize sooner.

One of the reasons for this degradation in L.M.
performance relative to WIN is the increase in sparse
data resulting from the reduced number of documents
used by the logical database profiles [O(1000) vs.
0(100,000)]. As a result, smoothing is invoked more
often in phase II and allocates far more of the prob-
ability mass to unobserved events. The smoothing
variation that we used consisted of a default proba-
bility generated from an attenuated corpus-wide aver-
age term frequency (to avoid potential problems with
high default probabilities [29]). Another reason for this
decreased performance is that there were no require-
ments for data isolation among the logical collections.
So it is possible that a document represented under, for
example, the state of New Hampshire might also ap-
pear under one of the topical collections, for instance,
bankruptcy. Although there is little likelihood of this
occurring in our profiles, the point is that the language
representative of a legal practice area like criminal law
may very well appear in other representations such as
at the jurisdictional level.

WIN was more robust for the logical collections and
generally outperformed our language model on these
collections. As a result, we opted to use WIN in our
final model for two reasons. The first is that it outper-
formed the L.M. in most instances. The second reason
is that WIN was already available in our operational
environment and did not require extensive reengineer-
ing, validation, and QA work to be brought online.

Query No. | Mean Mean Mean

Lgth of Avg Top-10 | 4+ Rel

[Range] | Qrys | Prec Prec Jdgmt
1-3 25 48.5 36.0 9.24
4- 6 50 49.8 39.0 9.26
7-9 16 53.2 44.4 9.81
10-12 3 55.4 36.7 7.00
13-15 3 50.2 33.3 7.67
16- 3 52.9 46.7 9.00

Table 3: Query Length Performance Characteristics



5.2 Document-level Performance

To obtain a sense of the quality of the associated docu-
ments retrieved from our top database selection meth-
ods, we inspected several document sets retrieved from
the top collections. We performed an evaluation of
document-level precision involving 25% of our final
query set for logical databases. The results of this
evaluation are preliminary, yet suggestive of the per-
formance users might expect. There were 100 queries
in our final set for the logical databases. We selected
25 of them randomly. The top 20 documents returned
from each of the 5 top-ranked collections were exam-
ined for relevance by a paralegal in our lab.

In all, 2,500 documents were reviewed (25 queries
x 5 databases/query x 20 documents/database). To
help clarify matters of degree, multi-valued relevance
judgments were used. The four distinct judgments
were: on point (i.e., of highest relevance), relevant,
marginally relevant, and non-relevant. Multi-valued
relevance judgments were used for at least two reasons.
One was to make it easier on the paralegal/assessor to
mitigate borderline judgments. The second was to ob-
tain a finer-grained notion of the document-level pre-
cision. The results obtained are shown in Table 4.

Over half of the documents judged for relevance
were found to be on point and fully three-quarters of
the documents reviewed were found to be relevant or
better. When one loosened the notion of relevance to
include marginally relevant, totals exceeded 80%. The
suggestion is that even when a fixed database cutoff
is used for document retrieval, the results can be sat-
isfactory from a user perspective. We would expect
that as more sophisticated means of database cutoffs
are implemented, such as inter-database scoring gap
thresholds, performance could again improve signifi-
cantly.

6 Discussion

The approaches we have examined for our physical and
re-architected logical collections represent two alter-
native techniques for effective and efficient database
selection in a distributed environment. One of our
objectives was to test the viability of a re-architected
infrastructure for the information system in order to
ensure higher performance database selection.

In several different ways, the re-architecting of
Westlaw content offers the information system a
streamlined and effective means of handling user
queries. In the past, users were expected to be able
to refer to one or more unique database identifiers
from a pool of thousands.'> At one time, quantity
of databases was considered only an asset. Tools and
systems were subsequently designed to assist users to
determine which identifiers corresponded to their rele-

13Although such granularity can be a true asset to a specialist, it
also has its distinct disadvantages, either for first-time users or for
practitioners working outside their area of core competence.

vant data sets. Granularity of the databases may have
depended on how documents happened to be parti-
tioned. Partitioning was sometimes based on hard-
ware storage capabilities as much topical or jurisdic-
tional organization. By rearchitecting the content with
users of the system in mind, the number of databases
required has been greatly reduced, and the organiza-
tional backbone is now based on a much more practical
if not intuitive structure.

6.1 Alternative Operational Systems

A high-level logical approach to database selection can
be implemented in an online environment in at least
two distinct ways. The first would be a completely au-
tonomous approach in which a user’s query would ini-
tially be used to determine the collection ranks based
on probable relevance: the query would subsequently
be run automatically against (a) the top n-ranked col-
lections returned (where n was set to a fixed number
like 5) or (b) the top collections where the “gap” be-
tween scores of two sequentially ranked collections re-
mained lower than a certain fixed value. This would
simulate the kinds of independent searches users are in-
creasingly accustomed to running on the World Wide
Web. Such a fully autonomous approach may also
be suitable for younger, less experienced practitioners
who have not yet developed abilities in crafting spe-
cialized Boolean or elaborate natural language queries.

Alternatively, once the top-ranked databases are de-
termined, the system could present them to the user,
again ranked by probable relevance, and ask the user
to select the most relevant or most promising collec-
tions. Once the user selects one or more databases, the
system could then perform a multi-database search on
those collections. Each of these approaches has advan-
tages and disadvantages. The advantage of the first
approach is complete automation and speed as no in-
termediate steps are required. The disadvantage asso-
ciated with this approach is, of course, that the user
has no opportunity to deselect candidate databases
that may clearly be off-topic and non-relevant to the
user. The second approach has the potential to elimi-
nate this disadvantage, but at the expense of time and
user involvement. Furthermore, if the user is uncer-
tain about the contents of any of the databases (e.g.,
if not enough information is available about the given
collections), then the user might be better off relying
on the general automatic system.

7 Conclusions

Through an extensive series of experiments conducted
using representations of both physical and restruc-
tured logical databases, we have determined that ei-
ther approach may achieve reasonably fair collection
selection results in an operational environment con-
sisting of many thousands of databases. We have cor-
roborated certain findings of related research that of-
ten uses simulated databases consisting of segmented



No. | Relevance Type Quantity | Percentage Percentage Relevant or
Marginally Relevant (Cum.)
1. | On Point 1415 56.60% 56.60%
2. | Relevant 439 17.56% 74.16%
3. | Marginally Relevant 199 7.96% 82.12%
4. | Not Relevant 447 17.88% —
Total | Combined 2500 100.00% 82.12%

Table 4: Document-level Relevance Assessments

TREC data [35].

Unlike previously reported work, our research dis-
tinguishes itself by (i) representing data sets of dissim-
ilar size (among both our physical and logical collec-
tions); (ii) permitting documents to appear in more
than one collection (occurs less than 2% of the time
in our two phases); (iii) representing on the order of
15,000 virtual databases that occur in an existing op-
erational environment; (iv) marshaling databases con-
taining hundreds of thousands rather than tens of
thousands of documents; and (v) cumulatively rep-
resenting data in the terabyte rather than gigabyte
range.

We have asserted, however, that our most effective
results are produced when using our logical databases,
despite the fact that they possess roughly half as many
positive relevance judgments as the physical databases.
One probable reason for this performance is that, un-
like with the physical collections, logical databases in-
clude differentiation along topical lines. Because of
differences in (data) architecture and granularity and
(query) average length and number of relevance judg-
ments, it is not possible to perform a direct comparison
between our physical and logical databases; nonethe-
less, by comparing performance results in Figures such
as 6 vs. 11 (Precision at N Databases), we conclude
that the new infrastructure and the logical collections
generally deliver higher precision results. That these
databases were developed with the end users’ needs
and familiarities in mind is an added benefit.

In terms of the actual scoring methods, we observed
that over a wide-range of profiled data collections, sim-
pler scoring algorithms like CORI Net3 performed,
overall, better than those with layered tuning parame-
ters like CORI Net2. Furthermore, the inclusion of lex-
ical analysis (e.g., for jurisdictional clues) in query pro-
cessing promises to improve baseline CORI Net perfor-
mance significantly. In addition, our experiments that
investigated the comparative performance of language
modeling indicated that language modeling approxi-
mated or surpassed the performance achieved by our
natural language engine (WIN) for our physical col-
lections, yet resulted in an inferior performance when
run against our logical collections. Our tests indicated
that language modeling had to rely on smoothing much
less frequently with our complete physical database re-
sources than it did with our acquired (profiled) logical
database resources. Consequently, its performance de-

teriorated relative to WIN for our logical databases.
Such front-end database selection processing can
contribute significantly to the efficiency of large on-
line systems with hundreds of thousands of users and
tens of thousands of traditional data sources. Our
longer term view is to integrate such approaches into
a suite of collection selection tools, both conventional
and domain-driven. It would ultimately be up to users
to determine which approach would be most appropri-
ate for a given information need. Over time and with
experience, they will best be able to judge, based on
the granularity and context of the query, what would
be the most reasonable technique or tool to invoke.

8 Future Work

There has recently been an increased interest in clus-
tering as a means of improving precision for users [39].
Given that our rearchitected logical databases repre-
sent document sets categorized at a high level, clus-
tering techniques may offer another mechanism of pro-
ducing useful sub-categories under some of our more
general logical databases. This is what we plan to
explore in our next phase. We also intend to exam-
ine the effectiveness of more robust smoothing tech-
niques to determine whether they may contribute to
improved performance of our language models, es-
pecially when applied to acquired (profiled) logical
database resources. We will expand our investigation
of actual document-level relevance as well.
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