
Efficient Algorithms for Processing XPath Queries∗

Georg Gottlob, Christoph Koch, and Reinhard Pichler

Database and Artificial Intelligence Group
Technische Universität Wien, A-1040 Vienna, Austria
{gottlob, koch}@dbai.tuwien.ac.at, reini@logic.at

Abstract

Our experimental analysis of several popu-
lar XPath processors reveals a striking fact:
Query evaluation in each of the systems re-
quires time exponential in the size of queries
in the worst case. We show that XPath can
be processed much more efficiently, and pro-
pose main-memory algorithms for this prob-
lem with polynomial-time combined query
evaluation complexity. Moreover, we present
two fragments of XPath for which linear-time
query processing algorithms exist.

1 Introduction

XPath has been proposed by the W3C [17] as a practi-
cal language for selecting nodes from XML document
trees. The importance of XPath stems from (1) its
potential application as an XML query language per se
and it being at the core of several other XML-related
technologies, such as XSLT, XPointer, and XQuery
and (2) the great and well-deserved interest such tech-
nologies receive [1]. Since XPath and related technolo-
gies will be tested in ever-growing deployment scenar-
ios, its implementations need to scale well both with
respect to the size of the XML data and the growing
size and intricacy of the queries (usually referred to as
combined complexity).

Recently, there has been some work on related prob-
lems such as query containment for XPath [6, 11, 16],
XPath axis rewriting to deal with streaming XML data
[4], the expressiveness and complexity of various frag-
ments of XSLT [2, 12], and contributions towards a

∗ This work was supported by the Austrian Science Fund
(FWF) under project No. Z29-INF. All methods and algorithms
presented in this paper are covered by a pending patent. Fur-
ther resources, updates, and possible corrections will be made
available at http://www.xmltaskforce.com.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

formal semantics definition of XPath [7, 14]. However,
to the best of our knowledge, no research results on
good or even reasonable methods for processing XPath
have been published which may serve as yardsticks for
new algorithms.

Contributions

In this paper, we show that it is possible to noticeably
improve the efficiency of existing and future XPath
engines. We claim that current implementations of
XPath processors do not live up to their potential.
The way XPath is defined in [17] motivates an im-
plementation approach that leads to highly inefficient
(exponential-time) XPath processing, and many im-
plementations seem to have naively followed this intu-
ition. Likewise, the semantics of a fragment of XPath
defined in [14], which uses a fully functional formalism,
motivates an exponential-time algorithm.

To get a better understanding of the state-of-the-art
of XPath implementations, we experiment with three
existing XPath processors, namely XALAN, XT, and
Microsoft Internet Explorer 6 (IE6). XALAN [19] is
a framework for processing XPath and XSLT which is
freely available from the Apache foundation. XT [5] is
a freely available XSLT1 processor written by James
Clark. IE6 is a commercial Web browser which sup-
ports the formatting of XML documents using XSL.
Our experiments show that the time consumption of
all three systems grows exponentially in the size of
XPath queries in general. This exponentiality is a very
practical problem. Of course, queries tend to be short,
but we will argue that meaningful practical queries are
not short enough to allow the existing systems to han-
dle them.

The main contributions of this paper, apart from
our experiments, are the following:

• We define a formal bottom-up semantics of XPath
(i.e., for the full language as proposed in [17]), which
leads to a bottom-up main-memory XPath process-
ing algorithm that runs in low-degree polynomial
time in terms of the data and of the query size in
the worst case. By a bottom-up algorithm we mean

1Of course, XSLT allows to embed and execute arbitrary
XPath queries.

XPatterns - linear time

Core XPath XSLT Patterns’98

Full XPath - polynomial time

�
���

�

�
� �

Figure 1: XPath fragments considered in this paper.

a method of processing XPath while traversing the
parse tree of the query from its leaves up to its root.

• We discuss a general mechanism for translating our
bottom-up algorithm into a top-down one. (“Top-
down” again relates to the parse tree of the query.)
Both have the same worst-case bound on running
times but the latter may compute fewer useless in-
termediate results than the bottom-up algorithm.

• We present a linear-time algorithm (in both data
and query size) for a practically useful fragment of
XPath, which we will call Core XPath in the sequel.

In the experiments presented in this paper, we show
that evaluating such queries in XALAN and XT
already takes exponential time in the size of the
queries in the worst case. The processing time of
IE6 for this fragment grows polynomially in the size
of queries, but requires quadratic time in the size
of the XML data (when the query is fixed).

• We discuss the now superseded language of XSLT
Patterns of the XSLT draft of December 16th, 1998
[18]. Since then, full XPath has been adopted as
the XSLT Pattern language. This language remains
interesting, as it shares many features with XPath
and is a useful practical query language. We extend
this language with all of the XPath axes and call it
XPatterns to keep it short. Surprisingly, XPatterns
queries can be evaluated very efficiently, in linear
time in the size of the data and the query.

The rationale for presenting these fragments is their
relevance to the efficiency of engines for full XPath on
common queries. An overview of the various query
language fragments considered in this paper and data
complexity bounds of the associated algorithms is
given in Figure 1. By L1 ← L2, we denote that lan-
guage L1 subsumes language L2: XPatterns fully sub-
sumes the Core XPath language, and subsumes XSLT
Patterns’98 (except for a minor detail). XPatterns is
a fragment of XPath.

Structure

The structure of this paper is as follows. In Sec-
tion 2, we provide experimental results for existing
XPath processors. Section 3 presents basic notions,
including the data model and auxiliary functions. Sec-
tion 4 introduces XPath axes. Section 5 defines the
semantics of XPath in a concise way. Section 6 houses
the bottom-up semantics definition and algorithm for
full XPath, and Section 7 comes up with the modi-
fications to obtain a top-down algorithm. Section 8

presents linear-time fragments of XPath (Core XPath
and XPatterns). We conclude with Section 9.

2 State-of-the-Art of XPath Systems

In this section, we evaluate the efficiency of three
XPath engines, namely Apache XALAN (the Lo-
tus/IBM XPath implementation which has been do-
nated to the Apache foundation) and James Clark’s
XT, which are, as we believe, the two most popular
freely available XPath engines, and Microsoft Internet
Explorer 6 (IE6), a commercial product. The reader
is assumed familiar with XPath and standard notions
such as axes and location steps (cf. [17]).

The version of XALAN used for the experiments
was Xalan-j 2 2 D11 (i.e., a Java release). We used
the current version of XT (another Java implementa-
tion) with release tag 19991105, as available on James
Clark’s home page, in combination with his XP parser
through the SAX driver. We ran both XALAN and
XT on a 360 MHz (dual processor) Ultra Sparc 60
with 512 MB of RAM running Solaris. IE6 was eval-
uated on a Windows 2000 machine with a 1.2 GHz
AMD K7 processor and 1.5 GB of RAM.

XT and IE6 are not literally XPath engines, but are
able to process XPath embedded in XSLT transforma-
tions. We used the xsl:foreach performative to obtain
the set of all nodes an XPath query would evaluate to.

We show by experiments that all three implementa-
tions require time exponential in the size of the queries
in the worst case. Furthermore, we show that even the
simplest queries, with which IE6 can deal efficiently in
the size of the queries, take quadratic time in the size
of the data. Since we used two different platforms for
running the benchmarks, our goal of course was not
to compare the systems against each other, but to test
the scalabilities of their XPath processing algorithms.
The reason we used two different platforms was that
Solaris allows for accurate timing, while IE6 is only
available on Windows. (The IE6 timings reported on
here have the precision of ±1 second).

The XML documents we used were of very simple
structure. The document of size n was of the form

〈a〉 〈b/〉 . . . 〈b/〉
︸ ︷︷ ︸

n times

〈/a〉

and its tree thus contained n + 1 nodes.

Experiment 1: Exponential-time Query Com-
plexity of XALAN and XT

In this experiment, we used the document of size 2
(i.e., 〈a〉〈b/〉〈b/〉〈/a〉). Queries were constructed using
a simple pattern. The first query was ‘//a/b’ and the
i + 1-th query was obtained by taking the i-th query
and appending ‘/parent::a/b’. For instance, the third
query was ‘//a/b/parent::a/b/parent::a/b’.

It is easy to see that the time measurements re-
ported in Figure 2, which uses a log scale Y axis, grow
exponentially with the size of the query. The sharp

0 5 10 15 20 25
1

10

100

1000

XALAN

XT

seconds (log scale)

query size

Figure 2: Exponential-time query complexity of XT
and XALAN (Experiment 1).

bend in the curves is due to the near-constant runtime
overhead of the Java VM and of parsing the XML doc-
ument.

Discussion

This behavior can be explained with the follow-
ing pseudocode fragment, which seems to appropri-
ately describe the basic query evaluation strategy of
XALAN and XT.

procedure process-location-step(n0, Q)
/* n0 is the context node;

query Q is a list of location steps */
begin

node set S := apply Q.first to node n0;
if (Q.tail is not empty) then

for each node n ∈ S do
process-location-step(n, Q.tail);

end

It is clear that each application of a location step to a
context node may result in a set of nodes of size linear
in the size of the document (e.g., each node may have a
linear number of descendants or nodes appearing after
it in the document). If we now proceed by recursively
applying the location steps of an XPath query to in-
dividual nodes as shown in the pseudocode procedure
above, we end up consuming time exponential in the
size of the query in the worst case, even for very simple
path queries. As a (simplified) recurrence, we have

Time(|Q|) :=

{
|D| ∗ Time(|Q| − 1) . . . |Q| > 0
1 . . . |Q| = 0

where |Q| is the length of the query and |D| is the size
of the document, or Time(|Q|) = |D||Q|.

The class of queries used puts an emphasis on
simplicity and reproducibility (using the very simple

0 5 10 15 20 25 30
1

10

100

1000
seconds (log scale)

doc size 200 doc size 3doc size 10

doc size 2

query size

Figure 3: Exponential-time query complexity of IE6,
for document sizes 2, 3, 10, and 200 (Experiment 2).

document 〈a〉〈b/〉〈b/〉〈/a〉). Interestingly, each ‘par-
ent::a/b’ sequence quite exactly doubles the times both
systems take to evaluate a query, as we first jump
(back) to the tree root labeled “a” and then experi-
ence the “branching factor” of two due the two child
nodes labeled “b”.

Our class of queries may seem contrived; however,
it is clear that we make a practical point. First, more
realistic document sizes allow for very short queries
only2. At the same time, XPath query engines need to
be able to deal with increasingly sophisticated queries,
along the current trend to delegate larger and larger
parts of data management problems to query engines,
where they can profit from their efficiency and can
be made subject to optimization. The intuition that
XPath can be used to match a large class of tree pat-
terns [13, 10, 3] in XML documents also implies to a
certain degree that queries may be extensive.

Moreover, similar queries using antagonist axes
such as “following” and “preceding” instead of “child”
and “parent” do have practical applications, such as
when we want to put restrictions on the relative po-
sitions of nodes in a document. Finally, if we make
the realistic assumption that the documents are al-
ways much larger than the queries (|Q| << |D|),
it is not even necessary to jump back and forth
with antagonist axes. We can use queries such as
//following::*/following::*/. . ./following::* to observe
exponential behavior.

Experiment 2: Exponential-time Query Com-
plexity of Internet Explorer 6

In our second experiment, we executed queries that
nest two important features of XPath, namely paths

2We will show this in the second experiment for IE6 (see
Figure 3), and have verified it for XALAN and XT as well.

0 1 ×104 2 ×104 3 ×104 4 ×104 5 ×104
0

50

100

150

200

250
seconds

document size

f’(x) = f(x) - f(x-5000)

f(x)

f’’(x) = f’(x) - f’(x-5000)

Figure 4: Quadratic-time data complexity of IE6. f ′

and f ′′ are the first and second derivatives, respec-
tively, of our graph of timings f (Experiment 3).

and arithmetics, using IE6. The first three queries
were

//a/b[count(parent::a/b) > 1]

//a/b[count(parent::a/b[
count(parent::a/b) > 1]) > 1]

//a/b[count(parent::a/b[
count(parent::a/b[

count(parent::a/b) > 1]) > 1]) > 1]

and it is clear how to continue this sequence.
The experiment was carried out for four document

sizes (2, 3, 10, and 200). Figure 3 shows clearly that
IE6 requires time exponential in the size of the query.

Experiment 3: Quadratic-time Data Complex-
ity for Simple Path Queries (IE6)

For our third experiment, we took a fixed query and
benchmarked the time taken by IE6 for various docu-
ment sizes. The query was ‘//a’ + q(20) + ‘//b’ with

q(i) :=

{
‘//b[ancestor::a’ + q(i− 1)

+‘//b]/ancestor::a’ . . . i > 0
‘’ . . . i = 0

(Note: The size of queries q(i) is of course O(i).)

Example 2.1 For instance, the query of size two ac-
cording to this scheme, i.e. ‘//a’ + q(2) + ‘//b’, is

//a//b[ancestor::a//b[ancestor::a//b
]/ancestor::a//b

]/ancestor::a//b �

The granularity of measurements (in terms of doc-
ument size) was 5000 nodes. Figure 4 shows that IE6

takes quadratic time w.r.t. the size of the data already
for this simple class of path queries.

The query complexity of IE6 w.r.t. such queries is
polynomial as well. Due to space limitations, we do
not provide a graph for this experiment.

By virtue of our experiments, the following ques-
tion naturally arises: Is there an algorithm for process-
ing XPath with guaranteed polynomial-time behavior
(combined complexity), or even one that requires only
linear time for simple queries? In the remainder of this
paper, we are able to provide a positive answer to this.

3 Basic Notions

In this paper, we use an XML document model sim-
plified as follows. All of the artifacts of this section
are defined in the context of a given XML document.
In our data model, an XML document is an unranked,
ordered, and labeled tree. Let dom be the set of all
nodes in this tree, and let us use the two functions

firstchild, nextsibling : dom→ dom,

to represent the tree3. “firstchild” returns the first
child of a node (if there are any children, i.e., the
node is not a leaf), and otherwise “null”. Let
n1, . . . , nk be the children of some node in-order.
Then, nextsibling(ni) = ni+1, i.e., “nextsibling” re-
turns the neighboring node to the right, if it exists,
and “null” otherwise (if i = k). We define the func-
tions firstchild−1 and nextsibling−1 as the inverses of
the former two functions, where “null” is returned if
no inverse exists for a given node. Where appropriate,
we will use binary relations of the same name instead
of the functions. ({〈x, f(x)〉 | x ∈ dom, f(x) 6= null}
is the binary relation for function f .)

Let Σ be a finite labeling alphabet. We define a

function T : (Σ∪{∗})→ 2dom (“node test”)4 which as-
signs to each label (XML tag) the set of nodes labeled
with it; moreover, T (∗) := dom. Let <doc be the docu-
ment order, where x <doc y (for two nodes x, y ∈ dom)
iff the opening tag of x precedes the opening tag of y
in the (well-formed) document. The function first<doc

returns the first node in a set w.r.t. document order.
All nodes are of the same type; thus, we do not

distinguish among element, attribute, and processing
instruction nodes, among others. For the same reason,
we do not discuss the “namespace” and “attribute”
axes5 as well as the “local-name”, “namespace-uri”,
and “name” core library functions [17] either. The
reason for this is lack of space; however, extending
our semantics and algorithms (without a penalty w.r.t.
efficiency bounds) is an easy exercise.

3Actually, “firstchild” and “nextsibling” are part of the XML
Document Object Model (DOM).

4Our ‘*’ node test coincides with node() of [17], while ‘*’ of
[17] is a node-typed version of node().

5To cover these two kinds of axes in our simple node-labeled
tree data model, we could for instance assume that attributes
are modeled in the document tree as child nodes with special
labels.

child := firstchild.nextsibling∗

parent := (nextsibling−1)∗.firstchild−1

descendant := firstchild.(firstchild ∪ nextsibling)∗

ancestor := (firstchild−1 ∪ nextsibling−1)∗.firstchild−1

descendant-or-self := descendant ∪ self
ancestor-or-self := ancestor ∪ self
following := ancestor-or-self.nextsibling.

nextsibling∗.descendant-or-self
preceding := ancestor-or-self.nextsibling−1.

(nextsibling−1)∗.descendant-or-self
following-sibling := nextsibling.nextsibling∗

preceding-sibling := (nextsibling−1)∗.nextsibling−1

Table 1: Axis definitions in terms of “primitive” tree
relations “firstchild”, “nextsibling”, and their inverses.

Each node in an XML document may be identified
by a unique id. The function deref ids : string →

2dom interprets its input string as a whitespace-
separated list of keys and returns the set of nodes
whose id’s are contained in that list. The function
strval : dom → string returns the string value of a
node, which is the concatenation of non-tag strings be-
tween the node’s start and end tags in the document.
The functions to string and to number convert a num-
ber to a string resp. a string to a number according to
the rules specified in [17].

4 XPath Axes

The XPath axes self , child , parent , descendant ,
ancestor , descendant-or-self , ancestor-or-self , fol-
lowing , preceding , following-sibling , and preceding-
sibling are binary relations χ ⊆ dom × dom. Let
self := {〈x, x〉 | x ∈ dom}. The other axes are defined
in terms of our “primitive” relations “firstchild” and
“nextsibling” as shown in Table 1 (cf. [17]). R1.R2,
R1∪R2, and R∗1 denote the concatenation, union, and
reflexive and transitive closure, respectively, of binary
relations R1 and R2. Let E(χ) denote the regular ex-
pression defining χ in Table 1. It is important to ob-
serve that some axes are defined in terms of other axes,
but that these definitions are acyclic / non-recursive.

Definition 4.1 Let χ denote an XPath axis relation.

We define the function χ : 2dom → 2dom as χ(X0) =
{x | ∃x0 ∈ X0 : x0χx} (and thus overload the relation
name χ), where X0 ⊆ dom is a set of nodes. �

Algorithm 4.2 (Axis Evaluation)
Input: A set of nodes S and an axis χ
Output: χ(S)
Method: evalχ(S)

function eval(R1∪...∪Rn)∗(S) begin
S′ := S; /* S′ is represented as a list */
while there is a next element x in S ′ do

append {Ri(x) | 1 ≤ i ≤ n, Ri(x) 6= null,
Ri(x) 6∈ S′} to S′;

return S′;
end;

function evalχ(S) := evalE(χ)(S).
function evalself(S) := S.
function evale1.e2

(S) := evale2
(evale1

(S)).
function evalR(S) := {R(x) | x ∈ S}.
function evalχ1∪χ2

(S) := evalχ1
(S) ∪ evalχ2

(S).

where S ⊆ dom is a set of nodes of an XML document,
e1 and e2 are regular expressions, R, R1, . . ., Rn are
primitive relations, χ1 and χ2 are axes, and χ is an
axis other than “self”. �

Clearly, some axes could have been defined in
a simpler way in Table 1 (e.g., ancestor equals
parent.parent∗). However, the definitions, which use
a limited form of regular expressions only, allow to
compute χ(S) in a very simple way, as evidenced by
Algorithm 4.2.

The function eval(R1∪...∪Rn)∗ essentially computes
graph reachability (not transitive closure). It can be
implemented to run in linear time in terms of the data
in a straightforward manner; (non)membership in S ′ is
checked in constant time using a direct-access version
of S′ maintained in parallel to its list representation
(naively, this could be an array of bits, one for each
member of dom, telling which nodes are in S ′).

Lemma 4.3 Let S ⊆ dom be a set of nodes of an
XML document and χ be an axis. Then, (1) χ(S) =
evalχ(S) and (2) Algorithm 4.2 runs in time O(|dom|).

Proof Sketch (O(|dom|) running time) The time
bound is due to the fact that each of the eval functions
can be implemented so as to visit each node at most
once and the number of calls to eval functions and
relations joined by union is constant (see Table 1). �

Definition 4.4 (Document order relative to an axis)
We define the relation <doc,χ relative to the axis χ as
follows. For χ ∈ {self, child, descendant, descendant-
or-self, following-sibling, following}, <doc,χ is the stan-
dard document order <doc. For the remaining axes, it
is the reverse document order.

Moreover, given a node x and a set of nodes S with
x ∈ S, let idxχ(x, S) be the index of x in S w.r.t.
<doc,χ (where 1 is the smallest index). �

5 Semantics of XPath

In this section, we present a concise definition of the
semantics of XPath 1 [17]. We assume the syntax of
this language known, and cohere with its unabbreviated
form [17]. We use a normal form syntax of XPath,
which is obtained by the following rewrite rules, ap-
plied initially:

1. Location steps χ::t[e], where e is an expression that
produces a number (see below), are replaced by the
equivalent expression χ::t[e = position()].

2. All type conversions are made explicit (using the
conversion functions string, number, and boolean,
which we will define below).

P [[χ::t[e1] · · · [em]]](x) :=
begin

S := {y | xχy, y ∈ T (t)};
for 1 ≤ i ≤ m (in ascending order) do

S := {y ∈ S | [[ei]](y, idxχ(y, S), |S|) = true};
return S;

end;
P [[π1|π2]](x) := P [[π1]](x) ∪ P [[π2]](x)
P [[/π]](x) := P [[π]](root)
P [[π1/π2]](x) :=

⋃

y∈P [[π1]](x) P [[π2]](y)

Figure 5: Standard semantics of location paths.

3. Each variable is replaced by the (constant) value of
the input variable binding.

The main structural feature of XPath are expres-
sions , which are of one of four types, namely node set ,
number , string , or boolean. Each expression evaluates
relative to a context ~c = 〈x, k, n〉 consisting of a context
node x, a context position k, and a context size n [17].
C = dom × {〈k, n〉 | 1 ≤ k ≤ n ≤ |dom|} is the do-
main of contexts. Let ArithOp ∈ {+,−, ∗, div, mod},
RelOp ∈ {=, 6=, ≤, <,≥, >}, EqOp ∈ {=, 6=}, and
GtOp ∈ {≤, <, ≥, >}. By slight abuse of notation,
we identify these arithmetic and relational operations
with their symbols in the remainder of this paper.
However, it should be clear whether we refer to the
operation or its symbol at any point. By π, π1, π2, . . .
we denote location paths.

Definition 5.1 (Semantics of XPath) Each XPath
expression returns a value of one of the following four
types: number, node set, string, and boolean (abbre-
viated num, nset, str, and bool, respectively). Let T
be an expression type and the semantics [[e]] : C → T
of XPath expression e be defined as follows.

[[π]](〈x, k, n〉) := P [[π]](x)

[[position()]](〈x, k, n〉) := k

[[last()]](〈x, k, n〉) := n

For all other kinds of expressions e = Op(e1, . . . , em)
mapping a context ~c to a value of type T ,
[[Op(e1, . . . , em)]](~c) := F [[Op]]([[e1]](~c), . . . , [[em]](~c)),
where F [[Op]] : T1× . . .×Tm → T is called the effective
semantics function of Op. The function P is defined
in Figure 5 and the effective semantics function F is
defined in Table 2. �

To save space, we at times re-use function defi-
nitions in Table 2 to define others. However, our
definitions are not circular and the indirections can
be eliminated by a constant number of unfolding
steps. Moreover, for lack of space, we define nei-
ther the number operations floor, ceiling, and round
nor the string operations concat, starts-with, contains,
substring-before, substring-after, substring (two ver-
sions), string-length, normalize-space, translate, and
lang in Table 2, but it is very easy to obtain these
definitions from the XPath 1 Recommendation [17].

Expr. E : Operator Signature
Semantics F [[E]]

F [[constant number v : → num]]()
v
F [[ArithOp : num × num → num]](v1, v2)
v1 ArithOp v2

F [[count : nset → num]](S)
|S|
F [[sum : nset → num]](S)
Σn∈S to number(strval(n))
F [[id : nset → nset]](S)�

n∈S
deref ids(strval(n))

F [[id : str → nset]](s)
deref ids(s)
F [[constant string s : → str]]()
s

F [[and : bool × bool → bool]](b1, b2)
b1 ∧ b2

F [[or : bool × bool → bool]](b1, b2)
b1 ∨ b2

F [[not : bool → bool]](b)
¬b
F [[true() : → bool]]()
true
F [[false() : → bool]]()
false

F [[RelOp : nset × nset → bool]](S1, S2)
∃n1 ∈ S1, n2 ∈ S2 : strval(n1) RelOp strval(n2)
F [[RelOp : nset × num → bool]](S, v)
∃n ∈ S : to number(strval(n)) RelOp v
F [[RelOp : nset × str → bool]](S, s)
∃n ∈ S : strval(n) RelOp s
F [[RelOp : nset × bool → bool]](S, b)
F [[boolean]](S) RelOp b
F [[EqOp : bool × (str ∪ num ∪ bool) → bool]](b, x)
b EqOp F [[boolean]](x)
F [[EqOp : num × (str ∪ num) → bool]](v, x)
v EqOp F [[number]](x)
F [[EqOp : str × str → bool]](s1, s2)
s1 EqOp s2

F [[GtOp : (str ∪ num ∪ bool) ×
(str ∪ num ∪ bool) → bool]](x1, x2)

F [[number]](x1) GtOp F [[number]](x2)

F [[string : num → str]](v)
to string(v)
F [[string : nset → str]](S)
if S = ∅ then “” else strval(first<doc

(S))
F [[string : bool → str]](b)
if b=true then “true” else “false”

F [[boolean : str → bool]](s)
if s 6= “” then true else false
F [[boolean : num → bool]](v)
if v 6= ±0 and v 6= NaN then true else false
F [[boolean : nset → bool]](S)
if S 6= ∅ then true else false

F [[number : str → num]](s)
to number(s)
F [[number : bool → num]](b)
if b=true then 1 else 0
F [[number : nset → num]](S)
F [[number]](F [[string]](S))

Table 2: XPath effective semantics functions.

Expression Type Associated Relation R
num R ⊆ C× �
bool R ⊆ C× {true, false}

nset R ⊆ C× 2dom

str R ⊆ C× char∗

Table 3: Expression types and associated relations.

The compatibility of our semantics definition (mod-
ulo the assumptions made in this paper to simplify the
data model) with [17] can easily be verified by inspec-
tion of the latter document.

It is instructive to compare the definition of
P [[π1/π2]] in Figure 5 with the procedure process-
location-step of Section 2 and the claim regarding
exponential-time query evaluation made there. In fact,
if the semantics definition of [17] (or of this section, for
that matter) is followed rigorously to obtain an analo-
gous functional implementation, query evaluation us-
ing this implementation requires time exponential in
the size of the queries.

6 Bottom-up Evaluation of XPath

In this section, we present a bottom-up semantics and
algorithm for evaluating XPath queries in polynomial
time. We discuss the intuitions which lead to poly-
nomial time evaluation (which we call the “context-
value table principle”), and establish the correctness
and complexity results.

Definition 6.1 (Semantics) We represent the four
XPath expression types nset, num, str, and bool using
relations as shown in Table 3. The bottom-up seman-
tics of expressions is defined via a semantics function

E↑ : Expression→ nset ∪ num ∪ str ∪ bool,

given in Table 4 and as

E↑[[Op(e1, . . . , em)]] :=
{〈~c,F [[Op]](v1, . . . , vm)〉 | ~c ∈ C, 〈~c, v1〉 ∈ E↑[[e1]], . . . ,

〈~c, vm〉 ∈ E↑[[em]]}

for the remaining kinds of XPath expressions. �

Now, for each expression e and each 〈x, k, n〉 ∈ C,
there is exactly one v s.t. 〈x, k, n, v〉 ∈ E↑[[e]].

Theorem 6.2 Let e be an arbitrary XPath expres-
sion. Then, for context node x, position k, and size
n, the value of e is v, where v is the unique value such
that 〈x, k, n, v〉 ∈ E↑[[e]].

The main principle that we propose at this
point to obtain an XPath evaluation algorithm with
polynomial-time complexity is the notion of a context-
value table (i.e., a relation for each expression, as dis-
cussed above).

Expr. E : Operator Signature
Semantics E↑[[E]]

location step χ::t : → nset
{〈x0, k0, n0, {x | x0χx, x ∈ T (t)}〉 | 〈x0, k0, n0〉 ∈ C}
location step E[e] over axis χ: nset × bool → nset
{〈x0, k0, n0, {x ∈ S | 〈x, idxχ(x, S), |S|, true〉 ∈ E↑[[e]]}〉

| 〈x0, k0, n0, S〉 ∈ E↑[[E]]}
location path /π : nset → nset
C× {S | ∃k, n : 〈root, k, n, S〉 ∈ E↑[[π]]}
location path π1/π2 : nset × nset → nset
{〈x, k, n, z〉 | 1 ≤ k ≤ n ≤ |dom|,

〈x, k1, n1, Y 〉 ∈ E↑[[π1]],�
y∈Y

〈y, k2, n2, z〉 ∈ E↑[[π2]]}
location path π1 | π2 : nset × nset → nset
E↑[[π1]] ∪ E↑[[π2]]

position() : → num
{〈x, k, n, k〉 | 〈x, k, n〉 ∈ C}
last() : → num
{〈x, k, n, n〉 | 〈x, k, n〉 ∈ C}

Table 4: Expression relations for location paths, posi-
tion(), and last().

Context-value Table Principle. Given an ex-
pression e that occurs in the input query, the context-
value table of e specifies all valid combinations of con-
texts ~c and values v, such that e evaluates to v in
context ~c. Such a table for expression e is obtained by
first computing the context-value tables of the direct
subexpressions of e and subsequently combining them
into the context-value table for e. Given that the size
of each of the context-value tables has a polynomial
bound and each of the combination steps can be ef-
fected in polynomial time (all of which we can assure
in the following), query evaluation in total under our
principle also has a polynomial time bound6. �

Query Evaluation. The idea of Algorithm 6.3
below is so closely based on our semantics definition
that its correctness follows directly from the correct-
ness result of Theorem 6.2.

Algorithm 6.3 (Bottom-up algorithm for XPath)
Input: An XPath query Q;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q;
R := ∅;
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] 6∈ R do
begin

take an Op(l1, . . . , ln) ∈ nodes(Tree(Q))
s.t. E↑[[l1]], . . . , E↑[[ln]] ∈ R;

compute E↑[[Op(l1, . . . , ln)]] using E↑[[l1]], . . . , E↑[[ln]];
add E↑[[Op(l1, . . . , ln)]] to R;

end;
return E↑[[root(Tree(Q))]]. �

6The number of expressions to be considered is fixed with
the parse tree of a given query.

Example 6.4 Let D denote the simple XML docu-
ment of size 4 from Section 2, i.e., it has one node la-
beled a and four child nodes labeled b. Hence, we write
dom = {a, b1, . . . , b4}, where a denotes the unique
node labeled a and bi denotes (in document order)
the i-th node labeled b. Now suppose that we want to
evaluate the XPath query Q, which reads as

descendant::b/following-sibling::*[position() != last()]

over the input context 〈a, 1, 1〉. We illustrate how this
evaluation can be done by the context-value table prin-
ciple: First of all, we have to set up the parse tree

�� � �

N5: last()N4: position()

N3: N4 != N5

N2: following-sibling::*[N3]

N1: descendant::b/N2

of Q with its 5 nodes N1, . . . , N5, corresponding to
the 5 subexpressions of Q (N1, the root node of the
parse tree, corresponds to Q). Then we compute the
context-value tables of the leaf nodes N4 and N5 in
the parse tree. (All context-value tables are shown in
Figure 6.) Note that it suffices to compute the result
value “val” for those combinations 〈x, k, n〉 of context-
node/size/position which can possibly be generated by
the “following-sibling” axis. From the context-value
tables at the nodes N4 and N5, it is easy to compute
the table at N3, and subsequently the tables at N2 and
N1. From the context-value table at the root N1 of the
parse tree, we can read out the final result {b2, b3}.

In Figure 6, we have made a number of simplify-
ing assumptions to keep the tables short. The table of
N3 contains only those contexts for which the value is
“true”; thus, the values are not displayed. Similarly,
in the context-value tables at N2 and N1, we have only
considered the dependence of the result (node sets have
been unnested to obtain a flat table) on the context
node x. In contrast, the context position and size have
been omitted since they have no influence on the over-
all result (they would only blow up the tables). �

Theorem 6.5 XPath can be evaluated bottom-up in
polynomial time (combined complexity).

Proof Sketch During the bottom-up computation
of a query Q, O(|Q|) relations are created. The size of
bool relations is bounded by O(|D|3) and the size of
nset relations by O(|D|4). All relations have a func-
tional dependency from the expression and the context
(columns one to three) to the value (column four).
Thus, num and string relations are of size O(|D|3)
times the maximum size of such values. It remains
to be shown that numbers and strings computable in
XPath are of size O(|D| ∗ |Q|).

Indeed, strings and numbers that may be obtained
from the document are guaranteed to be of linear size.

N4

x k n val

b2 1 3 1
b3 2 3 2
b4 3 3 3
b3 1 2 1
b4 2 2 2
b4 1 1 1

N5

x k n val

b2 1 3 3
b3 2 3 3
b4 3 3 3
b3 1 2 2
b4 2 2 2
b4 1 1 1

N3

x k n

b1 1 3
b1 2 3
b2 2 3

N2

x val

b1 b2

b1 b3

b2 b3

N1

x val

a b2

a b3

Figure 6: Context-value tables of Example 6.4.

(Note: For the conversion from a node set to a string
or number, only the first node in the set is chosen.)

Of the string functions, only “concat” may produce
a string longer than the input strings. (Note that the
“translate” function of [17] does not allow for arbi-
trary but just single-character replacement, e.g. for
case-conversion purposes.) The size of such strings is
bounded by O(|D| ∗ |Q|) (In each operation, the can
only grow by a constant factor). Likewise, the num-
bers obtained through arithmetic operations can be
represented within the same space bound.

The overall space bound of O(|D|4 ∗ |Q|2) follows.
Note that no significant additional amount of space is
required for intermediate computations.

Regarding time, the algorithm for evaluating a
query Q bottom-up is as follows. First, we prepare
a number of data structures which will allow to eval-
uate each of the effective semantics functions of Fig-
ure 2 in time O(I2), where I is the size of their argu-
ments. These preprocessing steps can be carried out
with a time bound better than the overall time bound
to be shown. By considering the definition of E↑, it be-
comes clear that each of the expression relations can
be computed in time O(|D|5 ∗ |Q|) at worst when the
expression semantics tables of the direct subexpres-
sions are given. (The |Q| factor is due the size bound
on strings and numbers generated during the computa-
tion.) Moreover, O(|Q|) such computations are needed
in total to evaluate Q.

As a final remark, note that contexts can also be
represented in terms of pairs of a current and a “pre-
vious” context node (rather than triples of a node, a
position, and a size), which are defined relative to an
axis and a node test (which, however, are fixed with
the query). For instance, the corresponding ternary
context for ~c = 〈x0, x〉 w.r.t. axis χ and node test t is
〈x, idxχ(x, Y), |Y |〉, where Y = {y | x0χy, y ∈ T (t)}.
Thus, position and size values can be recovered on de-
mand. Using this more sophisticated representation,
it is possible to obtain an improved time bound of
O(|D|3 ∗ |Q|2) for XPath query evaluation. �

S↓[[χ::t[e1] · · · [em]]](X1 , . . . , Xk) :=
begin

S := {〈x, y〉 |x ∈
� k

i=1
Xi, x χ y, and y ∈ T (t)};

for each 1 ≤ i ≤ m (in ascending order) do
begin

fix some order ~S = 〈〈x1, y1〉, . . . , 〈xl, yl〉〉 for S;
〈r1, . . . , rl〉 := E↓[[ei]](t1, . . . , tl)

where tj = 〈yj , idxχ(yj , Sj), |Sj |〉
and Sj := {z | 〈xj, z〉 ∈ S};

S := {〈xi, yi〉 | ri is true};
end;
for each 1 ≤ i ≤ k do

Ri := {y | 〈x, y〉 ∈ S, x ∈ Xi};
return 〈R1, . . . , Rk〉;

end;

S↓[[/π]](X1 , . . . , Xk) := S↓[[π]](

k times
� ��� �

{root}, . . . , {root})

S↓[[π1/π2]](X1, . . . , Xk) :=
S↓[[π2]](S↓[[π1]](X1, . . . , Xk))

S↓[[π1 | π2]](X1, . . . , Xk) :=

S↓[[π1]](X1, . . . , Xk) ∪〈〉 S↓[[π2]](X1, . . . , Xk)

Figure 7: Top-down evaluation of location paths.

7 Top-down Evaluation of XPath

In the previous section, we obtained a bottom-up
semantics definition which led to a polynomial-time
query evaluation algorithm for XPath. Despite this
favorable complexity bound, this algorithm is still not
practical, as usually many irrelevant intermediate re-
sults are computed to fill the context-value tables
which are not used later on. Next, building on the
context-value table principle of Section 6, we develop
a top-down algorithm based on vector computation
for which the favorable (worst-case) complexity bound
carries over but in which the computation of a large
number of irrelevant results is avoided.

We introduce a family of tuple operators to simplify
the following discussion. Given a unary operation
Op : D → D, the operation Op〈〉 : Dk → Dk is
defined as Op〈〉(x1, . . . , xk) := 〈Op(x1), . . . , Op(xk)〉.
Analogously, given a binary operation ◦ : D×D → D,
the operation ◦〈〉 : Dk × Dk → Dk is defined as
〈x1, . . . , xk〉 ◦〈〉 〈y1, . . . , yk〉 := 〈x1 ◦ y1, . . . , xk ◦ yk〉.
For instance, 〈X1, . . . , Xk〉 ∪〈〉 〈Y1, . . . , Yk〉 :=
〈X1 ∪ Y1, . . . , Xk ∪ Yk〉. count〈〉(X1, . . . , Xk) :=
〈|X1|, . . . , |Xk|〉 computes the cardinalities of a
tuple of sets element-wise, ss〈〉(x1, . . . , xk) :=
〈{x1}, . . . , {xk}〉 lifts a tuple of elements to a tuple of

singleton sets, and proj
〈〉
i (~c1, . . . ,~cl) selects the i-th

elements from the tuples ~c1, . . . ,~cl.
For practical reasons, before we arrive at the point

of defining a top-down semantics function E↓ for
XPath, we introduce an auxiliary semantics definition
for location paths, S↓:

S↓ : LocationPath → List(2dom) → List(2dom)

That is, given a location path π and a list 〈X1, . . . , Xk〉

of node sets, S↓ determines a list 〈Y1, . . . , Yk〉 of node
sets, s.t. for every i ∈ {1, . . . , k}, the nodes reachable
from the context nodes in Xi via the location path π
are precisely the nodes in Yi. S↓[[π]] can be obtained
from the relations E↑[[π]] as follows. Let

S↓[[π]](X1, . . . , Xk) = 〈Y1, . . . , Yk〉

Then, a node y is in Yi iff there is an x ∈ Xi and some
p, s such that 〈x, p, s, y〉 ∈ E↑[[π]]. For the actual com-
putation of S↓[[π]], we basically distinguish the same
cases (related to location paths) as for the bottom-up
semantics E↑[[π]] (see Figure 7).

Definition 7.1 The semantics function E↓ for arbi-
trary XPath expressions is of the following type:

E↓ : XPathExpression → List(C)
→ List(XPathType)

Given an XPath expression e and a list (~c1, . . . ,~cl) of
contexts, E↓ determines a list 〈r1, . . . , rl〉 of results of
one of the XPath types number, string, boolean, or
node set. E↓ is defined as

E↓[[π]](~c1, . . . ,~cl) := S↓[[π]](ss〈〉(proj
〈〉
1 (~c1, . . . ,~cl)))

E↓[[position()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) :=
〈k1, . . . , kl〉

E↓[[last()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) :=
〈n1, . . . , nl〉

and

E↓[[Op(e1, . . . , em)]](~c1, . . . ,~cl) :=
F [[Op]]〈〉(E↓[[e1]](~c1, . . . ,~cl), . . . , E↓[[em]](~c1, . . . ,~cl))

for the remaining kinds of expressions. �

For example,

E↓[[e1 ArithOp e2]](~c1, . . . , ~cl) :=

E↓[[e1]](~c1, . . . , ~cl) ArithOp〈〉 E↓[[e2]](~c1, . . . , ~cl)

E↓[[count(e)]](~c1, . . . , ~cl) :=
count〈〉(E↓[[e]](~c1, . . . , ~cl))

E↓[[e1 RelOp e2]](~c1, . . . , ~cl) :=
/* where e1 and e2 are of type num */

E↓[[e1]](~c1, . . . , ~cl) RelOp〈〉E↓[[e2]](~c1, . . . , ~cl)

Example 7.2 Consider the XPath query

/descendant::a[count(descendant::b/child::c)
+ position() < last()]/child::d

Let L = 〈〈y1, 1, l〉, . . . , 〈yl, l, l〉〉, where the yi are those
nodes reachable from the root node through the de-
scendant axis and which are labeled “a”. The query is
evaluated top-down as

S↓[[child::d]](S↓[[descendant::a[e]]]({root}))

where E↓[[e]](L) is computed as

(
count〈〉(π) +〈〉 E↓[[position()]](L)

)
<〈〉 E↓[[last()]](L)

and

π = S↓[[child::c]](S↓[[descendant::b]](ss〈〉(proj
〈〉
1 (L)))).

Note that the arity of the tuples used to compute the
outermost location path is one, while it is l for e. �

The correctness of the top-down semantics fol-
lows immediately from the corresponding result in the
bottom-up case and from the definition of S↓ and E↓.

Theorem 7.3 (Correctness of E↓) Given an arbitrary
XPath expression e, 〈v1, . . . , vl〉 = E↓[[e]](~c1, . . . ,~cl) iff
〈~c1, v1〉, . . . , 〈~cl, vl〉 ∈ E↑[[e]].

S↓ and E↓ can be immediately transformed into
function definitions in a top-down algorithm. We thus
have to define one evaluation function for each case
of the definition of S↓ and E↓, respectively. The func-
tions corresponding to the various cases of S↓ have
a location path and a list of node sets of variable
length (X1, . . . , Xk) as input parameter and return a
list (R1, . . . , Rk) of node sets of the same length as
result. Likewise, the functions corresponding to E↓
take an arbitrary XPath expression and a list of con-
texts as input and return a list of XPath values (which
can be of type num, str, bool or nset). Moreover, the
recursions in the definition of S↓ and E↓ correspond
to recursive function calls of the respective evaluation
functions. Analogously to Theorem 6.5, we get

Theorem 7.4 The immediate functional implemen-
tation of E↓ evaluates XPath queries in polynomial
time (combined complexity).

Finally, note that using arguments relating the top-
down method of this section with (join) optimization
techniques in relational databases, one may argue that
the context-value table principle is also the basis of the
polynomial-time bound of Theorem 7.4.

8 Linear-time Fragments of XPath

8.1 Core XPath

In this section, we define a fragment of XPath (called
Core XPath) which constitutes a clean logical core of
XPath (cf. [8, 9]). The only objects that are manipu-
lated in this language are sets of nodes (i.e., there are
no arithmetical or string operations). Besides from
these restrictions, the full power of location paths is
supported, and so is the matching of such paths in
condition predicates (with an “exists” semantics), and
the closure of such condition expressions with respect
to boolean operations “and”, “or”, and “not”.

We define a mapping of each query in this language
to a simple algebra over the set operations ∩, ∪, ‘−’, χ
(the axis functions from Definition 4.1), and an oper-

ation dom
root (S) := {x ∈ dom | root ∈ S}, i.e. dom

root (S)

is dom if root ∈ S and ∅ otherwise.
Note that each XPath axis has a natural in-

verse: self−1 = self, child−1 = parent, descendant−1

= ancestor, descendant-or-self−1 = ancestor-or-self,
following−1 = preceding, and following-sibling−1 =
preceding-sibling.

Lemma 8.1 Let χ be an axis. For each pair of nodes
x, y ∈ dom, xχy iff yχ−1x.

(Proof by a very easy induction.)

Definition 8.2 Let the (abstract) syntax of the Core
XPath language be defined by the EBNF grammar

cxp: locationpath | ‘/’ locationpath
locationpath: locationstep (’/’ locationstep)*
locationstep: χ ‘::’ t | χ ‘::’ t ‘[’ pred ‘]’
pred: pred ‘and’ pred | pred ‘or’ pred

| ‘not’ ‘(’ pred ‘)’ | cxp | ‘(’ pred ‘)’

“cxp” is the start production, χ stands for an axis (see
above), and t for a “node test” (either an XML tag or
“*”, meaning “any label”). The semantics of Core
XPath queries is defined by a function S→

S→[[χ::t[e]]](N0) := χ(N0) ∩ T (t) ∩ E1[[e]]

S→[[/χ::t[e]]](N0) := χ({root}) ∩ T (t) ∩ E1[[e]]

S→[[π/χ::t[e]]](N0) := χ(S→[[π]](N0)) ∩ T (t) ∩ E1[[e]]

S←[[χ::t[e]]] := χ−1(T (t) ∩ E1[[e]])

S←[[χ::t[e]/π]] := χ−1(S←[[π]] ∩ T (t) ∩ E1[[e]])

S←[[/π]] :=
dom

root
(S←[[π]])

E1[[e1 and e2]] := E1[[e1]] ∩ E1[[e2]]

E1[[e1 or e2]] := E1[[e1]] ∪ E1[[e2]]

E1[[not(e)]] := dom− E1[[e]]

E1[[π]] := S←[[π]]

where N0 is a set of context nodes or dom and a query
π evaluates as S→[[π]](N0). �

Example 8.3 The Core XPath query

/descendant::a/child::b[child::c/child::d or
not(following::*)]

is evaluated as specified by the query tree

dom

�

�
�

�
� �

�

�

�
� �

�
���

�
���

�
� �

�
� �

�
���

�

�
���

�
� �

�

�
���

�
� �

�

∩

∩

parent

∪∩

∩

child −T (b)

T (a)descendant

{root}

T (c) parent

T (d)

dom preceding

�
�
�
���

(There are alternative but equivalent query trees due
to the associativity and commutativity of some of our
operators.) �

The semantics of XPath and Core XPath (defined
using S←, S→, and E1) coincide in the following way:

Theorem 8.4 Let π be a Core XPath query and N0 ⊆
dom be a set of context nodes. Then,

S←[[π]] = {x | S↓[[π]]({x}) 6= ∅}

E1[[e]] = {x | E↓[[e]]({〈x, 1, 1〉})}

〈S→[[π]](N0)〉 = S↓[[π]](〈N0〉).

This can be shown by easy induction proofs. Thus,
Core XPath (evaluated using S→) is a fragment of
XPath, both syntactically and semantically.

Theorem 8.5 Core XPath queries can be evaluated
in time O(|D| ∗ |Q|), where |D| is the size of the data
and |Q| is the size of the query.

Proof Given a query Q, it can be rewritten into an
algebraic expression E over the operations χ, ∪, ∩, ‘−’,

and dom
root using S→, S←, and E1 in time O(|Q|). Each

of the operations in our algebra can be carried out in
time O(|D|). Since at most O(|Q|) such operations
need to be carried out to process E, the complexity
bound follows. �

8.2 XPatterns

We extend our linear-time fragment Core XPath by
the operation id: nset → nset of Table 4 by defining
“id” as an axis relation

id := {〈x0, x〉 | x0 ∈ dom, x ∈ deref ids(strval(x0))}

Queries of the form π1/id(π2)/π3 are now treated as
π1/π2/id/π3.

Lemma 8.6 Let π1/id(π2)/π3 be an XPath query s.t.
π1/π2/id/π3 is a query in Core XPath with the “id”
axis. Then, the semantics of the two queries rela-
tive to a set of context nodes N0 ∈ dom coincide,
S↓[[π1/id(π2)/π3]](〈N0〉) = S→[[π1/π2/id/π3]](N0). �

Theorem 8.7 Queries in Core XPath with the “id”
axis can be evaluated in time O(|D| ∗ |Q|).

Proof Sketch. The hard part of this proof is to

define a function id: 2dom → 2dom and its inverse
consistent with the functions of Definition 4.1 which
is computable in linear time. We make use of a bi-
nary auxiliary relation “ref” which contains a tuple of
nodes 〈x, y〉 iff the text belonging to x in the XML doc-
ument, but which is directly inside it and not further
down in any of its descendants, contains a whitespace-
separated string referencing the identifier of node y.

“@n”, “@*”, “text()”, “comment()”, “pi(n)”, and
“pi()” (where n is a label) are simply sets provided with
the document (similar to those obtained through the
node test function T).
“=s” (s is a string) can be encoded as a unary predicate
whose extension can be computed using string search in
the document before the evaluation of our query starts.
Clearly, this can be done in linear time.

first-of-any := {y ∈ dom | 6 ∃x : nextsibling(x, y)}

last-of-any := {x ∈ dom | 6 ∃y : nextsibling(x, y)}

“id(s)” is a unary predicate and can easily be computed
(in linear time) before the query evaluation.

Table 5: Some unary predicates of XLST Patterns [18].

Example. Let id(i) = ni. For the XML document
〈t id=1〉 3 〈t id=2〉 1 〈/t〉 〈t id=3〉 1 2 〈/t〉 〈/t〉, we
have ref := {〈n1, n3〉, 〈n2, n1〉, 〈n3, n1〉, 〈n3, n2〉}. �

“ref” can be efficiently computed in a preprocessing
step. It does not satisfy any functional dependencies,
but it is guaranteed to be of linear size w.r.t. the input
data (however, not in the tree nodes). Now we can
encode id(S) as those nodes reachable from S and its
descendants using “ref”.

id(S) := {y | x ∈ descendant-or-self(S), 〈x, y〉 ∈ ref}
id−1(S) := ancestor-or-self({x | 〈x, y〉 ∈ ref, y ∈ S})

This computation can be performed in linear time. �
We may define XPatterns as the smallest language

that subsumes Core XPath and the XSLT Pattern
language of [18] (see also [15] for a good and for-
mal overview of this language) and is (syntactically)
contained in XPath. Stated differently, it is obtained
by extending the language of [18] without the first-of-
type and last-of-type predicates (which do not exist in
XPath) to support all of the XPath axes. As pointed
out in the introduction, XPatterns is an interesting
and practically useful query language. Surprisingly,
XPatterns queries can be evaluated in linear time.

Theorem 8.8 Let D be an XML document and Q be
an XPatterns query. Then, Q can be evaluated on D
in time O(|D| ∗ |Q|).

Proof (Rough Sketch). XPatterns extends Core
XPath by the “id” axis and a number of features which
are definable as unary predicates, of which we give an
overview in Table 5. It becomes clear by considering
the semantics definition of [15] that after parsing the
query, one knows of a fixed number of predicates to
populate, and this action takes time O(|D|) for each.
Thus, since this computation precedes the query eval-
uation – which has a time bound of O(|D| ∗ |Q|) – this
does not pose a problem. “id(s)” (for some fixed string
s) may only occur at the beginning of a path, thus in
a query of the form id(s)/π, π is evaluated relative to
the set id(s) just as, say, {root} is for query /π. �

Note that the unary first-of-type and last-of-type
predicates can be computed in time O(|D| ∗ |Σ|) when

|Q| IE6 IE6 IE6 New New New
10 20 200 10 20 200

1 0 0 0.02
2 2 0 0 0.05
3 346 0 0 0.06
4 1 - 0 0 0.07
5 21 - 0 0 0.10
6 5 406 - 0 0.01 0.11
7 42 - - 0.01 0.01 0.13
8 437 - - 0 0.01 0.16
...

16 - - - 0.01 0.02 0.30

Figure 8: Benchmark results in seconds for IE6 vs.
our implementation (“New”), on the queries of Exper-
iment 2 and document sizes 10, 20, and 200.

parsing the document, but are of size O(|D|):

first-of-type() :=
⋃

l∈Σ

(
T (l)− nextsibling+(T (l))

)

last-of-type() :=
⋃

l∈Σ

(
T (l)− (nextsibling−1)+(T (l))

)

where R+ = R.R∗.

9 Conclusions

In this paper, we presented the first XPath query eval-
uation algorithm that runs in polynomial time with
respect to the size of both the data and of the query.
Our results will empower XPath engines to be able to
deal efficiently with very sophisticated queries.

We have made a main-memory implementation of
the top-down algorithm of Section 7. Figure 8 com-
pares it to IE6 along the assumptions made in Experi-
ment 2 (i.e., the queries of which were strictly the most
demanding of all three experiments). It shows that our
algorithm scales linearly in the size of the queries and
quadratically (for this class of queries) in the size of the
data. Our implementation is still an early, naive pro-
totype without any optimizations, and which strictly
coheres to the specification given in this paper. We
plan to significantly improve on its real-world runtime
in terms of data in the future. Resources and further
benchmarks that become available in the course of this
effort will be made accessible at

http://www.xmltaskforce.com

Apart from full proofs of our theorems, the long ver-
sion of this paper will discuss further large XPath frag-
ments which can be processed in improved time and
space bounds. Due to lack of space, no treatment of
these fragments was possible in this paper. In the fu-
ture, we intend to work on algorithms for processing
XPath with disk access and with streaming XML data.

Acknowledgments

We thank G. Moerkotte and the anonymous review-
ers of VLDB 2002, whose constructive comments

have helped to considerably improve this paper, and
P. Fankhauser for a wealth of pointers to the literature.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web. Morgan Kaufmann Publishers, 2000.

[2] G. J. Bex, S. Maneth, and F. Neven. A Formal Model
for an Expressive Fragment of XSLT. In Proc. CL
2000, LNCS 1861, pages 1137–1151. Springer, 2000.

[3] N. Bruno, D. Srivastava, and N. Koudas. “Holistic
Twig Joins: Optimal XML Pattern Matching”. In
ACM SIGMOD 2002, June 3-6 2002.

[4] F. Bry, D. Olteanu, H. Meuss, and T. Furche. Sym-
metry in XPath. Technical Report PMS-FB-2001-16,
LMU München, 2001. Short version.

[5] J. Clark. XT. A Java Implementation of XSLT
http://www.jclark.com/xml/xt.html/.

[6] A. Deutsch and V. Tannen. Containment and In-
tegrity Constraints for XPath. In KRDB 2001, CEUR
Workshop Proceedings 45, 2001.

[7] P. Fankhauser. A Mapping of XPath 1.0 to the XML
Query Algebra (with J. Clark, M. Fernandez, and J.
Siméon), Nov. 2001. Personal Communication.

[8] G. Gottlob and C. Koch. “Monadic Datalog and
the Expressive Power of Web Information Extraction
Languages”. In Proc. PODS’02, Madison, Wisconsin,
2002. to appear.

[9] G. Gottlob and C. Koch. “Monadic Queries over Tree-
Structured Data”. In Proc. LICS’02, Copenhagen,
Denmark, July 22–25 2002. to appear.

[10] P. Kilpeläinen. Tree Matching Problems with Applica-
tions to Structured Text Databases. PhD thesis, De-
partment of Computer Science, University of Helsinki,
Nov. 1992. Report A-1992-6.

[11] G. Miklau and D. Suciu. “Containment and Equiv-
alence for an XPath Fragment”. In Proc. PODS’02,
pages 65–76, Madison, Wisconsin, 2002.

[12] T. Milo, D. Suciu, and V. Vianu. “Typechecking for
XML Transformers”. In Proc. PODS’00, pages 11–22,
2000.

[13] D. Shasha, J. T. L. Wang, and R. Giugno. “Algorith-
mics and Applications of Tree and Graph Searching”.
In Proc. PODS’02, June 3 – 5 2002.

[14] P. Wadler. “Two Semantics for XPath”, 2000. Draft
paper available at
http://www.research.avayalabs.com/user/wadler/
topics/recent.html.

[15] P. Wadler. “A Formal Semantics of Patterns in
XSLT”. In Markup Technologies, Philadelphia, De-
cember 1999. Revised version in Markup Languages,
MIT Press, June 2001.

[16] P. T. Wood. On the Equivalence of XML Patterns.
In Proc. CL 2000, LNCS 1861, pages 1152–1166.
Springer, 2000.

[17] World Wide Web Consortium. XPath Recommenda-
tion. http://www.w3c.org/TR/xpath/.

[18] World Wide Web Consortium. XSL Working Draft
http://www.w3.org/TR/1998/WD-xsl-19981216.

[19] Xalan-Java version 2.2.D11.
http://xml.apache.org/xalan-j/.

