
Continuous Nearest Neighbor Search

Yufei Tao Dimitris Papadias Qiongmao Shen

Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{taoyf, dimitris, qmshen}@cs.ust.hk

Abstract

A continuous nearest neighbor query retrieves
the nearest neighbor (NN) of every point on a
line segment (e.g., “find all my nearest gas
stations during my route from point s to point
e”). The result contains a set of <point, interval>
tuples, such that point is the NN of all points in
the corresponding interval. Existing methods for
continuous nearest neighbor search are based on
the repetitive application of simple NN
algorithms, which incurs significant overhead. In
this paper we propose techniques that solve the
problem by performing a single query for the
whole input segment. As a result the cost,
depending on the query and dataset
characteristics, may drop by orders of magnitude.
In addition, we propose analytical models for the
expected size of the output, as well as, the cost of
query processing, and extend out techniques to
several variations of the problem.

1. Introduction

Let P be a dataset of points in multi-dimensional space. A
continuous nearest neighbor (CNN) query retrieves the
nearest neighbor (NN) of every point in a line segment q
= [s, e]. In particular, the result contains a set of <R,T>
tuples, where R (for result) is a point of P, and T is the
interval during which R is the NN of q. As an example
consider Figure 1.1, where P={a,b,c,d,f,g,h}. The output
of the query is {<a, [s,s1]>, <c, [s1,s2]>, <f, [s2,s3]>, <h,
[s3,e]>}, meaning that point a is the NN for interval [s,s1];
then at s1, point c becomes the NN etc. The points of the
query segment (i.e., s1, s2, s3) where there is a change of

neighborhood are called split points. Variations of the
problem include the retrieval of k neighbors (e.g., find the
three NN for every point in q), datasets of extended
objects (e.g., the elements of P are rectangles instead of
points), and situations where the query input is an
arbitrary trajectory (instead of a line segment).

Figure 1.1: Example query

CNN queries are essential for several applications such as
location-based commerce (“if I continue moving towards
this direction, which will be my closest restaurants for the
next 10 minutes?”) and geographic information systems
(“which will be my nearest gas station at any point during
my route from city A to city B”). Furthermore, they
constitute an interesting and intuitive problem from the
research point of view. Nevertheless, there is limited
previous work in the literature.

From the computational geometry perspective, to the
best of our knowledge, the only related problem that has
been addressed is that of finding the single NN for the
whole line segment [BS99] (e.g., point f for the query
segment in Figure 1.1). On the other hand, research in
databases (with a few exceptions discussed in the next
section) has focused on other variations of NN search in
secondary memory. These include kNN for point queries
[RKV95, HS99] (e.g., find the three NN of a point q in P),
and closest pair queries [HS98, CMTV00] (e.g., find the k
closest pairs <pi, pj> from two datasets P1 and P2, where
pi ∈ P1 and pj ∈ P2).

In this paper we first deal with continuous 1NN
queries (retrieval of single neighbors when the query
input is a line segment, i.e., the example of Figure 1.1),
identifying and proving some properties that facilitate the
development of efficient algorithms. Then we propose

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

query processing methods using R-trees as the underlying
data structure. Furthermore, we present an analytical
comparison with existing methods, proposing models that
estimate the number of split points and processing costs.
Finally we extend our methods to multiple nearest
neighbors and arbitrary inputs (i.e., consisting of several
consecutive segments).

The rest of the paper is structured as follows: Section
2 outlines existing methods for processing NN and CNN
queries, and Section 3 describes the definitions and
problem characteristics. Section 4 proposes an efficient
algorithm for R-trees, while Section 5 contains the
analytical models. Section 6 discusses extensions to
related problems and Section 7 experimentally evaluates
our techniques with real datasets. In Section 8 we
conclude the paper with directions for future work.

2. Related Work

Like most previous work in the relevant literature, we
employ R-trees [G84, SRF87, BKSS90] due to their
efficiency and popularity. Our methods, however, are
applicable to any data-partition access method. Figure 2.1
shows an example R-tree for point set P={a,…,m}
assuming a capacity of three entries per node. Points that
are close in space (e.g., a, b, c) are clustered in the same
leaf node (N3). Nodes are then recursively grouped
together with the same principle until the top level, which
consists of a single root.

N N
2

N
1

N
6

5

N
3

N
4

h j

i
m

k

lc

a d g

f
qb

mindist(N1
,q)

mindist(N
2

, q)
E

3
E

4
E

5
E

6

E
1

E
2

a b d f h i k lc g j m

R

N
1

N
2

N
3

N
4

N
5

N
6

Figure 2.1: R-tree and point-NN example

The most common type of nearest neighbor search is the
point-kNN query that finds the k objects from a dataset P
that are closest to a query point q. Existing algorithms
search the R-tree of P in a branch-and-bound manner. For
instance, Roussopoulos et al [RKV95] propose a depth-
first method that, starting from the root of the tree, visits
the entry with the minimum distance from q (e.g., entry E1
in Figure 2.1). The process is repeated recursively until
the leaf level (node N4), where the first potential nearest
neighbor is found (f). During backtracking to the upper
level (node N1), the algorithm only visits entries whose
minimum distance is smaller than the distance of the
nearest neighbor already found. In the example of Figure
2.1, after discovering f, the algorithm will backtrack to the
root level (without visiting N3), and then follow the path
N2, N6 where the actual NN l is found.

Another approach [HS99] implements a best-first
traversal that follows the entry with the smallest distance
among all those visited. In order to achieve this, the
algorithm keeps a heap with the candidate entries and

their minimum distances from the query point. In the
previous example, after visiting node N1, best-first
traversal will follow the path N2, N6 and directly discover
l (i.e., without first finding other potential NN, such as f).
Although this method is optimal in the sense that it only
visits the necessary nodes for obtaining the NN, it suffers
from buffer thrashing if the heap becomes larger than the
available memory.

Conventional NN search (i.e., point queries) and its
variations in low and high dimensional spaces have
received considerable attention during the last few years
(e.g., [KSF+96, SK98, WSB98, YOTJ01]) due to their
applicability in domains such as content based retrieval
and similarity search. With the proliferation of location-
based e-commerce and mobile computing, continuous NN
search promises to gain similar importance in the research
and applications communities. Sistla et al. were the first
ones to identify the significance of CNN in
spatiotemporal database systems. In [SWCD97], they
describe modeling methods and query languages for the
expression of such queries, but do not discuss access or
processing methods.

The first algorithm for CNN query processing,
proposed in [SR01], employs sampling to compute the
result. In particular, several point-NN queries (using an R-
tree on the point set P) are repeatedly performed at
predefined sample points of the query line, using the
results at previous sample points to obtain tight search
bounds. This approach suffers from the usual drawbacks
of sampling, i.e., if the sampling rate is low the results
will be incorrect; otherwise, there is a significant
computational overhead. In any case there is no accuracy
guarantee, since even a high sampling rate may miss some
split points (i.e., if the sample does not include points s1,
s2, s3 in Figure 1.1).

A technique that does not incur false misses is based
on the concept of time-parameterized (TP) queries
[TP02]. The output of a TP query has the general form
<R, T, C>, where R is current result of the query (the
methodology applies to general spatial queries), T is the
validity period of R, and C the set of objects that will
affect R at the end of T. From the current result R, and the
set of objects C that will cause changes, we can
incrementally compute the next result. We refer to R as
the conventional, and (T,C) as the time-parameterized
component of the query.

Figures 2.2 and 2.3 illustrate how the problem of
Figure 1.1 can be processed using TP NN queries.
Initially a point-NN query is performed at the starting
point (s) to retrieve the first nearest neighbor (a). Then,
the influence point sx of each object x in the dataset P is
computed as the point where x will start to get closer to
the line segment than the current NN. Figure 2.2 shows
the influence points after the retrieval of a. Some of the
points (e.g., b) will never influence the result, meaning
that they will never come closer to [s,e] than a.
Identifying the influencing point (sc) that will change the

result (rendering c as the next neighbor) can be thought of
as a conventional NN query, where the goal is to find the
point x with the minimum dist(s,sx). Thus, traditional
point-NN algorithms (e.g., [RKV95]) can be applied with
appropriate transformations (for details see [TP02]).

Figure 2.2: CNN processing using TP queries – first step

After the first step, the output of the TP query is <a, [s,sc),
c>, meaning that a is the NN until sc, at which point c
becomes the next NN (sc corresponds to the first split
point s1 in Figure 1.1). In order to complete the result, we
perform repeated retrievals of the TP component. For
example, at the second step we find the next NN by
computing again the influencing points with respect to c
(see Figure 2.3). In this case only points f, g and h may
affect the result, and the first one (f) becomes the next
neighbor.

Figure 2.3: TP queries – second step

The method can extend to kNN. The only difference is
that now the influence point sx of x is the point that x
starts to get closer to [s,e] than any of the k current
neighbors. Specifically, assuming that the k current
neighbors are a1, a2,…, ak, we first compute the influence
points sxi of x with respect to each ai (i=1,2,…,k)
following the previous approach. Then, sx is set to the
minimum of sx1, sx2, …, sxk.

This technique avoids the drawbacks of sampling, but
it is very output-sensitive in the sense that it needs to
perform n NN queries in order to compute the result,
where n is the number of split points. Although, these n
queries may access similar pages, and therefore, benefit
from the existence of a buffer, the cost is still prohibitive
for large queries and datasets due to the CPU overhead.
The motivation of this work is to solve the problem by
applying a single query for the whole result. Towards this
direction, in the next section we describe some properties
of the problem that permit the development of efficient
algorithms.

Recently, Benetis, et al [BJKS02] address CNN
queries from a mathematical point of view. Our
algorithm, on the other hand, is based on several
geometric problem characteristics. Further we also
provide performance analysis, and discuss complex query
types (e.g., trajectory nearest neighbor search).

3. Definitions and Problem Characteristics

The objective of a CNN query is to retrieve the set of
nearest neighbors of a segment q=[s, e] together with the
resulting list SL of split points. The starting (s) and ending
(e) points constitute the first and last elements in SL. For
each split point si∈ SL (0≤i<|SL|-1): si∈ q and all points in
[si, si+1] have the same NN, denoted as si.NN. For
example, s1.NN in Figure 1.1 is point c, which is also the
NN for all points in interval [s1, s2]. We say that si.NN
(e.g., c) covers point si (s1) and interval [si, si+1] ([s1, s2]).

In order to avoid multiple database scans, we aim at
reporting all split (and the corresponding covering) points
with a single traversal. Specifically, we start with an
initial SL that contains only two split points s and e with
their covering points set to ∅ (meaning that currently the
NN of all points in [s,e] are unknown), and incrementally
update the SL during query processing. At each step, SL
contains the current result with respect to all the data
points processed so far. The final result contains each split
point si that remains in SL after the termination together
with its nearest neighbor si.NN.

Processing a data point p involves updating SL, if p is
closer to some point u∈ [s,e] than its current nearest
neighbor u.NN (i.e., if p covers u). An exhaustive scan of
[s,e] (for points u covered by p) is intractable because the
number of points is infinite. We observe that it suffices to
examine whether p covers any split point currently in SL,
as described in the following lemma.

Lemma 3.1: Given a split list SL {s0, s1, …, s|SL−1|} and a
new data point p, p covers some point on query segment q
if and only if p covers a split point.

As an illustration of Lemma 3.1, consider Figure 3.1a
where the set of data points P={a, b, c, d} is processed in
alphabetic order. Initially, SL={s, e} and the NN of both
split points are unknown. Since a is the first point
encountered, it becomes the current NN of every point in
q, and information about SL is updated as follows: s.NN=
e.NN= a and dist(s, s.NN)= |s, a|, dist(e, e.NN)= |e, a|,
where |s, a| denotes the Euclidean distance between s and
a (other distance metrics can also be applied). The circle
centered at s (e) with radius |s, a| (|e, a|) is called the
vicinity circle of s (e).

When processing the second point b, we only need to
check whether b is closer to s and e than their current NN,
or equivalently, whether b falls in their vicinity circles.
The fact that b is outside both circles indicates that every
point in [s, e] is closer to a (due to Lemma 3.1); hence we
ignore b and continue to the next point c.

(a) After processing a (b) After processing c

Figure 3.1: Updating the split list

Since c falls in the vicinity circle of e, a new split point s1
is inserted to SL; s1 is the intersection between the query
segment and the perpendicular bisector of segment [a, c]
(denoted as ⊥ (a, c)), meaning that points to the left of s1
are closer to a, while points to the right of s1 are closer to
c (see Figure 3.1b). The NN of s1 is set to c, indicating
that c is the NN of points in [s1, e]. Finally point d does
not update SL because it does not cover any split point
(notice that d falls in the circle of e in Figure 3.1a, but not
in Figure 3.1b). Since all points have been processed, the
split points that remain in SL determine the final result
(i.e., {<a, [s,s1]>, <c, [s1,e]> }).

In order to check if a new data point covers some split
point(s), we can compute the distance from p to every si,
and compare it with dist(si, si.NN). To reduce the number
|SL| (i.e., the cardinality of SL) of distance computations,
we observe the following continuity property.

Lemma 3.2 (covering continuity): The split points
covered by a point p are continuous. Namely, if p covers
split point si but not si−1 (or si+1), then p cannot cover si−j

(or si+j) for any value of j>1.

Consider, for instance, Figure 3.2, where SL contains si-1,
si, si+1, si+2, si+3, whose NN are points a, b, c, d, f
respectively. The new data point p covers split points si,
si+1, si+2 (p falls in their vicinity circles), but not si-1, si+3.
Lemma 3.2 states that p cannot cover any split point to the
left (right) of si-1 (si+3). In fact, notice that all points to the
left (right) of si-1 (si+3) are closer to b (f) than p (i.e., p
cannot be their NN).

Figure 3.2: Continuity property

Figure 3.3 shows the situation after p is processed. The
number of split points decreases by 1, whereas the
positions of si and si+1 are different from those in Figure
3.2. The covering continuity property permits the
application of a binary search heuristic, which reduces (to

O(log|SL|)) the number of computations required when
searching for split points covered by a data point.

Figure 3.3: After p is processed (cont. Figure 3.2)

The above discussion can be extended to kCNN queries
(e.g., find the 3 NN for any point on q). Consider Figure
3.4, where data points a, b, c and d have been processed
and SL contains si and si+1. The current 3 NN of si are a,
b, c (c is the farthest NN of si). At the next split point si+1,
the 3NN change to a, b, d (d replaces c).

Figure 3.4: Example of kCNN (k=3)

Lemma 3.1 also applies to kCNN queries. Specifically, a
new data point can cover a point on q (i.e., become one of
the k NN of the point), if and only if it covers some split
point(s). Figure 3.5 continues the example of Figure 3.4
by illustrating the situation after the processing of point f.
The next point g does not update SL because g falls
outside of vicinity circles of all split points. Lemma 3.2,
on the other hand, does not apply to general kCNN
queries. In Figure 3.5, for example, a new point h covers
si and si+3, but not si+1, and si+2 (which break the
continuity).

Figure 3.5: After processing f

The above general methodology can be used for arbitrary
dimensionality, where perpendicular bisectors and
vicinity circles become perpendicular bisect-planes and
vicinity spheres. Its application for processing non-
indexed datasets is straightforward, i.e., the input dataset
is scanned sequentially and each point is processed,
continuously updating the split list. In real-life
applications, however, spatial datasets, which usually
contain numerous (in the order 105-106) objects, are
indexed in order to support common queries such as
selections, spatial joins and point-nearest neighbors. The
next section illustrates how the proposed techniques can
be used in conjunction with R-trees to accelerate search.

4. CNN Algorithms with R-trees

Like the point-NN methods discussed in Section 2, CNN
algorithms employ branch-and-bound techniques to prune
the search space. Specifically, starting from the root, the
R-tree is traversed using the following principles: (i)
when a leaf entry (i.e., a data point) p is encountered, SL
is updated if p covers any split point (i.e., p is a qualifying
entry); (ii) for an intermediate entry, we visit its subtree
only if it may contain any qualifying data point. The
advantage of the algorithm over exhaustive scan is that we
avoid accessing nodes, if they cannot contain qualifying
data points. In the sequel, we discuss several heuristics for
pruning unnecessary node accesses.

Heuristic 1: Given an intermediate entry E and query
segment q, the subtree of E may contain qualifying points
only if mindist(E,q) < SLMAXD, where mindist(E,q)
denotes the minimum distance between the MBR of E and
q, and SLMAXD = max {dist(s0, s0.NN), dist(s1 ,s1.NN), …,
dist(s|SL|−1, s|SL|−1.NN) } (i.e., SLMAXD is the maximum
distance between a split point and its NN).

Figure 4.1a shows a query segment q={s, e}, and the
current SL that contains 3 split points s, s1, e, together
with their vicinity circles. Rectangle E represents the
MBR of an intermediate node. Since mindist(E, q) >
SLMAXD = |e,b|, E does not intersect the vicinity circle of
any split point; thus, according to Lemma 3.1 there can be
no point in E that covers some point on q. Consequently,
the subtree of E does not have to be searched.

d1

d2

d3

d4

d5

d6

E

q

s

e

(a) E is not visited (b) Computing mindist
Figure 4.1: Pruning with mindist(E, q)

To apply heuristic 1 we need an efficient method to
compute the mindist between a rectangle E and a line
segment q. If E intersects q, then mindist(E,q) = 0.
Otherwise, as shown in Figure 4.1b, mindist(E,q) is the
minimum (d3) among the shortest distances (i) from each
corner point of E to q (d1, d2, d3, d4), and (ii) from the start
(s) and end (e) points to E (d5, d6). Therefore, the
computation of mindist(E, q) involves at most the cost of
an intersection check, four mindist calculations between a
point and a line segment, and two mindist calculations
between a point and a rectangle. Efficient methods for the
computation of the mindist between <point, rectangle>
and <point, line segment> pairs have been discussed in
previous work [RKV95, CMTV00].

Heuristic 1 reduces the search space considerably,
while incurring relatively small computational overhead.
However, tighter conditions can achieve further pruning.
To verify this, consider Figure 4.2, which is similar to
Figure 4.1a except that SLMAXD (=|e,b|) is larger. Notice
that the MBR of entry E satisfies heuristic 1 because
mindist(E,q) (=mindist(E,s)) < SLMAXD. However, E
cannot contain qualifying data points because it does not
intersect any vicinity circle. Heuristic 2 prunes such
entries, which would be visited if only heuristic 1 were
applied.

Figure 4.2: Pruning with mindist(si, E)

Heuristic 2: Given an intermediate entry E and query
segment q, the subtree of E must be searched if and only if
there exists a split point si∈ SL such that dist(si,si.NN) >
mindist(si, E).

According to heuristic 2, entry E in Figure 4.2 does not
have to be visited since dist(s,a) < mindist(s,E), dist(s1,b)
< mindist(s1,E) and dist(e,b) < mindist(e,E). Although
heuristic 2 presents the most tight conditions that a MBR
must satisfy to contain a qualifying data point, it incurs
more CPU overhead (than heuristic 1), as it requires
computing the distance from E to each split point.
Therefore, it is applied only for entries that satisfy the first
heuristic.

The order of entry accesses is also very important to
avoid unnecessary visits. Consider, for example, Figure
4.3a where points a and b have been processed, whereas
entries E1 and E2 have not. Both E1 and E2 satisfy
heuristics 1 and 2, meaning that they must be accessed
according to the current status of SL. Assume that E1 is
visited first, the data points c, d in its subtree are

processed, and SL is updated as shown in Figure 4.3b.
After the algorithm returns from E1, the MBR of E2 is
pruned from further exploration by heuristic 1. On the
other hand, if E2 is accessed first, E1 must also be visited.
To minimize the number of node accesses, we propose the
following visiting order heuristic, which is based on the
intuition that entries closer to the query line are more
likely to contain qualifying data points.

Heuristic 3: Entries (satisfying heuristics 1 and 2) are
accessed in increasing order of their minimum distances
to the query segment q.

(a) Before processing E1 (b) After processing E1

Figure 4.3: Sequence of accessing entries

When a leaf entry (i.e., a data point) p is encountered, the
algorithm performs the following operations: (i) it
retrieves the set of split points SCOVER={si, si+1, …, sj}
covered by p, and (if SCOVER is not empty) (ii) it updates
SL accordingly. As mentioned in Section 3, the set of
points in SCOVER are continuous (for single NN). Thus, we
can employ binary search to avoid comparing p with all
current NN for every split point. Figure 4.4, illustrates the
application of this heuristic assuming that SL contains 11
split points s0-s10, and the NN of s0, .., s5 are points a, b, c,
d, f and g respectively.

s
5

. . .

p

s
1

s
3

a

s
10

(e)ABs
0
(s) s

2
s

4

b
c

d
f g

bisector of segment bp bisector of segment gp

q

Figure 4.4: Binary search for covered split points

First, we check if the new data point p covers the middle
split point s5. Since the vicinity cycle of s5 does not
contain p, we can conclude that p does not cover s5. Then,
we compute the intersection (A in Figure 4.4) of q with
the perpendicular bisector of p and s5.NN(=g). Since A
lies to the left of s5, all split points potentially covered by
p are also to the left of s5. Hence, now we check if p
covers s2 (i.e., the middle point between s0 and s5). Since
the answer is negative, the intersection (B) of q and ⊥ (p,
s2.NN) is computed. Because B lies to the right of s2, the
search proceeds with point s3 (middle point between s2
and s5), which is covered by p.

In order to complete SCOVER (={s3, s4}), we need to
find the split points covered immediately before or after
s3, which is achieved by a simple bi-directional scanning
process. The whole process involves at most
log(|SL|)+|SCOVER|+2 comparisons, out of which log(|SL|)
are needed for locating the first split point (binary search),
and |SCOVER|+2 for the remaining ones (the additional 2
comparisons are for identifying the first split points on the
left/right of SCOVER not covered by p).

Finally the points in SCOVER are updated as follows.
Since p covers both s3 and s4, it becomes the NN of every
point in interval [s3, s4]. Furthermore, another split point
s3' (s4') is inserted in SL for interval [s2, s3] ([s4, s5]) such
that the new point has the same distance to s2.NN=c
(s4.NN=f) and p. As shown in Figure 4.5, s3' (s4') is
computed as the intersection between q and ⊥ (c, p) (⊥ (f,
p)). Finally, the original split points s3 and s4 are removed.
Figure 4.6 presents the pseudo-code for handling leaf
entries.

Figure 4.5: After updating the split list

Algorithm Handle_Leaf_Entry
/*p: the leaf entry being handled, SL: the split list*/
1. apply binary search to retrieve all split points covered

by p: SCOVER={si, si+1, …, sj}
2. let u=si-1.NN and v=sj.NN
3. remove all split points in SCOVER from SL
4. add a split point si' at the intersection of q and ⊥ (u, p)

with si'.NN=p, dist(si', si'.NN)=|si', p|
5. add a split point si+1' at the intersection of q and ⊥ (v,

p) with si+1'.NN=p, dist(si+1', si+1'.NN)=|si+1', p|
End Handle_Leaf_Entry

Figure 4.6: Algorithm for handling leaf entries

The proposed heuristics can be applied with both the
depth-first and best-first traversal paradigms discussed in
Section 2. For simplicity, we elaborate the complete CNN
algorithm using depth-first traversal on the R-tree of
Figure 2.1. To answer the CNN query [s,e] of Figure 4.7a,
the split list SL is initiated with 2 entries {s, e} and
SLMAXD=∞. The root of the R-tree is retrieved and its
entries are sorted by their distances to segment q. Since
the mindist of both E1 and E2 are 0, one of them is chosen
(e.g., E1), its child node (N1) is visited, and the entries
inside it are sorted (order E4, E3). Node N4 (child of E4) is
accessed and points f, d, g are processed according to their
distances to q. Point f becomes the first NN of s and e, and
SLMAXD is set to |s, f| (Figure 4.7a).

The next point g covers e and adds a new split point s1
to SL (Figure 4.7b). Point d does not incur any change
because it does not cover any split point. Then, the
algorithm backtracks to N1 and visits the subtree of E3. At

this stage SL contains 4 split points and SLMAXD is
decreased to |s1,b| (Figure 4.7c). Now the algorithm
backtracks to the root and then reaches N6 (following
entries E2, E6), where SL is updated again (note the
position change of s1) and SLMAXD becomes |s,k| (Figure
4.7d). Since mindist(E5,q) > SLMAXD, N5 is pruned by
heuristic 1, and the algorithm terminates with the final
result: {<k, [s, s1]>, <f, [s1,s2]>, <g,[s2, e]>}.

E E
2

E
1

E
6

5

E
3

E
4

h j

i
m

k

lc b

a d g

f

e

s

SL={s(.NN=f), e(.NN=f)}

E E
2

E
1

E
6

5

E
3

E
4

h j

i
m

k

lc b

a d g

f

e

s

1
s

SL={s(.NN=f), s1(.NN=g), e(.NN=g)}

(a) After processing f (b) After processing g

E E
2

E
1

E
6

5

E
3

E
4

h j

i
m

k

lc b

a d g

f

e

s

2
s

1
s

SL={s(.NN=b), s1(.NN=f),
s2(.NN=g), e(.NN=g)}

E E
2

E
1

E
6

5

E
3

E
4

h j

i
m

k

lc b

a d g

f

e

s

2
s

SL={s(.NN=k), s1(.NN=f), e(.NN=g)}

1
s

(c) After processing b (d) After processing k
Figure 4.7: Processing steps of the CNN algorithm

5. Analysis of CNN Queries

In this section, we analyze the optimal performance for
CNN algorithms and propose cost models for the number
of node accesses. Although the discussion focuses on R-
trees, extensions to other access methods are
straightforward.

The number of node accesses is related to the search
region of a query q, which corresponds to the data space
area that must be searched to retrieve all results (i.e., the
set of NN of every point on q). Consider, for example,
query segment q in Figure 5.1a, where the final result is
{<a, [s, s1]>, <b, [s1, e]>}. The search region (shaded
area) is the union of the vicinity circles of s, s1 and e. All
nodes whose MBR (e.g., E1) intersects this area may
contain qualifying points. Although in this case E1 does
not affect the result (c and d are not the NN of any point),
in order to determine this, any algorithm must visit E1's
subtree. On the other hand, optimal algorithms will not
visit nodes (e.g., E2) whose MBRs do not intersect the
search region because they cannot contain qualifying data
points. The above discussion is summarized by the
following lemma (which is employed by heuristic 2).

Lemma 5.1: An optimal algorithm accesses only those
nodes whose MBRs E satisfy the following condition:
mindist(si, E)<dist(si, si.NN), for each final split point si.

a

b
c

d
E1

f
e

E
2

s

s1

e

e

s

d
NN

d
NN

(a) Actual search region (b) Approx. search region

Figure 5.1: The search region of a CNN query

The search region RSEARCH, as shown in Figure 5.1a, is
irregular. In order to facilitate analysis, we approximate
RSEARCH with a regular region such that every point on its
boundary has minimum distance dNN to q (Figure 5.1b),
where dNN is the average distance of all query points to
their NN. For uniform data distribution and unit
workspace, dNN can be estimated as [BBKK97, BBK+01]
(N is the total number points in the data set)1.

()1/NNd Nπ≈ (5-1)

Let E be a node MBR with edge lengths E.l1 and E.l2. The
extended region EEXT of E corresponds to the original
MBR enlarged by dNN and the query length q.l as shown
in Figure 5.2.

Figure 5.2: The extended region of E

Let PACCESS(E,q) be the expected probability that the
MBR E of a node intersects the search region.
Equivalently, PACCESS(E,q) denotes the probability that
EEXT covers the start point s of q. For uniform distribution
and unit workspace, this probability equals the area of
EEXT. Thus,

(), ()ACCESS EXTP E q area E= =

1 Similar approaches have been commonly adopted in previous
analysis of point-NN queries. The rationale of equation (5-1) is
that the vicinity circle at the query point q contains exactly one
(out of N) point, i.e., π dNN

 2=1/N.

()
()

2
1 2 1 2

1 2

. . 2 . . .

2 . . | cos | . | sin |

NN NNd E l E l d E l E l q l

q l E l E l

π
θ θ

+ ⋅ + + +

+ ⋅ + ⋅
 (5-2)

where dNN is given by equation 5-1. In order to estimate
the extents (E.l1i, E.l2i) of nodes at each level i of the R-
tree, we use the following formula [TSS00]:

1 2. . /i i i iE l E l D N= = 0≤i≤h−1, where (5-3)
2

1 1
1 i

i

D
D

f
−

 −
= + 
 
 

2

0

1
1D

f

 
= −  
 

 1i
i

NN f
−= ,

0
NN f=

where h is the height of the tree, f the average node
fanout, Ni is the number of level i nodes, and N the
cardinality of the dataset. Therefore, the expected number
of node accesses (NA) during a CNN query is:

()

()
()

1

0

2 21

0

() . ,

. 2 2 . .

2 . . | cos | | sin |

h

i ACCESS i
i

h
NN i NN i

i
i i

NA CNN N P E l q

d E l d E l q l
N

q l E l

π
θ θ

−

=

−

=

= ⋅

 + + ⋅ ⋅ +
= ⋅ 

+ ⋅ ⋅ +  

∑

∑

(5-4)

Equation 5-4 suggests that the cost of a CNN query
depends on several factors: (i) the dataset cardinality N,
(ii) the R-tree structure, (iii) the query length q.l, and (iv)
the orientation angle θ of q. Particularly, queries with
θ=π/4 have the largest number of node accesses among all
queries with the same parameters N and q.l.

Notice that each data point that falls inside the search
region is the NN of some point on q. Therefore, the
number (nNN) of distinct neighbors in the final result is:

()2() 2 .NN SEARCH NN NNn N area R N d d q lπ= ⋅ = + ⋅ (5-5)

The CPU costs of CNN algorithms (including the TP
approach discussed in Section 2) are closely related to the
number of node accesses. Specifically, assuming that the
fanout of a node is f, the total number of processed entries
equals f·NA. For our algorithm, the number of node
accesses NA is given by equation 5-4; for the TP
approach, it is estimated as NATP· nNN, where NATP is the
average number of node accesses for each TP query, and
nNN equals the total number of TP queries. Therefore, the
CPU overhead of the TP approach grows linearly with
nNN, which, (according to equation 5-5) increases with the
data set size N, and query length q.l.

Finally, the above discussion can be extended to
arbitrary data and query distributions with the aid of
histograms. In our implementation, we adopt a simple
partition-based histogram that splits the space into m×m
regular bins, and for each bini we maintain the number of
data points Nbin-i that fall inside it. To estimate the
performance of a query q, we take the average (Nbin_avg) of
the Nbin-i for all bins that are intersected by q. Then, we
apply the above equations by setting N= m2

·Nbin_avg and
assuming uniformity in each bin.

6. Complex CNN Queries

The CNN query has several interesting variations. In this
section, we discuss two of them, namely, kCNN and
trajectory NN queries.

6.1 The kCNN query

The proposed algorithms for CNN queries can be
extended to support kCNN queries, which retrieve the k
NN for every point on query segment q. Heuristics 1-3 are
directly applicable except that, for each split point si,
dist(si, si.NN) is replaced with the distance (dist(si,
si.NNk)) from si to its kth (i.e., farthest) NN. Thus, the
pruning process is the same as CNN queries.

The handling of leaf entries is also similar.
Specifically, each leaf entry p is processed in a two-step
manner. The first step retrieves the set SCOVER of split
points si that are covered by p (i.e., |si, p|<dist(si, si.NNk)).
If no such split point exists, p is ignored (i.e., it cannot be
one of the k NN of any point on q). Otherwise, the second
step updates the split list. Since the continuity property
does not hold for k>2, the binary search heuristic cannot
be applied. Instead, a simple exhaustive scan is performed
for each split point.

On the other hand, updating the split list after
retrieving the SCOVER is more complex than CNN queries.
Figure 6.1 shows an example where SL currently contains
four points s0,.., s3, whose 2NN are (a,b), (b,c), (b,d), (b,f)
respectively. The data point being considered is p, which
covers split points s2 and s3.

Figure 6.1: Updating SL (k=2) – the first step

No new splits are introduced on intervals [si, si+1] (e.g.,
[s0, s1]), if neither si nor si+1 are covered by p. Interval [s1,
s2], on the other hand must be handled (s2 is covered by
p), and new split points are identified with a sweeping
algorithm as follows. At the beginning, the sweep point is
at s1, the current 2NN are (b, c), and p is the candidate
point. Then, the intersections between q and ⊥ (b, p) (A in
Figure 6.2a), and between q and ⊥ (c, p) (B in Figure
6.2b) are computed. Intersections (such as A) that fall out
of [s1, s2] are discarded. Among the remaining ones, the
intersection that has the shortest distance to the starting
point s (i.e., B) becomes the next split point.

(c) Intrsct. of q and ⊥ (a, p) (b) Intrsct. of q and ⊥ (c, p)

Figure 6.2: Identification of split point

The 2NN are updated to (b, p) at B, and now the new
interval [B, s2] must be examined with c as the new
candidate. Because the continuity property does not hold,
there is a chance that c will become again one of the kNN
before s2 is reached. The intersections of q with ⊥ (b, c)
and ⊥ (p, c) are computed, and since both are outside [B,
s2], the sweeping algorithm terminates without
introducing new split point. Similarly, the next interval
[s2, s3] is handled and a split point C is created in Figure
6.3. The outdated split points (s2) are eliminated and the
updated SL contains: s0, s1, B, C, s3, whose 2NN are (a,b),
(b,c), (b,p), (d,p), (d,p) respectively.

Figure 6.3: Updating SL (k=2) – the second step

Finally, note that the performance analysis presented in
Section 5 also applies to kCNN queries, except that in all
equations, dNN is replaced with dk-NN, which corresponds
to the distance between a query point and its k-th nearest
neighbor. The estimation of dk-NN has been discussed in
[BBK+01]:

()/k NNd k Nπ− ≈

6.2 Trajectory Nearest Neighbor Search

So far we have discussed CNN query processing for a
single query segment. In practice, a trajectory nearest
neighbor (TNN) query consists of several consecutive
segments, and retrieves the NN of every point on each
segment. An example for such a query is “find my nearest
gas station at each point during my route from city A to
city B”. The adaptation of the proposed techniques to this
case is straightforward.

Consider, for instance, Figure 6.4a, where the query
consists of 3 line segments q1=[s, u], q2=[u, v], q3=[v, e].
A separate split list (SL1,2,3) is assigned to each query
segment. The pruning heuristics are similar to those for
CNN, but take into account all split lists. For example, a
counterpart of heuristic 1 is: the sub-tree of entry E can be

pruned if, for each query segment qi and the
corresponding split list: mindist(E, qi) > SLi-MAXD.
Heuristics 2 and 3 are adapted similarly. When a leaf
entry is encountered, all split lists are checked and
updated if necessary. Figure 6.4b shows the final results
(i.e., <m, [s, s1]>, <j, [s1, s2]>, <k, [s2, e]>), after accessing
E2, E6, E5 (in this order). Notice that the gain of TNN
compared to the TP approach, is even higher due to the
fact that the number of split points increases with the
number of query segments. The extension to kTNN
queries is similar to kCNN.

E

E
2

E
1

E
6

5

E
3

E
4

h j

i m

k

lc b

a d g

f

s

e

u

v
q

1
q

2
q

3

u

E

E
2

E
1

E
6

5

E
3

E
4

h j

i m

k

lc b

a d g

f

s

e

s
split points

1

v
s2

(a) Initial situation (b) Final situation

Figure 6.4: Processing a TNN query

7. Experiments

In this section, we perform an extensive experimental
evaluation to prove the efficiency of the proposed
methods using one uniform and two real point datasets.
The first real dataset, CA, contains 130K sites, while the
second one, ST, contains the centroids of 2M MBRs
representing street segments in California [Web].
Performance is measured by executing workloads, each
consisting of 200 queries generated as follows: (i) the start
point of the query distributes uniformly in the data space,
(ii) its orientation (angle with the x-axis) is randomly
generated in [0, 2π), and (iii) the query length is fixed for
all queries in the same workload. Experiments are
conducted with a Pentium IV 1Ghz CPU and 256 Mega
bytes memory. The disk size is set to 4K bytes and the
maximum fanout of an R-tree node equals 200 entries.

The first set of experiments evaluates the accuracy of
the analytical model. For estimations on the real datasets
we apply the histogram (50×50 bins) discussed in Section
5. Figures 7.1a and 7.1b illustrate the number of node
accesses (NA) as a function of the query length qlen (1%
to 25% of the axis) for the uniform and CA datasets,
respectively (the number of neighbors k is fixed to 5). In
particular, each diagram includes: (i) the NA of a CNN
implementation based on depth-first (DF) traversal, (ii)
the NA of a CNN implementation based on best-first (BF)
traversal, (iii) the estimated NA obtained by equation (5-
4). Figures 7.1c (for the uniform dataset) and 7.1d (for
CA) contain a similar experiment, where qlen is fixed to
12.5% and k ranges between 1 and 9.

The BF implementation requires about 10% fewer NA
than the DF variation of CNN, which agrees with

previous results on point-NN queries [HS99]. In all cases
the estimation of the cost model is very close (less than
5% and 10% errors for the uniform and CA dataset,
respectively) to the actual NA of BF, which indicates that:
(i) the model is accurate and (ii) BF CNN is nearly
optimal. Therefore, in the following discussion we select
the BF approach as the representative CNN method. For
fairness, BF is also employed in the implementation of the
TP approach.

The rest of the experiments compare CNN and TP
algorithms using the two real datasets CA and ST. Unless
specifically stated, an LRU buffer with size 10% of the
tree is adopted (i.e., the cache allocated to the tree of ST is
larger). Figure 7.2 illustrates the performance of the
algorithms (NA, CPU time and total cost) as a function of
the query length (k = 5). The first row corresponds to CA,
and the second one to ST, dataset. As shown in Figures
7.2a and 7.2d, CNN accesses 1-2 orders of magnitude
fewer nodes than TP. Obviously, the performance gap
increases with the query length since more TP queries are
required.

The burden of the large number of queries is evident
in Figures 7.2b and 7.2e that depict the CPU overhead.
The relative performance of the algorithms on both
datasets indicates that similar behaviour is expected
independently of the input. Finally, Figures 7.2c and 7.2f
show the total cost (in seconds) after charging 10ms per
I/O. The number on top of each column corresponds to
the percentage of CPU-time in the total cost. CNN is I/O-
bounded in all cases, while TP is CPU-bounded. Notice
that the CPU percentages increase with the query lengths
for both methods. For CNN, this happens because, as the
query becomes longer, the number of split points
increases, triggering more distance computations. For TP,
the buffer absorbs most of the I/O cost since successive
queries access similar pages. Therefore, the percentage of
CPU-time dominates the I/O cost as the query length
increases. The CPU percentage is higher in ST because of
its density; i.e., the dataset contains 2M points (as
opposed to 130K) in the same area as CA. Therefore, for
the same query length, a larger number of neighbors will
be retrieved in ST (than in CA).

0
2
4
6
8

10
12
14

1% 5% 10% 15% 20% 25%
query length

node accesses

6

6.5

7

7.5

8

8.5

9

1 3 5 7 9
k

node accesses

0

5

10

15

1% 5% 10% 15% 20% 25%

node accesses

query length

7

7.5

8

8.5

9

9.5

1 3 5 7 9
k

DF BF EST

(a) Uniform (k=5) (b) CA-Site (k=5) (c) Uniform (qlen=12.5%) (d) CA-Site (qlen=12.5%)

Figure 7.1: Evaluation of cost models

1

10

100

1000

1% 5% 10% 15% 20% 25%

CNN

TP

node accesses

query length

0.001

0.01

0.1

1

10

1% 5% 10% 15% 20% 25%

CNN

TP

CPU cost (sec)

query length

0.1

1

10

1% 5% 10% 15% 20% 25%

CNN

TP

total cost (sec)

query length

78%
77%

76%
74%

68%

41%

CPU percentage

10%
8%6%

4%

2%
1%

(a) NA vs qlen (CA dataset) (b) CPU cost vs qlen (CA dataset) (c) Total cost vs qlen (CA dataset)

1

10

100

1000

10000

1% 5% 10% 15% 20% 25%

CNN

TP

node accesses

query length

0.01

0.1

1

10

100

1% 5% 10% 15% 20% 25%

CNN

TP

CPU time (sec)

query length

total cost (sec)

query length

CPU percentage

0.1

1

10

100

1% 5% 10% 15% 20% 25%

CNN

TP

91%
91%90%

84%
80%

75%

3%
7%

14% 25%
38%

42%

(d) NA vs qlen (ST dataset) (e) CPU cost vs qlen (ST dataset) (f) Total cost vs qlen (ST dataset)

Figure 7.2: Performance vs. query length (k=5)

Next we fix the query length to 12.5% and compare
the performance of both methods by varying k from 1 to
9. As shown in Figure 7.3, the CNN algorithm
outperforms its competitor significantly in all cases (over
an order of magnitude). The performance difference
increases with the number of neighbors. This is explained
as follows. For CNN, k has little effect on the NA (see
Figures 7.3a and 7.3d). On the other hand, the CPU
overhead grows due to the higher number of split points
that must be considered during the execution of the
algorithm. Furthermore, the processing of qualifying
points involves a larger number of comparisons (with all
NN of points in the split list). For TP, the number of tree
traversals increases with k, which affects both the CPU
and the NA significantly. In addition, every query
involves a larger number of computations since each
qualifying point must be compared with the k current
neighbors.

Finally, we evaluate performance under different
buffer sizes, by fixing qlen and k to their standard values
(i.e., 12.5% and 5 respectively), and varying the cache
size from 1% to 32% of the tree size. Figure 7.4
demonstrates the total query time as a function of the
cache size for the CA and ST datasets. CNN receives
larger improvement than TP because its I/O cost accounts
for a higher percentage of the total cost.

To summarize, CNN outperforms TP significantly
under all settings (by a factor up to 2 orders of
magnitude). The improvement is due to the fact that CNN
performs only a single traversal on the dataset to retrieve
all split points. Furthermore, according to Figure 7.1, the
number of NA is nearly optimal, meaning that CNN visits
only the nodes necessary for obtaining the final result. TP
is comparable to CNN only when the input line segment
is very short.

node accesses

k

1

10

100

1000

1 3 5 7 9

CNN

TP

CPU cost (sec)

k

0.001

0.01

0.1

1

10

1 3 5 7 9

CNN

TP

total cost (sec)

k

88%

CPU percentage

0.1

1

10

1 3 5 7 9

CNN

TP
81%

71%
52%

17%

1% 3% 5% 8% 12%

(a) NA vs. k (CA dataset) (b) CPU cost vs. k (CA dataset) (c) Total cost vs. k (CA dataset)

node accesses

k

1

10

100

1000

10000

1 3 5 7 9

CNN

TP

CPU time (sec)

k

0.01

0.1

1

10

100

1 3 5 7 9

CNN

TP

total cost (sec)

k

CPU percentage

94%

1

10

100

1 3 5 7 9

CNN

TP 91%
84%

71%

51% 42%
30%20%8%3%

(d) NA vs. k (ST dataset) (e) CPU cost vs. k (ST dataset) (f) Total cost vs. k (ST dataset)

Figure 7.3: Comparison with various k values (query length=12.5%)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1% 2% 4% 8% 16% 32%

CNN TPtotal cost (sec)

cache size

3%
4%

4%
5%

7%
9%

65% 69% 72% 75% 79% 83%

CPU
percentage

TP

0

2

4

6

8

10

1% 2% 4% 8% 16% 32%

CNNtotal cost (sec)

cache size

75%
79% 81% 83% 85% 85%

22%21%
19%17%15%13%

CPU
percentage

(a) CA (a) ST

Figure 7.4: Total cost under different cache sizes (qlen=12.5%, k=5)

8. Conclusion

Although CNN is one of the most interesting and intuitive
types of nearest neighbour search, it has received rather
limited attention. In this paper we study the problem
extensively and propose algorithms that avoid the pitfalls
of previous ones, namely, the false misses and the high
processing cost. We also propose theoretical bounds for
the performance of CNN algorithms and experimentally
verify that our methods are nearly optimal in terms of
node accesses. Finally, we extend the techniques for the
case of k neighbors and trajectory inputs.

Given the relevance of CNN to several applications,
such as GIS and mobile computing, we expect this
research to trigger further work in the area. An obvious
direction refers to datasets of extended objects, where the
distance definitions and the pruning heuristics must be
revised. Another direction concerns the application of the
proposed techniques to dynamic datasets. Several indexes
have been proposed for moving objects in the context of
spatiotemporal databases [KGT99a, KGT99b, SJLL00].
These indexes can be combined with our techniques to
process prediction-CNN queries such as "according to the
current movement of the data objects, find my nearest
neighbors during the next 10 minutes".

Acknowledgements

This work was supported by grants HKUST 6081/01E
and HKUST 6070/00E from Hong Kong RGC.

References

[BBKK97] Berchtold, S., Bohm, C., Keim, D.A.,
Kriegel, H. A Cost Model for Nearest
Neighbor Search in High-Dimensional Data
Space. ACM PODS, 1997.

[BBK+01] Berchtold, S., Bohm, C., Keim, D., Krebs, F.,
Kriegel, H.P. On Optimizing Nearest
Neighbor Queries in High-Dimensional Data
Spaces. ICDT, 2001.

[BJKS02] Benetis, R., Jensen, C., Karciauskas, G.,
Saltenis, S. Nearest Neighbor and Reverse
Nearest Neighbor Queries for Moving
Objects. IDEAS, 2002.

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider, R.,
Seeger, B. The R*-tree: An Efficient and
Robust Access Method for Points and
Rectangles. ACM SIGMOD, 1990.

[BS99] Bespamyatnikh, S., Snoeyink, J. Queries with
Segments in Voronoi Diagrams. SODA,
1999.

[CMTV00] Corral, A., Manolopoulos, Y., Theodoridis,
Y., Vassilakopoulos, M. Closest Pair Queries
in Spatial Databases. ACM SIGMOD, 2000.

[G84] Guttman, A. R-trees: A Dynamic Index

Structure for Spatial Searching, ACM
SIGMOD, 1984.

[HS98] Hjaltason, G., Samet, H. Incremental
Distance Join Algorithms for Spatial
Databases. ACM SIGMOD 1998.

[HS99] Hjaltason, G., Samet, H. Distance Browsing
in Spatial Databases. ACM TODS, 24(2), pp.
265-318, 1999.

[KGT99a] Kollios, G., Gunopulos, D., Tsotras, V. On
Indexing Mobile Objects. ACM PODS, 1999.

[KGT99b] Kollios, G., Gunopulos, D., Tsotras, V.
Nearest Neighbor Queries in a Mobile
Environment. Spatio-Temporal Database
Management Workshop, 1999.

[KSF+96] Korn, F., Sidiropoulos, N., Faloutsos, C.,
Siegel, E, Protopapas, Z. Fast Nearest
Neighbor Search in Medical Image
Databases. VLDB, 1996.

[RKV95] Roussopoulos, N., Kelly, S., Vincent, F.
Nearest Neighbor Queries. ACM SIGMOD,
1995.

[SJLL00] Saltenis, S., Jensen, C., Leutenegger, S.,
Lopez, M. Indexing the Positions of
Continuously Moving Objects. ACM
SIGMOD, 2000.

[SK98] Seidl, T., Kriegel, H. Optimal Multi-Step K-
Nearest Neighbor Search. ACM SIGMOD,
1998.

[SR01] Song, Z., Roussopoulos, N. K-Nearest
Neighbor Search for Moving Query Point.
SSTD, 2001.

[SRF87] Sellis, T., Roussopoulos, N. Faloutsos, C.:
The R+-tree: a Dynamic Index for Multi-
Dimensional Objects, VLDB, 1987.

[SWCD97] Sistla, P., Wolfson, O., Chamberlain, S., Dao,
S. Modeling and Querying Moving Objects.
IEEE ICDE, 1997.

[TP02] Tao, Y., Papadias, D. Time Parameterized
Queries in Spatio-Temporal Databases. ACM
SIGMOD, 2002.

[TSS00] Theodoridis, Y., Stefanakis, E., Sellis, T.
Efficient Cost Models for Spatial Queries
Using R-trees. IEEE TKDE, 12(1), pp. 19-32,
2000.

[web] http://dias.cti.gr/~ytheod/research/datasets/
spatial.html

[WSB98] Weber, R., Schek, H., Blott, S. A Quantitative
Analysis and Performance Study for
Similarity-Search Methods in High-
Dimensional Spaces. VLDB, 1998.

[YOTJ01] Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.V.
Indexing the Distance: An Efficient Method
to KNN Processing. VLDB, 2001.

