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Abstract 

A continuous nearest neighbor query retrieves 
the nearest neighbor (NN) of every point on a 
line segment (e.g., “find all my nearest gas 
stations during my route from point s to point 
e”). The result contains a set of <point, interval> 
tuples, such that point is the NN of all points in 
the corresponding interval.  Existing methods for 
continuous nearest neighbor search are based on 
the repetitive application of simple NN 
algorithms, which incurs significant overhead. In 
this paper we propose techniques that solve the 
problem by performing a single query for the 
whole input segment. As a result the cost, 
depending on the query and dataset 
characteristics, may drop by orders of magnitude. 
In addition, we propose analytical models for the 
expected size of the output, as well as, the cost of 
query processing, and extend out techniques to 
several variations of the problem.  

1. Introduction 

Let P be a dataset of points in multi-dimensional space. A 
continuous nearest neighbor (CNN) query retrieves the 
nearest neighbor (NN) of every point in a line segment q 
= [s, e]. In particular, the result contains a set of <R,T> 
tuples, where R (for result) is a point of P, and T is the 
interval during which R is the NN of q. As an example 
consider Figure 1.1, where P={a,b,c,d,f,g,h}. The output 
of the query is {<a, [s,s1]>, <c, [s1,s2]>, <f, [s2,s3]>, <h, 
[s3,e]>}, meaning that point a is the NN for interval [s,s1]; 
then at s1, point c becomes the NN etc. The points of the 
query segment (i.e., s1, s2, s3) where there is a change of 

neighborhood are called split points. Variations of the 
problem include the retrieval of k neighbors (e.g., find the 
three NN for every point in q), datasets of extended 
objects (e.g., the elements of P are rectangles instead of 
points), and situations where the query input is an 
arbitrary trajectory (instead of a line segment).  

 
Figure 1.1: Example query 

CNN queries are essential for several applications such as 
location-based commerce (“if I continue moving towards 
this direction, which will be my closest restaurants for the 
next 10 minutes?”) and geographic information systems 
(“which will be my nearest gas station at any point during 
my route from city A to city B”). Furthermore, they 
constitute an interesting and intuitive problem from the 
research point of view. Nevertheless, there is limited 
previous work in the literature.  

From the computational geometry perspective, to the 
best of our knowledge, the only related problem that has 
been addressed is that of finding the single NN for the 
whole line segment [BS99] (e.g., point f for the query 
segment in Figure 1.1). On the other hand, research in 
databases (with a few exceptions discussed in the next 
section) has focused on other variations of NN search in 
secondary memory. These include kNN for point queries 
[RKV95, HS99] (e.g., find the three NN of a point q in P), 
and closest pair queries [HS98, CMTV00] (e.g., find the k 
closest pairs <pi, pj> from two datasets P1 and P2, where 
pi ∈  P1 and pj ∈  P2). 

In this paper we first deal with continuous 1NN 
queries (retrieval of single neighbors when the query 
input is a line segment, i.e., the example of Figure 1.1), 
identifying and proving some properties that facilitate the 
development of efficient algorithms. Then we propose 
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query processing methods using R-trees as the underlying 
data structure. Furthermore, we present an analytical 
comparison with existing methods, proposing models that 
estimate the number of split points and processing costs. 
Finally we extend our methods to multiple nearest 
neighbors and arbitrary inputs (i.e., consisting of several 
consecutive segments).  

The rest of the paper is structured as follows: Section 
2 outlines existing methods for processing NN and CNN 
queries, and Section 3 describes the definitions and 
problem characteristics. Section 4 proposes an efficient 
algorithm for R-trees, while Section 5 contains the 
analytical models. Section 6 discusses extensions to 
related problems and Section 7 experimentally evaluates 
our techniques with real datasets. In Section 8 we 
conclude the paper with directions for future work. 

2. Related Work  

Like most previous work in the relevant literature, we 
employ R-trees [G84, SRF87, BKSS90] due to their 
efficiency and popularity. Our methods, however, are 
applicable to any data-partition access method. Figure 2.1 
shows an example R-tree for point set P={a,…,m} 
assuming a capacity of three entries per node.  Points that 
are close in space (e.g., a, b, c) are clustered in the same 
leaf node (N3). Nodes are then recursively grouped 
together with the same principle until the top level, which 
consists of a single root.  
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Figure 2.1: R-tree and point-NN example 

The most common type of nearest neighbor search is the 
point-kNN query that finds the k objects from a dataset P 
that are closest to a query point q. Existing algorithms 
search the R-tree of P in a branch-and-bound manner. For 
instance, Roussopoulos et al [RKV95] propose a depth-
first method that, starting from the root of the tree, visits 
the entry with the minimum distance from q (e.g., entry E1 
in Figure 2.1). The process is repeated recursively until 
the leaf level (node N4), where the first potential nearest 
neighbor is found (f). During backtracking to the upper 
level (node N1), the algorithm only visits entries whose 
minimum distance is smaller than the distance of the 
nearest neighbor already found. In the example of Figure 
2.1, after discovering f, the algorithm will backtrack to the 
root level (without visiting N3), and then follow the path 
N2, N6 where the actual NN l is found. 

Another approach [HS99] implements a best-first 
traversal that follows the entry with the smallest distance 
among all those visited. In order to achieve this, the 
algorithm keeps a heap with the candidate entries and 

their minimum distances from the query point. In the 
previous example, after visiting node N1, best-first 
traversal will follow the path N2, N6 and directly discover 
l (i.e., without first finding other potential NN, such as f). 
Although this method is optimal in the sense that it only 
visits the necessary nodes for obtaining the NN, it suffers 
from buffer thrashing if the heap becomes larger than the 
available memory.  

Conventional NN search (i.e., point queries) and its 
variations in low and high dimensional spaces have 
received considerable attention during the last few years 
(e.g., [KSF+96, SK98, WSB98, YOTJ01]) due to their 
applicability in domains such as content based retrieval 
and similarity search. With the proliferation of location-
based e-commerce and mobile computing, continuous NN 
search promises to gain similar importance in the research 
and applications communities. Sistla et al. were the first 
ones to identify the significance of CNN in 
spatiotemporal database systems. In [SWCD97], they 
describe modeling methods and query languages for the 
expression of such queries, but do not discuss access or 
processing methods.  

The first algorithm for CNN query processing, 
proposed in [SR01], employs sampling to compute the 
result. In particular, several point-NN queries (using an R-
tree on the point set P) are repeatedly performed at 
predefined sample points of the query line, using the 
results at previous sample points to obtain tight search 
bounds. This approach suffers from the usual drawbacks 
of sampling, i.e., if the sampling rate is low the results 
will be incorrect; otherwise, there is a significant 
computational overhead. In any case there is no accuracy 
guarantee, since even a high sampling rate may miss some 
split points (i.e., if the sample does not include points s1, 
s2, s3 in Figure 1.1).  

A technique that does not incur false misses is based 
on the concept of time-parameterized (TP) queries 
[TP02]. The output of a TP query has the general form 
<R, T, C>, where R is current result of the query (the 
methodology applies to general spatial queries), T is the 
validity period of R, and C the set of objects that will 
affect R at the end of T. From the current result R, and the 
set of objects C that will cause changes, we can 
incrementally compute the next result. We refer to R as 
the conventional, and (T,C) as the time-parameterized 
component of the query.  

Figures 2.2 and 2.3 illustrate how the problem of 
Figure 1.1 can be processed using TP NN queries. 
Initially a point-NN query is performed at the starting 
point (s) to retrieve the first nearest neighbor (a). Then, 
the influence point sx of each object x in the dataset P is 
computed as the point where x will start to get closer to 
the line segment than the current NN. Figure 2.2 shows 
the influence points after the retrieval of a. Some of the 
points (e.g., b) will never influence the result, meaning 
that they will never come closer to [s,e] than a. 
Identifying the influencing point (sc) that will change the 



result (rendering c as the next neighbor) can be thought of 
as a conventional NN query, where the goal is to find the 
point x with the minimum dist(s,sx). Thus, traditional 
point-NN algorithms (e.g., [RKV95]) can be applied with 
appropriate transformations (for details see [TP02]). 

 
Figure 2.2: CNN processing using TP queries – first step 

After the first step, the output of the TP query is <a, [s,sc), 
c>, meaning that a is the NN until sc, at which point c 
becomes the next NN (sc corresponds to the first split 
point s1 in Figure 1.1). In order to complete the result, we 
perform repeated retrievals of the TP component. For 
example, at the second step we find the next NN by 
computing again the influencing points with respect to c 
(see Figure 2.3). In this case only points f, g and h may 
affect the result, and the first one (f) becomes the next 
neighbor.   

 
Figure 2.3: TP queries – second step 

The method can extend to kNN. The only difference is 
that now the influence point sx of x is the point that x 
starts to get closer to [s,e] than any of the k current 
neighbors. Specifically, assuming that the k current 
neighbors are a1, a2,…, ak, we first compute the influence 
points sxi of x with respect to each ai (i=1,2,…,k) 
following the previous approach. Then, sx is set to the 
minimum of sx1, sx2, …, sxk. 

This technique avoids the drawbacks of sampling, but 
it is very output-sensitive in the sense that it needs to 
perform n NN queries in order to compute the result, 
where n is the number of split points. Although, these n 
queries may access similar pages, and therefore, benefit 
from the existence of a buffer, the cost is still prohibitive 
for large queries and datasets due to the CPU overhead. 
The motivation of this work is to solve the problem by 
applying a single query for the whole result. Towards this 
direction, in the next section we describe some properties 
of the problem that permit the development of efficient 
algorithms.        

Recently, Benetis, et al [BJKS02] address CNN 
queries from a mathematical point of view. Our 
algorithm, on the other hand, is based on several 
geometric problem characteristics. Further we also 
provide performance analysis, and discuss complex query 
types (e.g., trajectory nearest neighbor search).  

3. Definitions and Problem Characteristics 

The objective of a CNN query is to retrieve the set of 
nearest neighbors of a segment q=[s, e] together with the 
resulting list SL of split points. The starting (s) and ending 
(e) points constitute the first and last elements in SL. For 
each split point si∈ SL (0≤i<|SL|-1): si∈ q and all points in 
[si, si+1] have the same NN, denoted as si.NN. For 
example, s1.NN in Figure 1.1 is point c, which is also the 
NN for all points in interval [s1, s2]. We say that si.NN 
(e.g., c) covers point si (s1) and interval [si, si+1] ([s1, s2]).  

In order to avoid multiple database scans, we aim at 
reporting all split (and the corresponding covering) points 
with a single traversal. Specifically, we start with an 
initial SL that contains only two split points s and e with 
their covering points set to ∅  (meaning that currently the 
NN of all points in [s,e] are unknown), and incrementally 
update the SL during query processing. At each step, SL 
contains the current result with respect to all the data 
points processed so far. The final result contains each split 
point si that remains in SL after the termination together 
with its nearest neighbor si.NN.  

Processing a data point p involves updating SL, if p is 
closer to some point u∈ [s,e] than its current nearest 
neighbor u.NN (i.e., if p covers u). An exhaustive scan of 
[s,e] (for points u covered by p) is intractable because the 
number of points is infinite. We observe that it suffices to 
examine whether p covers any split point currently in SL, 
as described in the following lemma.  

Lemma 3.1: Given a split list SL {s0, s1, …, s|SL−1|} and a 
new data point p, p covers some point on query segment q 
if and only if p covers a split point. 

As an illustration of Lemma 3.1, consider Figure 3.1a 
where the set of data points P={a, b, c, d} is processed in 
alphabetic order. Initially, SL={s, e} and the NN of both 
split points are unknown. Since a is the first point 
encountered, it becomes the current NN of every point in 
q, and information about SL is updated as follows: s.NN= 
e.NN= a and dist(s, s.NN)= |s, a|, dist(e, e.NN)= |e, a|, 
where |s, a| denotes the Euclidean distance between s and 
a (other distance metrics can also be applied). The circle 
centered at s (e) with radius |s, a| (|e, a|) is called the 
vicinity circle of s (e).  

When processing the second point b, we only need to 
check whether b is closer to s and e than their current NN, 
or equivalently, whether b falls in their vicinity circles. 
The fact that b is outside both circles indicates that every 
point in [s, e] is closer to a (due to Lemma 3.1); hence we 
ignore b and continue to the next point c. 



 
(a) After processing a (b) After processing c 

Figure 3.1: Updating the split list 

Since c falls in the vicinity circle of e, a new split point s1 
is inserted to SL; s1 is the intersection between the query 
segment and the perpendicular bisector of segment [a, c] 
(denoted as ⊥ (a, c)), meaning that points to the left of s1 
are closer to a, while points to the right of s1 are closer to 
c (see Figure 3.1b). The NN of s1 is set to c, indicating 
that c is the NN of points in [s1, e]. Finally point d does 
not update SL because it does not cover any split point 
(notice that d falls in the circle of e in Figure 3.1a, but not 
in Figure 3.1b). Since all points have been processed, the 
split points that remain in SL determine the final result 
(i.e., {<a, [s,s1]>, <c, [s1,e]> }).  

In order to check if a new data point covers some split 
point(s), we can compute the distance from p to every si, 
and compare it with dist(si, si.NN). To reduce the number 
|SL| (i.e., the cardinality of SL) of distance computations, 
we observe the following continuity property.  

Lemma 3.2 (covering continuity): The split points 
covered by a point p are continuous. Namely, if p covers 
split point si but not si−1 (or si+1), then p cannot cover si−j 

(or si+j) for any value of  j>1. 

Consider, for instance, Figure 3.2, where SL contains si-1, 
si, si+1, si+2, si+3, whose NN are points a, b, c, d, f 
respectively. The new data point p covers split points si, 
si+1, si+2 (p falls in their vicinity circles), but not si-1, si+3. 
Lemma 3.2 states that p cannot cover any split point to the 
left (right) of si-1 (si+3). In fact, notice that all points to the 
left (right) of si-1 (si+3) are closer to b (f) than p (i.e., p 
cannot be their NN). 

 
Figure 3.2: Continuity property 

Figure 3.3 shows the situation after p is processed. The 
number of split points decreases by 1, whereas the 
positions of si and si+1 are different from those in Figure 
3.2. The covering continuity property permits the 
application of a binary search heuristic, which reduces (to 

O(log|SL|)) the number of computations required when 
searching for split points covered by a data point. 

 
Figure 3.3: After p is processed (cont. Figure 3.2) 

The above discussion can be extended to kCNN queries 
(e.g., find the 3 NN for any point on q). Consider Figure 
3.4, where data points a, b, c and d have been processed 
and SL contains si and si+1. The current 3 NN of si are a, 
b, c (c is the farthest NN of si). At the next split point si+1, 
the 3NN change to a, b, d (d replaces c).  

 
Figure 3.4: Example of kCNN (k=3) 

Lemma 3.1 also applies to kCNN queries. Specifically, a 
new data point can cover a point on q (i.e., become one of 
the k NN of the point), if and only if it covers some split 
point(s). Figure 3.5 continues the example of Figure 3.4 
by illustrating the situation after the processing of point f. 
The next point g does not update SL because g falls 
outside of vicinity circles of all split points. Lemma 3.2, 
on the other hand, does not apply to general kCNN 
queries. In Figure 3.5, for example, a new point h covers 
si and si+3, but not si+1, and si+2 (which break the 
continuity).  

  
Figure 3.5: After processing f 



The above general methodology can be used for arbitrary 
dimensionality, where perpendicular bisectors and 
vicinity circles become perpendicular bisect-planes and 
vicinity spheres. Its application for processing non-
indexed datasets is straightforward, i.e., the input dataset 
is scanned sequentially and each point is processed, 
continuously updating the split list. In real-life 
applications, however, spatial datasets, which usually 
contain numerous (in the order 105-106) objects, are 
indexed in order to support common queries such as 
selections, spatial joins and point-nearest neighbors. The 
next section illustrates how the proposed techniques can 
be used in conjunction with R-trees to accelerate search.  

4. CNN Algorithms with R-trees 

Like the point-NN methods discussed in Section 2, CNN 
algorithms employ branch-and-bound techniques to prune 
the search space. Specifically, starting from the root, the 
R-tree is traversed using the following principles: (i) 
when a leaf entry (i.e., a data point) p is encountered, SL 
is updated if p covers any split point (i.e., p is a qualifying 
entry); (ii) for an intermediate entry, we visit its subtree 
only if it may contain any qualifying data point. The 
advantage of the algorithm over exhaustive scan is that we 
avoid accessing nodes, if they cannot contain qualifying 
data points. In the sequel, we discuss several heuristics for 
pruning unnecessary node accesses. 

Heuristic 1: Given an intermediate entry E and query 
segment q, the subtree of E may contain qualifying points 
only if mindist(E,q) < SLMAXD, where mindist(E,q) 
denotes the minimum distance between the MBR of E and 
q, and SLMAXD = max {dist(s0, s0.NN), dist(s1 ,s1.NN), …, 
dist(s|SL|−1, s|SL|−1.NN) } (i.e., SLMAXD is the maximum 
distance between a split point and its NN). 

 
Figure 4.1a shows a query segment q={s, e}, and the 
current SL that contains 3 split points s, s1, e, together 
with their vicinity circles. Rectangle E represents the 
MBR of an intermediate node. Since mindist(E, q) > 
SLMAXD = |e,b|, E does not intersect the vicinity circle of 
any split point; thus, according to Lemma 3.1 there can be 
no point in E that covers some point on q. Consequently, 
the subtree of E does not have to be searched.   
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(a) E is not visited (b) Computing mindist 
Figure 4.1: Pruning with mindist(E, q) 

To apply heuristic 1 we need an efficient method to 
compute the mindist between a rectangle E and a line 
segment q. If E intersects q, then mindist(E,q) = 0. 
Otherwise, as shown in Figure 4.1b, mindist(E,q) is the 
minimum (d3) among the shortest distances (i) from each 
corner point of E to q (d1, d2, d3, d4), and (ii) from the start 
(s) and end (e) points to E (d5, d6). Therefore, the 
computation of mindist(E, q) involves at most the cost of 
an intersection check, four mindist calculations between a 
point and a line segment, and two mindist calculations 
between a point and a rectangle. Efficient methods for the 
computation of the mindist between <point, rectangle> 
and <point, line segment> pairs have been discussed in 
previous work [RKV95, CMTV00].  

Heuristic 1 reduces the search space considerably, 
while incurring relatively small computational overhead. 
However, tighter conditions can achieve further pruning. 
To verify this, consider Figure 4.2, which is similar to 
Figure 4.1a except that SLMAXD (=|e,b|) is larger. Notice 
that the MBR of entry E satisfies heuristic 1 because 
mindist(E,q) (=mindist(E,s)) < SLMAXD. However, E 
cannot contain qualifying data points because it does not 
intersect any vicinity circle. Heuristic 2 prunes such 
entries, which would be visited if only heuristic 1 were 
applied.   

 
Figure 4.2: Pruning with mindist(si, E) 

Heuristic 2: Given an intermediate entry E and query 
segment q, the subtree of E must be searched if and only if 
there exists a split point si∈ SL such that dist(si,si.NN) > 
mindist(si, E).  

According to heuristic 2, entry E in Figure 4.2 does not 
have to be visited since dist(s,a) < mindist(s,E), dist(s1,b) 
< mindist(s1,E) and dist(e,b) < mindist(e,E). Although 
heuristic 2 presents the most tight conditions that a MBR 
must satisfy to contain a qualifying data point, it incurs 
more CPU overhead (than heuristic 1), as it requires 
computing the distance from E to each split point. 
Therefore, it is applied only for entries that satisfy the first 
heuristic.  

The order of entry accesses is also very important to 
avoid unnecessary visits. Consider, for example, Figure 
4.3a where points a and b have been processed, whereas 
entries E1 and E2 have not. Both E1 and E2 satisfy 
heuristics 1 and 2, meaning that they must be accessed 
according to the current status of SL. Assume that E1 is 
visited first, the data points c, d in its subtree are 



processed, and SL is updated as shown in Figure 4.3b. 
After the algorithm returns from E1, the MBR of E2 is 
pruned from further exploration by heuristic 1. On the 
other hand, if E2 is accessed first, E1 must also be visited. 
To minimize the number of node accesses, we propose the 
following visiting order heuristic, which is based on the 
intuition that entries closer to the query line are more 
likely to contain qualifying data points. 

Heuristic 3: Entries (satisfying heuristics 1 and 2) are 
accessed in increasing order of their minimum distances 
to the query segment q.   

 
(a) Before processing E1 (b) After processing E1 

Figure 4.3: Sequence of accessing entries 

When a leaf entry (i.e., a data point) p is encountered, the 
algorithm performs the following operations: (i) it 
retrieves the set of split points SCOVER={si, si+1, …, sj} 
covered by p, and (if SCOVER is not empty) (ii) it updates 
SL accordingly. As mentioned in Section 3, the set of 
points in SCOVER are continuous (for single NN). Thus, we 
can employ binary search to avoid comparing p with all 
current NN for every split point. Figure 4.4, illustrates the 
application of this heuristic assuming that SL contains 11 
split points s0-s10, and the NN of s0, .., s5 are points a, b, c, 
d, f and g respectively. 
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Figure 4.4: Binary search for covered split points 

First, we check if the new data point p covers the middle 
split point s5. Since the vicinity cycle of s5 does not 
contain p, we can conclude that p does not cover s5. Then, 
we compute the intersection (A in Figure 4.4) of q with 
the perpendicular bisector of p and s5.NN(=g). Since A 
lies to the left of s5, all split points potentially covered by 
p are also to the left of s5. Hence, now we check if p 
covers s2 (i.e., the middle point between s0 and s5). Since 
the answer is negative, the intersection (B) of q and ⊥ (p, 
s2.NN) is computed. Because B lies to the right of s2, the 
search proceeds with point s3 (middle point between s2 
and s5), which is covered by p.  

In order to complete SCOVER (={s3, s4}), we need to 
find the split points covered immediately before or after 
s3, which is achieved by a simple bi-directional scanning 
process. The whole process involves at most 
log(|SL|)+|SCOVER|+2 comparisons, out of which log(|SL|) 
are needed for locating the first split point (binary search), 
and |SCOVER|+2 for the remaining ones (the additional 2 
comparisons are for identifying the first split points on the 
left/right of SCOVER not covered by p). 

Finally the points in SCOVER are updated as follows. 
Since p covers both s3 and s4, it becomes the NN of every 
point in interval [s3, s4]. Furthermore, another split point 
s3' (s4') is inserted in SL for interval [s2, s3] ([s4, s5]) such 
that the new point has the same distance to s2.NN=c 
(s4.NN=f) and p. As shown in Figure 4.5, s3' (s4') is 
computed as the intersection between q and ⊥ (c, p) (⊥ (f, 
p)). Finally, the original split points s3 and s4 are removed. 
Figure 4.6 presents the pseudo-code for handling leaf 
entries. 

 
Figure 4.5: After updating the split list 

Algorithm Handle_Leaf_Entry  
/*p: the leaf entry being handled, SL: the split list*/ 
1. apply binary search to retrieve all split points covered 

by p: SCOVER={si, si+1, …, sj} 
2. let u=si-1.NN and v=sj.NN 
3. remove all split points in SCOVER from SL 
4. add a split point si' at the intersection of q and ⊥ (u, p) 

with si'.NN=p, dist(si', si'.NN)=|si', p| 
5. add a split point si+1' at the intersection of q and ⊥ (v, 

p) with si+1'.NN=p, dist(si+1', si+1'.NN)=|si+1', p| 
End Handle_Leaf_Entry 

Figure 4.6: Algorithm for handling leaf entries 

The proposed heuristics can be applied with both the 
depth-first and best-first traversal paradigms discussed in 
Section 2. For simplicity, we elaborate the complete CNN 
algorithm using depth-first traversal on the R-tree of 
Figure 2.1. To answer the CNN query [s,e] of Figure 4.7a, 
the split list SL is initiated with 2 entries {s, e} and 
SLMAXD=∞. The root of the R-tree is retrieved and its 
entries are sorted by their distances to segment q. Since 
the mindist of both E1 and E2 are 0, one of them is chosen 
(e.g., E1), its child node (N1) is visited, and the entries 
inside it are sorted (order E4, E3). Node N4 (child of E4) is 
accessed and points f, d, g are processed according to their 
distances to q. Point f becomes the first NN of s and e, and 
SLMAXD is set to |s, f| (Figure 4.7a).  

The next point g covers e and adds a new split point s1 
to SL (Figure 4.7b). Point d does not incur any change 
because it does not cover any split point. Then, the 
algorithm backtracks to N1 and visits the subtree of E3. At 



this stage SL contains 4 split points and SLMAXD is 
decreased to |s1,b| (Figure 4.7c). Now the algorithm 
backtracks to the root and then reaches N6 (following 
entries E2, E6), where SL is updated again (note the 
position change of s1) and SLMAXD becomes |s,k| (Figure 
4.7d). Since mindist(E5,q) > SLMAXD, N5 is pruned by 
heuristic 1, and the algorithm terminates with the final 
result: {<k, [s, s1]>, <f, [s1,s2]>, <g,[s2, e]>}.  
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Figure 4.7: Processing steps of the CNN algorithm  

5. Analysis of CNN Queries 

In this section, we analyze the optimal performance for 
CNN algorithms and propose cost models for the number 
of node accesses. Although the discussion focuses on R-
trees, extensions to other access methods are 
straightforward.  

The number of node accesses is related to the search 
region of a query q, which corresponds to the data space 
area that must be searched to retrieve all results (i.e., the 
set of NN of every point on q). Consider, for example, 
query segment q in Figure 5.1a, where the final result is 
{<a, [s, s1]>, <b, [s1, e]>}. The search region (shaded 
area) is the union of the vicinity circles of s, s1 and e. All 
nodes whose MBR (e.g., E1) intersects this area may 
contain qualifying points. Although in this case E1 does 
not affect the result (c and d are not the NN of any point), 
in order to determine this, any algorithm must visit E1's 
subtree. On the other hand, optimal algorithms will not 
visit nodes (e.g., E2) whose MBRs do not intersect the 
search region because they cannot contain qualifying data 
points. The above discussion is summarized by the 
following lemma (which is employed by heuristic 2). 

Lemma 5.1: An optimal algorithm accesses only those 
nodes whose MBRs E satisfy the following condition: 
mindist(si, E)<dist(si, si.NN), for each final split point si. 
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(a) Actual search region (b) Approx. search region 

Figure 5.1: The search region of a CNN query 

The search region RSEARCH, as shown in Figure 5.1a, is 
irregular. In order to facilitate analysis, we approximate 
RSEARCH with a regular region such that every point on its 
boundary has minimum distance dNN to q (Figure 5.1b), 
where dNN is the average distance of all query points to 
their NN. For uniform data distribution and unit 
workspace, dNN can be estimated as [BBKK97, BBK+01] 
(N is the total number points in the data set)1. 

( )1/NNd Nπ≈      (5-1) 

Let E be a node MBR with edge lengths E.l1 and E.l2. The 
extended region EEXT of E corresponds to the original 
MBR enlarged by dNN and the query length q.l as shown 
in Figure 5.2.  

 
Figure 5.2: The extended region of E 

Let PACCESS(E,q) be the expected probability that the 
MBR E of a node intersects the search region. 
Equivalently, PACCESS(E,q) denotes the probability that  
EEXT covers the start point s of q. For uniform distribution 
and unit workspace, this probability equals the area of 
EEXT. Thus,  

( ), ( )ACCESS EXTP E q area E= =  

                                                           
1 Similar approaches have been commonly adopted in previous 
analysis of point-NN queries. The rationale of equation (5-1) is 
that the vicinity circle at the query point q contains exactly one 
(out of N) point, i.e., π dNN

 2=1/N.  
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where dNN is given by equation 5-1. In order to estimate 
the extents (E.l1i, E.l2i) of nodes at each level i of the R-
tree, we use the following formula [TSS00]: 
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where h is the height of the tree, f the average node 
fanout, Ni is the number of level i nodes, and N the 
cardinality of the dataset. Therefore, the expected number 
of node accesses (NA) during a CNN query is: 
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Equation 5-4 suggests that the cost of a CNN query 
depends on several factors: (i) the dataset cardinality N, 
(ii) the R-tree structure, (iii) the query length q.l, and (iv) 
the orientation angle θ of q. Particularly, queries with 
θ=π/4 have the largest number of node accesses among all 
queries with the same parameters N and q.l.  

Notice that each data point that falls inside the search 
region is the NN of some point on q. Therefore, the 
number (nNN) of distinct neighbors in the final result is:  

( )2( ) 2 .NN SEARCH NN NNn N area R N d d q lπ= ⋅ = + ⋅      (5-5) 

The CPU costs of CNN algorithms (including the TP 
approach discussed in Section 2) are closely related to the 
number of node accesses. Specifically, assuming that the 
fanout of a node is f, the total number of processed entries 
equals f·NA. For our algorithm, the number of node 
accesses NA is given by equation 5-4; for the TP 
approach, it is estimated as NATP· nNN, where NATP is the 
average number of node accesses for each TP query, and 
nNN equals the total number of TP queries. Therefore, the 
CPU overhead of the TP approach grows linearly with 
nNN, which, (according to equation 5-5) increases with the 
data set size N, and query length q.l.  

Finally, the above discussion can be extended to 
arbitrary data and query distributions with the aid of 
histograms. In our implementation, we adopt a simple 
partition-based histogram that splits the space into m×m 
regular bins, and for each bini we maintain the number of 
data points Nbin-i that fall inside it. To estimate the 
performance of a query q, we take the average (Nbin_avg) of 
the Nbin-i for all bins that are intersected by q. Then, we 
apply the above equations by setting N= m2

·Nbin_avg and 
assuming uniformity in each bin.   

6. Complex CNN Queries  

The CNN query has several interesting variations. In this 
section, we discuss two of them, namely, kCNN and 
trajectory NN queries. 

6.1 The kCNN query 

The proposed algorithms for CNN queries can be 
extended to support kCNN queries, which retrieve the k 
NN for every point on query segment q. Heuristics 1-3 are 
directly applicable except that, for each split point si, 
dist(si, si.NN) is replaced with the distance (dist(si, 
si.NNk)) from si to its kth (i.e., farthest) NN. Thus, the 
pruning process is the same as CNN queries.  

The handling of leaf entries is also similar.  
Specifically, each leaf entry p is processed in a two-step 
manner. The first step retrieves the set SCOVER of split 
points si that are covered by p (i.e., |si, p|<dist(si, si.NNk)). 
If no such split point exists, p is ignored (i.e., it cannot be 
one of the k NN of any point on q). Otherwise, the second 
step updates the split list. Since the continuity property 
does not hold for k>2, the binary search heuristic cannot 
be applied. Instead, a simple exhaustive scan is performed 
for each split point.  

On the other hand, updating the split list after 
retrieving the SCOVER is more complex than CNN queries. 
Figure 6.1 shows an example where SL currently contains 
four points s0,.., s3, whose 2NN are (a,b), (b,c), (b,d), (b,f) 
respectively. The data point being considered is p, which 
covers split points s2 and s3.  

 
Figure 6.1: Updating SL (k=2) – the first step 

No new splits are introduced on intervals [si, si+1] (e.g., 
[s0, s1]), if neither si nor si+1 are covered by p. Interval [s1, 
s2], on the other hand must be handled (s2 is covered by 
p), and new split points are identified with a sweeping 
algorithm as follows. At the beginning, the sweep point is 
at s1, the current 2NN are (b, c), and p is the candidate 
point. Then, the intersections between q and ⊥ (b, p) (A in 
Figure 6.2a), and between q and ⊥  (c, p) (B in Figure 
6.2b) are computed. Intersections (such as A) that fall out 
of [s1, s2] are discarded. Among the remaining ones, the 
intersection that has the shortest distance to the starting 
point s (i.e., B) becomes the next split point. 



 
(c) Intrsct. of q and ⊥ (a, p) (b) Intrsct. of q and ⊥ (c, p) 

Figure 6.2: Identification of split point  

The 2NN are updated to (b, p) at B, and now the new 
interval [B, s2] must be examined with c as the new 
candidate. Because the continuity property does not hold, 
there is a chance that c will become again one of the kNN 
before s2 is reached. The intersections of q with ⊥ (b, c) 
and ⊥ (p, c) are computed, and since both are outside [B, 
s2], the sweeping algorithm terminates without 
introducing new split point. Similarly, the next interval 
[s2, s3] is handled and a split point C is created in Figure 
6.3. The outdated split points (s2) are eliminated and the 
updated SL contains: s0, s1, B, C, s3, whose 2NN are (a,b), 
(b,c), (b,p), (d,p), (d,p) respectively. 

 
Figure 6.3: Updating SL (k=2) – the second step 

Finally, note that the performance analysis presented in 
Section 5 also applies to kCNN queries, except that in all 
equations, dNN is replaced with dk-NN, which corresponds 
to the distance between a query point and its k-th nearest 
neighbor. The estimation of dk-NN has been discussed in 
[BBK+01]:  

( )/k NNd k Nπ− ≈  

 

6.2 Trajectory Nearest Neighbor Search 

So far we have discussed CNN query processing for a 
single query segment. In practice, a trajectory nearest 
neighbor (TNN) query consists of several consecutive 
segments, and retrieves the NN of every point on each 
segment. An example for such a query is “find my nearest 
gas station at each point during my route from city A to 
city B”. The adaptation of the proposed techniques to this 
case is straightforward.  

Consider, for instance, Figure 6.4a, where the query 
consists of 3 line segments q1=[s, u], q2=[u, v], q3=[v, e]. 
A separate split list (SL1,2,3) is assigned to each query 
segment. The pruning heuristics are similar to those for 
CNN, but take into account all split lists. For example, a 
counterpart of heuristic 1 is: the sub-tree of entry E can be 

pruned if, for each query segment qi and the 
corresponding split list: mindist(E, qi) > SLi-MAXD. 
Heuristics 2 and 3 are adapted similarly. When a leaf 
entry is encountered, all split lists are checked and 
updated if necessary. Figure 6.4b shows the final results 
(i.e., <m, [s, s1]>, <j, [s1, s2]>, <k, [s2, e]>), after accessing 
E2, E6, E5 (in this order). Notice that the gain of TNN 
compared to the TP approach, is even higher due to the 
fact that the number of split points increases with the 
number of query segments. The extension to kTNN 
queries is similar to kCNN. 
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(a) Initial situation (b) Final situation 

Figure 6.4: Processing a TNN query 

7. Experiments 

In this section, we perform an extensive experimental 
evaluation to prove the efficiency of the proposed 
methods using one uniform and two real point datasets. 
The first real dataset, CA, contains 130K sites, while the 
second one, ST, contains the centroids of 2M MBRs 
representing street segments in California [Web]. 
Performance is measured by executing workloads, each 
consisting of 200 queries generated as follows: (i) the start 
point of the query distributes uniformly in the data space, 
(ii) its orientation (angle with the x-axis) is randomly 
generated in [0, 2π), and (iii) the query length is fixed for 
all queries in the same workload. Experiments are 
conducted with a Pentium IV 1Ghz CPU and 256 Mega 
bytes memory. The disk size is set to 4K bytes and the 
maximum fanout of an R-tree node equals 200 entries.  

The first set of experiments evaluates the accuracy of 
the analytical model. For estimations on the real datasets 
we apply the histogram (50×50 bins) discussed in Section 
5. Figures 7.1a and 7.1b illustrate the number of node 
accesses (NA) as a function of the query length qlen (1% 
to 25% of the axis) for the uniform and CA datasets, 
respectively (the number of neighbors k is fixed to 5). In 
particular, each diagram includes: (i) the NA of a CNN 
implementation based on depth-first (DF) traversal, (ii) 
the NA of a CNN implementation based on best-first (BF) 
traversal, (iii) the estimated NA obtained by equation (5-
4). Figures 7.1c (for the uniform dataset) and 7.1d (for 
CA) contain a similar experiment, where qlen is fixed to 
12.5% and k ranges between 1 and 9. 

The BF implementation requires about 10% fewer NA 
than the DF variation of CNN, which agrees with 



previous results on point-NN queries [HS99]. In all cases 
the estimation of the cost model is very close (less than 
5% and 10% errors for the uniform and CA dataset, 
respectively) to the actual NA of BF, which indicates that: 
(i) the model is accurate and (ii) BF CNN is nearly 
optimal. Therefore, in the following discussion we select 
the BF approach as the representative CNN method. For 
fairness, BF is also employed in the implementation of the 
TP approach.  

The rest of the experiments compare CNN and TP 
algorithms using the two real datasets CA and ST. Unless 
specifically stated, an LRU buffer with size 10% of the 
tree is adopted (i.e., the cache allocated to the tree of ST is 
larger). Figure 7.2 illustrates the performance of the 
algorithms (NA, CPU time and total cost) as a function of 
the query length (k = 5). The first row corresponds to CA, 
and the second one to ST, dataset. As shown in Figures 
7.2a and 7.2d, CNN accesses 1-2 orders of magnitude 
fewer nodes than TP. Obviously, the performance gap 
increases with the query length since more TP queries are 
required.  

The burden of the large number of queries is evident 
in Figures 7.2b and 7.2e that depict the CPU overhead. 
The relative performance of the algorithms on both 
datasets indicates that similar behaviour is expected 
independently of the input.  Finally, Figures 7.2c and 7.2f 
show the total cost (in seconds) after charging 10ms per 
I/O. The number on top of each column corresponds to 
the percentage of CPU-time in the total cost. CNN is I/O- 
bounded in all cases, while TP is CPU-bounded. Notice 
that the CPU percentages increase with the query lengths 
for both methods. For CNN, this happens because, as the 
query becomes longer, the number of split points 
increases, triggering more distance computations. For TP, 
the buffer absorbs most of the I/O cost since successive 
queries access similar pages. Therefore, the percentage of 
CPU-time dominates the I/O cost as the query length 
increases. The CPU percentage is higher in ST because of 
its density; i.e., the dataset contains 2M points (as 
opposed to 130K) in the same area as CA. Therefore, for 
the same query length, a larger number of neighbors will 
be retrieved in ST (than in CA).  
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Figure 7.1: Evaluation of cost models 
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(d) NA vs qlen (ST dataset) (e) CPU cost vs  qlen (ST dataset) (f) Total cost vs  qlen (ST dataset) 

Figure 7.2: Performance vs. query length (k=5) 

 



Next we fix the query length to 12.5% and compare 
the performance of both methods by varying k from 1 to 
9. As shown in Figure 7.3, the CNN algorithm 
outperforms its competitor significantly in all cases (over 
an order of magnitude). The performance difference 
increases with the number of neighbors. This is explained 
as follows. For CNN, k has little effect on the NA (see 
Figures 7.3a and 7.3d). On the other hand, the CPU 
overhead grows due to the higher number of split points 
that must be considered during the execution of the 
algorithm. Furthermore, the processing of qualifying 
points involves a larger number of comparisons (with all 
NN of points in the split list). For TP, the number of tree 
traversals increases with k, which affects both the CPU 
and the NA significantly. In addition, every query 
involves a larger number of computations since each 
qualifying point must be compared with the k current 
neighbors.  

Finally, we evaluate performance under different 
buffer sizes, by fixing qlen and k to their standard values 
(i.e., 12.5% and 5 respectively), and varying the cache 
size from 1% to 32% of the tree size. Figure 7.4 
demonstrates the total query time as a function of the 
cache size for the CA and ST datasets. CNN receives 
larger improvement than TP because its I/O cost accounts 
for a higher percentage of the total cost.  

To summarize, CNN outperforms TP significantly 
under all settings (by a factor up to 2 orders of 
magnitude). The improvement is due to the fact that CNN 
performs only a single traversal on the dataset to retrieve 
all split points. Furthermore, according to Figure 7.1, the 
number of NA is nearly optimal, meaning that CNN visits 
only the nodes necessary for obtaining the final result. TP 
is comparable to CNN only when the input line segment 
is very short.  
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Figure 7.3: Comparison with various k values (query length=12.5%) 
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Figure 7.4: Total cost under different cache sizes (qlen=12.5%, k=5) 
 



8. Conclusion 

Although CNN is one of the most interesting and intuitive 
types of nearest neighbour search, it has received rather 
limited attention. In this paper we study the problem 
extensively and propose algorithms that avoid the pitfalls 
of previous ones, namely, the false misses and the high 
processing cost. We also propose theoretical bounds for 
the performance of CNN algorithms and experimentally 
verify that our methods are nearly optimal in terms of 
node accesses. Finally, we extend the techniques for the 
case of k neighbors and trajectory inputs.  

Given the relevance of CNN to several applications, 
such as GIS and mobile computing, we expect this 
research to trigger further work in the area. An obvious 
direction refers to datasets of extended objects, where the 
distance definitions and the pruning heuristics must be 
revised. Another direction concerns the application of the 
proposed techniques to dynamic datasets. Several indexes 
have been proposed for moving objects in the context of 
spatiotemporal databases [KGT99a, KGT99b, SJLL00]. 
These indexes can be combined with our techniques to 
process prediction-CNN queries such as "according to the 
current movement of the data objects, find my nearest 
neighbors during the next 10 minutes". 
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