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Abstract 

Traditional indexes aim at optimizing the node 
accesses during query processing, which, 
however, does not necessarily minimize the total 
cost due to the possibly large number of random 
accesses. In this paper, we propose a general 
framework for adaptive indexes that improve 
overall query cost. The performance gain is 
achieved by allowing index nodes to contain a 
variable number of disk pages. Update 
algorithms dynamically re-structure adaptive 
indexes depending on the data and query 
characteristics. Extensive experiments show that 
adaptive B- and R-trees significantly outperform 
their conventional counterparts, while incurring 
minimal update overhead. 

1. Introduction 

A single disk access usually includes (i) a seek operation 
that positions the disk head at the requested sector 
(including cylinder seek and rotation), and (ii) data 
transfer to/from the main memory. Thus the total query 
cost is the sum of disk seek, data transfer, and CPU time. 
Although significant advances have been made to 
accelerate CPU processing and data transfer, there is little 
progress on improving the seek time due to the mechanic 
nature of the disk head movement. The average seek time 
of latest models from major hard disk vendors, for 
example, is around 10ms (almost the same as 10 years 
ago), while the CPU costs and data transfer rates are 
usually 1-2 orders of magnitude smaller. Such 
performance difference is expected to become even 
greater in the future, which renders seek time the 
dominating factor in query cost. 

Existing indexes focus on minimizing the number of 

node accesses required for query processing. Since a 
single node usually corresponds to a constant number 
(typically, one) of disk pages, fewer node accesses lead to 
a smaller number of page accesses. Minimizing the page 
accesses, however, does not necessarily optimize the total 
query cost. Consider, for example, that query q1 accesses 
20 pages whose addresses are consecutive, while q2 must 
visit 10 random pages (i.e., non-consecutive ones). Then, 
the cost of q1 is approximately TSK+20·TTRF+20·TCPU, 
where TSK, TTRF, TCPU are the costs of performing one disk 
seek (around 10ms), transferring one page (1ms/page), 
and processing the records in one page respectively 
(<0.1ms/page). Notice that only one disk seek is required 
to visit continuous pages (i.e., sequential accesses). 
Similarly, the cost of q2 is 10·TSK+10·TTRF+10·TCPU (ten 
seeks must be performed to locate all pages, i.e., random 
accesses). Given that, TSK is usually significantly more 
expensive (over an order of magnitude) than TTRF and 
TCPU, processing q1 can be much cheaper than q2. 

The design of traditional indexes usually overlooks the 
difference between sequential and random accesses. Since 
the pages allocated to sibling nodes are often not 
consecutive, a query (such as q2) may incur a large 
number of random accesses. The traditional method to 
reduce random accesses in databases (and general file 
systems) is to re-organize the data pages by de-
fragmentation. This approach, however, has several 
serious drawbacks. First, re-organization involves some 
expensive operations: (i) moving (i.e., reading and 
writing) a large number of pages, and (ii) correcting 
mutual references (e.g., pointers from parent index nodes 
to their children, references to foreign keys, etc). 
Particularly, since references are ubiquitous (especially 
for databases with complex ER schemata), correcting 
them usually involves updating a very large part of the 
database. Second, a good page organization may soon 
degenerate by subsequent updates, in which case the 
benefit of re-organization vanishes in spite of its huge 
cost.  

One approach to remedy this is to allocate several 
continuous pages to a node at a time. Thus, the query q2 
mentioned earlier visits one leaf node (with ten pages) to 
retrieve the same content, which reduces the random 
access (i.e., seek) time. Setting the node size to a fixed 
value, however, only favours queries with specific 
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selectivity; queries with different selectivity are optimized 
with different node sizes. Furthermore, to minimize the 
total cost, the data transfer and CPU time must be 
considered (in conjunction with the seek time).  

Existing indexes are built by taking into account only 
the data distribution. In this paper, we introduce adaptive 
index structures that also consider query characteristics. 
Statistical information about query patterns is usually 
stored as histograms in the log of database systems. 
Taking advantage of this information to adapt indexes can 
improve their performance considerably. This 
improvement is achieved by using variable node sizes in 
different portions of the tree. In particular, each node size 
optimizes the average response time for the data and 
query distributions specific to the data space covered by 
the node. Carefully designed update algorithms allow 
adaptive indexes to re-structure as the distributions 
change. Analytical and experimental comparison proves 
that adaptive structures significantly outperform their 
conventional counterparts.1 

The rest of the paper is organized as follows: section 2 
introduces related work and section 3 describes the 
motivation and concrete algorithms of our adaptive 
framework using B-trees as an example. Section 4 extends 
the concept to R-trees and section 5 presents an extensive 
experimental evaluation to demonstrate the efficiency of 
the proposed methods. Section 6 concludes the paper with 
directions for future work.  

2. Related Work  

We focus on selection queries in traditional (i.e., B-trees) 
and multidimensional (R-trees) access methods. A 
selection query in relational databases specifies a 1D 
range [qS, qE] where qS≤qE, and retrieves all records r 
whose keys r.key∈ [qS, qE]. Given a B-tree that indexes the 
keys, the query is processed as follows: first, the leaf page 
that contains the starting key qS is located by following a 
path from the root to the leaf level; then, the sibling leaf 
pages are retrieved (by traversing the links among them) 
until the one that contains the ending key qE has been 
reached. This is illustrated in Figure 2.1 (each page 
contains 3 entries), where the query [40, 75] visits nodes 
H, F, C, D, and E. 
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Figure 2.1: A conventional B-tree 

The R-tree [G84, SRF87, BKSS90] can be viewed as a 
multi-dimensional extension of B-trees for spatial objects. 
                                                           
1 Notice that the problem here is different from that of choosing 
a suitable page size for a file system, where a fixed size is 
decided when the system is set up.  

Figure 2.2a shows an example where 7 objects (grey 
rectangles) are clustered into 3 leaf nodes R1, R2, and R3 
that are further grouped into 1 root node R (Figure 2.2b). 
Each non-leaf entry maintains a Minimum Bounding 
Rectangle (MBR) that encloses all objects in its sub-tree 
(e.g., e1.MBR bounds all objects in R1). The counterpart of 
selection queries in R-trees (and multi-dimensional access 
methods in general) is the window query, which specifies 
a rectangle q and retrieves all the objects that intersect q. 
The R-tree answers a window query q as follows. The 
root R is first retrieved and the entries inside it are 
compared with q. The child node of e1 is not visited 
because its MBR does not intersect q (so none of the 
objects in its sub-tree can intersect q). On the other hand, 
non-leaf entries whose MBRs intersect q must be 
searched. As a result, in Figure 2.2, leaf nodes R2 and R3 
are accessed, where objects o6, o7, and o8 are retrieved.  
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(a) Grouping of rectangles (b) The R-tree 
Figure 2.2: An R-tree example 

The concept of variable node sizes has been applied to the 
X-tree [BKK96], an optimized version of R-trees for 
high-dimensional data. A supernode consists of numerous 
sequential pages in order to avoid node splitting that will 
lead to significant overlap between the MBRs of non-leaf 
entries. Whereas sizes of supernodes depend only on the 
data characteristics, node sizes of adaptive structures 
depend on both data and query distribution. Furthermore, 
the concept of supernode does not extend to other 
structures, while most tree indexes can be transformed to 
adaptive versions.  

During the construction of an adaptive structure, we 
maintain a histogram that stores a small amount of 
statistical information about data and query distributions. 
The use of histograms is crucial for effective query 
optimization, and has received considerable research 
attention. Existing approaches can be classified into two 
categories depending on whether they take into account 
only the data distribution [HS92, IP95, GM98, APR99, 
WAA01], or also consider the query patterns [CR94, 
GLR00, BCG01, WAA02]. Although our framework can 
be used with any histogram, for the shake of simplicity 
and generality, we adopt the “equi-length” method (in fact 
more sophisticated histograms lead to even better 
performance). Specifically, the data space is divided into 
numbin bins with equal extents, and statistical information 
is maintained for each bini (1≤i≤ numbin) individually. 
Obviously larger numbin leads to better estimation, but 
increases the storage and computational overhead. 



 

3. Adaptive B-Trees 

The general idea of adaptive B-trees is to allow nodes to 
span several pages based on the average query length in 
the corresponding part of the data space. Figure 3.1 shows 
an adaptive version of the B-tree in Figure 2.1 assuming 
that the expected selectivity of queries in the range [5,30] 
corresponds to two pages, while that of queries in the 
range [35,75] corresponds to three pages. The sizes of 
nodes A and B are 2 and 3 respectively, following the 
expected selectivity. The disk pages assigned to the same 
node are consecutive so that, after locating the first page, 
accesses to the others are sequential. All non-leaf nodes 
have the minimum size (one page per node). Notice that, 
the height of the tree is lower than in Figure 2.1 because 
the number of leaf nodes is smaller. A query [40, 75] only 
needs to visit 2 nodes (a total of 4 pages) incurring 2 
random accesses, instead of 5 for the B-tree in Figure 2.1. 
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Figure 3.1: An adaptive B-tree example 

Adaptive B-trees, like their traditional versions, ensure 
minimum node utilization (typically, 50%). However, 
since nodes have variable capacity, the minimum number 
of entries in a node may vary. The capacities of nodes A, 
B in Figure 3.1, for example, are 6 and 9 entries 
respectively; as a result their minimum utilization is 3 and 
5. An overflow (underflow) occurs when the number of 
entries in a node is beyond (below) the capacity (the 
utilization). 

Section 3.1 derives the optimal node size based on a 
model that predicts performance in terms of node 
accesses, and sections 3.2 and 3.3 describe update 
algorithms. The performance of adaptive B-trees is 
analyzed in section 3.4, while section 3.5 discusses 
bulkloading and partial rebuilding techniques. 

3.1 Optimal node size 

Each node in the B-tree is associated with a range of keys, 
which we call the extent of the node. The extent of node A 
in Figure 2.1, for example, is [5, 20). A node will be 
visited by a range query [qS, qE] if and only if its extent 
intersects the query range. In particular, for uniform data 
distribution, extents of nodes at the same level are 
approximately the same. Assuming that f is the average 
fanout of a node, and N the total number of records 
indexed, the extent of a leaf node corresponds to f / N of 
the entire data space (assumed to be a unit line segment in 
the sequel). The probability PRINTS that the extent of a 
node intersects a query with length qL=q.S−q.E is [TSS00]: 

INTS L
fPR q N= +  

Since the total number of leaf nodes is N / f, the expected 
number of leaf node accesses is: 

( ) 1LEAF L INTS L
N NNA q PR qf f= ⋅ = ⋅ +  

If each node contains p pages, f equals ξ·p·bsp where bsp is 
the maximum number of entries in a single page (i.e., 
p·bsp corresponds to the node capacity), and ξ the average 
node utilization (common value 69% [TSS00]). A node 
access involves the following costs: (i) TSK time to 
perform a disk seek operation, (ii) p·TTRF time to transfer 
p pages to the memory, and (iii) f·TEVL (CPU) time to 
process all the entries in the node. Hence, the overall 
query time at the leaf level is: 

( ) ( ) ( )

( ) ( )                      1

LEAF L LEAF L SK TRF EVL

L SK TRF EVL

TIME q NA q T p T f T

N q T p T f Tf

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅

     (3.1-1) 

Taking the derivative of the above equation with respect 
to p we have (after applying f=ξ·p·bsp): 

( )
2

1LEAF L L SK
TRF sp EVL

sp

TIME q q N T
d T b T

dp b p
ξ

ξ
⋅ ⋅= + ⋅ ⋅ − ⋅

⋅
 

The optimal node size that minimizes TIMELEAF can be 
obtained by setting the above equation to 0: 

( ) ( )
L SK

OPT L

sp TRF sp EVL

q N T
p q

b T b Tξ ξ

 ⋅ ⋅ =
⋅ + ⋅ ⋅  

     (3.1-2) 

This equation suggests that the optimal node size depends 
on both data and query characteristics. Specifically, 
higher N or longer qL leads to larger optimal size as the 
number of retrieved records increases (thus, more data 
pages are retrieved). A faster CPU or higher data transfer 
rate (i.e., smaller TEVL or TTRF respectively) also increases 
the size because the I/O cost will account for a higher 
percentage in the total cost. The optimal size given in 
(3.1-2) is for leaf nodes, while for non-leaf nodes, the 
optimal size is always 1, because only one node is 
accessed at each non-leaf level. Setting the node size 
higher results in the same seek time (of 1 disk seek) yet 
higher data transfer and evaluation cost.   

The discussion so far assumes the same range length 
qL for all queries, whereas in practice queries have 
arbitrary length/selectivity. Assume an array qL[] = {qL[1], 
qL[2], …, qL[t]} that stores all lengths (t different values) 
of queries recorded so far, and an array pr[], where pr[i] is 
the probability for length qL[i] to appear in a query. The 
expected processing time (at the leaf level) of a query q 
that conforms to this distribution is: 

( ) ( )

( ) ( )

( )

1

1

1 1

[ ] [ ]

[ ] [ ] 1

[ ] [ ] [ ]

t

LEAF LEAF L
i

t

L SK TRF EVL
i

t t

L SK TRF EVL
i i

Exp TIME pr i TIME q i

Npr i q i T p T f Tf

N pr i q i pr i T p T f Tf

=

=

= =

= ⋅

= ⋅ ⋅ + ⋅ + ⋅ + ⋅

 = ⋅ + + ⋅ + ⋅ 
 

∑

∑

∑ ∑

     (3.1-3) 

( )( )( )1L SK TRF EVL
N Exp q T p T f Tf= ⋅ + + ⋅ + ⋅  

The above equation, when compared with (3.1-1), 
indicates an interesting fact: optimizing a query 
distribution is equivalent to optimizing a single query 



 
whose length equals the expected range length (Exp(qL)). 
Thus, the optimal node size is also given by equation (3.1-
2), except that qL is replaced with Exp(qL). Furthermore, 
since Exp(qL) is the only information required, the amount 
of statistics that must be kept can be significantly reduced. 
To verify this, observe that pr[i] can be written as 
num_q[i]/total_q, where num_q[i] is the number of times 
that queries with range length qL[i] are raised, and total_q 
is the total number of queries. Therefore, Exp(qL) can be 
represented as:  

( )

( )

1

1

_ [ ]
[ ]

_

_1
             [ ] _ [ ]

_ _

t

L L
i

t
L

L
i

num q i
Exp q q i

total q

sum q
q i num q i

total q total q

=

=

 
= ⋅ 

 

= ⋅ ⋅ =

∑

∑

 

where sum_qL is the sum of the range lengths of all 
queries. Therefore, instead of maintaining qL[] and pr[], it 
suffices to keep values of sum_qL and total_q.  

In order to extend the above approach from uniform to 
arbitrary distributions, we maintain an “equi-length” 
histogram with the following information for each bini 
(1≤i≤numbin): (i) the number (ni) of records in the bin (ii) 
the range sum (sum_qLi) of queries that intersect the 
extent of bini (for a query that does not lie completely in 
the bin, only the covered part is added to sum_qLi), and 
(iii) the number total_qi of queries in bini. The node 
accesses for performing a query with range qL in bini are 
estimated as [TPZ01]: 

( ) 1i bin L
LEAF L

n num qNA q f
⋅ ⋅= +      (3.1-4) 

Using this estimation, we obtain the optimal node size 
POPTi for bini (nodes in the same bin have the same size) 
that minimizes the expected cost of queries in bini as:   

( )
( )Li i bin SK

OPTi

sp TRF sp EVL

Exp q n num T
p

b T b Tξ ξ

 ⋅ ⋅ ⋅ =
⋅ + ⋅ ⋅  

     (3.1-5) 

where Exp(qLi)=sum_qLi/total_qi. In the following sections 
we elaborate the update algorithms for adaptive B-trees. 
Table 3.1 summarizes the symbols that will be used 
frequently. 

 
TSK average seek time of a random access 
TTRF time for transferring one disk page to/from the 

main memory 
TEVL CPU time to evaluate a single record 
bsp number of entries contained in a page 
ξ average node utilization 
f average fanout of a node 
h height of an index 
N total number of records 
qL range length of a query 
numbin number of bins in the histogram 
ni number of records in bini 

sum_qLi sum of query range lengths in bini 
total_qi number of queries that intersect bini 

Table 3.1: Summary of frequent symbols 

3.2 Insertion and overflow handling 

Since an adaptive B-tree is maintained with the aid of a 
histogram, both the tree and histogram must be updated in 
an insertion. Updating the histogram, however, incurs 
little cost: it suffices to increment the number ni of records 
in bini where the new record is inserted. Furthermore, 
since the size of a histogram is very small (usually less 
than 1K bytes), this operation can be performed in 
memory. An insertion in the adaptive B-tree, on the other 
hand, is performed in a way similar to B-trees. The leaf 
node that accommodates the new entry is identified by 
examining the index keys of non-leaf nodes at each level 
(we omit the details since the process is the same as 
conventional B-trees), and the insertion terminates if no 
overflow occurs. 

When a node P generates an overflow, its optimal size 
is re-computed using equation (3.1-5), based on the 
current information (i.e., ni, sum_qLi, and total_qi) stored 
in the bini (1≤i≤numbin) that contains the extent of P. If the 
extent of node P intersects multiple bins, information is 
obtained from the bin that covers the largest part of P. 
Note that, because statistical information may have 
changed considerably since the last time that the size of P 
was computed (due to significant changes in the query 
patterns), the new optimal size can be much larger or 
smaller than its original value. In the sequel, we denote 
the old and new sizes of P as P.Sizeold and P.Sizenew 
respectively. In adaptive B-trees, an overflow is handled 
by examining the relationship between P.Sizeold and 
P.Sizenew, as summarized in Figure 3.2. Next, we discuss 
each case in detail. 

 

overflow P.Sizenew∈ (P.Sizeold, 2·P.Sizeold] 
 

node expansion 

node splitting 

generates an underflow 

P.Sizenew∈ [1, P.Sizeold] 

P.Sizenew∈ (2·P.Sizeold, +∞) 
  

Figure 3.2: Overflow handling in adaptive B-trees 

If P.Sizenew∈ (P.Sizeold, 2·P.Sizeold], no overflow is 
handled; we only need to expand node P to its new size, 
after which the number (i.e., bsp·P.Sizeold+1) of entries in 
P is within the range of [½·bsp·P.Sizenew, bsp·P.Sizenew] 
(i.e., greater than the minimum node utilization yet 
smaller than the node capacity). Since we aim at 
allocating sequential pages to a node, special care must be 
taken during the node expansion, if there are not enough 
consecutive vacant pages after those originally allocated 
to P. This is illustrated in Figure 3.3, where white blocks 
indicate vacant disk pages, grey blocks the occupied 
pages, and black blocks (page IDs 4, 5) the pages 
originally assigned to P, whose size must be expanded 
from 2 (pages) to 4. Since there is only one vacant page 
(i.e., block 6) after page 5, the content of P must be 
migrated to another place with at least 4 consecutive 
empty pages (e.g., blocks 9-12 in this case). Its original 
pages are marked vacant (freed) for future use.  
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Figure 3.3: An example of node expansion 

Because in adaptive B-trees the leaf pages are organized 
as a linked-list, moving the starting address of P requires 
updating the corresponding reference in its previous 
sibling node (denoted as Q). In Figure 3.3, the forward 
pointer of Q, which originally pointed to block 4, must be 
updated to 9 after the node expansion. Note that Q can be 
located via the “backward” pointer stored in P without 
traversing the non-leaf levels. The parent entry that points 
to P must also be updated. Figure 3.4 presents the pseudo-
code for node expansion. 
Algorithm Node_Expansion (P: the node that overflows) 
1. if there are at least P.Sizenew−P.Sizeold vacant pages 

subsequent to currently assigned pages of P 
2. mark these pages occupied and return 
3. else /*no enough vacant pages and migration is necessary*/ 
4. allocate P.Sizenew consecutive pages and copy the 

content of P to the newly allocated pages 
5. free the original pages of P (i.e., mark them vacant) 
6. retrieve the previous sibling Q of P via P.backward, and 

set Q.forward=P 
7. modify the reference in the parent entry of P 
end Node_Expansion 

Figure 3.4: Algorithm for node expansion 

In lines 1 and 2 we need to check/modify the vacancy 
status of a set of disk pages, which can be done by simply 
maintaining a bitmap where each bit corresponds to the 
status of one page. Such an approach is widely adopted in 
operating systems. The size of the bitmap is usually small 
enough to fit in the memory. For example, for an index 
with 1G bytes and formatted into 1K bytes/page, the 
bitmap contains 1M bits, which amounts to less than 
130K memory.  

For the second case (P.Sizenew≤P.Sizeold) an 
overflowing node P is split into several (≥2) nodes by 
distributing the entries evenly. There are multiple ways to 
decide the number NMSPLT of resulting nodes so that the 
number of entries in each node is within the range 
[½·P.Sizenew, P.Sizenew]. We use equation (3.2-1), which 
computes the minimum among all legal values for 
NMSPLT. Minimizing the number of nodes after splitting 
also reduces the number of nodes accessed during a 
query.  

( )
( )

. 1

.
sp old

SPLT
sp new

b P Size
NM

b P Size

 ⋅ +
=  ⋅  

     (3.2-1) 

Assume, for example, we are to insert a new key 80 into 
the tree of Figure 3.1, which generates an overflow in 
node B. The original size of B was 3, while, due to the 
change of histogram information, its new optimal size is 
2. Then, NMSPLT is computed as (3·3+1)/(3·2)=2, and the 
original entries are evenly distributed into two nodes B 
and D. A parent entry is inserted into the root C, and the 
final situation is shown in Figure 3.5. In general, overflow 

may propagate to nodes at higher levels, which are 
handled in the same way as in conventional B-trees (since 
their size is always 1).   
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Figure 3.5: A node splitting example 

Like node expansion, splitting may cause a set of 
consecutive disk pages to re-allocate. In some rare 
scenarios (e.g., the disk is over-fragmented) when such 
allocation fails, we gradually decrease P.Sizenew until such 
allocation is possible, which is always the case when 
P.Sizenew reaches the minimum size 1 (i.e., at this point 
the adaptive B-tree allocates pages in the same way as 
conventional B-trees).  
Algorithm Leaf_Split (P: the node that needs to be split) 
1. calculate NMSPLT as in equation (3.2-1) 
2. distribute entries in P evenly into NMSPLT nodes 
end Leaf_Split 
 
Algorithm Insert (new_e: the entry to be inserted, P: the current  

node being processed) 
1. if P is a leaf node 
2. enter new_e in P 
3. if P does not overflow 
4. return 
5. calculate the new size P.Sizenew for P 
6. if P.Sizenew∈ (P.Sizeold, 2·P.Sizeold]  
7. call Node_Expansion(P) and return 
8. elseif P.Sizenew≤P.Sizeold  
9. call Leaf_Split(P) and return 
10. else /*2·P.Sizeold<P.Sizenew*/   
11. call Leaf_Merge(P) and return /*Leaf_Merge is 

presented in the next section*/ 
12. else /*a non-leaf node*/ 
13. find the child node c_P to insert new_e /*this process is 

same as B-trees*/ 
14. call Insert(new_e, c_P) 
15. add/remove/modify pointers to child nodes (for node 

split, expansion, or merging) 
16. if P overflows that split into 2 nodes with even entries 

/*as in ordinary B-trees*/ 
end Insert 

Figure 3.6: Algorithm for leaf splitting and insertion 

In the last case where P.Sizenew>2·P.Sizeold, an underflow 
is generated because the new optimal size has increased 
significantly so that the number of entries in the original 
node is not enough for maintaining the minimum node 
utilization in the new node. This underflow is handled by 
node merging as described in the next section. Figure 3.6 
summarizes the leaf split and insertion procedures. 

3.3 Deletion and underflow handling 

Deletion of an entry e is performed by (i) first locating the 
leaf node P that contains e, (ii) removing e from P, and 
(iii) handling the node underflow if the number of entries 
in P is below the minimum node usage. Steps (i) and (ii) 



 
are the same as in B-trees, so we elaborate (iii) in the 
sequel. Similar to overflows, the size of a leaf node P is 
re-computed when it underflows, and the handling 
proceeds by examining the relationship between P.Sizenew 
and P.Sizeold, as shown in Figure 3.7. 

underflow P.Sizenew∈ (½·P.Sizeold, P.Sizeold] 
 

node contraction 

node merging 

generates an overflow 

P.Sizenew∈ [P.Sizeold, +∞) 

P.Sizenew∈ [1, ½·P.Sizeold) 
  

Figure 3.7: Underflow handling in adaptive B-trees 

Node contraction is performed if P.Sizenew∈ [½·P.Sizeold, 
P.Sizeold). Specifically, a node contraction simply reduces 
the size of a node to its new value, by freeing the “tailing 
pages” originally assigned to P. Assume, for example, the 
size of node P in Figure 3.3 is reduced from 2 (pages) to 
1; then block 5 becomes vacant for future use. Notice that, 
unlike node expansion, no content migration is necessary. 

If P.Sizenew≥P.Sizeold, P is merged with one or more 
sibling nodes. To illustrate this, we successively remove 
entries 45, 50, 55 from node B in Figure 3.5, causing it to 
underflow. Assume its new optimal node size is 5, 
(capacity is 15 entries). Then, a sibling (let D) is chosen to 
merge with B, which leads to a total of 7 entries (2, and 5 
from B, D respectively) in the resulting node. Since 7 is 
still smaller than the minimum node utilization (i.e., 
15/2=8 entries), the merging is continued with another 
sibling (node A in this case), after which the final node 
contains 13 entries and the merging step terminates (in 
general the merged node may need to be split if it 
overflows). This process is shown in Figure 3.8, where 
the deletion propagates to upper levels, which results in 
only 1 level in the final tree. Figure 3.9 presents the 
pseudo-code for merging leaf nodes; merging non-leaf 
nodes is identical to B-trees. 

5 10 15 20 25 30

B D

A merge

merge

35 40 60 65 70 75 80

size=5

 
Figure 3.8: A node merging example 

 

Algorithm Leaf_Merge (P: the current leaf node) 
1. calculate the new size P.Sizenew for P, and let P.num be the 

number of entries in P 
2. allocate P.Sizenew continuous disk pages and copy the 

content of P to these pages 
3. free the original pages of P 
4. while (P.num<½·P.Sizenew) 
5. identify a sibling node S 
6. copy the content of S to P, and free the pages of S 
7. P.num=P.num+S.num 
8. if P.num>P.Sizenew then call Node_Split(P) /*the 

merged node overflows*/ 
end Insert 

Figure 3.9: Algorithm for node merging 

In the third case (P.Sizenew<½·P.Sizeold), an overflow is 
generated, which is handled by node splitting. Note that 
this is the reverse of the case P.Sizenew>2·P.Sizeold in node 
overflows. The entire deletion algorithm is presented in 
Figure 3.10. 
Algorithm Delete (new_e: the entry to be deleted, P: the current 

node being processed) 
1. if P is a leaf node 
2. remove new_e from P 
3. if P does not underflow then return 
4. calculate the new size P.Sizenew for P 
5. if P.Sizeold∈ (P.Sizenew, 2·P.Sizenew] 
6. call Node_Contraction(P) and return /*we omit 

Node_Contraction because it is straightforward*/ 
7. elseif P.Sizeold≤P.Sizenew 
8. call Leaf_Merge(P) and return 
9. else /*P.Sizeold>2·P.Sizenew */   
10. call Leaf_Split(P) and return /*Leaf_Split was 

presented in the last section*/ 
11. else /*a non-leaf node*/ 
12. find the child node c_P to find new_e /*this process is 

same as B-trees*/ 
13. call Delete(new_e, c_P) 
14. add/remove/modify pointers to child nodes (for node 

split, expansion, or merging) 
15. if P underflows that handles it as in ordinary B-trees 
end Delete 

Figure 3.10: Algorithm for deletion 

3.4 Performance of adaptive B-trees 

We first show that the space complexity of adaptive B-
trees is O(N/bps) pages (i.e., asymptotically optimal), 
where N is the total number of records indexed, and bps 
the maximum number of entries in a single page. Let nleaf 
be the total number of leaf nodes, and nsi (1≤i≤ nleaf) the 
size of the ith node. Since each node is at least half full, 
we have: 
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Furthermore, because each non-leaf node indexes at least 
½·bps= O(bps) children, the total number of nodes at level j 
(1≤j≤h-1, where h is the height) is O(N/bps 

j+1), which 
establishes the optimal size bound: 
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In fact, the size of an adaptive B-tree is usually slightly 
smaller than that of its conventional counterpart because it 
contains fewer intermediate nodes. Similarly, it can be 
shown that the performance of adaptive B-trees for range 
queries is also asymptotically optimal: O(logbN+K/bsp), 
where K is the number of records retrieved.  

Adapting the cost model of B-trees to adaptive B-trees 
is straightforward. Consider a query q in bini (1≤i≤ 
binnum). Since nodes in bini have the same size Pi, by 
replacing f in equation (3.1-4) with ξ·bsp·Pi, we have (qL is 
the range length of the query): 
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Given that one node (with size 1) is accessed at each non-
leaf level, the total query response time is: 
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(3.3-1) 

The performance speedup over conventional B-trees can 
be obtained by comparing the above cost model with that 
of B-trees: 
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For large ni or qL (i.e., high data cardinality or long query 
ranges) the speedup converges to: 
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For shorter queries, however, the speedup diminishes as 
qL decreases. Obviously, if all queries are equality 
selections (qL =0), the adaptive tree degenerates to a 
conventional B-tree.  

The update cost is also very closely related to the node 
size. If the size of the leaf node P to be updated is P.Size, 
then the update needs to visit O(logbN+P.Size) disk pages 
in the worst case. In order to achieve the optimal update 
cost bound, we may prevent the node from growing 
beyond a constant size by setting an upper limit CSIZE to 
the node size, so that O(logbN+P.Size) = O(logbN+CSIZE) 
= O(logbN). To achieve this, the update algorithms need to 
set the node size to the minimum of the decided value and 
CSIZE. Notice that the resulting tree still maintains the 
asymptotically optimal query performance.  

In practice, if minimizing the update time is important 
(e.g., for frequent updates), the (leaf) node size 
computation can consider both the update and query 
frequencies. Specifically, we may maintain a separate 
histogram (also very small in size) that stores, for each 
bini, the update frequency ui (0≤ui≤1) among all updates 
and queries in the bin (so the query frequency can be 
obtained as 1−ui). Since an update usually reads and 
writes a leaf page once, its cost (at the leaf level) can be 
represented as: 

( )2LEAFUpdt SK i TRF sp i EVLTIME T P T b P Tξ= + ⋅ + ⋅ ⋅ ⋅  

Thus the expected weighted cost of updates and queries 
is: 

(1 )LEAFU Q LEAFUpdt i LEAF iTIME TIME u TIME u+ = ⋅ + ⋅ −  

where TIMELEAF is given in equation (3.1-3). Therefore, 
the node size that minimizes the above cost can be 
obtained as: 
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For ui=1 (i.e., only updates), POPTi=1.  

3.5 Bulkloading and partial rebuilding 

If all the data are known a-priori, the adaptive B-tree can 
be bulkloaded efficiently from the list of records sorted by 
their index keys. The algorithm differs from traditional 
bulkloading in that, whenever a leaf node is initiated, its 
size is determined according to the information stored in 
the histogram bin that covers the starting key of the node. 
A new node is initiated after the previous one has been 
fully filled.  

Although bulkloading allocates continuous pages to 
sibling nodes, the organization of the conventional B-tree 
will deteriorate due to subsequent updates. This is 
illustrated in Figure 3.11, where pages 1-100 correspond 
to the leaf nodes of a bulk-loaded conventional B-tree 
(i.e., adjacent pages correspond to sibling nodes). 
Assume, for example later changes cause page 2 to split, 
which results in a new node stored in page 201, breaking 
the adjacency between pages 2 and 3. Thus, a query that 
retrieves these pages must also visit page 201 (hence 
accesses to pages 2, 201, 3 are no longer sequential). 
Similarly, the split of page 3 (leading to page 202) breaks 
the adjacency of pages 3 and 4.    

. . .. . .1 2

leaf nodes bulkloaded

1003 201

created from the
split of page 2

202

created from the
split of page 3

 
Figure 3.11: Deterioration of traditional bulkloading 

In general, each node split will necessarily break the 
adjacency of the bulk-loaded pages. Thus, the benefit of 
bulkloading vanishes completely when all pages 1-100 
issue splits (after which all node visits are random 
accesses). To see how “soon” this can happen, assume 
that a node contains on average f entries after bulkloading 
(i.e., N/f leaf nodes); then a split incurs after bsp−f entries 
are inserted in the node. It follows that all nodes may split 

after ( )sp
N b ff ⋅ −  insertions. On the other hand, the update 

algorithms described in previous sections allow the 
adaptive B-tree to restructure, by re-computing the size of 
a node each time it generates an over-/under- flow.  

A problem occurs when the data are relatively static 
(i.e., there are no overflows or underflows to trigger re-
organization) whereas the query patterns change 
significantly. In this case an alternative mechanism, called 
partial rebuilding, restructures the bins whose optimal 
node size has changed. To partially rebuild the nodes in a 



 
single bin efficiently, we adopt an approach that is similar 
to the bulkloading algorithm. As shown in Figure 3.12, 
the process starts from the node A1 whose extent is the 
leftmost in the bin, and copies its content to a new node 
B1 whose size is optimized. If the entries in A1 are 
exhausted, rebuilding proceeds with its sibling node A2 
until all nodes in the bin have been processed (nodes X 
and Y are not modified as they do not belong to the bin). 
Similarly, if node B1 has been filled, a new node B2 is 
initiated, and this process is repeated. Nodes in higher 
levels are constructed similarly. After rebuilding, the 
forward (backward) pointer of node X (Y) is modified to 
B1 (Bv), and all disk pages assigned to the original nodes 
(e.g., A1, …, Au) are freed for future use. 

the bin that needs to be rebuiltold node leaf level

A1 A2 Au YX . . .

B
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Figure 3.12: Partial rebuilding 

Let pold and pnew denote the old and new node sizes 
respectively; then rebuilding the leaf level involves 
reading ni/(ξ·bsp·pold) and writing ni/(ξ·bsp·pnew) nodes. 
Since the number of intermediate nodes that need to be 
modified is significantly smaller than that of leaf nodes, 
the total rebuilding cost is dominated by the time of 
processing the leaf level: 
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Note that nodes (e.g., A1, …, Au in Figure 3.12) can still 
be used to answer queries during rebuilding since their 
pages are freed only after the process terminates, at which 
point the new nodes (e.g., B1, …, Bv) are integrated into 
the tree. Moreover, rebuilding of a bin is necessary only 
when (i) very few (or zero) nodes in the bin incur 
structural changes (otherwise restructuring is performed 
by overflow / underflow handling), and (ii) the expected 
qL in the bin has deviated from its previous value over a 
certain threshold (otherwise the performance drop is not 
significant). In fact, since the query patterns in many 
applications are relatively stable [WAA02] (especially for 
patterns recorded over long periods), we believe that 
rebuilding is rare in practice.  

4. Adaptive R-Trees 

The method of converting B-trees to adaptive B-trees can 
be extended to general structures using analytical models 
for the number of node accesses. Specifically, the 
framework involves two steps: (i) deciding the optimal 
node size as a function of data and query parameters, and 
(ii) modifying the original update algorithms with the 

following principle: whenever a node is created or incurs 
over/under-flows, its size is re-computed using the current 
statistical information. In the sequel, we demonstrate this 
by discussing adaptive R-trees optimized for window 
queries. 

To avoid excessively complex equations, we focus on 
the so-called quadratic window query, whose extents 
along the x- and y- dimensions have equal lengths qL. The 
application to queries with arbitrary extents in higher 
dimensions is straightforward. Two parameters are needed 
to describe a uniform data distribution: (i) the number N 
of spatial objects, and (ii) their density D. Specifically, the 
density of a set of rectangles is defined as the average 
number of rectangles that contain a given point in the data 
space. Equivalently, D can be expressed as the ratio of the 
sum of the areas of all rectangles over the area of the data 
space. The performance of R-trees has been very well 
studied (see [PSW95, TSS00]). The following model 
[TSS00] gives the number of leaf node accesses for 
uniform data distribution (where f0 is the fanout, D0 the 
density, and N0 the number of leaf nodes):  
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Hence the total cost (response time) of processing the leaf 
level is (p0 is the size of leaf nodes): 
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Obtaining the optimal node size, however, is not 
straightforward because the solution of the above 
derivative requires numerical approaches that are too 
expensive to compute in real-time. Instead of computing 
the derivative, we adopt the algorithm in Figure 4.1 to 
find the optimal size directly with equation (4-2). The 
algorithm starts with an initial size p=pGUESS, and then 
refines it iteratively by modifying p towards minimizing 
the access time (line 7). This procedure is repeated until 
the optimal size has been found or a certain time limit 
expires (e.g., 0.1 seconds), after which the current value 
of p is returned. Since the optimal node sizes are usually 
integers below 100, this algorithm finds the optimal 
solution very quickly, as proved in our experiments. 

Unlike range queries in B-trees, answering a window 
query usually requires visiting multiple nodes at all levels 
(except the root) of the R-tree. Hence sizes of non-leaf 
nodes should also be optimized to improve performance. 
Similar to the leaf level, the number NAi of node accesses 
at level i (1≤i≤h−1) can be written as (fi is the fanout, Di 
the density, and Ni the number of level i nodes):  
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The processing cost at level i is similar to equation (4-2), 
and the optimal node size can be found also with the 
algorithm in Figure 4.1.  

 
Algorithm Find_Optimal_Node_Size (TIME(p): the time 

function with node size p as parameter) 
1. p = pGUESS /*an initial guess value*/ 
2. t0 = TIME (p) /*the access time if the node size is p*/ 
3. set δp to some positive value 
4. do { 
5. p = p+δp 
6. t1 = TIME (p) 
7. if t1 > t0 then δp = −δp/2   /*if t1 ≤ t0 then do nothing*/ 
8. t0 = t1 
9. }while (δp≠0 && time limit has not expired) 
10. return p 
end Find_Optimal_Node_Size 

Figure 4.1: Algorithm for finding the optimal node size 

Extending the above analysis to general query distribution 
deservers further elaboration, because, unlike adaptive B-
trees, the problem is no longer equivalent to optimizing 
the query with the expected length Exp(qL). To illustrate 
this, assume the existence of arrays qL[] and pr[] (with 
similar semantics to those in section 3.1). The expected 
processing cost at the leaf level is: 
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Therefore, instead of keeping qL[] and pr[], it suffices to 

maintain the total number of queries, the sum of query 
lengths, and the sum (sum_qL

2) of square lengths (i.e., the 
area of the query). Similar discussion applies to higher 
levels. To extend the analysis to arbitrary distributions, 
we maintain a histogram where each bin corresponds to 
the cell of a regular grid. The following information is 
stored in each binj (1≤j≤numbin): (i) number (nj) of objects 
in binj, (ii) total number of queries (total_qj) whose 
extents intersect that of binj (iii) sum (sum_qLj) of length, 
and (iv) sum (sum_qL

2
j) of areas of queries in binj. For a 

query (as in Figure 4.2) that crosses the boundary of binj, 

1 2q q⋅ , and q1·q2 are added to sum_qLj and sum_qL
2
j 

respectively. 

q
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Figure 4.2: A query that crosses the boundary of a bin 

The cost of processing in binj is represented as in (4-3) 
with the following modifications (recall that D0 is 
computed from D as in equation 4-1): 
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The optimal node size (for all levels) can also be found 
with the algorithm in Figure 4.1.  

To demonstrate the structures of adaptive R-trees, we 
use the density map [TSS00] of a real dataset that 
contains MBRs of 560K roads in North America (Figure 
4.3a). Figure 4.3b shows the size distribution of leaf 
nodes of an adaptive tree optimized for quadratic queries 
with qL=1% (i.e., the query area covers 0.01% of the 
universe). Notice that nodes that correspond to low 
density have the minimum size 1 while those covering 
denser areas are larger. Figure 4.3c shows the node 
distribution for the tree optimized for qL=10%, where the 
node sizes increase considerably. 

Our implementation is based on R*-trees [BBKS90] 
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Figure 4.3: Visualization of the structure of adaptive R-trees 



 
because they are considered the most efficient R-tree 
variation. The update algorithms of adaptive R*-trees are 
similar to those of B-trees. It is worth mentioning only the 
following basic differences: (i) the minimum node 
utilization is set to 40% [BBKS90] (which is necessary 
for the efficiency of the split algorithm), (ii) merging is 
never performed because in R*-trees entries in a node that 
underflows are re-inserted and (iii) there do not exist 
pointers between sibling nodes. Finally, the bulkloading 
and partial rebuilding techniques also extend to R-trees 
with straightforward modifications. 

5. Experiments 

In this section we demonstrate the efficiency of adaptive 
index structures with extensive experimental evaluation. 
The adopted values for TSK, TTRF are 10ms and 
1ms/Kbytes respectively, which are close to the 
specifications of recent products from renowned hard disk 
vendors [Web]. To estimate TEVL, we assume each entry 
evaluation consumes 1000 clock ticks, leading to around 
1µs for a 1GHz CPU. The page size (also the size of a 
node in conventional B- and R-trees) is set to 1K bytes in 
all cases. With this size, the maximum number of entries 
in a page is 125 (50) for both B- (R-) and adaptive B- (R-) 
trees. We start with results on adaptive B-trees and then 
discuss R-trees. 

The first set of experiments explores the effects of 
data and query parameters on performance. We use 
synthetic datasets (cardinality N 100K-2M) that contain 
records whose search keys are uniformly distributed in the 
universe (i.e., a unit line segment). The sizes of the 
resulting B-trees and adaptive B-trees are similar (around 
11.5 Mbytes for 1M objects), with adaptive trees being 
slightly smaller. Then we apply query workloads, each 
consisting of 500 queries (also uniformly distributed in 
the universe) with the same query length qL. The query 
length (selectivity) of different workloads varies from 0 
(workloads consisting solely of equality selection queries) 
to 2% of the universe. Notice that, since both data and 
query distributions are uniform, all nodes in the adaptive 
trees have the same size.  

Figures 5.1a shows the speedup (i.e., the total cost of a 
workload on the B-tree over that on the adaptive tree) as a 
function of qL for the dataset with N=1M records. Figure 
5.1b illustrates the speedup as a function of N for qL=1%. 
Adaptive B-trees are clearly better in all cases except for 
qL=0% (where they degenerate to conventional B-trees). 
As expected, the speedup increases with qL and N, since 
more records are retrieved, which, in turn, increases the 
number of random accesses for conventional B-trees. In 
addition, the diagrams contain the estimated speedup 
obtained from equation (3.3-2), which is very close to the 
actual value. Further, as discussed in section 3.4, the 
speedup tends to converge to a value, estimated by (3.3-
3), for large query extent or high cardinality.   
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Figure 5.1: Effects of data and query parameters 

The next experiment simulates a situation where the 
dataset (1M records) is uniform, but queries have different 
lengths in different parts of the data space. Statistical 
information is kept in a histogram consisting of 50 bins. 
Each bin is associated with an expected query length, 
which follows a gaussian distribution in the range [0, 2%]. 
The bins at both ends of the universe correspond to the 
shortest (i.e., most selective) queries, while bins at the 
centre to the longest ones. Figure 5.2a shows the sizes of 
leaf nodes of the respective adaptive tree in different bins 
(the x-axis corresponds to the 50 bins). The sizes follow 
the expected query distribution: nodes in bins at both ends 
are the smallest while the one at the centre is the largest 
(up to 37 pages). Observe that the optimal node size 
varies significantly with the query length, which indicates 
that using a single node size throughout the tree cannot 
optimize query performance.  
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(a) Node size vs. bin (b) Query cost vs. bin 

Figure 5.2: Gaussian workload and uniform dataset 

Then we create a workload of 5000 queries (to ensure that 
each bin receives enough queries) according to the 
expected distribution. Figure 5.2b compares the average 
performance of B- and adaptive trees within each bin. It is 
clear that the conventional tree is comparable to the 
adaptive version only in bins where queries have very 
short lengths (close to 0). Observe (for all experiments) 
that although a large node size (e.g., 8K bytes) for 
conventional B-trees will decrease the speedup of long 
queries, the gain with respect to short ones (e.g., equality 
selections) will increase accordingly; thus, the overall 
benefit of the adaptive structure will remain more or less 
the same.  

Figure 5.3 shows results of a similar experiment for a 
dataset (cardinality 1M) with records whose search keys 
follow a gaussian distribution. The only difference from 
Figure 5.2 is that the node size (and the speedup) in the 
central bins is now larger due to the higher density in the 



 
corresponding part of the data space. In the sequel, we 
only show results for gaussian workloads on uniform 
datasets. 
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Figure 5.3: Gaussian workload and Gaussian dataset 

To evaluate the effect of buffering, we introduce caches 
with sizes up to 50% of the trees (1M records). As shown 
in Figure 5.4, the speedup declines with the buffer size, 
which is expected because caches decrease the disk access 
probability. Notice, however, that significant speedup is 
achieved even for buffers containing 50% of the tree.    
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Figure 5.4: Speedup vs cache size 

To study the effect of updates, we perform a “mixed” 
workload of 10,000 queries and updates (involving equal 
numbers of insertions and deletions). Figure 5.5 shows the 
speedup as a function of the percentage of updates in the 
workload. The performance gain is considerable in all but 
the cases where most operations are updates. The update 
cost of the adaptive tree is slightly higher since it needs to 
(sequentially) read multiple pages for a node and, 
potentially, relocate some pages. 
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Figure 5.5: Speedup vs update frequency 

In order to demonstrate the performance deterioration 
after bulkloading, we create a dataset with 500K uniform 
records, and bulkload a B- and an adaptive B-tree. Then, 
we perform another 500K insertions. Figure 5.6a shows 
the query cost of the two structures as a function of the 
number of insertions (5 means 50K insertions are 
performed and so on). Before 150K insertions both trees 

have similar performance because most accesses are 
sequential. After that, the B-tree starts to incur node splits 
that break the sibling adjacency (as discussed in section 
3.5), and its performance deteriorates very quickly. The 
cost increase of the adaptive tree, on the other hand, is 
very slow because it adjusts node sizes to reduce page 
accesses. Figure 5.6b shows the speedup as a function of 
the number of insertions.  
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Figure 5.6: Deterioration after bulkloading 

Finally we test the generality of the proposed techniques 
by comparing adaptive R*- trees with their conventional 
counterparts using the NA dataset (described in section 4). 
We apply workloads of 500 (quadratic) window queries 
whose distribution in the space follows that of the data (in 
order to avoid meaningless queries in empty areas). The 
histogram contains 10×10 bins. Figure 5.7 shows the cost 
of R*- and adaptive R*-trees for workloads with qL 
ranging from 0% (i.e., point queries) to 10% (i.e., 
covering 1% of the space). Similar to B-trees, the 
conventional tree is comparable to the adaptive one only 
for small queries, and the speedup increases with the 
query size.  
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Figure 5.7: Total cost vs qL for R-trees 
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Figure 5.8: Speedup in different areas  



 
Figure 5.8 shows the speedup for queries (qL=5%) at 
different positions in the data space. Observe that larger 
speedup is achieved in high-density areas. Figure 5.9, 
measures the processing time (qL=5%) as a function of the 
cache size (depicted as the percentage of the tree). Large 
buffers favour both trees and the adaptive tree achieves 
significant speedup in all cases. Finally, results about 
update frequency and performance deterioration of 
bulkloading are omitted because they are similar to those 
of B-trees. 

0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40% 50%

cache size

processing time (sec)

adaptive R-tree

 
Figure 5.9: Total cost vs cache size for R-trees 

6. Conclusion 

While the node size has a significant effect on the 
performance of database indexes, in practice the decision 
is usually made in an ad-hoc manner. This is because a 
good choice for the size depends on several data and 
query parameters, which are often unavailable in advance 
and highly dynamic. In this paper we introduce the 
concept of adaptive index structures, which dynamically 
adapt their node sizes (according to these parameters) to 
minimize the query cost. We also propose a general 
framework for converting traditional structures to 
adaptive versions, through a set of update and bulkloading 
algorithms. The only requirement for our methods is the 
existence of analytical models that estimate the number of 
node accesses. Such models have been proposed for most 
popular structures rendering our framework directly 
applicable to them.   

Notice that even if an optimal node size for a 
conventional index can be determined in advance, this 
size would apply to the whole structure. On the other 
hand, the proposed indexes permit variable node sizes that 
follow the query characteristics in different parts of the 
data space. Given the ubiquitous use of histograms in 
modern databases, adaptive structures can take advantage 
of statistical information to accelerate performance. 
Analytical and experimental evaluation confirms that 
adaptive indexes outperform conventional counterparts 
significantly in a wide range of scenarios.  

Furthermore, this work also initiates numerous 
research problems. For example, in this paper the node 
size is optimized without buffers. Performance in the 
presence of buffers can be further improved if the node 
size is optimized considering the cache size. Another 
interesting direction is to investigate the application of the 

techniques to structures, for which there do not exist any 
cost models. Sampling approaches, for example, may be 
used in this case to find a good (although perhaps not 
optimal) node size. Finally, the methods can be extended 
to other methodologies (e.g., hashing) that involve disk 
access issues.  
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