
Adaptive Index Structures

Yufei Tao
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

taoyf@cs.ust.hk

Dimitris Papadias
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

dimitris@cs.ust.hk

Abstract

Traditional indexes aim at optimizing the node
accesses during query processing, which,
however, does not necessarily minimize the total
cost due to the possibly large number of random
accesses. In this paper, we propose a general
framework for adaptive indexes that improve
overall query cost. The performance gain is
achieved by allowing index nodes to contain a
variable number of disk pages. Update
algorithms dynamically re-structure adaptive
indexes depending on the data and query
characteristics. Extensive experiments show that
adaptive B- and R-trees significantly outperform
their conventional counterparts, while incurring
minimal update overhead.

1. Introduction

A single disk access usually includes (i) a seek operation
that positions the disk head at the requested sector
(including cylinder seek and rotation), and (ii) data
transfer to/from the main memory. Thus the total query
cost is the sum of disk seek, data transfer, and CPU time.
Although significant advances have been made to
accelerate CPU processing and data transfer, there is little
progress on improving the seek time due to the mechanic
nature of the disk head movement. The average seek time
of latest models from major hard disk vendors, for
example, is around 10ms (almost the same as 10 years
ago), while the CPU costs and data transfer rates are
usually 1-2 orders of magnitude smaller. Such
performance difference is expected to become even
greater in the future, which renders seek time the
dominating factor in query cost.

Existing indexes focus on minimizing the number of

node accesses required for query processing. Since a
single node usually corresponds to a constant number
(typically, one) of disk pages, fewer node accesses lead to
a smaller number of page accesses. Minimizing the page
accesses, however, does not necessarily optimize the total
query cost. Consider, for example, that query q1 accesses
20 pages whose addresses are consecutive, while q2 must
visit 10 random pages (i.e., non-consecutive ones). Then,
the cost of q1 is approximately TSK+20·TTRF+20·TCPU,
where TSK, TTRF, TCPU are the costs of performing one disk
seek (around 10ms), transferring one page (1ms/page),
and processing the records in one page respectively
(<0.1ms/page). Notice that only one disk seek is required
to visit continuous pages (i.e., sequential accesses).
Similarly, the cost of q2 is 10·TSK+10·TTRF+10·TCPU (ten
seeks must be performed to locate all pages, i.e., random
accesses). Given that, TSK is usually significantly more
expensive (over an order of magnitude) than TTRF and
TCPU, processing q1 can be much cheaper than q2.

The design of traditional indexes usually overlooks the
difference between sequential and random accesses. Since
the pages allocated to sibling nodes are often not
consecutive, a query (such as q2) may incur a large
number of random accesses. The traditional method to
reduce random accesses in databases (and general file
systems) is to re-organize the data pages by de-
fragmentation. This approach, however, has several
serious drawbacks. First, re-organization involves some
expensive operations: (i) moving (i.e., reading and
writing) a large number of pages, and (ii) correcting
mutual references (e.g., pointers from parent index nodes
to their children, references to foreign keys, etc).
Particularly, since references are ubiquitous (especially
for databases with complex ER schemata), correcting
them usually involves updating a very large part of the
database. Second, a good page organization may soon
degenerate by subsequent updates, in which case the
benefit of re-organization vanishes in spite of its huge
cost.

One approach to remedy this is to allocate several
continuous pages to a node at a time. Thus, the query q2
mentioned earlier visits one leaf node (with ten pages) to
retrieve the same content, which reduces the random
access (i.e., seek) time. Setting the node size to a fixed
value, however, only favours queries with specific

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

selectivity; queries with different selectivity are optimized
with different node sizes. Furthermore, to minimize the
total cost, the data transfer and CPU time must be
considered (in conjunction with the seek time).

Existing indexes are built by taking into account only
the data distribution. In this paper, we introduce adaptive
index structures that also consider query characteristics.
Statistical information about query patterns is usually
stored as histograms in the log of database systems.
Taking advantage of this information to adapt indexes can
improve their performance considerably. This
improvement is achieved by using variable node sizes in
different portions of the tree. In particular, each node size
optimizes the average response time for the data and
query distributions specific to the data space covered by
the node. Carefully designed update algorithms allow
adaptive indexes to re-structure as the distributions
change. Analytical and experimental comparison proves
that adaptive structures significantly outperform their
conventional counterparts.1

The rest of the paper is organized as follows: section 2
introduces related work and section 3 describes the
motivation and concrete algorithms of our adaptive
framework using B-trees as an example. Section 4 extends
the concept to R-trees and section 5 presents an extensive
experimental evaluation to demonstrate the efficiency of
the proposed methods. Section 6 concludes the paper with
directions for future work.

2. Related Work

We focus on selection queries in traditional (i.e., B-trees)
and multidimensional (R-trees) access methods. A
selection query in relational databases specifies a 1D
range [qS, qE] where qS≤qE, and retrieves all records r
whose keys r.key∈ [qS, qE]. Given a B-tree that indexes the
keys, the query is processed as follows: first, the leaf page
that contains the starting key qS is located by following a
path from the root to the leaf level; then, the sibling leaf
pages are retrieved (by traversing the links among them)
until the one that contains the ending key qE has been
reached. This is illustrated in Figure 2.1 (each page
contains 3 entries), where the query [40, 75] visits nodes
H, F, C, D, and E.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

5 20 35 50 65

5 50

A B C D E

F G

H

Figure 2.1: A conventional B-tree

The R-tree [G84, SRF87, BKSS90] can be viewed as a
multi-dimensional extension of B-trees for spatial objects.

1 Notice that the problem here is different from that of choosing
a suitable page size for a file system, where a fixed size is
decided when the system is set up.

Figure 2.2a shows an example where 7 objects (grey
rectangles) are clustered into 3 leaf nodes R1, R2, and R3
that are further grouped into 1 root node R (Figure 2.2b).
Each non-leaf entry maintains a Minimum Bounding
Rectangle (MBR) that encloses all objects in its sub-tree
(e.g., e1.MBR bounds all objects in R1). The counterpart of
selection queries in R-trees (and multi-dimensional access
methods in general) is the window query, which specifies
a rectangle q and retrieves all the objects that intersect q.
The R-tree answers a window query q as follows. The
root R is first retrieved and the entries inside it are
compared with q. The child node of e1 is not visited
because its MBR does not intersect q (so none of the
objects in its sub-tree can intersect q). On the other hand,
non-leaf entries whose MBRs intersect q must be
searched. As a result, in Figure 2.2, leaf nodes R2 and R3
are accessed, where objects o6, o7, and o8 are retrieved.

(

(

R

query q

R

R

R3

o 1

o 2

o 3

o 4

o 5

o 6
o 7

o 8

1

2

e 1 .MBR)(

e 2 .MBR)

e 3 .MBR

e
1

R

e
2

e
3

o
4

o
5

o
6

o
7

o
8

o
1

R

o
2

o
3

1 R2
R3

(a) Grouping of rectangles (b) The R-tree
Figure 2.2: An R-tree example

The concept of variable node sizes has been applied to the
X-tree [BKK96], an optimized version of R-trees for
high-dimensional data. A supernode consists of numerous
sequential pages in order to avoid node splitting that will
lead to significant overlap between the MBRs of non-leaf
entries. Whereas sizes of supernodes depend only on the
data characteristics, node sizes of adaptive structures
depend on both data and query distribution. Furthermore,
the concept of supernode does not extend to other
structures, while most tree indexes can be transformed to
adaptive versions.

During the construction of an adaptive structure, we
maintain a histogram that stores a small amount of
statistical information about data and query distributions.
The use of histograms is crucial for effective query
optimization, and has received considerable research
attention. Existing approaches can be classified into two
categories depending on whether they take into account
only the data distribution [HS92, IP95, GM98, APR99,
WAA01], or also consider the query patterns [CR94,
GLR00, BCG01, WAA02]. Although our framework can
be used with any histogram, for the shake of simplicity
and generality, we adopt the “equi-length” method (in fact
more sophisticated histograms lead to even better
performance). Specifically, the data space is divided into
numbin bins with equal extents, and statistical information
is maintained for each bini (1≤i≤ numbin) individually.
Obviously larger numbin leads to better estimation, but
increases the storage and computational overhead.

3. Adaptive B-Trees

The general idea of adaptive B-trees is to allow nodes to
span several pages based on the average query length in
the corresponding part of the data space. Figure 3.1 shows
an adaptive version of the B-tree in Figure 2.1 assuming
that the expected selectivity of queries in the range [5,30]
corresponds to two pages, while that of queries in the
range [35,75] corresponds to three pages. The sizes of
nodes A and B are 2 and 3 respectively, following the
expected selectivity. The disk pages assigned to the same
node are consecutive so that, after locating the first page,
accesses to the others are sequential. All non-leaf nodes
have the minimum size (one page per node). Notice that,
the height of the tree is lower than in Figure 2.1 because
the number of leaf nodes is smaller. A query [40, 75] only
needs to visit 2 nodes (a total of 4 pages) incurring 2
random accesses, instead of 5 for the B-tree in Figure 2.1.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

5 35

(size=3)

(size=1)

backward
pointer of B

forward pointer of A

C

B(size=2)A

Figure 3.1: An adaptive B-tree example

Adaptive B-trees, like their traditional versions, ensure
minimum node utilization (typically, 50%). However,
since nodes have variable capacity, the minimum number
of entries in a node may vary. The capacities of nodes A,
B in Figure 3.1, for example, are 6 and 9 entries
respectively; as a result their minimum utilization is 3 and
5. An overflow (underflow) occurs when the number of
entries in a node is beyond (below) the capacity (the
utilization).

Section 3.1 derives the optimal node size based on a
model that predicts performance in terms of node
accesses, and sections 3.2 and 3.3 describe update
algorithms. The performance of adaptive B-trees is
analyzed in section 3.4, while section 3.5 discusses
bulkloading and partial rebuilding techniques.

3.1 Optimal node size

Each node in the B-tree is associated with a range of keys,
which we call the extent of the node. The extent of node A
in Figure 2.1, for example, is [5, 20). A node will be
visited by a range query [qS, qE] if and only if its extent
intersects the query range. In particular, for uniform data
distribution, extents of nodes at the same level are
approximately the same. Assuming that f is the average
fanout of a node, and N the total number of records
indexed, the extent of a leaf node corresponds to f / N of
the entire data space (assumed to be a unit line segment in
the sequel). The probability PRINTS that the extent of a
node intersects a query with length qL=q.S−q.E is [TSS00]:

INTS L
fPR q N= +

Since the total number of leaf nodes is N / f, the expected
number of leaf node accesses is:

() 1LEAF L INTS L
N NNA q PR qf f= ⋅ = ⋅ +

If each node contains p pages, f equals ξ·p·bsp where bsp is
the maximum number of entries in a single page (i.e.,
p·bsp corresponds to the node capacity), and ξ the average
node utilization (common value 69% [TSS00]). A node
access involves the following costs: (i) TSK time to
perform a disk seek operation, (ii) p·TTRF time to transfer
p pages to the memory, and (iii) f·TEVL (CPU) time to
process all the entries in the node. Hence, the overall
query time at the leaf level is:

() () ()

() () 1

LEAF L LEAF L SK TRF EVL

L SK TRF EVL

TIME q NA q T p T f T

N q T p T f Tf

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅

 (3.1-1)

Taking the derivative of the above equation with respect
to p we have (after applying f=ξ·p·bsp):

()
2

1LEAF L L SK
TRF sp EVL

sp

TIME q q N T
d T b T

dp b p
ξ

ξ
⋅ ⋅= + ⋅ ⋅ − ⋅

⋅

The optimal node size that minimizes TIMELEAF can be
obtained by setting the above equation to 0:

() ()
L SK

OPT L

sp TRF sp EVL

q N T
p q

b T b Tξ ξ

 ⋅ ⋅ =
⋅ + ⋅ ⋅  

 (3.1-2)

This equation suggests that the optimal node size depends
on both data and query characteristics. Specifically,
higher N or longer qL leads to larger optimal size as the
number of retrieved records increases (thus, more data
pages are retrieved). A faster CPU or higher data transfer
rate (i.e., smaller TEVL or TTRF respectively) also increases
the size because the I/O cost will account for a higher
percentage in the total cost. The optimal size given in
(3.1-2) is for leaf nodes, while for non-leaf nodes, the
optimal size is always 1, because only one node is
accessed at each non-leaf level. Setting the node size
higher results in the same seek time (of 1 disk seek) yet
higher data transfer and evaluation cost.

The discussion so far assumes the same range length
qL for all queries, whereas in practice queries have
arbitrary length/selectivity. Assume an array qL[] = {qL[1],
qL[2], …, qL[t]} that stores all lengths (t different values)
of queries recorded so far, and an array pr[], where pr[i] is
the probability for length qL[i] to appear in a query. The
expected processing time (at the leaf level) of a query q
that conforms to this distribution is:

() ()

() ()

()

1

1

1 1

[] []

[] [] 1

[] [] []

t

LEAF LEAF L
i

t

L SK TRF EVL
i

t t

L SK TRF EVL
i i

Exp TIME pr i TIME q i

Npr i q i T p T f Tf

N pr i q i pr i T p T f Tf

=

=

= =

= ⋅

= ⋅ ⋅ + ⋅ + ⋅ + ⋅

 = ⋅ + + ⋅ + ⋅ 
 

∑

∑

∑ ∑

 (3.1-3)

()()()1L SK TRF EVL
N Exp q T p T f Tf= ⋅ + + ⋅ + ⋅

The above equation, when compared with (3.1-1),
indicates an interesting fact: optimizing a query
distribution is equivalent to optimizing a single query

whose length equals the expected range length (Exp(qL)).
Thus, the optimal node size is also given by equation (3.1-
2), except that qL is replaced with Exp(qL). Furthermore,
since Exp(qL) is the only information required, the amount
of statistics that must be kept can be significantly reduced.
To verify this, observe that pr[i] can be written as
num_q[i]/total_q, where num_q[i] is the number of times
that queries with range length qL[i] are raised, and total_q
is the total number of queries. Therefore, Exp(qL) can be
represented as:

()

()

1

1

_ []
[]

_

_1
 [] _ []

_ _

t

L L
i

t
L

L
i

num q i
Exp q q i

total q

sum q
q i num q i

total q total q

=

=

 
= ⋅ 

 

= ⋅ ⋅ =

∑

∑

where sum_qL is the sum of the range lengths of all
queries. Therefore, instead of maintaining qL[] and pr[], it
suffices to keep values of sum_qL and total_q.

In order to extend the above approach from uniform to
arbitrary distributions, we maintain an “equi-length”
histogram with the following information for each bini
(1≤i≤numbin): (i) the number (ni) of records in the bin (ii)
the range sum (sum_qLi) of queries that intersect the
extent of bini (for a query that does not lie completely in
the bin, only the covered part is added to sum_qLi), and
(iii) the number total_qi of queries in bini. The node
accesses for performing a query with range qL in bini are
estimated as [TPZ01]:

() 1i bin L
LEAF L

n num qNA q f
⋅ ⋅= + (3.1-4)

Using this estimation, we obtain the optimal node size
POPTi for bini (nodes in the same bin have the same size)
that minimizes the expected cost of queries in bini as:

()
()Li i bin SK

OPTi

sp TRF sp EVL

Exp q n num T
p

b T b Tξ ξ

 ⋅ ⋅ ⋅ =
⋅ + ⋅ ⋅  

 (3.1-5)

where Exp(qLi)=sum_qLi/total_qi. In the following sections
we elaborate the update algorithms for adaptive B-trees.
Table 3.1 summarizes the symbols that will be used
frequently.

TSK average seek time of a random access
TTRF time for transferring one disk page to/from the

main memory
TEVL CPU time to evaluate a single record
bsp number of entries contained in a page
ξ average node utilization
f average fanout of a node
h height of an index
N total number of records
qL range length of a query
numbin number of bins in the histogram
ni number of records in bini

sum_qLi sum of query range lengths in bini
total_qi number of queries that intersect bini

Table 3.1: Summary of frequent symbols

3.2 Insertion and overflow handling

Since an adaptive B-tree is maintained with the aid of a
histogram, both the tree and histogram must be updated in
an insertion. Updating the histogram, however, incurs
little cost: it suffices to increment the number ni of records
in bini where the new record is inserted. Furthermore,
since the size of a histogram is very small (usually less
than 1K bytes), this operation can be performed in
memory. An insertion in the adaptive B-tree, on the other
hand, is performed in a way similar to B-trees. The leaf
node that accommodates the new entry is identified by
examining the index keys of non-leaf nodes at each level
(we omit the details since the process is the same as
conventional B-trees), and the insertion terminates if no
overflow occurs.

When a node P generates an overflow, its optimal size
is re-computed using equation (3.1-5), based on the
current information (i.e., ni, sum_qLi, and total_qi) stored
in the bini (1≤i≤numbin) that contains the extent of P. If the
extent of node P intersects multiple bins, information is
obtained from the bin that covers the largest part of P.
Note that, because statistical information may have
changed considerably since the last time that the size of P
was computed (due to significant changes in the query
patterns), the new optimal size can be much larger or
smaller than its original value. In the sequel, we denote
the old and new sizes of P as P.Sizeold and P.Sizenew
respectively. In adaptive B-trees, an overflow is handled
by examining the relationship between P.Sizeold and
P.Sizenew, as summarized in Figure 3.2. Next, we discuss
each case in detail.

overflow P.Sizenew∈ (P.Sizeold, 2·P.Sizeold]

node expansion

node splitting

generates an underflow

P.Sizenew∈ [1, P.Sizeold]

P.Sizenew∈ (2·P.Sizeold, +∞)

Figure 3.2: Overflow handling in adaptive B-trees

If P.Sizenew∈ (P.Sizeold, 2·P.Sizeold], no overflow is
handled; we only need to expand node P to its new size,
after which the number (i.e., bsp·P.Sizeold+1) of entries in
P is within the range of [½·bsp·P.Sizenew, bsp·P.Sizenew]
(i.e., greater than the minimum node utilization yet
smaller than the node capacity). Since we aim at
allocating sequential pages to a node, special care must be
taken during the node expansion, if there are not enough
consecutive vacant pages after those originally allocated
to P. This is illustrated in Figure 3.3, where white blocks
indicate vacant disk pages, grey blocks the occupied
pages, and black blocks (page IDs 4, 5) the pages
originally assigned to P, whose size must be expanded
from 2 (pages) to 4. Since there is only one vacant page
(i.e., block 6) after page 5, the content of P must be
migrated to another place with at least 4 consecutive
empty pages (e.g., blocks 9-12 in this case). Its original
pages are marked vacant (freed) for future use.

organization

allocated to
 P previously

occupied

vacant

allocated to
 Q previously

1 2 3 4 5 6 7 8 9 10 11 12

 Q.forward=4
to be modified to 9

to be allocated to P
vacant andpage ID

disk

Figure 3.3: An example of node expansion

Because in adaptive B-trees the leaf pages are organized
as a linked-list, moving the starting address of P requires
updating the corresponding reference in its previous
sibling node (denoted as Q). In Figure 3.3, the forward
pointer of Q, which originally pointed to block 4, must be
updated to 9 after the node expansion. Note that Q can be
located via the “backward” pointer stored in P without
traversing the non-leaf levels. The parent entry that points
to P must also be updated. Figure 3.4 presents the pseudo-
code for node expansion.
Algorithm Node_Expansion (P: the node that overflows)
1. if there are at least P.Sizenew−P.Sizeold vacant pages

subsequent to currently assigned pages of P
2. mark these pages occupied and return
3. else /*no enough vacant pages and migration is necessary*/
4. allocate P.Sizenew consecutive pages and copy the

content of P to the newly allocated pages
5. free the original pages of P (i.e., mark them vacant)
6. retrieve the previous sibling Q of P via P.backward, and

set Q.forward=P
7. modify the reference in the parent entry of P
end Node_Expansion

Figure 3.4: Algorithm for node expansion

In lines 1 and 2 we need to check/modify the vacancy
status of a set of disk pages, which can be done by simply
maintaining a bitmap where each bit corresponds to the
status of one page. Such an approach is widely adopted in
operating systems. The size of the bitmap is usually small
enough to fit in the memory. For example, for an index
with 1G bytes and formatted into 1K bytes/page, the
bitmap contains 1M bits, which amounts to less than
130K memory.

For the second case (P.Sizenew≤P.Sizeold) an
overflowing node P is split into several (≥2) nodes by
distributing the entries evenly. There are multiple ways to
decide the number NMSPLT of resulting nodes so that the
number of entries in each node is within the range
[½·P.Sizenew, P.Sizenew]. We use equation (3.2-1), which
computes the minimum among all legal values for
NMSPLT. Minimizing the number of nodes after splitting
also reduces the number of nodes accessed during a
query.

()
()

. 1

.
sp old

SPLT
sp new

b P Size
NM

b P Size

 ⋅ +
=  ⋅  

 (3.2-1)

Assume, for example, we are to insert a new key 80 into
the tree of Figure 3.1, which generates an overflow in
node B. The original size of B was 3, while, due to the
change of histogram information, its new optimal size is
2. Then, NMSPLT is computed as (3·3+1)/(3·2)=2, and the
original entries are evenly distributed into two nodes B
and D. A parent entry is inserted into the root C, and the
final situation is shown in Figure 3.5. In general, overflow

may propagate to nodes at higher levels, which are
handled in the same way as in conventional B-trees (since
their size is always 1).

5 10 15 20 25 30 35 40 45 50 55 60 65 70

5 35

75 80

(size=2)

60 newly inserted

D(size=2)B(size=2)A

(size=1)C

Figure 3.5: A node splitting example

Like node expansion, splitting may cause a set of
consecutive disk pages to re-allocate. In some rare
scenarios (e.g., the disk is over-fragmented) when such
allocation fails, we gradually decrease P.Sizenew until such
allocation is possible, which is always the case when
P.Sizenew reaches the minimum size 1 (i.e., at this point
the adaptive B-tree allocates pages in the same way as
conventional B-trees).
Algorithm Leaf_Split (P: the node that needs to be split)
1. calculate NMSPLT as in equation (3.2-1)
2. distribute entries in P evenly into NMSPLT nodes
end Leaf_Split

Algorithm Insert (new_e: the entry to be inserted, P: the current

node being processed)
1. if P is a leaf node
2. enter new_e in P
3. if P does not overflow
4. return
5. calculate the new size P.Sizenew for P
6. if P.Sizenew∈ (P.Sizeold, 2·P.Sizeold]
7. call Node_Expansion(P) and return
8. elseif P.Sizenew≤P.Sizeold
9. call Leaf_Split(P) and return
10. else /*2·P.Sizeold<P.Sizenew*/
11. call Leaf_Merge(P) and return /*Leaf_Merge is

presented in the next section*/
12. else /*a non-leaf node*/
13. find the child node c_P to insert new_e /*this process is

same as B-trees*/
14. call Insert(new_e, c_P)
15. add/remove/modify pointers to child nodes (for node

split, expansion, or merging)
16. if P overflows that split into 2 nodes with even entries

/*as in ordinary B-trees*/
end Insert

Figure 3.6: Algorithm for leaf splitting and insertion

In the last case where P.Sizenew>2·P.Sizeold, an underflow
is generated because the new optimal size has increased
significantly so that the number of entries in the original
node is not enough for maintaining the minimum node
utilization in the new node. This underflow is handled by
node merging as described in the next section. Figure 3.6
summarizes the leaf split and insertion procedures.

3.3 Deletion and underflow handling

Deletion of an entry e is performed by (i) first locating the
leaf node P that contains e, (ii) removing e from P, and
(iii) handling the node underflow if the number of entries
in P is below the minimum node usage. Steps (i) and (ii)

are the same as in B-trees, so we elaborate (iii) in the
sequel. Similar to overflows, the size of a leaf node P is
re-computed when it underflows, and the handling
proceeds by examining the relationship between P.Sizenew
and P.Sizeold, as shown in Figure 3.7.

underflow P.Sizenew∈ (½·P.Sizeold, P.Sizeold]

node contraction

node merging

generates an overflow

P.Sizenew∈ [P.Sizeold, +∞)

P.Sizenew∈ [1, ½·P.Sizeold)

Figure 3.7: Underflow handling in adaptive B-trees

Node contraction is performed if P.Sizenew∈ [½·P.Sizeold,
P.Sizeold). Specifically, a node contraction simply reduces
the size of a node to its new value, by freeing the “tailing
pages” originally assigned to P. Assume, for example, the
size of node P in Figure 3.3 is reduced from 2 (pages) to
1; then block 5 becomes vacant for future use. Notice that,
unlike node expansion, no content migration is necessary.

If P.Sizenew≥P.Sizeold, P is merged with one or more
sibling nodes. To illustrate this, we successively remove
entries 45, 50, 55 from node B in Figure 3.5, causing it to
underflow. Assume its new optimal node size is 5,
(capacity is 15 entries). Then, a sibling (let D) is chosen to
merge with B, which leads to a total of 7 entries (2, and 5
from B, D respectively) in the resulting node. Since 7 is
still smaller than the minimum node utilization (i.e.,
15/2=8 entries), the merging is continued with another
sibling (node A in this case), after which the final node
contains 13 entries and the merging step terminates (in
general the merged node may need to be split if it
overflows). This process is shown in Figure 3.8, where
the deletion propagates to upper levels, which results in
only 1 level in the final tree. Figure 3.9 presents the
pseudo-code for merging leaf nodes; merging non-leaf
nodes is identical to B-trees.

5 10 15 20 25 30

B D

A merge

merge

35 40 60 65 70 75 80

size=5

Figure 3.8: A node merging example

Algorithm Leaf_Merge (P: the current leaf node)
1. calculate the new size P.Sizenew for P, and let P.num be the

number of entries in P
2. allocate P.Sizenew continuous disk pages and copy the

content of P to these pages
3. free the original pages of P
4. while (P.num<½·P.Sizenew)
5. identify a sibling node S
6. copy the content of S to P, and free the pages of S
7. P.num=P.num+S.num
8. if P.num>P.Sizenew then call Node_Split(P) /*the

merged node overflows*/
end Insert

Figure 3.9: Algorithm for node merging

In the third case (P.Sizenew<½·P.Sizeold), an overflow is
generated, which is handled by node splitting. Note that
this is the reverse of the case P.Sizenew>2·P.Sizeold in node
overflows. The entire deletion algorithm is presented in
Figure 3.10.
Algorithm Delete (new_e: the entry to be deleted, P: the current

node being processed)
1. if P is a leaf node
2. remove new_e from P
3. if P does not underflow then return
4. calculate the new size P.Sizenew for P
5. if P.Sizeold∈ (P.Sizenew, 2·P.Sizenew]
6. call Node_Contraction(P) and return /*we omit

Node_Contraction because it is straightforward*/
7. elseif P.Sizeold≤P.Sizenew
8. call Leaf_Merge(P) and return
9. else /*P.Sizeold>2·P.Sizenew */
10. call Leaf_Split(P) and return /*Leaf_Split was

presented in the last section*/
11. else /*a non-leaf node*/
12. find the child node c_P to find new_e /*this process is

same as B-trees*/
13. call Delete(new_e, c_P)
14. add/remove/modify pointers to child nodes (for node

split, expansion, or merging)
15. if P underflows that handles it as in ordinary B-trees
end Delete

Figure 3.10: Algorithm for deletion

3.4 Performance of adaptive B-trees

We first show that the space complexity of adaptive B-
trees is O(N/bps) pages (i.e., asymptotically optimal),
where N is the total number of records indexed, and bps
the maximum number of entries in a single page. Let nleaf
be the total number of leaf nodes, and nsi (1≤i≤ nleaf) the
size of the ith node. Since each node is at least half full,
we have:

1 1

21 O2

leaf leafn n

i ps i
ps psi i

N Nns b N ns b b
= =

 ⋅ ⋅ ≤ ⇒ ≤ =  
 

∑ ∑

Furthermore, because each non-leaf node indexes at least
½·bps= O(bps) children, the total number of nodes at level j
(1≤j≤h-1, where h is the height) is O(N/bps

j+1), which
establishes the optimal size bound:

1

1
0

O 2O O
h

iQAB
ps pspsi

N N NSize b bb

−

+
=

     = < =     
    

∑

In fact, the size of an adaptive B-tree is usually slightly
smaller than that of its conventional counterpart because it
contains fewer intermediate nodes. Similarly, it can be
shown that the performance of adaptive B-trees for range
queries is also asymptotically optimal: O(logbN+K/bsp),
where K is the number of records retrieved.

Adapting the cost model of B-trees to adaptive B-trees
is straightforward. Consider a query q in bini (1≤i≤
binnum). Since nodes in bini have the same size Pi, by
replacing f in equation (3.1-4) with ξ·bsp·Pi, we have (qL is
the range length of the query):

() 1i bin L
LEAF L

sp i

n num q
NA q

b Pξ
⋅ ⋅= +

⋅ ⋅

Given that one node (with size 1) is accessed at each non-
leaf level, the total query response time is:

() () ()

()

1

1

QAB L SK TRF spi EVL

i bin L
SK i TRF sp i EVL

sp i

TIME q h T T b T

n num q
T P T b P T

b P

ξ

ξ
ξ

= − ⋅ + + ⋅ ⋅

 ⋅ ⋅
+ + + ⋅ + ⋅ ⋅ ⋅  ⋅ ⋅ 

(3.3-1)

The performance speedup over conventional B-trees can
be obtained by comparing the above cost model with that
of B-trees:

()
()

()()

()

()()

()

1

1

1

1

B L

QAB L

B SK TRF sp EVL

i bin L
SK TRF sp EVL

sp

QAB SK TRF sp EVL

i bin L
SK i TRF sp i EVL

sp i

TIME q
Speedup

TIME q

h T T b T

n num q
T T b T

b

h T T b T

n num q
T P T b P T

b P

ξ

ξ
ξ

ξ

ξ
ξ

=

 − + + ⋅ ⋅
 
  ⋅ ⋅
+ + + + ⋅ ⋅   ⋅   =

 − + + ⋅ ⋅
 
  ⋅ ⋅
+ + + ⋅ + ⋅ ⋅ ⋅   ⋅ ⋅   

(3.3-2)

For large ni or qL (i.e., high data cardinality or long query
ranges) the speedup converges to:

SK TRF sp EVL

TRF sp EVL

T T b T
Speedup

T b T

ξ
ξ

+ + ⋅ ⋅
→

+ ⋅ ⋅
 (3.3-3)

For shorter queries, however, the speedup diminishes as
qL decreases. Obviously, if all queries are equality
selections (qL =0), the adaptive tree degenerates to a
conventional B-tree.

The update cost is also very closely related to the node
size. If the size of the leaf node P to be updated is P.Size,
then the update needs to visit O(logbN+P.Size) disk pages
in the worst case. In order to achieve the optimal update
cost bound, we may prevent the node from growing
beyond a constant size by setting an upper limit CSIZE to
the node size, so that O(logbN+P.Size) = O(logbN+CSIZE)
= O(logbN). To achieve this, the update algorithms need to
set the node size to the minimum of the decided value and
CSIZE. Notice that the resulting tree still maintains the
asymptotically optimal query performance.

In practice, if minimizing the update time is important
(e.g., for frequent updates), the (leaf) node size
computation can consider both the update and query
frequencies. Specifically, we may maintain a separate
histogram (also very small in size) that stores, for each
bini, the update frequency ui (0≤ui≤1) among all updates
and queries in the bin (so the query frequency can be
obtained as 1−ui). Since an update usually reads and
writes a leaf page once, its cost (at the leaf level) can be
represented as:

()2LEAFUpdt SK i TRF sp i EVLTIME T P T b P Tξ= + ⋅ + ⋅ ⋅ ⋅

Thus the expected weighted cost of updates and queries
is:

(1)LEAFU Q LEAFUpdt i LEAF iTIME TIME u TIME u+ = ⋅ + ⋅ −

where TIMELEAF is given in equation (3.1-3). Therefore,
the node size that minimizes the above cost can be
obtained as:

()
() ()

0

1 ()

1

LEAFU Q

i Li i bin SK
OPTi

i sp TRF sp EVL

TIME
d

dp

u Exp q n num T
p

u b T b Tξ ξ

+ = ⇒

 − ⋅ ⋅ ⋅ ⋅
 =
 + ⋅ ⋅ ⋅ + ⋅ ⋅ 

 (ui<1)

For ui=1 (i.e., only updates), POPTi=1.

3.5 Bulkloading and partial rebuilding

If all the data are known a-priori, the adaptive B-tree can
be bulkloaded efficiently from the list of records sorted by
their index keys. The algorithm differs from traditional
bulkloading in that, whenever a leaf node is initiated, its
size is determined according to the information stored in
the histogram bin that covers the starting key of the node.
A new node is initiated after the previous one has been
fully filled.

Although bulkloading allocates continuous pages to
sibling nodes, the organization of the conventional B-tree
will deteriorate due to subsequent updates. This is
illustrated in Figure 3.11, where pages 1-100 correspond
to the leaf nodes of a bulk-loaded conventional B-tree
(i.e., adjacent pages correspond to sibling nodes).
Assume, for example later changes cause page 2 to split,
which results in a new node stored in page 201, breaking
the adjacency between pages 2 and 3. Thus, a query that
retrieves these pages must also visit page 201 (hence
accesses to pages 2, 201, 3 are no longer sequential).
Similarly, the split of page 3 (leading to page 202) breaks
the adjacency of pages 3 and 4.

.1 2

leaf nodes bulkloaded

1003 201

created from the
split of page 2

202

created from the
split of page 3

Figure 3.11: Deterioration of traditional bulkloading

In general, each node split will necessarily break the
adjacency of the bulk-loaded pages. Thus, the benefit of
bulkloading vanishes completely when all pages 1-100
issue splits (after which all node visits are random
accesses). To see how “soon” this can happen, assume
that a node contains on average f entries after bulkloading
(i.e., N/f leaf nodes); then a split incurs after bsp−f entries
are inserted in the node. It follows that all nodes may split

after ()sp
N b ff ⋅ − insertions. On the other hand, the update

algorithms described in previous sections allow the
adaptive B-tree to restructure, by re-computing the size of
a node each time it generates an over-/under- flow.

A problem occurs when the data are relatively static
(i.e., there are no overflows or underflows to trigger re-
organization) whereas the query patterns change
significantly. In this case an alternative mechanism, called
partial rebuilding, restructures the bins whose optimal
node size has changed. To partially rebuild the nodes in a

single bin efficiently, we adopt an approach that is similar
to the bulkloading algorithm. As shown in Figure 3.12,
the process starts from the node A1 whose extent is the
leftmost in the bin, and copies its content to a new node
B1 whose size is optimized. If the entries in A1 are
exhausted, rebuilding proceeds with its sibling node A2
until all nodes in the bin have been processed (nodes X
and Y are not modified as they do not belong to the bin).
Similarly, if node B1 has been filled, a new node B2 is
initiated, and this process is repeated. Nodes in higher
levels are constructed similarly. After rebuilding, the
forward (backward) pointer of node X (Y) is modified to
B1 (Bv), and all disk pages assigned to the original nodes
(e.g., A1, …, Au) are freed for future use.

the bin that needs to be rebuiltold node leaf level

A1 A2 Au YX . . .

B
1

A

B
2

B
v

u-1

. . .

new node

Figure 3.12: Partial rebuilding

Let pold and pnew denote the old and new node sizes
respectively; then rebuilding the leaf level involves
reading ni/(ξ·bsp·pold) and writing ni/(ξ·bsp·pnew) nodes.
Since the number of intermediate nodes that need to be
modified is significantly smaller than that of leaf nodes,
the total rebuilding cost is dominated by the time of
processing the leaf level:

()

()

i
rebuild SK old TRF

sp old

i
SK new TRF

sp new

n
Time T p T

b p

n
T p T

b p

ξ

ξ

≈ + ⋅
⋅ ⋅

+ + ⋅
⋅ ⋅

Note that nodes (e.g., A1, …, Au in Figure 3.12) can still
be used to answer queries during rebuilding since their
pages are freed only after the process terminates, at which
point the new nodes (e.g., B1, …, Bv) are integrated into
the tree. Moreover, rebuilding of a bin is necessary only
when (i) very few (or zero) nodes in the bin incur
structural changes (otherwise restructuring is performed
by overflow / underflow handling), and (ii) the expected
qL in the bin has deviated from its previous value over a
certain threshold (otherwise the performance drop is not
significant). In fact, since the query patterns in many
applications are relatively stable [WAA02] (especially for
patterns recorded over long periods), we believe that
rebuilding is rare in practice.

4. Adaptive R-Trees

The method of converting B-trees to adaptive B-trees can
be extended to general structures using analytical models
for the number of node accesses. Specifically, the
framework involves two steps: (i) deciding the optimal
node size as a function of data and query parameters, and
(ii) modifying the original update algorithms with the

following principle: whenever a node is created or incurs
over/under-flows, its size is re-computed using the current
statistical information. In the sequel, we demonstrate this
by discussing adaptive R-trees optimized for window
queries.

To avoid excessively complex equations, we focus on
the so-called quadratic window query, whose extents
along the x- and y- dimensions have equal lengths qL. The
application to queries with arbitrary extents in higher
dimensions is straightforward. Two parameters are needed
to describe a uniform data distribution: (i) the number N
of spatial objects, and (ii) their density D. Specifically, the
density of a set of rectangles is defined as the average
number of rectangles that contain a given point in the data
space. Equivalently, D can be expressed as the ratio of the
sum of the areas of all rectangles over the area of the data
space. The performance of R-trees has been very well
studied (see [PSW95, TSS00]). The following model
[TSS00] gives the number of leaf node accesses for
uniform data distribution (where f0 is the fanout, D0 the
density, and N0 the number of leaf nodes):

()
2

0
0

0
LEAF L L

D
NA q N q

N

 
= +  

 
, where

2

0

0

1
1

D
D

f

 −= +  
 

, and
0

0

N
N

f
= (4-1)

Hence the total cost (response time) of processing the leaf
level is (p0 is the size of leaf nodes):

() ()
2

0
0 0 0

0
LEAF L L SK TRF EVL

D
TIME q N q T p T f T

N

 
= + + ⋅ + ⋅  

 

(4-2)

Obtaining the optimal node size, however, is not
straightforward because the solution of the above
derivative requires numerical approaches that are too
expensive to compute in real-time. Instead of computing
the derivative, we adopt the algorithm in Figure 4.1 to
find the optimal size directly with equation (4-2). The
algorithm starts with an initial size p=pGUESS, and then
refines it iteratively by modifying p towards minimizing
the access time (line 7). This procedure is repeated until
the optimal size has been found or a certain time limit
expires (e.g., 0.1 seconds), after which the current value
of p is returned. Since the optimal node sizes are usually
integers below 100, this algorithm finds the optimal
solution very quickly, as proved in our experiments.

Unlike range queries in B-trees, answering a window
query usually requires visiting multiple nodes at all levels
(except the root) of the R-tree. Hence sizes of non-leaf
nodes should also be optimized to improve performance.
Similar to the leaf level, the number NAi of node accesses
at level i (1≤i≤h−1) can be written as (fi is the fanout, Di
the density, and Ni the number of level i nodes):

()
2

i
i L i L

i

D
NA q N q

N

 
= +  

 

, where

2

1 1
1 i

i

i

D
D

f
−

 −
= +  
 

, and 1i
i

i

NN f
−=

The processing cost at level i is similar to equation (4-2),
and the optimal node size can be found also with the
algorithm in Figure 4.1.

Algorithm Find_Optimal_Node_Size (TIME(p): the time

function with node size p as parameter)
1. p = pGUESS /*an initial guess value*/
2. t0 = TIME (p) /*the access time if the node size is p*/
3. set δp to some positive value
4. do {
5. p = p+δp
6. t1 = TIME (p)
7. if t1 > t0 then δp = −δp/2 /*if t1 ≤ t0 then do nothing*/
8. t0 = t1
9. }while (δp≠0 && time limit has not expired)
10. return p
end Find_Optimal_Node_Size

Figure 4.1: Algorithm for finding the optimal node size

Extending the above analysis to general query distribution
deservers further elaboration, because, unlike adaptive B-
trees, the problem is no longer equivalent to optimizing
the query with the expected length Exp(qL). To illustrate
this, assume the existence of arrays qL[] and pr[] (with
similar semantics to those in section 3.1). The expected
processing cost at the leaf level is:

()

()

()

()

() ()

2

0
0

0
1

0 0

20 0

1 10 0

0 0 0

20 0

0 0

0 0

[] []

2 [] [] [] []

2

LEAF L

t
L

i

SK TRF EVL

t t

L L
i i

SK TRF EVL

L L

SK TRF

TIME q

D
pr i N q i

N

T p T f T

D D
pr i q i pr i q i

N N

N T p T f T

D D
Exp q Exp q

N N

N T p T f

=

= =

  
 ⋅ +  =   
 
⋅ + ⋅ + ⋅  

 
= + ⋅ + ⋅  
 
⋅ + ⋅ + ⋅

 
= + +  
 

⋅ + ⋅ +

∑

∑ ∑

()0 EVLT⋅

 (4-3)

Therefore, instead of keeping qL[] and pr[], it suffices to

maintain the total number of queries, the sum of query
lengths, and the sum (sum_qL

2) of square lengths (i.e., the
area of the query). Similar discussion applies to higher
levels. To extend the analysis to arbitrary distributions,
we maintain a histogram where each bin corresponds to
the cell of a regular grid. The following information is
stored in each binj (1≤j≤numbin): (i) number (nj) of objects
in binj, (ii) total number of queries (total_qj) whose
extents intersect that of binj (iii) sum (sum_qLj) of length,
and (iv) sum (sum_qL

2
j) of areas of queries in binj. For a

query (as in Figure 4.2) that crosses the boundary of binj,

1 2q q⋅ , and q1·q2 are added to sum_qLj and sum_qL
2
j

respectively.

q
1

q
2

a bin

a query

Figure 4.2: A query that crosses the boundary of a bin

The cost of processing in binj is represented as in (4-3)
with the following modifications (recall that D0 is
computed from D as in equation 4-1):

2

2
2

0
0

_ _
, ()

_
, ()

L j Lj
L

j j

j bin L j
L

j

sum q sum q
D Exp qn n

n num sum q
N Exp qf n

= =

⋅= =

The optimal node size (for all levels) can also be found
with the algorithm in Figure 4.1.

To demonstrate the structures of adaptive R-trees, we
use the density map [TSS00] of a real dataset that
contains MBRs of 560K roads in North America (Figure
4.3a). Figure 4.3b shows the size distribution of leaf
nodes of an adaptive tree optimized for quadratic queries
with qL=1% (i.e., the query area covers 0.01% of the
universe). Notice that nodes that correspond to low
density have the minimum size 1 while those covering
denser areas are larger. Figure 4.3c shows the node
distribution for the tree optimized for qL=10%, where the
node sizes increase considerably.

Our implementation is based on R*-trees [BBKS90]

x

y

density

10
5
0

node size

x

y

40
20
0

node size

x

y

(a) NA density map (b) Leaf size distribution (qL=1%) (c) Leaf size distribution (qL=10%)
Figure 4.3: Visualization of the structure of adaptive R-trees

because they are considered the most efficient R-tree
variation. The update algorithms of adaptive R*-trees are
similar to those of B-trees. It is worth mentioning only the
following basic differences: (i) the minimum node
utilization is set to 40% [BBKS90] (which is necessary
for the efficiency of the split algorithm), (ii) merging is
never performed because in R*-trees entries in a node that
underflows are re-inserted and (iii) there do not exist
pointers between sibling nodes. Finally, the bulkloading
and partial rebuilding techniques also extend to R-trees
with straightforward modifications.

5. Experiments

In this section we demonstrate the efficiency of adaptive
index structures with extensive experimental evaluation.
The adopted values for TSK, TTRF are 10ms and
1ms/Kbytes respectively, which are close to the
specifications of recent products from renowned hard disk
vendors [Web]. To estimate TEVL, we assume each entry
evaluation consumes 1000 clock ticks, leading to around
1µs for a 1GHz CPU. The page size (also the size of a
node in conventional B- and R-trees) is set to 1K bytes in
all cases. With this size, the maximum number of entries
in a page is 125 (50) for both B- (R-) and adaptive B- (R-)
trees. We start with results on adaptive B-trees and then
discuss R-trees.

The first set of experiments explores the effects of
data and query parameters on performance. We use
synthetic datasets (cardinality N 100K-2M) that contain
records whose search keys are uniformly distributed in the
universe (i.e., a unit line segment). The sizes of the
resulting B-trees and adaptive B-trees are similar (around
11.5 Mbytes for 1M objects), with adaptive trees being
slightly smaller. Then we apply query workloads, each
consisting of 500 queries (also uniformly distributed in
the universe) with the same query length qL. The query
length (selectivity) of different workloads varies from 0
(workloads consisting solely of equality selection queries)
to 2% of the universe. Notice that, since both data and
query distributions are uniform, all nodes in the adaptive
trees have the same size.

Figures 5.1a shows the speedup (i.e., the total cost of a
workload on the B-tree over that on the adaptive tree) as a
function of qL for the dataset with N=1M records. Figure
5.1b illustrates the speedup as a function of N for qL=1%.
Adaptive B-trees are clearly better in all cases except for
qL=0% (where they degenerate to conventional B-trees).
As expected, the speedup increases with qL and N, since
more records are retrieved, which, in turn, increases the
number of random accesses for conventional B-trees. In
addition, the diagrams contain the estimated speedup
obtained from equation (3.3-2), which is very close to the
actual value. Further, as discussed in section 3.4, the
speedup tends to converge to a value, estimated by (3.3-
3), for large query extent or high cardinality.

speedup estimated speedup

1

2

3

4

5

6

7

8

0% 0.4% 0.8% 1.2% 1.6% 2.0%

speedup

qL

2

3

4

5

6

7

0.1 0.5 1 1.5 2

speedup

dataset cardianlity (M)

(a) Speedup vs qL (b) Speedup vs cardinality

Figure 5.1: Effects of data and query parameters

The next experiment simulates a situation where the
dataset (1M records) is uniform, but queries have different
lengths in different parts of the data space. Statistical
information is kept in a histogram consisting of 50 bins.
Each bin is associated with an expected query length,
which follows a gaussian distribution in the range [0, 2%].
The bins at both ends of the universe correspond to the
shortest (i.e., most selective) queries, while bins at the
centre to the longest ones. Figure 5.2a shows the sizes of
leaf nodes of the respective adaptive tree in different bins
(the x-axis corresponds to the 50 bins). The sizes follow
the expected query distribution: nodes in bins at both ends
are the smallest while the one at the centre is the largest
(up to 37 pages). Observe that the optimal node size
varies significantly with the query length, which indicates
that using a single node size throughout the tree cannot
optimize query performance.

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50

node sizes

bins
0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

processing time (sec)

bins

B-tree

adaptive

(a) Node size vs. bin (b) Query cost vs. bin

Figure 5.2: Gaussian workload and uniform dataset

Then we create a workload of 5000 queries (to ensure that
each bin receives enough queries) according to the
expected distribution. Figure 5.2b compares the average
performance of B- and adaptive trees within each bin. It is
clear that the conventional tree is comparable to the
adaptive version only in bins where queries have very
short lengths (close to 0). Observe (for all experiments)
that although a large node size (e.g., 8K bytes) for
conventional B-trees will decrease the speedup of long
queries, the gain with respect to short ones (e.g., equality
selections) will increase accordingly; thus, the overall
benefit of the adaptive structure will remain more or less
the same.

Figure 5.3 shows results of a similar experiment for a
dataset (cardinality 1M) with records whose search keys
follow a gaussian distribution. The only difference from
Figure 5.2 is that the node size (and the speedup) in the
central bins is now larger due to the higher density in the

corresponding part of the data space. In the sequel, we
only show results for gaussian workloads on uniform
datasets.

node sizes

bins
0

10

20

30

40

50

60

0 10 20 30 40 50

processing time (sec)

bins
0

0.5
1

1.5
2

2.5
3

3.5
4

0 10 20 30 40 50

B-tree

adaptive

(a) Node size vs. bin (b) Query cost vs. bin

Figure 5.3: Gaussian workload and Gaussian dataset

To evaluate the effect of buffering, we introduce caches
with sizes up to 50% of the trees (1M records). As shown
in Figure 5.4, the speedup declines with the buffer size,
which is expected because caches decrease the disk access
probability. Notice, however, that significant speedup is
achieved even for buffers containing 50% of the tree.

3

3.5

4

4.5

5

5.5

6

6.5

0% 10% 20% 30% 40% 50%

speedup

cache size

Figure 5.4: Speedup vs cache size

To study the effect of updates, we perform a “mixed”
workload of 10,000 queries and updates (involving equal
numbers of insertions and deletions). Figure 5.5 shows the
speedup as a function of the percentage of updates in the
workload. The performance gain is considerable in all but
the cases where most operations are updates. The update
cost of the adaptive tree is slightly higher since it needs to
(sequentially) read multiple pages for a node and,
potentially, relocate some pages.

0

1

2

3

4

5

6

7

0% 20% 40% 60% 80% 100%

update frequency

speedup

Figure 5.5: Speedup vs update frequency

In order to demonstrate the performance deterioration
after bulkloading, we create a dataset with 500K uniform
records, and bulkload a B- and an adaptive B-tree. Then,
we perform another 500K insertions. Figure 5.6a shows
the query cost of the two structures as a function of the
number of insertions (5 means 50K insertions are
performed and so on). Before 150K insertions both trees

have similar performance because most accesses are
sequential. After that, the B-tree starts to incur node splits
that break the sibling adjacency (as discussed in section
3.5), and its performance deteriorates very quickly. The
cost increase of the adaptive tree, on the other hand, is
very slow because it adjusts node sizes to reduce page
accesses. Figure 5.6b shows the speedup as a function of
the number of insertions.

0

1

2

0 5 10 15 20 25 30 35 40 45 50

processing time (sec)

number of insertions added (10K)

B-tree

adaptive

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35 40 45 50

speedup

number of insertions added(10K)
(a) Performance (b) Speedup

Figure 5.6: Deterioration after bulkloading

Finally we test the generality of the proposed techniques
by comparing adaptive R*- trees with their conventional
counterparts using the NA dataset (described in section 4).
We apply workloads of 500 (quadratic) window queries
whose distribution in the space follows that of the data (in
order to avoid meaningless queries in empty areas). The
histogram contains 10×10 bins. Figure 5.7 shows the cost
of R*- and adaptive R*-trees for workloads with qL
ranging from 0% (i.e., point queries) to 10% (i.e.,
covering 1% of the space). Similar to B-trees, the
conventional tree is comparable to the adaptive one only
for small queries, and the speedup increases with the
query size.

0

0.5

1

1.5

2

2.5

3

3.5

0% 2% 4% 6% 8% 10%

processing time (sec)

q
L

adaptive R-tree

Figure 5.7: Total cost vs qL for R-trees

8

4

0

speed up

x

y

Figure 5.8: Speedup in different areas

Figure 5.8 shows the speedup for queries (qL=5%) at
different positions in the data space. Observe that larger
speedup is achieved in high-density areas. Figure 5.9,
measures the processing time (qL=5%) as a function of the
cache size (depicted as the percentage of the tree). Large
buffers favour both trees and the adaptive tree achieves
significant speedup in all cases. Finally, results about
update frequency and performance deterioration of
bulkloading are omitted because they are similar to those
of B-trees.

0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40% 50%

cache size

processing time (sec)

adaptive R-tree

Figure 5.9: Total cost vs cache size for R-trees

6. Conclusion

While the node size has a significant effect on the
performance of database indexes, in practice the decision
is usually made in an ad-hoc manner. This is because a
good choice for the size depends on several data and
query parameters, which are often unavailable in advance
and highly dynamic. In this paper we introduce the
concept of adaptive index structures, which dynamically
adapt their node sizes (according to these parameters) to
minimize the query cost. We also propose a general
framework for converting traditional structures to
adaptive versions, through a set of update and bulkloading
algorithms. The only requirement for our methods is the
existence of analytical models that estimate the number of
node accesses. Such models have been proposed for most
popular structures rendering our framework directly
applicable to them.

Notice that even if an optimal node size for a
conventional index can be determined in advance, this
size would apply to the whole structure. On the other
hand, the proposed indexes permit variable node sizes that
follow the query characteristics in different parts of the
data space. Given the ubiquitous use of histograms in
modern databases, adaptive structures can take advantage
of statistical information to accelerate performance.
Analytical and experimental evaluation confirms that
adaptive indexes outperform conventional counterparts
significantly in a wide range of scenarios.

Furthermore, this work also initiates numerous
research problems. For example, in this paper the node
size is optimized without buffers. Performance in the
presence of buffers can be further improved if the node
size is optimized considering the cache size. Another
interesting direction is to investigate the application of the

techniques to structures, for which there do not exist any
cost models. Sampling approaches, for example, may be
used in this case to find a good (although perhaps not
optimal) node size. Finally, the methods can be extended
to other methodologies (e.g., hashing) that involve disk
access issues.

Acknowledgements

This work was supported by grants HKUST 6081/01E
and HKUST 6070/00E from Hong Kong RGC.

References
[APR99] Acharya, S., Poosala, V., Ramaswamy, S. Selectivity

Estimation in Spatial Databases. ACM SIGMOD,
1999.

[BCG01] Bruno, N., Chaudhuri, S., Gravano, L. Stholes: A
Multidimensional Workload-Aware Histogram. ACM
SIGMOD, 2001.

[BKK96] Berchtold, S., Keim, D. A., Kriegel, H.-P. The X-
tree: An Index Structure for High-Dimensional Data,
VLDB, 1996.

[BKSS90] Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.
The R*-tree: An Efficient and Robust Access Method
for Points and Rectangles. ACM SIGMOD, 1990.

[CR94] Chen, C., Roussopoulos, N. Adaptive Selectivity
Estimation Using Query Feedback. ACM SIGMOD,
1994.

[G84] Guttman, A. R-trees: A Dynamic Index Structure for
Spatial Searching, ACM SIGMOD, 1984.

[GLR00] Ganti, V., Lee, M., Ramakrishnan, R. Icicles: Self-
Turning Samples for Approximate Query Answering.
VLDB, 2000.

[GM98] Gibbons, P., Matias, Y. New Sampling-Based
Summary Statistics for Improving Approximate
Query Answers. ACM SIGMOD, 1998.

[HS92] Haas, P., Swami, A. Sequential Sampling Procedures
for Query Size Estimation. ACM SIGMOD, 1992.

[IP95] Ioannidis, Y., Poosala, V. Balancing Histogram
Optimality and Practicality for Query Result Size
Estimation. ACM SIGMOD, 1995.

[PSW95] Pagel, B.U., Six, H.W., Winter, M. Window Query-
Optimal Clustering of Spatial Objects. ACM PODS,
1995.

[SRF87] Sellis, T., Roussopoulos, N. Faloutsos, C.: The R+-
tree: a Dynamic Index for Multi-Dimensional
Objects, VLDB, 1987.

[TSS00] Theodoridis, Y., Stefanakis, E., Sellis, T. Efficient
Cost Models for Spatial Queries Using R-trees. IEEE
TKDE, 12(1), pp. 19-32, 2000.

[TPZ01] Tao, Y., Papadias, D., Zhang, J. Cost Models for
Overlapping and Multi-Version Structures. Technical
Report HKUST01. Available at
http://www.cs.ust.hk/~dimitris/

[WAA02] Wu, Y., Agrawal, D., El Abbadi, A. Query
Estimation by Adaptive Sampling. IEEE ICDE, 2002.

[WAA01] Wu, Y., Agrawal, D., El Abbadi, A. Applying the
Golden Rule of Sampling for Query Estimation. ACM
SIGMOD, 2001.

[Web] http://www.storage.ibm.com/hdd/index.htm

