1

Many applications often make local copies of remotelo
data sources. For instance, a data warehouse may COR
remote sales and transaction records for local analysi
Similarly, a Web search engine copies a subset of th
Web and indexes them to help users access Web pag

Effective Change Detection Using Sampling

Junghoo Cho

Alexandros Ntoulas

UCLA Computer Science Department
Los Angeles, CA 90095

{cho,

Abstract

For a large-scale data-intensive environment,
such as the World-Wide Web or data warehous-
ing, we often make local copies of remote data
sources. Due to limited network and compu-
tational resources, however, it is often difficult
to monitor the sources constantly to check for
changes and to download changed data items
to the copies. In this scenario, our goal is to
detect as many changes as we can using the
fixed download resources that we have. In this
paper we propose three sampling-based down-
load policies that can identify more changed
data items effectively. In our sampling-based
approach, we firssample a small number of
data items from each data source and down-
load more data items from the sources with
more changed samples. We analyze the ef-
fectiveness of the sampling-based policies and
compare our proposed policies to existing ones,
including the state-of-the-art frequency-based
policy in [8, 11]. Our experiments on synthetic
and real-world data will show the relative mer-
its of various policies and the great potential of
our sampling-based policy. In certain cases, our
sampling-based policy could download twice as
many changed items as the best existing policy.

I ntroduction

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from the Endow-

ment.

Proceedings of the 28th VL DB Conference,
Hong Kong, China, 2002

ntoul as}@s. ucl a. edu

In many cases, the remote sources are updated indepen-
dently of the local copies, so we must periodicgityl

and download data from the sources to detect changes
and incorporate them to the copies.

Change detection and download is often performed
in batch at a regular interval, typically during off-peak
hours, to avoide interference with the main tasks that
the sources and/or clients perform. As the size of the
data grows, however, detecting changes and incorporat-
ing them to the copies become increasingly difficult. Due
to limited network and computational resources, we may
not be able to check every data item in the data sources
within the limited time window, so we may miss certain
changes at the sources.

In this paper, we address some of the challenges that
arise in this context: How can we detect and download
as many changed data items as we can, when the source
data is updated independently and when we have limited
resources? In this scenario, it is important exactly what
item we decide to download and check, because we may
waste a significant portion of our resources, if we repeat-
edly download unchanged items.

As we will discuss in more detail later, our main idea
is to usesampling. That is, we first download a small
number of data items from each data sourceaagples,
and use the samples to decide which sources we down-
load more data items from. While the idea is simple, our
later analysis and experiments will show that sampling-
based policies have great potential and lead to significant
improvement.

Although the problem of change detection and down-
ad arises in various contexts, our work is mainly mo-
SP(/ated by our need to manage Web data. In our Web-
Archive project [20], we try to store multiple versions of
§Neb pages over time, so that users can access the Web
5f, say, 10 years ago. Due to our limited network re-
sources, however, we cannot constantly download every
page to check for changes, so we need to carefully select
what pages to download and check. A similar service is
currently provided by th&\ayBack Machine [19]. Web
search engines also have to address the same problem,
because they have to periodically revisit Web pages in
order to maintain their indexes up-to-date. This task is
typically performed by a program, called/db crawler.
Recently, Cho et al. [8] and Coffman et al. [11] stud-

ied how a crawler can detect more changes by predictstarted investigating the push model, but we believe the
ing page change frequencies. That is, the crawler con- pull model may be more suitable for some existing ap-
stantly estimates how often a page changes based on thications, including the World-Wide Web.
past change history of the page, and uses this estimate We also assume that the local copy downloads data
to decide how often it will revisit the page in the fu- itemsperiodically in batch, say, every weekend. That
ture. Differently from the existing work, this paper stud- is, every weekend, we download a fixed number of data
ies how we can detect more changes usargpling. As items from the sources and update the local copy using
our later experiments will show, our sampling-based pol-the downloaded items. We call this interval — in this case
icy leads to significant improvement from the frequency- one week — as download cycle. Our goal is to download
based policy in many cases. In an experiment on reahs many changed items as possible in each download
Web data, our sampling-based policy detedigite as cycle, using the same fixed download resources. This
many changes as the frequency-based policy in certaimssumption is valid for an environment like the World-
cases! Wide Web, where we maintain a large number of data
In order to design and implement a good sampling-items residing in many different sources, and we do not
based policy, there are many questions to address. Fdrave enough resources to update them all in a short pe-
example, how many samples should a crawler take fronriod of time. The following example illustrates a typical
each data source? Can a crawler dynamically adjust thecenario that we assume.
sample size to improve effectiveness? How should a
crawler use the results from sampling? Can we com-Example 1 We maintain local copies of 10 million Web
bine a sampling-based policy with the change-frequencypages downloaded from 10,000 sites. The 10,000 sites
based policy? To address these questions, we organiz#o not inform us of any changes, so we need to peri-
the rest of the paper as follows: odically download pages to detect and save changes in
e In Section 2, we present a framework to study the OUr COPies. Since many users heavily access these pages
change detection and download problem. We dis-during weekdays, we can download the pages only on
cuss various change-detection policies and preseri{;/eekends- Given our network bandwidth we can down-

evaluation metrics to compare different policies. ad up to one million pages every weekend. We want
to use our limited download resources effectively so that

e In the first half of Section 3, we propose two e can download as many changed pages as possible in
sampling-based policiegroportional and greedy, each week.

and analyze their effectiveness. We derive the opti-
mal sample size that maximizes the effectiveness 0.1 Download policies
a sampling-based policy.

[m]

When we can download only a subset of data items in
e In the second half of Section 3, we propose aneach download cycle, we need to carefully decide what
adaptive-sampling policy that can dynamically ad- data item to download. There exist a multitude of ways
just the sample size, based on the changes detectégr this decision, including the following:
so far. We also study the scenario where we cannot
sample enough pages from each data source due to
our very limited download resources.

1. Round-robin: We download data items in a round-
robin fashion in each download cycle. In case of
Example 1, for instance, we download the first 1

e Finally in Section 4, we experimentally compare million pages in the first week, the second 1 million
our sampling-based policy to others, including the pages in the second week, etc. Because we maintain
state-of-the-art frequency-based policy. Our exper- 10 million pages locally, every page will be updated
iments will show that our sampling policy is often exactly once every 10 weeks in this policy.

significantly better than existing ones. The exper-
iments will also reveal the respective merits of our
sampling-based policy and the frequency-based pol-
icy. To the best of our knowledge, our work is the
first one to study the effectiveness of the frequency-
based policyexperimentally on real data. The re-
sults will shed light on how we may use various
policies in an actual system.

2. Change-frequency-based: Based on the past change
history of a data item, we estimate how often the
item changes and decide how often to revisit the
item. For instance, if we have downloaded an item
once every month for one year, and if we detected
4 changes, we may estimate that the item changes
once every 4 months and revisit the item accord-
ingly. For more detailed description of this policy,

2 Framework see references [8, 11].

In this paper, we assume that the sources are updated 3. Sampling-based: We first sample a small number
tonomously andindependently of the local copy. That is, of data items from each data source (e.g., a Web
we assume pull model where the local copy needs to pe- site) and estimate how many items in that source
riodically check the data sourcesdetect anddownload have changed. We then allocate download resources
changes. This model is in contrast tpush model where to each data source accordingly, based on the es-
the data sources aceoperative and willing topush their timates. For instance, in case of Example 1, we

updates to the local copies. Recently, Olston et al.[18] may download 10 pages from each of the 10,000

Web sites as samples (a total of 100,000 page sam2.2 Evaluation metrics

ples) and count how many pages in the samples havi
changed. (For now, we assume that we need to ac
tually download a page to see whether the page ha
changed or not.) Then based on the counts, we allo-

cate the remaining 900,000 download resources to 1

each Web site accordingly. Later in Section 3, we
will discuss this policy in more detail.

The above three policies have their own merits and

advantages. The round-robin policy is currently being
used by many systems [5, 15] due to its simplicity. It
also guarantees that every data item is downloaded at a
regular interval. The frequency-based policy has the fol-
lowing advantages and disadvantages:

e Advantage: The frequency-based policy is proven
to be optimal when we can estimate the change fre-
guencies of data items accurately [8].

Disadvantage: 1) It is very difficult to estimate the
change frequency of a data item accurately. Unless
we have a long change history of a data item, ex-
isting estimation methods often lead to unreliable
predictions [9], which in turn lead to an undesirable
download policy. In addition, the change frequency
itself may change over time, but we may not realize
that it has changed.

2) In order to estimate the change frequencies, we
need to keep track of the change historyeaéry
data item. When we maintain a large number of
items, this tracking may incur significant storage
and maintenance overhead

A sampling-based policy does not have the drawbacks

mentioned above, because it makes a download decision

purely based on the samples taken in ¢berent down-

load cycle. It does not need to keep track of the previous
change history of data items. Later in Section 4, we will
compare the effectiveness of the frequency-based policy

and the sampling-based policy using real Web data.

At this point, some of the readers may expect that
a sampling-based policy would work only when the

changes of the data items in the same sourcecare

related. However, we emphasize that this is not the case.

If we can takerandom samples from each data source,

we are guaranteed that the fraction of changed items in 2.
the samples is proportional — in a probabilistic sense —

to the fraction of changed items in the data source. So a
sampling-based policy doemt assume any correlation
between changes of data items. We should only be able

to takerandom samples from each data source.

We also note that it is possible to combine two or more
policies to achieve desirable properties. For example, we
may use half of our download resources in a round-robin
fashion and use the remaining half for a sampling-based
policy. This way, we can detect more changes than a sim-
ple round-robin policy, while downloading every item at
least at a certain interval. Our study will help us employ
a combined policy better, through better understanding

of the sampling-based policy.

fh order to compare various download policies, we need
an evaluation metric. We list three potential evaluation
Thetrics in this subsection:

. ChangeRatio metric: Informally, theChangeRatio

metric counts how many changed items we down-
load in a download cycle and uses this number as
its performance. More precisely, ti@angeRatio
metric is defined as the number of downloadad
changed items in a download cycle over the total
number of downloaded items in the cycle. For ex-
ample, if we downloaded 1 million items and de-
tected 700,000 changed items, fBlkangeRatio is
0.7. Since theChangeRatio may vary in different
download cycles, we take its average over multiple
download cycles. Our goal is to maximize the aver-
agedChangeRatio.

Note that in certain cases data items may have dif-
ferent “importance,” and we may want to detect
more changes from more “important” items. To for-
malize this notion, we may extend the simple defini-
tion of ChangeRatio by assigning weighty; to each
itemo; and define

ChangeRatio = > " w; - 1(0;)
ieR

Here,1(o0;) is an indicator function whose value is 1
when the item; has changed and 0 when it has not.
R is the set of items that have been downloaded.
w;'s are normalized so th@iER w; = 1. One can
use the weightsv; to represent different types of
importance of the pages such as their popularity or
how critical their content is for a specific application
(e.g. a news broker). When all;'s are equal, this
definition reduces to the simple definition.

TheChangeRatio metric is particularly useful when
we want to store thehange history of data items,
such as for the WebArchive project [20]. Because
our goal is to store as complete change history
as possible, we want to maximize the number of
detected changes. A similar definition was used
in [13].

Freshness andAge metrics: In [8], we proposed two
other metrics, callefreshness andage. The fresh-
ness of itenv; at timet is defined as

.~ _ | 1 if o; is up-to-date at time
F(oi;t) = { 0 otherwise.

(Up-to-date means that the locally stored image of
the item is the same as the image at the source) and
the freshness of the entire local copy at titrie

F(U;t) = |—(1]| S Flost).

0;€U

Here, U is the set of all locally stored items. In-

formally, the freshness metric represents the frac-3 Sampling-based policies

tion of data items that are up-to-date. For exam-
ple, if we maintain 100 pages and if 70 pages are

In this section, we discuss sampling-based download
policies in more detail. We start our discussion by clari-

up-to-date at, its freshness i9.7. Our goal is to
maximize thdime-averaged freshness under our re-
source constraints.

fying our cost model for sampling.
3.1 Sampling cost model

The second metric, the age of item at timet, is A sampling-based policy needs to sample a few data

defined as items from each data source in order to estimate how
many items in the source have changed. During sam-

0 if o; IS up-to-date at time pling, we assume that we need to downloadeatire
A(o;;t) = <t — modification time ob; data itemto check whether the item has changed or not.

That is, we assume that the cost sampling an item is

the same as the cost for actuatlgwnloading the item.

For example, if we can download 100,000 data items in
each download cycle and if we sample a total of 10,000
data items, we can download 90,000 more data items
in that cycle. We also assume that we do not need to
download a sampled item again in the same download
The age represents “how old” the local copy is. For cycle, because the item was already downloaded during
example, if the source data item changed one daysampllng. This assumption makes our discussion Slmple,
ago, and if we have not downloaded the item sinceand it is straightforward to extend our current model to
then, the age of our local item is one day. Our goalthe case where sampling cost is lower than downloading
is to minimize thetime-averaged age using limited ~ cost. For instance, if sampling cost is only% of actual
resources. Similarly to thehangeRatio metric, we ~ downloading cost, we may assume that we can download
can incorporate different “importance” of objects, 99,000 (= 100,000 — 0.1 - 10,000) more data items for

by assigning weightv;'s to items and taking an the above scenario.

weighted average. 3.2 Greedy and proportional policies

The freshness and age metrics are suitable when wgye now discuss two sampling-based policgsedy and

need to keep the local items as up-to-date as possiroportional. To make our discussion concrete, we use
ble. However, note that the metrics are hard to meathe following as our running example.

sure exactly in practice. Thatis, in order to estimate

exact freshness (or age), we needmstantaneously Example 2 We locally mirror two Web sitesi and B.
compareall source items to the local ones, which is Each Web site has 100 pages. We can download 100
often very difficult when we maintain a large num- pages every weekend. To estimate how many pages have
ber of data items. In addition, we want to opti- changed, we sample 10 pages from each site. Out of the
mize thetime-averaged freshness and age values, 10 samples7 pages changed iA and2 pages changed

but the time average can be obtained only when wein B. We need to decide how to allocate the remaining
know theentire change history oévery data item. 80 (= 100 — 2 - 10) page download resources toand
Therefore, most of the studies on freshness and ag&. We assume that every page is equally importang

are conducted through theoretical analysis, assum-
ing some stochastic models for data changes.

otherwise

and the age of the entire local copy is

A(U; 1) = ﬁ S Ao 1),

0, €U

Given the sampling results, we may allocate the

. . download resources td and B either proportionally or
. Divergence metric: In [18], Olston et al. proposed greedily.

a very general “staleness” metric calldiglergence.
Intuitively, a divergence value represents how dif-
ferent a local data item is from the source item.
For example, in a stock-market-monitoring appli-
cation — where we locally copy stock prices — we
may define the divergence of a stock quote as the
difference between its current price and the locally- 2
stored value. In general, a divergence metric can
be defined as any monotonically-increasing func-
tion [18].

1. Proportional policy: We allocate the remaining re-
sources to a site proportionally to its number of
changed samples. That is, we downléad - =

T+2
62 pages from sitel and80 - =2 = 18 pages from
site B.

. Greedy policy: We start from the site that has the
most changed samples and download all pages in
the site. If we still have remaining download re-
sources, we download more pages from the second-
most changed site. We continue this process until

In this paper, we mainly use thgéhangeRatio as our
evaluation metric. We made this choice because 1) it
is easy to measure in practice on real data and 2) high
ChangeRatio indirectly implies high freshness, low age,
and less divergence. Also in the remainder of this paper

we run out of download resources. In the above ex-
ample, we use all0 remaining resources for sité,
becaused has more changed samples than

In both policies, we allocate more download resources

we mainly assume that pages have equivalent weights. to the sites with more changed samples, hoping that we

will detect more changes. While both policies are rea- ChangeRatio
sonable, we can see that the greedy policy is expected
to yield betterChangeRatio than the proportional policy
from the following simple analysis.

Probabilistically, = = 70% of the pages in sited

would have changed anﬂ; = 20% of B pages would — Greedy
have changed. Therefore, the proportional policy is ex- --- Proportional
pected to deted).7 - 62 + 0.2 - 18 = 47 changes from -+--- Round-robin

coooo0oo0
= N W N O OO N

page downloads. Including the & (7 + 2) page changes
detected during sampling, we deté&étchanges in total
(i.e., theChangeRa_ltio is 56/100 = 0.56). In contrast, 10 20 30 40 50
the greedy policy is expected to detéct - 80 + 9 = 65 Sample size
changes in totalGhangeRatio of 0.65).

In general, it is straightforward to prove that the ex- Figure 1: ExpectedChangeRatio for various sample
pectedChangeRatio of the greedy policy is the high- sizes
est amongall sampling-based policies even in the case
where the sites differ in sizes.

B, with 100 pages each, and we download 100 pages
in one download cycle. We also assumed that 70 pages
Theorem 1 (Optimality of Greedy Policy) We sample changed in sited and 20 pages changed in site The
the same number of random pages from each data source horizontal axis shows the sample size that a policy uses
and allocate remaining download resources based on and the vertical axis shows the expec@thngeRatio of

the sampling results. In this scenario, the greedy pol- the round-robin, greedy and proportional policies at the
icy is expected to give the highest ChangeRatiout of all given sample size. The graph was obtained analytically.
sampling-based policies. o

Note that the greedy and the proportional policies

Proof For the proof of this and the remaining theorems Show the same expecte@hangeRatio, 0.45, as the

of the paper please refer to the extended version [§p]. round-robin policy when the sample size is either 50.
This is because when the sample size is 0, both policies

The above theorem shows that the greedy policyselect a random site for download, and when the sam-
yields betterChangeRatio on average than the propor- ple size is50, both policies use all its resources just for
tional policy. However, the greedy policy may have sampling. Also note that the proportional and the greedy
larger variation in its performance, because the greedy policies show similar performance when sample size is
policy aggressively allocatedl of its resources to the small (< 2). This little difference is because the greedy
site with more estimated changes. When the estimatiopolicy is more likely to make an inaccurate download de-
is correct, this choice yields very higthangeRatio, but cision with small samples. It needs to sample “enough”
when the estimation is incorrect, it also yields very low pages to make a good decision. From the graph, we can

ChangeRatio. In contrast, the proportional policy down- see that the greedy policy shows the optimal performance
loads pages froravery site, so even when the estimation when it samples about 5 pages from each site.

is inaccurate, it still shows relatively high performance.
Later in Section 4, we will investigate this issue experi-
mentally.

3.3 Optimal samplesize

In general, we can derive the optimal sample size for
the greedy policy analytically. To help derivation, we
first introduce some notation.

We assume that all Web sites have the same number of
In a sampling-based policy, the size of samples affectdNeb pagesN. In practice, different Web sites may have
performance significantly. In this section, we study the different numbers of pages, but in this case, we may in-
optimal sample size that yields the high€sangeRatio. terpretN as theaverage number of pages in overall sites.
In order to understand the impact of sample size, letWe user to represent the ratio of our download resources
us consider a scenario similar to Example 2, but nowto the total number of pages that we maintain. For exam-
assume that we sample 50 pages from each site (inple, if we maintain200 pages and if we can download
stead of 10). In this case, we use all of our 100 down-100 pages in each download cyclejs 0.5. We usep;
load resources just for sampling, so we cannot downloado represent the fraction of changed pages inSjte~or
any more pages from the site with more changed pagesnstance, if siteS; has100 pages and 70 pages have
Therefore, the performance of a sampling-based policychangedp; = 0.7. When sites have differept values,
would be similar to that of the round-robin policy, be- we can plot the histogram @f; values as in Figure 2 and
cause we download random pages during sampling. Approximate it by a continuous density functig(y).
the other extreme, if we sample only one or two pagesThe goal of the greedy policy is to download pages only
from each site, there is a high chance that the estimateffom the sites whosg; values are the highe300 - r%
number of changes from samples is inaccurate and wésay, the gray region in the figure). We ysgto repre-
make a wrong download decision. sent the threshold value: The sites whorg values are
Figure 1 illustrates this issue more precisely. We ob-higher tharp; belong to the tod 00 - % sites. We us@
tained the graph assuming that there are two sdemd to represent the averagevalues over all sites. We uge

7(p) from samples will be very different, so it becomes easier
to identify the highp sites from the others.

The final factorf (p;) indicates that we need to sam-
ple more pages when the value of the density function
f(p) is high atp;. This is because when many Web sites
havep values close tg; (i.e., whenf(p;) is large), it
is more difficult to tell exactly which sites hayevalues

higher/lower tharp;.
Using the formula in Theorem 2, we can estimate the
T optimal sample size when we know the distributiorpof
0.5 Pt 1 p values. In certain cases, however, the distribution may

be unknown, and we may not compute the optimal sam-

Figure 2: Histogram op; values of sites ple size accurately. Even in this scenario, we believe the

[Notation | Meaning | result of Theorem 2 is still useful, because it shows that
N Average number of pages in all sites the optimal sample size is proportional to the square
R Available download resources root of Nr. As a rule of thumb, therefore, when we do
T Ratio of download resources to the total numper NOt know the exact distribution ¢f values, we may use

of pages we maintain v Nr as a rough approximation for the optimal sample
s Sample Size size. Clearly, other factors are important to determine
k Granularity (sample size) of adaptive policy the exact optimal size, but this approximation will be
Confidence value of adaptive policy roughly in the same range as the optimal size, different
pi Fraction ofchanged pages in site5; only by a constant factor. Later in the experiment sec-
f(p) Density function of all web siteg) values tion, we will verify the result of this section using real
Pt Thresholdp value. Ifp; > p; for someS;, thenS; Web data.
belongs to the highesto - r% sites
P Averagep values over all web sites 3.4 Adaptive sampling
o Averagep value of web sites having; > p;

r _ The policies that we have discussed so fartex@stage
Table 1: Notation used throughout the paper. policies. That is, we first take a fixed number of samples
L from each site at gampling stage, and then we down-
to r_epresent_the averagevalues of the sites in the gray |5ad more pages from highsites at adownload stage.
region (the sites whogevalues are above;). InTable 1, |hsiead of a two-stage policy, we now discuss an adap-
we summarize our notation. Some of the notation in thetjye sampling policy that tries to adjust the sample size
table will be introduced later. dynamically and adaptively.

Under this notation, we can expect that the optimal ~ oy new adaptive policy is essentially based on the

sample size will depend on the distributigifp), our re- reedy policy: After sampling some pages from each
source constraints, and the number of pages in the Wegite, if we are certain that the value of a site is very

sites. The followi_ng theorem shows how these paramepigh, we download all pages from the site. The differ-
ters affect the optimal sample size. ence is that the sample size is not determined in advance
under the adaptive policy.
To illustrate, let us assume that we maintain local
copies of 4 Web sites§; throughS,. Their p values
arep; = 0, p2 = 0.45, p3 = 0.55, p4 = 1, and each site
PN AL (0 has 100 pages. We can download a tota2@sf pages in
6(pr — p) each download cycle. Roughly, our goal is to identify the
two Web sites with highp values that we will download
Intuitively, we can understand the result of Theorem 2 pages from.
as follows: First, whem is large (i.e., when we have rel- Given the highp value of the siteS,, we can expect
atively large download resources compared to the numthat the samples frord, will have much more changes
ber of pages that we maintain) we can use more of outhan the other samples. Therefore, it is relatively safe to
resources for sampling, because we can still downloagbick S, for page download early in our sampling. Simi-
many pages from higl sites using the remaining re- larly, itis safe to discar@, early on, because of its low
sources. Second, whéi is large (i.e., when Web sites value. Compared t§; andSy, S, andSs require larger
have more pages), we need to sample more pages frosamples, because theivalues are similar and it is diffi-

Theorem 2 (Optimal sample size) The optimal sample
size, s, under the greedy policy is approximately

the sites to predict thejr values better. cult to tell which one has a highervalue. Based on this
Another factorp, — p, indicates that we can sample intuition, we propose the policy described in Figure 3.
less pages whep, — p is high (i.e., when the values The algorithm takes two input parameters,and

of the top100 - »% Web sites are much higher than the k£, whose intuition is given later. Roughly, the algo-
averagep value.) This is because when thevalues are rithm proceeds as follows: It samplépages from each
very different among the sites, the estimajgdvalues Web site, and based on the samples it estimates the

Performance ratio

Algorithm 3.1 Adaptive-sampling policy 2
Parameters:
«: confidence level (a value between 0 and 1) 1.75
k: number of pages to sample in each iteration 1.5
Procedure 1.25

[1] S={51,52,... 5.} /I Set of sites to be sampled

2] Loop while we have download resources !

[

[3] Foreachsites; € S 0.75
[4] Samplek pages fron®S; 0.5
[5] p; = Estimate ofy value forS; base on the samples so fal 0.25
[6] (1i, hi) =100 - a% confidence interval fop;

[7]1 Compute threshol@, from the distribution of estimateg;'s r

[8] Foreach Web sit&; inS
o1 If(h; <p)S=S-5; Figure 4: Comparison of the round-robin policy and a

/I p; too low. We do not download frorfi;
[10] If (o1 < I;) download all pages iff; andS = S- S; sampling policy for various resource constraints

Il p; very high. We download pages froff}

0.2 0.4 0.6 0.8 1

form similarly to the round-robin policy: after sampling

. .))) a couple of pages from each site, we cannot download
Figure 3: Algorithm of the adaptive-sampling policy any more pages from high sites, and we end up vis-
iting a small but different portion of the pages in each
cycle, just like the round-robin policy. (Because we take
random samples, we will visit different pages in differ-

s ent cycles with high probability.) At the other extreme,
if we have enough resources to download every page in
each download cycle, a sampling-based policy will per-
form similarly to the round-robin policy again, because
both policies will download all pages in every cycle.

value and itsl00 - % confidence interval for each site
(Steps [3] through [6]). Given the distribution of the es-
timatedp; values, it can predict the threshald value
(Step [7]). For example, if we can download about hal
of the sites in each download cycle, and if half of the
estimate;’s are abové.6, p; = 0.6.

After estimatingp,, it compares the confidence inter-

vals of p; to the threshold. If the confidence interval for Figure 4 shows dypothetical graph that illustrates

S; is strictly lower than the threshold{ < p;), it stops : ; ; : ;
sampling from the site (Step [9]): It has enough evidenceth'.s relationship. The horizontal axis shows the resource
ratio » (the number of download resources to the num-

that thep; of S; is below the threshold. Similarly, if the ber of total pages we maintain). Wheris 1, we can

confiden(_:e interval of; is strictly above t_he threshold download all pages in each download cvole. and when
(p: < ;). itdownloads all pages_from t_he site (Step [10]). r is 0, we ca% %ownload no page. Th)ia vértical axis
b Ttﬁg Oljsaenrd kv\\;ﬁlelzjr? Sthievg?ﬁ :gig r%t\'le ntﬁzrglmg'ﬁﬁ;smsetshows the performance ratio of a sampling-based policy
y : ; I gorih o the round-robin policy@hangeRatio of a sampling-
makes a download/discard decision “aggressively anqtnased policy ove€hangeRatio of the round-robin pol-

picks a site for download (or discard) even with low con- .). When the sampiing-based policy performs better
fidence. Thus, it allocates less resources to sampling any’- 4 Lrobi P Ig " poticy ph' oo
more resources to page downloads. Thealue deter- | aﬂt € ror:m -ro ml_po It():y, td's rratlcr)] IS ig der tb_‘.em i
mines the granularity of sampling adjustment. When'" € graph, a sampling-based and the round-robin poli-
cies show similar performance (the performance ratio is

k is small, the algorithm re-estimates values more L .
frequently and makes a download (or discard) decisionl) when resource ratiois close to either O or 1, because

more often. Thus, the algorithm may show better perfor-C! (M€ réasons discussed above. In between these two
mance but it may require more processing power. I_atelextremes, a sampllng—based p(_)llcy shows better perfor-
in Section 4, we will study the impact of andk values mance than the round-robin policy.

- - - - . To improve performance for the scenario of very lim-
on the effectiveness of thg pol|(;y. We will try to identify ited reso%rcesfzz 0), we propose that asampling-l:))/ase d
gooda andk values thatyield high performance. policy should select a smatiibset of its data in each

3.5 Subset sampling under low download resour ces download cycle, and sample and download pages only

So far, we have implicitly assumed that we have a suffi-fom the subset:

ciently large amount of download resources, so that we e Subset sampling under low download resources:

can sample a reasonable number of pages from each site When the download resources are too limited to

and still download more pages from higlsites. In cer- sample enough pages from each site, we group the

tain cases, however, this assumption may not be valid. sites intom subsets. In each download cycle, we

We may not be able to sample enough pages from each pick one subset and sample and download pages

site, due to limited available resources. In this section, only from the sites in the subset. We revisit the sub-

we study how we should handle low-resource scenarios. sets in a round-robin manner over multiple down-
Generally, there is an interesting relationship be- load cycles.

tween the download resource size and the performancgqy instance, consider the following example:

of a sampling-based policy. At one extreme, when we

have few download resources and cannot sample enougbxample 3 We maintain local caches of Web pages

pages from each site, a sampling-based policy would perfrom 1000 sites. Each Web site has 100 pages. Every

No. of Stes

weekend, we can download 500 pages in total. In this 100

scenario, our simple greedy (or adaptive) policy cannot
work effectively, because we can sample less than one
page from each site.

To handle this scenario, we may use the subset- 60
sampling policy. First, we divide the sites into groups of,
say, 10 sites. Every week, we select a group of 10 sites 40
and sample, say 10 pages from each of the 10 sites. As-
suming we use the greedy-policy, we can use the remain- 20
ing 400 (500 — 10 - 10) download resources to download
pages from high sites. o

80

©0.10.20.30.40.50.60.70.80.9 1. P

When we need to use the subset-sampling policy, one Figure 5: Histogram op; values in the dataset.
important question is how many sites we should put in .
each subset. Should we sample 10 sites in one downloa Experiments
cycle, sampling all 1000 sites over 100 cycles? Or should=ollowing on from our theoretical analysis, we con-
we sample 20 sites in each cycle? The answer dependgicted a number of experiments in order to study the
on the amount of available resources and the distributiorhehavior and performance of the aforementioned poli-
of p values among the sites. Although we cannot derive asjes. Most of our experiments were conducted on real
closed formula for the optimal number of sites to sample,qata collected from the Web. The dataset contained 6-
we believe that the number should be determined sucknonth change history of approximatedy3, 000 Web
that we can download all pages from higtsites after pages distributed amory2 Web sites and is described
sampling. _ o in more detail in [7]. The data was collected by our We-

_ For example, if they values follow the distribution of pArchive crawler, which visited the Web sites once every
Figure 2, and if roughly0% of the sites belong to the month for a period of 6 months. Since changes could be
grey region (higfp region), we should be able to down- detected only from the second visit (in the first visit, we
load all pages from these t&9% sites in each down- do not know whether a page has changed or not), we had
load cycle. If our subset is too small and if we have to 3 total of5 change history data for each page. Thus, our
download pages from lowersites (given our download experiments could run up to 5 download cycles.
resources), performance would degrade. If our subsetis compared to the real Web the size of our dataset and
too large and if we “waste” most of our resources for the nymber of download cycles are relatively small, but
sampling, performance would also suffer. Later in Sec-55 e will see in the following sections it is enough to
tion 4, we experimentally study the effectiveness of theying up the potential of the sampling policies. Also,
subset-sampling policy. when it is necessary to run experiments on a longer

3.6 s Greedy too greedy? change history, we assumed that our 5 cycle data would

. . . . repeat over time. That is, if we detected changes from
While the greedy (and adaptive) policy can improve the 4 page in the 2nd and 5th cycles, we assumed that we

overallChangeRatio, it may be possible that some pages yetect changes in 7th, 10th, 12th, 15th cycles, etc. Our
are never downloaded, because the policy downloadg,taset is publicly available from our Web site [20].
pages only from the high sites. The following theorem We should emphasize that our later experiments did

proves that this is not the case. not actually crawl and download pages. All experiments
were conducted on thgame data collected by our We-

bArchive crawler. This setup enables a fair comparison
among policies. Also, throughout experiments, we as-

Although the theorem proves that every page will even-sume that the cost for sampling a page is the same as the
tually be downloaded, it does not guarantee that page§0st for actually downloading it.

are downloaded within a “reasonable” period of time. It 41 Digtribution of p values

also does not address the case when some of the pages

does not change at all. In the extended version of thisVe start our discussion by investigating the properties of
paper [10], we examine how often each page is down-our dataset. In particular, we show the distributiorpof
loaded on real Web data under the greedy policy. Thevalues of the sites (Section 3.3) in Figure 5. The hori-
results show that most of the changed pages are dowreontal axis represents rangespo¥alues, and the verti-
loaded within a reasonable period. We also note thatal axis shows the number of Web sites with the giwen

if it is important to download every page within a cer- value. LabeD.1 on the horizontal axis means the range
tain interval, we may decide to combine the round-robinof 0 to 0.1. Note that thep value of a site may vary be-
policy with the greedy (or other sampling-based) policy. tween download cycles. However, we could not detect
For example, we may want to use, s3¥7% of download any meaningful fluctuation ip values between cycles
resources in a round-robin fashion and use the remainindgrom our dataset. We plotted the histogram usingaire
70% for the greedy policy. erage p value of a site over abb download cycles.

Theorem 3 When every page changes at some points of
time, every pageis eventually downloaded.

ChangeRatio cal oracle policy, which could magically download only

7 changed pages, the improvement would be less than
25%. The performance of the proportional (Prp) policy
is similar to that of the frequency policy, and the perfor-
mance difference between the greedy and the adaptive
policy is marginal.

While the results strongly indicate that the greedy
and the adaptive policies are very effective, we note that
the frequency-based policy could not show its full po-
tential in this experiment, due to our small number of
RR Prp Frq ad Adp download cycles. Since the frequency-based policy did
. . . Visiting Policy . . hot know how often pages change, it visitegry page
Figure 6: Comparison of the various download palicies. gnce in a round-robin manner in the beginning, until the
first half of the 4th cyclé. Only after that, the policy
started to adjust revisit frequencies based on estimated
yc:hange frequencies. Therefore, in the first three vis-
its, the frequency-based policy showed the same perfor-
mance as the round-robin policy and only from the sec-

ol

© ©o o © © o 0o
N W b

[

This figure shows that in our data, there exist quite
a few Web sites whose pages change very frequentl
About 18% of the sites hap values betwee.9 and
1. Also, a lot of sites are static and remain (almost) un-

altered throughout our experiment. More tH&iV% of .
X . : ond half of the 4th download cycle, it started to show
the sites hag values between 0 and 0.1 This fact intu- some improvement.

itively suggests that 1) it can be relatively easy to detect Because of this fact, the comparison of the frequency-

the high and low sites using sampling and 2) if we can based policy and our sampling-based policies may not be

identify the Web sites with very high and logvalues . - oo ;
and afhlocate our download resyour%es apprc%riately, Wéalr, but we note that this is the situation in any practical

Lo . ; ystem. Any system has to estimate page change fre-
(rjneax&l;(sjecrxgr?gsggmflcant improvementin the number 01LZuencies in order to use the frequency-based policy, so it

) — : will suffer from poor performance in the beginning. In
While our data indicates that thevalues of Web sites a6t o sampling-based policies perform well with-
follow a V-shaped distribution, it will be also interesting

how various download policies perform for different dis- out any change history data. Later on, we will compare
S oad p S P X the long term performance of the frequency-based policy
tributions. For this reason, in the extended version of ;
. and our greedy policy.
this paper [10], we report some of our results syn-
thetic data whose values follow anormal distribution. 4.3 Optimal samplesize
The results from the synthetic data strongly indicate thajp

; . n this subsection, we examine the impact of the sam-
while the exact numbers are different, the general trendy,o ;0 o the performance of sampling-based policies.
that we observed from the real data is still valid even forF

o or this purpose, we ran the greedy and the proportional
a normal distribution. policies on our data set, keeping the resource size con-
4.2 Rough comparison of download policies stant to 100,000 pages and varying the sample size from
1 to 400. The outcome of this experiment is drawn in

In this section, we conduct a rough comparison of V""”'Figure 7. The horizontal axis represents the sample size

ous policies using our real data. For the experiments, WE, 1 the vertical axis shows t@han ; ;

- geRatio at the given
assumgd that each policy can downidad= 100, 000 sample size. From the graph, we can confirm the trend
pages in each download cycle. The greedy and Proporg, -+ we discussed before:

tional policies used sample size= 10 and the adaptive L .
policy usedk = 10 (discussed in Section 3.4) andacon- ® When the sample size is too small, a sampling-

fidence leveky = 0.9. Note that we did not try to opti- based policy shows poor performance. It often
mize these parameters. We selected the numbers rather Makes a poor download decision. This degradation
arbitrarily for this experiment. However, we believe that is particularly noticeable for the greedy policy.

the results would show the relative potential of various e When the sample size becomes too large, perfor-
algorithms. In later sections we will examine the impact mance also degrades, because sampling-based poli-

of the various parameters more thoroughly. cies waste more resources for sampling than they
Figure 6 shows the results. The horizontal axis cor- ought to.

responds to v_arious polici(_as_ and the vertical axis showSpe can see that the optimal sample size for the greedy
the ChangeRatios of the policies (averaged over 5 down- iy is around 10-50. This range matches well with the

load cycles). From a first glimpse at this figure, the hragiction of Theorem 2. In Section 3.3 we argued that

Ezzd?r cal_n_observfe that our_g_reeldy (G"rd) and ad(?ptivm is a good rule of thumb for the optimal sample size
p) policies perform surprisingly well compared to P "
the round-robin (RR) and even the frequency-based (Frqy\/hen we do not know the exact distributionotalues.

policy. TheirChangeRatios are almost twice as high as we had353,000 pages and we visited00, 000 pages in each

the frequency-based policy! Since th_élhangeRatiOS download cycle. Therefore, we neeq cycles to visit every page
are around).75, even if we could design a hypotheti- once.

ChangeRatio ChangeRatio

0.9
0.8 *
R 0.7
0.4 Proportional -« <+ Geedy
0.6 % Subset Sanpl i ng
0.3
100 200 300 200 5000 10000 15000 20000
Resource Sze
. Sample Sze | . . .
Figure 7: Performance of the greedy and proportionalFigure 9: Comparison ofhangeRatio for Greedy and
policies over various sample sizes. SubsetSampling for low number of resources.
ChangeRatio

performance for comparison purposes. Note that the
ChangeRatio of the oracle policy goes below 1 fdt >

100, 000. This is because in each download cycle, only
about100,000 pages changed and if our resource size
is larger thanl 00, 000, the oracle policy starts to down-
load unchanged pages. For most of resource sizes, the
greedy policy shows much better performance than the

0.4f ¥ - . i
L — - - round-robin policy.
0.2 RoundRobin The graph confirms our earlier discussion (Sec-
tion 3.5): When the resource size is large, the perfor-
50000 100000 150000 200000 250008 300000 mance of all policies become similar, because all poli-

.) . cies download every page. When the resource size is
Figure 8: Performance of oracle, greedy and round-robingg small, the performance of the greedy policy degrades.
policies over various resource sizes. This degradation starts & < 20, 000.

. N To study the impact of the subset sampling policy,
Given our parameters\(N: 353’002/2],52 ~ 1|°400 and e divided sites into small subsets and sampled pages
r= 100’00_0/353’000 ~ ,0'25,5)’t IS formu a'pre.d|<.3t5 only from one subset in each download cycle when
that the optimal sample size N+ ~ 20, whichisin p = 20 000. The size of each subset was selected so
the range that we observe from our experiment. that we can download abouR% of the pages in the

From the graph we can see that for all sample sizessypset in each download cycle. For example, when we
the greedy policy shows better averdff@ngeRatiothan have10, 000 download resources, each subset had about
the proportional policy. We expected this result from our 0. 000 pages. We selectei8% because about8% of
discussion in Section 3.2, but we also discussed that thene sites in our dataset belonged to the right peak of the
greedy policy may have a larger variation @hange- \~shaped distribution (Figure 5). The result from this
Ratio than the proportional policy. To compare their experiment is shown in Figure 8. From the graph, we
variations, we measured the standard deviation (s.t.d.) ofan see that the subset sampling policy improves the ef-
ChangeRatio between download cycles for both policies. fectiveness of the greedy policy when the resource size
From this estimation, we could see that the s.t.d. of thgs small. For instance, wheR = 5,000 the Change-
greedy policy is larger than that of the proportional pol- Ratio improves fromd.73 to 0.89 when we used the sub-
icy (e.g., 0.027 vs. 0.023 for sample size 1). However,set sampling policy.
because the variation is very smail (0.02) compared to)
averageChangeRatio (~ 0.75), we believe that the vari- 4> Long-term performance of the frequency policy
ation issue is of negligible importance. The results in Section 4.2 showed that the performance
of the greedy policy is significantly better than the
frequency-based policy in a short term. In this section,
We now study the effect of varying resource size on thewe study the long-term performance of the frequency-
performance of the greedy policy. For the experiments,based policy and compare it to the greedy policy.
we ran the greedy and the round-robin policies on our Towards this goal, we ran the frequency and the
data set. The greedy policy used the sample Bizand greedy policies for longer download cycles, by assuming
the resource siz& varied from 3,000 to 300,000 pages. that the observed change history of the pages repeats for-

Figure 8 shows the results from this experiment. Theever. For example, if we detected changes from a page
horizontal axis corresponds to the resource size and thin the 2nd and 5th cycles, we assumed that we detect
vertical axis shows th&hangeRatio at the given re- changes in 7th, 10th, 12th, 15th cycles, etc. Figure 10
source size. Theracle policy is the one that can mag- shows the results. The horizontal axis corresponds to a
ically download only the changed pages. We show itsdownload cycle, and the vertical axis shows @Giange-

4.4 Resourcesize and subset sampling

ChangeRatio ChangeRatio
0.8

0.78
0.76

0.74 %

0.72

! 100 200 300

400 500 5 10 15 20 25 30
Download Cycle Sample Sze

Figure 10: Performance of the frequency and the greedyrigure 11: Performance ofdaptive over various sam-

policies over time ple sizesk.
Ratio at the given download cycle. The dashed line is the ChangeRatio
result of the greedy policy and the solid line with wide 0.8
fluctuation is the result of the frequency-based policy. 0.78
The wide fluctuation in the frequency-based policy 0.76
is mainly because it periodically downloads pages that 0 74
rarely change. Even if a page has never changed, we can- 0.72
not be sure that its change frequency is zero, so we have
to periodically go and check the page for change. The 0.7 i
dips in the graph correspond to the points when the pol- 0.68 sks
icy downloaded infrequently changing pages. Note that 0.66 .
the interval between these dips increases steadily over 05 06 0T 08 O enceLevd

time. This is because as we accumulate more change, _) i i
history data, we can be more confident that the page doesigure 12: Performance ofdaptive over various confi-
not change, and thus need to check the page less often.dence values.

From the graph, we can clearly see that the perfor-,, meaningful difference iChangeRatio for most of
mance of the frequency-based policy improves steadily, yajyes. One thing to note is that the performance for
over time. Its p_erformanc_e is significantly lower thanthe ;. _ { is worse than otherg:(= 5,10) whena is small
greedy policy in the beginning, but from around 100th (a < 0.75). This is because whemis small andk = 1,
download cycle, it starts to show better performance i olicy started to pick (or discard) a site for download
Therefore, in the long run, the frequency policy can be atier it took only 1 sample: Because it selected a site for
better than the greedy policy. However, keep in mind yq\ynioad (or discard) too aggressively and too early, it
that 100 download cycles is a long period of time. Be- 5tten made wrong decisions. In other cases=(5 or
cause we downloaded pages once every month, 100 ¢yrg, or « is large), these early decisions did not happen,
cles roughly correspond to 10 years! because the policy had to sample 5 or more pages when
4.6 Adaptivepolicy k = 5 ork = 10, or because it made a download (or

We now study the impact of thé and o values (in- d|s§ard) ddemsrl]on conlservat|\l/3ell3_/e\)/;vdhanlsolargde. ~ 009
troduced in Figure 3) on the performance of the adap- 5as€d on the results, we fe' & Uanda iy
tive policy. To study their impact, we ran the adaptive- arebggod parameters to use for a scenario similar to our
sampling policy for varioug anda values. Figures 11 Web data.
and 12 show the result. Figure 11 shows @fe@nge-
Ratio of the adaptive policy for variousvalues (the hor- 5 Related work
izontal axis) whery = 0.9. From the graph, we can see References [8, 11] study how a crawler should down-
that the performance decreases &screases. (There are load pages to maintain its index “up-to-date.” Assum-
small fluctuations, but we believe they are experimentaliing that the crawler knows the exact change frequen-
variations.) This result is expected because whda cies of pages, the references present an optimal algo-
small, we try to re-estimatg; values after small number rithm. As we learned from our experiments, this change-
of samples, and thus make a download decision more frefrequency-based algorithm performs relatively well once
guently with more accuratg; values. From the figure, it collects a large amount of history data. However, his-
we can see that the performance decrease is relativelyory collection incurs significant overhead, and until it
small untilk = 10. collects enough data, the algorithm performs poorly. Our
Figure 12 shows th€hangeRatio for variousa val- sampling-based policies do not need to track any change
ues (the horizontal axis). From the graph, we can sedistory, and it shows significant improvement without
that the confidence interval does not affect the perfor-any history data. Reference [13] proposes another down-
mance of the policy significantly. We could not detect load algorithm based on linear programming. The al-

gorithm shows promising results, but because algorithm
becomes more complex over time, the authors report
that the algorithm has to periodically “reset” and “start
from scratch;” The algorithm takes (practically) infinite
amount of time to finish after a certain number of down-
load cycles. In contrast, the complexity of our sampling-
based algorithms stay the same over time.

A lot of work has been done to maintain the consis-
tency of replicated data [3, 1, 12, 16, 17]. This work stud-
ies the tradeoff between data consistency and read/write
performance. In most of the existing work, however, re-
searchers have assumeplsh model, where the sources
notify the replicated data of the updates. For example,

once we collect enough change history data, we
start using the frequency-based policy. When we
should start this transition? What can we do if the
change frequency itself may change over time?

In this paper, we assumed that we sample a few
pages from eack\eb site or eachdata source. But
there is no inherent reason to sample at the level of
a site. What if we sample a few pages from each
directory? What if we group Web pages based on
their contents and sample a few pages from each
group? Would we get better performance?

Olston et al. [18] proposed a new architecture in which References

data sources can notify caches of important changes. Inyy;
many contexts, particularly for the Web, this push model
is not applicable, because data sources often do not in{2]
form others of their changes.

Sampling is a popular technique that has been used in[3]
multiple disciplines for various optimizations [14, 22, 21,
6]. The contribution of this paper is to apply sampling [4]
techniques to the context of change detection, and study
a variety of issues arising in this context. 3]

Themulti-armed bandit problemis well known in the 6]
statistics and Al community. The problem is to iden-
tify the slot machine with the highest chance of winning [7]
through exploration and exploitation. The problem is
proven to be NP-hard [4], and people have proposed a
range of approximation algorithms [2]. The setting of [g]
the multi-armed bandit problem is slightly different from
ours, because bandit-problem assumes that the user caly!
play the best slot machine infinitely. In contrast, we canpyq;
download only a limited number of pages from each data
source, so we need to find the toff sources, not just
the top source. This difference makes the policies takd!ll
quite different forms.
6 Conclusion and future work 2]
In this paper, we studied how we can detect changecﬂlS]
data items effectively using sampling. We proposed
three sampling-based policiegeedy, proportional and
adaptive, and evaluated their performance analytically [14]
and experimentally. We also compared the sampling-
based policies to other existing policies. Our experi-[15]
ments showed that the greedy policy is easy and simple
to implement and shows one of the best performance irl16]
many scenarios. Given its simplicity and performance,
we believe that the greedy policy is good for practical [17]
systems. Its complexity is similar to the widely-popular
round-robin policy, while its performance is close to (or
even better than) the frequency-based policy. Also, weltél
learned that the frequency-based policy is not very effechg]
tive in certain cases, because it takes a long time to egoq)
timate the change frequencies of pages. We now briefly
discuss a few avenues of future work. [21]

e If we want to maximize performance, we may
want to combine a sampling-based policy with the [22]
change-frequency-based policy. That is, we start
with a sampling-based policy in the beginning, and

R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching is-
sues in an information retrieval syste®CM TODS, Sep 1990.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gam-
bling in arigged casino: The adversarial multi armed bandit prob-
lem. InProc. of FOCS, pages 322—-331, May 1995.

P. Bernstein and N. Goodman. The failure and recovery problem
for replicated distributed database¥CM TODS, Dec 1984.

D. A. Berry and B. FristedtBandit problems: sequential alloca-

tion of experiments. Chapman and Hall, 1985.

S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. Proc. of WM conf., April 1998.

S. Chaudhuri, R. Motwani, and V. R. Narasayya. On random
sampling over joins. IfProc. of SGMOD conf., 1999.

J. Cho and H. Garcia-Molina. The evolution of the web and impli-
cations for an incremental crawler. Rroceedings of the Twenty-

sixth International Conference on Very Large Databases (VLDB),
Cairo, Egypt, September 2000.

J. Cho and H. Garcia-Molina. Synchronizing a database to im-
prove freshness. IRroc. of SGMOD conf., May 2000.

J. Cho and H. Garcia-Molina. Estimating frequency of change.
Technical report, DB Group, Stanford University, Nov 2001.

J. Cho and A. Ntoulas. Effective change detection using sampling
(extended version). Technical report, UCLA Computer Science
Department, 2002.

E. Coffman, Jr., Z. Liu, and R. R. Weber. Optimal robot schedul-
ing for web search engineslournal of Scheduling, 1(1):15-29,
June 1998.

L. S. Colby, A. Kawaguchi, D. F. Lieuwen, and I. S. Mumick.
Supporting multiple view maintenance policies.Rroc. of G-
MOD conf., 1997.

J. Edwards, K. McCurley, and J. Tomlin. An adaptive model for
optimizing performance of an incremental web crawlerPtoc.

of WMV conf., 2001.

P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-
based estimation of the number of distinct values of an attribute.
In Proc. of VLDB conf., pages 311-322, 1995.

A. Heydon and M. Najork. Mercator: A scalable, extensible web
crawler. Word Wide Web, 2(4):219-229, December 1999.

N. Krishnakumar and A. Bernstein. Bounded ignorance: A tech-
nique for increasing concurrency in a replicated systef@M
TODS, 19(4), December 1994.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replication.ACM Trans. Comput. Syst.,
November 1994.

C. Olston and J. Widom. Best-effort cache synchronization with
source cooperation. IAroc. of SGMOD conf., May 2002.

Internet Archive.ht t p: / / www. ar chi ve. org.

WebArchive Project. http://webarchive. cs. ucl a.

edu.

Y.-L. Wu, D. Agrawal, and A. E. Abbadi. Using the golden rule
of sampling for query estimation. IRroc. of SGMOD conf.,
2001.

Q. Zhu and P.-A. Larson. A query sampling method of estimating
local cost parameters in a multidatabase systerRrdn. of ICDE
conf., 1994.

