The Generalized MDL Approach for Summarization

Laks V.S. Lakshmanan
Univ. of British Columbia
laks@cs.ubc.ca
Xiaodong Zhou
Univ. of British Columbia
xdzhou@cs.ubc.ca

Abstract

There are many applications in OLAP and data anal-
ysis where we identify regions of interest. For exam-
ple, in OLAP, an analysis query involving aggregate
sales performance of various products in different loca-
tions and seasons could help identify interesting cells,
such as cells of a data cube having an aggregate sales
higher than a threshold. While a normal answer to
such a query merely returns all interesting cells, it
may be far more informative to the user if the system
returns summaries or descriptions of regions formed
from the identified cells. The Minimum Description
Length (MDL) principle is a well-known strategy for
finding such region descriptions.

In this paper, we propose a generalization of the MDL
principle, called GMDL, and show that GMDL leads
to fewer regions than MDL, and hence more concise
“answers” returned to the user. The key idea is that a
region may contain “don’t care” cells (up to a global
maximum), if these “don’t care” cells help to form big-
ger summary regions, leading to a more concise overall
summary. We study the problem of generating mini-
mal region descriptions under the GMDL principle for
two different scenarios. In the first, all dimensions of
the data space are spatial. In the second scenario,
all dimensions are categorical and organized in hierar-
chies. We propose region finding algorithms for both
scenarios and evaluate their run time and compression
performance using detailed experimentation. Our re-
sults show the effectiveness of the GMDL principle and
the proposed algorithms.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Raymond T. Ng
Univ. of British Columbia,
rng@cs.ubc.ca

Christine Xing Wang
Univ. of British Columbia
cwang@cs.ubc.ca
Theodore J. Johnson
AT&T Labs—Research
johnsont@research.att.com

1 Introduction

There are many applications in data analysis where
we often wish to find out cells in a multi-dimensional
data set where some property p of interest holds. For
instance, property p may be minimum frequency, or
aggregate sales above a certain threshold. A cell here
refers to a combination of values from all dimensions.
We give two examples and elaborate on one. The first
example is a two-dimensional space over the dimen-
sions age and salary, where a cell might correspond
to an intersection of intervals over each dimension.
Rather than enumerating all the interesting cells indi-
vidually, the user may prefer a concise summary cov-
ering all interesting cells and no uninteresting ones.
A summary amounts to a non-redundant covering of
interesting cells using maximal axis-parallel hyper-
rectangular regions [1]. The Minimum Description
Length (MDL) principle is one of the most widely used
approaches to provide such descriptions, where the de-
scription language is restricted to hyper-reactangular
regions. (As will be clear shortly, hyper-rectangular
regions are the most natural means of summarizing
when hierarchies are involved.) Consequently, finding
the MDL summary corresponds to finding a minimum
rectangular covering.

As a second example, consider a table
sales(storeld, product, date, dollarAmt), register-
ing the sales in dollar amount of products in different
stores of a chain on various dates. Suppose the
dimensions storeld, product, date are categorical
in nature and have hierarchies defined on them. For
example, stores may be grouped into cities, which
may then be grouped into states, which in turn into
countries and so forth. A cell in this example is any
combination of values of the dimension attributes
(storeld, product, date). A user may be inter-
ested in those cells satisfying a predicate p, e.g., those
where the total aggregate dollar amount is > $500.
Once again, a concise summary description of inter-
esting cells is preferable to their enumeration since



the former may be more meaningful and intuitive to
the user. Note that a description does not correspond
to any spatial regions in this example. Rather, it is a
covering of interesting cells via “regions” in the cate-
gorical space, which correspond to (tuples of) nodes
in the dimension hierarchies. For instance, a region
might be (northeast, home electronics, 2002-Qtr-1).

In this paper, we study the general problem of sum-
marizing cells of interest by means of a covering with
regions. While the MDL principle has been success-
fully applied to many problems, we argue that the
number of regions returned according to the MDL
principle can still be large for the user’s purpose. And
for many situations, the determination of the prop-
erty p may not be hard-and-fast. For instance, in the
salary and age example above, the user may desig-
nate cells with ¢ points or more as definitely “inter-
esting”, cells with u(< t) points or less as definitely
“undesirable”, and the rest as “don’t care”. Similarly,
for the data cube example, the interesting cells may
be those with sales > $500; undesirable cells may be
those with sales < $200; and “don’t care” cells are
those in between. In this paper, we study summariza-
tion based on a relaxation of the MDL principle — by
allowing some number of “don’t care” cells to be in-
cluded in the summary. In return, the total number
of summary regions is reduced. More specifically, the
user can mark cells as blue (“interesting”), red (“un-
desirable”), and white (“don’t care”). The generalized
MDL summarization algorithm should then generate
region coverings that cover all blue cells, no red cells,
and possibly some white cells (up to a user-specified
maximum “budget”). Specifically, we make the follow-
ing contributions.

e We introduce the Generalized MDL (GMDL) re-
gion finding problem. One instance of the prob-
lem concerns the spatial case, where attributes
are numeric. The other instance of the problem
concerns categorical attributes organized in hier-
archies (Section 2.3).

e As in [1], the MDL region finding problem has
been studied for the spatial case where all at-
tributes are numeric. The problem is NP-hard
even for two dimensions, and heuristic approaches
have been studied. The same complexity applies
to GMDL region finding in the spatial case. Thus,
we develop several heuristic algorithms. One type
of algorithms is based on bottom-up merging of
regions; the other type is based on top-down split-
ting of regions. Our experimental results show
that, relative to MDL, the GMDL approach can
improve compression by 2 orders of magnitude.
And one top-down algorithm is the best for low
dimensional data, whereas the bottom-up algo-
rithm performs the best for higher dimensional
cases (Section 3 and 4).

e As for categorical data, a key analytic result of
this paper is to show that MDL region finding
on data with tree hierarchies is not NP-hard, and
can be solved in time linear in the sizes of the hi-
erarchies. We then develop an efficient algorithm
for finding the optimal MDL summary. The al-
gorithm guarantees that no node in any hierarchy
is visited more than twice. To our knowledge,
this is the first algorithm for MDL region finding
for categorical data. This algorithm is then ex-
tended to handle GMDL region finding. Experi-
mental results show that, relative to MDL, again
the GMDL approach improves compression by at
least an order of magnitude (Section 5).

1.1 Related Work

There has been considerable work on using MDL as a
principle for generating summaries in such diverse ar-
eas as data compression [12], decision tree construction
[13, 9], learning of patterns [§8], and image segmenta-
tion [6], to name just a few. As all these studies apply
the MDL principle for generating summaries, the con-
cept of GMDL introduced in this paper may also be
applicable if the applications can tolerate the inclusion
of “don’t care” cells in the summary — in exchange for
reduced summary size.

With respect to region finding specifically, the sub-
space clustering algorithm developed by Agrawal et
al. is highly relevant [1]. For each subspace of a
given multi-dimensional space, their algorithm identi-
fies cells with high enough density, connects those cells
to form clusters, and summarizes each cluster with re-
gions based on the MDL principle. One of our algo-
rithms developed for the spatial case, called Algorithm
BP, can be viewed as an extension to their algorithm.
BP first identifies MDL regions, and then merges pairs
of MDL regions to form GMDL regions as long as the
white budget is not exhausted. Furthermore, apart
from the BP algorithm, we develop top down algo-
rithms, which have no parallel in [1]. Last but not
least, we consider in this paper categorical data orga-
nized in hierarchies. To the best of our knowledge, this
is the first paper to consider MDL and GMDL region
finding for categorical data.

In numerous data warehousing and data cube sce-
narios, categorical dimensions with hierarchies are cus-
tomary. In recent years, finding cells in data cubes
satisfying certain user-defined property p has received
a lot of attention, including the studies by Garcia-
Molina et al. [4], Beyer and Ramakrishnan [3], and
Ng et al. [10]. All these studies focus on the efficient
computation of the cells satisfying p. However, enu-
merating all the qualified cells may not be the most in-
tuitive to the user. The GMDL algorithms developed
here can then be used as a “post-processing” step to
provide a more concise summary.



2 Motivating Examples and Problem
Statements

2.1 An Example for The Spatial Case

Suppose a company plans to conduct a promotion of
a new product. Based on the buying patterns of its
current customers, the company wishes to divide cus-
tomers into the categories of top-notch, mediocre and
hopeless. Let us say that the customer segmentation is
performed over the dimensions age and salary, with
a point (z,y) in the space representing a person with
age = and salary y. Figure 1 shows a particular ex-
ample, where cells are in 10K intervals in salary and
5-year intervals in age. Let a cell be defined as: (i)
blue (i.e., top-notch), if its frequency is > ¢ (here, fre-
quency may mean the number of existing customers
buying a similar product); (ii) red (i.e., hopeless), if
its frequency is < t/2; and (iii) white, otherwise. In
Figure 1, blue cells are marked ‘O’ red cells marked
‘X, and white cells unmarked.

Figure 1 shows an MDL-based covering with rectan-
gles R1, R2, R3 and R4. Rectangle R; corresponds to
the region 35 < age < 50 and 60K < salary < 80K,
and so on. Note that the four rectangles cover all the
blue cells, and no other cells.

10

fis

. RS

sdlary (x 10K)
)
ool oig
0j 0| 00y
0
)

O B N W > O O N @ ©

20 25 30 35 40 45 50 55 60 65 70
age

Figure 1: An Example for the Spatial Case

Now let us apply the GMDL principle with a “white
budget” w, i.e., no more than a total of w white cells
can be included. Suppose the white budget is w =
2. Then R; and R3 can be merged into the bigger
rectangle Ry, corresponding to the region 35 < age <
55 and 50K < salary < 80K. Thus, the rectangles
Rs, Ry, Rs form a GMDL-based covering, and the size
of this covering is one less than that of the MDL-based
covering. To push this further, with a white budget
of w = 10, the size of the GMDL-based covering is
reduced to one, merging Ry, ..., Ry altogether.

Note that when w = 0, there is no difference be-
tween MDL and GMDL. In general, the bigger the
value of w, the more probable it is for the number of
summary regions under GMDL to be smaller. How-
ever, it is not necessary that GMDL will always do
better (but guaranteed to do no worse), because the
distribution of red cells is critical. In our example, if
the cells (i) age € [45, 50) & salary € [50K,60K) and
(ii) age € [55,60) & salary € [50K,60K) were both
red, the GMDL-based covering would be back to the

original 4 rectangles, irrespective of the white budget.

2.2 An Example for The Hierarchical Case

Consider now sales of clothes in various locations. This
might be recorded using a table such as sales(itemId,
city, dollarAmt), where itemId represents the id of
the particular clothes item being sold. Here clothes
and location are dimensions while dollar amount is the
measure. And there are hierarchies on the dimensions,
e.g., clothes classified into men’s and women’s which
may be further sub-classified, as shown in Figure 2.
For categorical data, a cell corresponds to a tuple of
leaf level values in the various dimensions. For ex-
ample, (new york, ties) is a cell, while (new york,
men’s) is not.

In the figure, again a blue cell is marked ‘O’, red
cell marked ‘X’, and white cell unmarked. Suppose
here the company manager wants to summarize all the
“hot” items. Because there is no hard-and-fast rule
for defining "hot” items, the manager may define a
cell as blue if the sales this year is at least 2 times
that of last year, a cell as red if the sales this year is
below 50otherwise. Suppose there are n white cells in
all. Typically, the white budget p will be set to be a
fraction of n, that is deemed acceptable to the user for
trading off the purity of the summary for a reduced
size. Notice that the situation would be different if we
were to re-color p best white cells to be blue and set
the white budget to 0. The difference is that in the
latter case, there would be no choice of white cells and
all blue cells have to be covered. In contrast, with the
current definition, any p of the n white cells can be
chosen.

First let us consider covering blue cells based on
the MDL principle. Figure 2 shows an MDL covering.
Each region must admit a description as a pair of val-
ues (nodes) in the dimension hierarchies. For instance,
the region Ry at the bottom right has the description
(men’s, northeast). Note that regions R; and Rg
cannot be combined into one even though they are ad-
jacent, since there is no hierarchical descriptor for such
a combination.

Next let us turn to the GMDL principle and con-
sider the red cell marked ‘X’. Suppose we have a white
budget w = 2. Regions R; and Rs can be replaced by
a new region Rj¢ with description (men’s, midwest).
When the white budget w is raised to 7, we can obtain
a better covering by replacing regions Rs, Rg, R7, Rs
with a new region R;; with description (clothes,
midwest). However, note that when w is increased
beyond 7, the placement of the red cells prevents any
more regions to be merged.



clothes

. P E g ¢
3 EE 8 s 8
vancouver ol [)M | |
g/ edmonton | |O| ! Lo
E \™ sanjose ol
san francisco | | O) ' ' '
=~ L.l RS
c . minneapolis | (O | ‘o [o]i[o]
g é< TRT U RS
° 13 chicago ' |

,,,,,,,

northeast

boston
summit
albany
new york

Figure 2: An Example for the Hierarchical Case

,,,,,,,,,,,,,

2.3 Problem Statements
2.3.1 The Spatial Case

Let there be k totally ordered, finite domains
D,,...,Dy. Domain D; is partitioned into n; (non-
overlapping) intervals (not necessarily of equal length).
A cell is the intersection of one interval from each di-
mension. Thus, there are nq * ... x ng cells. Let S
denote the set of all cells. S is partitioned into three
subsets: B, the subset of blue cells, R, the subset of
red cells, and W = § — B — R, the subset of white
cells. A region is an axis-parallel hyper-rectangle of
cells without any hole. A GMDL covering is a set of
regions {Ry,..., Ry}, where (R; U...UR,) D B,
and (R U...URp) NR = 0. A GMDL cover-
ing is feasible with respect to the white budget w, if
[(RiU...URp)NW| < w. The GMDL region finding
problem is to find a feasible GMDL covering of the
least cardinality. For the example shown in Figure 1,
the GMDL covering consisting of rectangles Ry, R4
and Rj is optimal with respect to w = 2.

Clearly, if the white budget w is equal to 0, or the
subset of white cells is empty, a GMDL covering is also
an MDL covering (defined in an obvious way). Given
that finding the MDL covering of the least cardinal-
ity is NP-hard, even in the 2-dimensional case [11], it
follows that finding a feasible GMDL covering of the
least cardinality is also NP-hard. Thus, in the next
section, we develop heuristic algorithms to find feasi-
ble GMDL coverings, with no guarantee of optimal-
ity. However, to measure the quality of the coverings
found by our heurisitcs, we have the following defini-
tions. We say that a region is blue-maximal if it cannot
be expanded further to include another blue cell with-
out either including a red cell, or exceeding the white
budget. (For the MDL case, a blue-maximal region
contains neither red nor white cell.) We say that a
GMDL (MDL) covering is blue-maximal if every re-
gion in it is blue-maximal. Furthermore, we say that a
GMDL (or MDL) covering is non-redundant provided
that no region in it is contained in the union of the

remaining regions in the covering.

2.3.2 The Hierarhical Case

Let there be k categorical dimensions with each dimen-
sion associated with a finite hierarchy. In this paper,
we restrict our attention to tree hierarchies only. Let
the k hierarchies be denoted as Ty,...,T. A cell is a
tuple (c1,...,cx), where ¢; is a leaf node in the tree
hierarchy T;. A region is a tuple (z1,...,z), where
x; is a leaf node or an internal node in hierarchy T;.
Region (x1,...,x) is said to cover cell (c1,...,cx), if
¢; is a (not necessarily proper) descendant of z;, for
all 1 <i < k.

An MDL covering is a set of regions that cover all
the blue cells, and that each region covers blue cells
only. The MDL region finding problem for hierarchical
dimensions is to find a MDL covering with the least
cardinality. As will be shown later in Section 5, to
solve the MDL region finding problem, it is sufficient
to find an MDL covering that is non-redundant and
blue-maximal (with the notions of non-redundancy
and blue-maximality defined as in Section 2.3.1). Fi-
nally, the GMDL region finding problem for hierar-
chical dimensions is to find a feasible GMDL covering
with the least cardinality (with all related concepts
defined as in Section 2.3.1).

3 Algorithms for the Spatial Case

In this section, we present four heuristic algorithms
for solving the GMDL region finding problem for nu-
meric dimensions. The first algorithm is a bottom-up
algorithm, whereas the other three algorithms are top-
down. A bottom-up algorithm first constructs an ini-
tial feasible GMDL covering, and then merges regions
in the covering to reduce the number of regions, until
the white budget is used up. In contrast, a top-down
algorithm first begins with a covering consisting of a
single region covering all blue cells. If this covering is
not a GMDL covering (i.e., some region containing a
red cell) or is infeasible (i.e., including too many white
cells beyond the white budget), then a region in the
covering is split either to remove the red cell, or to
reduce the total number of white cells covered.

3.1 Algorithm BP

Because the MDL region finding problem for numeric
dimensions is a rather well studied problem, it is nat-
ural to “borrow” a good algorithm from there and to
extend it to give an algorithm for the GMDL prob-
lem. Specifically, an MDL algorithm produces a feasi-
ble GMDL covering consuming no white cell. To take
advantage of the allowed white budget, two regions
from the GMDL covering are selected to be merged,
as long as no red cell is included, and the white bud-
get is not used up. A key issue here is how to select
the two regions. Let P be the set of pairs of regions



Algorithm BP

1 Build an index I for all the red cells.

2 Run the algorithm in [1] to produce an MDL covering. Build
another index Ip for all the regions in the covering. Initialize
rem-budget to be the white budget and pair-count to 0.

3 While (rem-budget > 0) and (pair-count < MAX-trial) {

3.1 Pick a random pair of regions (R1, R2) that are close to
each other in the region index Ip (e.g., in the same leaf
page). Increment pair-count.

3.2 If (rem—budget < |R1 GBRQl — |R1| — |R2| + |R1 ﬁRQD,
then go back to step (3.1).

3.3 Use thered index I4 to test if the merged region R1 G R2
contains any red cell. If so, go back to Step (3.1).

3.4 Remove the regions R1, R2 from index I and add the
merged region R1 @ Rz to the index. Reset pair-count
to 0, and reduce rem-budget appropriately. }

4 Return all the regions in Iy as the GMDL covering.

Figure 3: Pseudo Code for Algorithm BP

(R1, R2) in the covering such that the merged region,
denoted as R; & Rs, does not contain any red cell.
A best fit strategy is to find the pair of regions that
minimizes the additional consumption of white cells,
ie., |R1 D R2| — |R1| — |R2| + |R1 N R2|. A first fit
strategy is to find the first pair of regions in P, based
on a certain enumeration ordering of the elements in
P. Experimental results indicate that while a best
fit strategy, when compared with the first fit strategy,
may produce GMDL coverings of slightly higher qual-
ity, the cost for doing so is orders of magnitude higher.

Algorithm BP (to stand for ”Bottom-up Pairwise”)
adopts the first fit strategy. As an optimization, the
algorithm uses an index to organize all the regions in
the current covering. This helps to identify a pair of
regions (R;, R») that are “rather close” to each other,
as they are clustered by the indexing structure. In
this way, if the regions are merged, the additional con-
sumption of the white budget |R; @ Ra| —|R1| — |Ra| +
|R1 N Rz| will not be too outrageous. If a best fit
strategy were used, the entire index might need to be
traversed to identify the best pair. In our implemen-
tation, we use lean-trees, which is a variant of X-trees
developed by Kriegel et al for high dimensional index-
ing [2]. Algorithm BP builds another index structure
containing all the red cells. This helps to facilitate
the testing of whether the merged region Ry @ Ry con-
tains any red cell. Finally, for the algorithm producing
MDL regions, BP uses the heuristic algorithm devel-
oped by Agrawal et al [1]. Specifically, it first finds
blue-maximal regions to cover all blue cells, and then
removes redundant blue-maximal regions. Figure 3
shows the pseudo code of Algorithm BP.

A stopping condition of the while-loop in step (3)
is (pair-count < MAX-trial). This deals with the sit-
uation when the remaining budget is close to 0, but
every pair of regions attempted thus far uses too many
white cells. In this case, only a maximum number of
attempts will be made.

3.2 Algorithm CAS-Interior

A bottom-up algorithm has two potential weaknesses.
First, finding MDL regions and merging them to form
a GMDL covering may appear to incur unnecessary
overhead. Second, a bottom-up algorithm may not
perform well if there are many MDL regions to start
with. This is particularly problematic if the white bud-
get is large. This motivates us to develop top-down
algorithms. The aim is to build a feasible GMDL cov-
ering, without resorting to finding MDL regions.

A top-down algorithm starts with a region R con-
taining all blue cells. A region in the current covering
is chosen for splitting whenever it covers a red cell or
too many white cells. This can be modeled as an R-
tree node splitting problem [7]. This is the essence of
Algorithm RTS (for “R-Tree Splitting”). Since R-tree
splitting is a well-studied problem, we do not elaborate
RTS any more except to note that in our implemen-
tation, we use Garcia et al.’s optimal polynomial time
node splitting algorithm [5]. It is one of the best known
splitting strategies for dynamic R-trees.

In analyzing Algorithm RTS, a potential weakness
is that RTS may be too “color-blind”. This is par-
ticularly true on its treatment, or lack thereof, of the
red cells. RTS relies passively on the node splitting
algorithm to produce split regions, which may contain
a smaller number of red cells.

Given that all red cells in a covering must be re-
moved to obtain a GMDL covering, the next algo-
rithm, called CAS (to stand for “Color Aware Split-
ting”), actively seeks out red cells contained in a re-
gion. Furthermore, before a red cell is removed in a
split, the red cell is grown to form a larger red region,
which may contain other red cells and white cells, but
no blue cell.

10i0:0]|0:0

Figure 4: An Example of Color Aware Splitting

As an illustration, consider the region shown in Fig-
ure 4. As usual, blue cells are marked ‘O’, red cells
marked ‘X’, and white cells unmarked. For simplic-
ity, we refer to a cell by its coordinates. For instance,
the three red cells in the region are (5,7), (7,6) and
(7,7). Algorithm CAS takes a red cell and grows it
into a larger region. For our example, the larger re-
gion becomes the whole rectangular area R;, including
all three red cells and many white cells. This serves
to remove the red cells as quickly as possible, and to
reduce the consumption of white cells as a side-benefit.



Algorithm CAS-Interior

1 Build indices I4, Ig for all the red and blue cells respectively.
Construct a a single region R containing all the the blue cells.
Initialize the covering C to contain R only. Initialize curr-
consumption to be the number of white cells in R.

2 While (there exists R € C containing a red cell) {

2.1 Grow the red cell in R to a larger region not containing
any blue cell using the blue index Ip.

2.2 Split R into (at most) 2d regions, where d is the dimen-
sionality of the space, excluding the entire red region.

2.3 Remove R from C, but add the split regions into C. Up-
date curr-consumption. }

3 While (curr-consumption > white budget) {

Do splitting similar to step (2), this time growing based
on white cells. }

4 Return all the regions in C as the GMDL covering.

Figure 5: Pseudo Code for Algorithm CAS-Interior

With the red region identified in the interior, the re-
maining cells are split into 4 non-overlapping regions,
RQ, ey Rs.

Note that non-overlapping regions represent a
tradeoff between quality and efficiency. Region Rs is
not blue-maximal because it does not include the 6 ad-
jacent blue cells in region R5. This represents a reduc-
tion in quality. However, if we were to allow overlap-
ping regions in a top-down algorithm, then calculating
the total consumption of white cells in a covering of
overlapping regions would require tremendous book-
keeping to avoid double counting of white cells. For
example, if Ry is augmented to become blue-maximal,
then when the time comes to have R, split, the cal-
culation of the total consumption of white cells in the
split regions of Ry will need to involve R5 and possibly
Rs, which overlap Rs. Furthermore, this bookkeeping
would need to be updated for each split. Thus, for effi-
ciency purposes, all the top-down algorithms presented
here produce only non-overlapping split regions.

Figure 5 shows the pseudo code of Algorithm CAS-
Interior. As usual, there is an index of all the red cells
to facilitate the testing of whether a region is free of
red cells. This time there is also an index for all the
blue cells. The index is used when a red cell (step
2.1) or a white cell (step 3) is grown to be as large as
possible, while remaining free of blue cells.

3.3 Algorithm CAS-Corner

So far, we have not yet explained why Algorithm CAS-
Interior is qualified with the word “Interior”. This is
due to the fact that given a region R to be split, if
a random red cell or a random white cell is picked to
grow into a larger region for the split, chances are the
cell is located in the interior of R, rather than along
its perimeter. The consequence is that each split may
produce 2d split regions, where d is the dimensionality
of the space. A potential problem is that the number of
regions in a covering multiplies rapidly, thus sacrificing

Algorithm CAS-Corner
The same as in CAS-Interior, except for step (4):
4 While (curr-consumption > white budget) {
4.1 Identify the region R € C containing the largest number

of white cells.

4.2 First try to locate a corner of R occupied by a white cell.
If all corners are occupied by blue cells, pick a random
white cell.

4.3 Perform steps (2.1), (2.2) and (2.3) to this white cell,
except that if the white cell or the eventual white region
is at a corner, (at most) d split regions are produced in
step (2.2). Reduce curr-consumption accordingly. }

Figure 6: Key Step for Algorithm CAS-Corner

the overall quality of the covering.

Because every red cell has to be removed from a
region R in a covering, if a red cell is located in the
interior, there is nothing much we can do to avoid cre-
ating 2d split regions. However, the situation is very
different for a white cell. Because there is a white
budget allowing some number of white cells to be in-
cluded, we may want to avoid picking white cells in
the interior. As a variant of Algorithm CAS-Interior,
Algorithm CAS-corner, shown in Figure 6, first exam-
ines the corners of R for white cells. The advantage of
this strategy is that if a split occurs at a corner, only
d split regions will be produced. If, unfortunately, all
corners of R are occupied by blue cells, then the al-
gorithm reverts to picking a random white cell, likely
from the interior of the region.

3.4 Properties of the Algorithms

As pointed out before, finding a covering with the least
cardinality is NP-hard. Thus, all the algorithms are
heuristics. While in the next section we will conduct
an empirical evaluation of the four algorithms, the
statement below summarizes the correctness of the al-
gorithms and compares the algorithms based on blue-
maximality and non-redundancy.

Property 3.1 1. Algorithms RTS, CAS-Interior
and CAS-Corner produce a non-redundant feasi-
ble GMDL covering.

2. Algorithm BP produces a feasible GMDL cover-
ing. It can be made to produce a non-redundant
covering by adding a redundancy checking post-
processing step.

It is straightforward to verify that all four al-
gorithms are correct, i.e., producing a feasible
GMDL covering. For the top-down algorithms RTS,
CAS-Interior and CAS-Corner, splitting a region
into smaller non-overlapping regions guarantees non-
redundancy. As remarked before, however, the non-
overlapping split regions may not be blue-maximal.

The situation for the bottom-up Algorithm BP is
more complicated. First of all, merging two regions



may create redundant regions in the covering. For effi-
ciency reasons, Algorithm BP, as presented in Figure 3,
does not check to eliminate redundant regions in the
covering. (Checking a region for redundancy is expen-
sive since it involves computing the union of all the
remaining regions. Furthermore, removing redundant
regions is not Church-Rosser.) Like the top-down algo-
rithms, BP does not necessarily give a blue-maximal
covering. However, the reason is different. Merging
two blue-maximal regions A, B does not necessarily
give a merged region A® B that is blue-maximal. This
is because there may be another blue-maximal region
C' that is adjacent to and can merge with the merged
region A ® B.

4 Experiments
4.1 Experimental Setup

We implemented all four algorithms in C++ and the
MDL region finding algorithm developed in [1]. We
used the code developed by Scott Leutenegger for op-
timal node splitting [5], and the lean tree implementa-
tion developed by Kriegel et al [2]. We implemented a
data set generator to produce synthetic data sets. The
generator takes as input various parameters, including
the dimensionality of the numeric space, the number of
intervals per dimension, the number of blue cells, blue
cell density, etc. For most of the results reported be-
low, the default configuration is a 3-dimensional space
with 100 intervals per dimension (giving rise to a mil-
lion cells). There are 50,000 blue cells, which are ran-
domly picked from a clustered region of size equal to
50,000/bd, where bd is the blue density. For example, if
the blue density is bd = 75%, the clustered region is of
size 50000/0.75 = 66,667 cells. Within this region, 5%
are randomly placed red cells. (In other words, while
there may be many more red cells, they are irrelevant
if they are not in a region with blue cells.) The white
budget is expressed as a budget ratio relative to the
number of blue cells, essentially measuring the purity
of the summary regions.

To measure the effectiveness of the algorithms,
we use the relative quantity called compression gain,
which is defined as the ratio of the number of blue
cells to the number of GMDL regions. To measure
efficiency, we use the total runtime of an algorithm,
including the creation of indices, if required. Because
of the random nature of the data sets and some al-
gorithms, each runtime figure reported in the graphs
represents the average of 3 runs. The machine we used
is a Sparc-10 workstation.

4.2 Runtime and Compression Gain

In the first set of experiments, we ran all four algo-
rithms using data sets of the default configuration. We
varied the number of blue cells, while keeping the white
budget to be 75% of the number of blue cells. Figure

7(a) shows the compression gain values as the number
of blue cells increases from 10,000 to 50,000. Figure
7(b) shows the corresponding execution times.

Algorithm RTS delivers the worst compression gain
(around 50 times) and takes relatively long to execute.
CAS-Interior is better than RTS in that it takes a lot
less time to deliver similar compression gain. On the
other hand, Algorithm BP produces superior compres-
sion gain (e.g., over 100 times); unfortunately, it takes
even more time than RTS to achieve the gain. Clearly,
CAS-Corner is the dominant algorithm, as it delivers
the best compression gain (around 150 times) in 1-2
seconds of total execution time.

4.3 Varying the White Budget:
MDL

GMDL vs

The second set of experiments was identical to the first
set, except that we varied the size of the white bud-
get, while keeping the total number of blue cells to be
50,000. Figure 7(c) shows the compression gain as the
white budget increases from 0 to slightly over 100% of
the number of blue cells.

Notice that when the white budget is 0, this cor-
responds to finding MDL regions. The figure clearly
shows the effectiveness of the GMDL principle. Con-
sider CAS-Corner as an example. Even for a white
budget of 40% (i.e., 20,000 cells), the compression gain
is around 140 times, as compared with 2 times based
on the MDL principle. This corresponds to a 70-fold
reduction in the size of the covering. Amongst the pro-
posed algorithms, CAS-Corner is the dominant one.

4.4 Changing the Dimensionality

In this set of experiments, we varied the dimension-
ality of the space from 4 to 10. The total number
of cells in the space is made directly proportional to
the dimensionality. Specifically, there are 4 intervals
per dimension (e.g., about 1 million cells in a 10-
dimensional space). The percentages of blue and red
cells remain constant. For lack of space, we suppress
all those graphs and show instead the single graph in
Figure 7(d). The graph shows the compression gain
normalized with the execution time. In a sense, this
measures compression gain per unit of effort. Given
that Algorithms RTS and CAS-Interior are dominated
by the others, the graphs in the figure only show BP
and CAS-Corner.

Consistent with the graphs discussed earlier, CAS-
Corner is the one to use when the dimensionality d
is low (i.e., d < 6). Recall that in CAS-Corner each
split creates d split regions. As d becomes larger and
larger, the number of regions in the covering multiplies
rapidly. This increases execution time, and lowers the
compression gain significantly.

In contrast, the bottom-up Algorithm BP scales up
better with respect to dimensionality. While the com-
pression gain does not degrade as dimensionality in-



Compression Gain
B
Q
o
|

10000 20000 30000 40000 50000
Number of Blue Cells

(a) compression gain
1601 T

i~ CAS-Corner
/

Compression Gain

0% 2%  40% 60% 80% 1000 120%
White Budget Ratio

(c) changing the white budget

40
20
I/ N CAS—Corner CAS-Interior
10000 20000 30000 40000 50000
Number of Blue Cells
(b) run time
\\
|
8001 i

Compression Gain / Run time
B
38

Number of Dimensions

(d) changing the dimensionality

Figure 7: Comparing the Four Algorithms for the Spatial Case

creases, the execution time increases. However, this is
due largely to the corresponding increase in the num-
ber of blue cells. Algorithm BP is the recommended
choice for dimensionality d > 6.

5 Algorithms for the Hierarchical Case

So far we have studied the GMDL region finding prob-
lem for the spatial case. In this section we turn our
attention to the hierarchical case — that is, categorical
data organized in hierarchies. Since, to our knowledge,
this is the first paper to study the MDL region finding
problem for categorical data with hierarchies, we de-
vote the first part of this section to the MDL problem.
Then we consider the GMDL version at the end.

5.1 Uniqueness of the Optimal MDL Covering

A key result below is that, unlike in the spatial case,
finding an optimal MDL covering for categorical data
with tree hierarchies can be solved in polynomial time.
But before delving into the details, it is important to
first analyze carefully the differences between the spa-
tial case and the hierarchical case. To this end, two
key points should be noted regarding MDL (GMDL)
coverings in general. First, an MDL (GMDL) cover-
ing of the least cardinality must be non-redundant.
For if it was not, we could remove any redundant re-
gions and obtain a smaller covering. Second, an MDL
(GMDL) covering of the least cardinality need not be

blue-maximal. It is straightforward to expand it into
one, however. Figure 8(a) illustrates this situation for
the spatial case. Here the lettered cells are blue and
red cells marked ‘X’ as usual (which should be ignored
for MDL coverings). Then the covering {{a, b}, {c,d}}
is a covering of the least cardinality. However, it is not
blue-maximal; the corresponding blue-maximal cover-
ing of the least cardinality is {{a, b}, {b,c,d}}.

5 aXx X 5 aXx X
4 b cd X 4 bcd X
3 X X X 3 |Xief g X
2| 2 X X h X
1 1L X
12 345 12 345
(a) (b)

Figure 8: Blue-maximality vs. Non-redundancy for the
Spatial Case

A harder issue is whether there is more than one
blue-maximal non-redundant MDL covering, and if
so, whether there are such coverings with different
cardinalities. Figure 8(b) shows that the answers
to both questions is in the affirmative for the spa-
tial case. Again, the lettered cells are all the blue
cells. There are two non-redundant blue-maximal
coverings: (i) {{a,b}, {b,c,d}, {e. £, g}, {g,h}}; and
(i) {{a,b},{c,d,e, f},{9,h}}. The latter covering



is strictly smaller in size and is the optimal one.
Thus, for the spatial case, generating an arbitrary
blue-maximal non-redundant MDL covering does not
guarantee optimality. This is a manifestation of NP-
hardness in the spatial case.

To return to the categorical case with tree hierar-
chies, we will show, however, that an optimal MDL
covering can indeed be obtained in polynomial time.
The first observation is the following.

Property 5.1 Let R be a region (xi,...,x%). For
1 < i<k, let R; be the projection of the region R on
hierarchy T}, i.e., the set of leaves in Tj; in the subtree
rooted at x;. For any pair of regions R, S, it is neces-
sary that for 1 < i < k, either R; C S;, or S; C R;, or
R;NS; =0.

In other words, the only possible type of overlap
between projections is containment. This is because
if there is an overlap without containment, then there
must exist a value v € (R;NS;) such that v has at least
two parents in the hierarchy. To illustrate this point,
let us go back to Figure 8(b) for the spatial case. Con-
sider the projection on the y-axis. The region {a,b}
when projected on the y-axis gives {4,5}. And the
region {c,d,e, f} when projected on the y-axis gives
{3,4}. Thus, for the spatial case, regions in the opti-
mal covering can have projections that overlap, which
complicates matters. For the hierarchical case, the
theorem below shows that because of the above prop-
erty, there is a unique non-redundant, blue-maximal
MDL covering. The proof, which is far from trivial, is
omitted for brevity. Due to the theorem, we have the
following corollary.

Theorem 5.1 Consider k categorical dimensions,
each of which is organized in a tree hierarchy T;(1 <
i < k). There is a unique non-redundant blue-maximal
MDL covering.

Corollary 5.1 The unique non-redundant, blue-
maximal MDL covering can be constructed on a per
hierarchy basis.

5.2 Algorithm MDL-Tree

Based on the above corollary, Algorithm MDL-Tree,
shown in Figure 9, first attempts to create a blue-
maximal covering on a per dimension/hierarchy basis.
For each node d, a list, denoted as list[d], is used to
contain all the regions in the current covering involv-
ing d. Specifically, when the same region is contained
in the lists of all the children of d, then the same re-
gion can be “generalized” and be added to list[d]. This
is the key step for achieving blue-maximality. In Fig-
ure 9, step (2a) initializes the lists for all the leaves of a
hierarchy. Then step (2b) generates the blue-maximal
regions in a bottom-up fashion.

Algorithm MDL-Tree

1 Initialize C to contain all the blue cells of the form (c1, ..., ck)-
2 Repeat the following steps on T; for all 1 < ¢ < k:

(a) For each non-leaf node d in hierarchy Tj, initialize
list[d] to be empty. For each leaf node d in T}, initialize
list[d] to contain all elements in the set:
{(z1, .. yzj—r, g4, ) | (21,. e
Tj41,- ..,mk) € C}.

(b) Repeat the following step in a post-order traversal of
the nodes in T (i.e., from the leaves to the root):

If for all children d; of d,

yTj—1,d,

(z1,.. ., Tj—1,Zj41,...,2) is in  list[ds],
add (z1,...,2Zj-1,%j41,---,2k) to list[d], and
add (z1,...,2j-1,d,Zj41,...,2k) to C.

3 /* Redundancy check */ Perform this step in a pre-order
traversal of the nodes d in T%. In one pass, delete a region
R from list[d] if R is contained in list[e] for some ancestor e
of d, or if R is a descendant of region S for some S also in
list[d]. At the end, the MDL regions are the ones that remain
in list[d] for any node d.

Figure 9: Pseudo Code for Algorithm MDL-Tree

While at the end of step (2) all blue-maximal
regions are created, the covering is not yet non-
redundant. Step (3) is designed to remove all redun-
dant regions in a top-down fashion. Starting from the
root of the last hierarchy, each list list[d] is checked
to remove redundant regions within it. One source
of redundancy arises from regions contained in an an-
cestor’s list. To facilitate this operation, we can use a
structure to accumulate the regions from all the ances-
tors of a node d in a pre-order traversal of the nodes.
Figure 10 shows a 2-dimensional example to illustrate
the algorithm. Nodes in hierarchy 7; are lettered,
while those in T> are numbered. As usual, blue cells
are marked ‘O’, red cells marked ‘X’, and white cells
unmarked. The figure illustrates 3 main states of the
algorithms.

= 12 Ie] 2 h before after

/\ /\ redundancy redundancy
check check

propagation
= > .

ac d
bci
al

g - R R R -2 -

g 1241811212

g —= 3] P43 initialization +

=5 P4 5 141 after top—down pass.

ie i

Figure 10: An Example: Before and After Redun-
dancy Check

e First, consider the first iteration of step (2), op-
erating on hierarchy T;. Step (2a) initializes the
lists of the leaves according to the blue cells. For
instance, list[a] indicates that (1,a), (2,a), (3,a),



(4,a) and (6,a) are blue, and so on. (The a itself
is not recorded in list[a].) Similarly, list[b] con-
tains 2,5. Now in step (2b), because 2 appears
in both list[a], list[b], 2 is added to list[g], g be-
ing the parent of a,b. Similarly, 2 is added to
list[h]. Finally, 2 is added to list[i], representing
the blue-maximal MDL region (2,4).

e Next consider the second iteration of step (2), this
time operating on hierarchy 7. The initialization
in step (2a) is now based not only on the blue
cells, but also on the results of the previous iter-
ation. A good example is list[2]. Not only does
it contain a,b,c,d, e, f because of the blue cells,
but it also contains g, h,, because 2 is contained
in list[g], list[h] and list[i] from the previous iter-
ation. Then in step (2b), a, d are added to list[7].

Note that after the first iteration of step (2), no
redundancy check is carried out (e.g., removing 2
from list[al,...,list[h] because 2 also appearing
in list[i]). This is because if redundancy check
were to be carried out at this point, the execution
of step (2) for subsequent hierarchies would be
more complicated. For instance, with the present
setup, because a,d appear in list[2] (and for that
matter list[1],list[3]), a,d are added to list[7] in
step (2b). In this manner, step (2b) is completely
confined to the current hierarchy. If list[2] con-
tained ¢ only, then the first hierarchy would need
to be examined for a,d to be added.

e Finally, after performing step (2) to both hi-
erarchies, redundancy checking occurs in step
(3). List[7] still records the blue-maximal regions
(7,a), (7,d). Consequently, a,d are removed from
list[1],list[2] and list[3]. Now for list[2], after a,d
are removed, all others except ¢ are removed as
well, because 7 is an ancestor of all of them. Thus,
list[2] contains a single ¢ at the end of redundancy
checking. Also note that at the end, apart from
(7,a),(7,d) and (2,7), all the other MDL blue-
maximal regions are merely blue cells, like (1, ¢),
etc.

Lemma 5.1 MDL-Tree visits a node in 77, ...
once, and a node in T} twice.

JTk—l

The above lemma is due to the fact that step (2), con-
ducted in a bottom-up fashion, visits a node in each
hierarchy once. For the redundancy check in step (3),
only the last hierarchy needs to be traversed one more
time. Together with Theorem 5.1, this shows that
MDL region finding on tree hierarchies can be done
in time linear in the sizes of the hierarchies.

It is easy to see that the worst case lower bound
for MDL region finding is to visit each node at least
once. Thus, the MDL-Tree algorithm presented here is
rather close to the ideal situation. Because the last hi-
erarchy is visited twice, a simple optimization is to pick

the smallest hierarchy to be the last one, for Corol-
lary 5.1 states that the order of the dimensions used
in step (2) is immaterial.

The algorithm assumes we can store any given hi-
erarchy in memory. This is a valid assumption for
most data warehousing applications, for which typi-
cally the size of the dimension tables is orders of mag-
nitude smaller than the fact table.

5.3 Algorithm GMDL-Tree

Recall that Theorem 5.1 states that there is a unique
non-redundant, blue-maximal MDL covering for hier-
archical dimensions. However, it is easy to see that
when it comes to the optimal GMDL covering for a
given white budget w, there may be multiple solutions,
depending on the specific white cells chosen. Given
Lemma 5.1, our approach to developing an effective
heuristic algorithm for the GMDL region finding prob-
lem for hierarchical dimensions is to rely on the MDL-
Tree algorithm. The proposed GMDL-Tree algorithm
first selects white cells, up to the budget w, and then
runs MDL on the blue cells as well as the chosen white
cells. The white cells are chosen to maximize the re-
duction of regions in the MDL covering.

Before we show the skeleton of the algorithm, we
give an example. Recall from Figure 10 the initial lists
for the leaves a,b,c,d,e and f. Based on these lists,
we create two tables, one for g and one for h (i.e., the
parents of the leaves).

[ candidate [[ (1,h) [ (2,h) [ (3,h) | (4, h) | (5,h) |
[occurrence [ 2 | 4 | 1 [ 2 | 1 ]
[ max-gain T 1 T 3 [ 0 [ 1T [ 0 |
[ cost T2 1 o [ 3 [ X [ 3 1]

The above table is for h (the more interesting one).
The first row is obtained by taking a union of
list[c],...,list[f]. There is, then, one column for each
element/“candidate” in the union. The second row
simply counts the occurrences of each candidate in the
two lists. For example, (1,h) occurring twice corre-
sponds to the blue cells (1,¢) and (1,d). To measure
the cost and benefit of each candidate as a choice for
adding white cells, we use a pair of values (max-gain,
cost). If sufficient white cells are added, the max-gain
value calculates the reduction in the number of regions
in the GMDL covering. For example, considering can-
didate (1, h), without the white cells, both (1,¢) and
(1,d) may be blue-maximal. But if enough white cells
are added, the two regions will be covered by (1,h),
representing a reduction of one region in the covering.
Notice that this is a maximum estimate because the
blue cells may be covered by larger regions. For in-
stance, as it turns out, (1,d) is covered by the larger
region (7,d). The third row of the table shows the
max-gain value for each candidate. In effect, the max-
gain value is equal to the number of occurrences minus
one. The cost, computed in the fourth row, indicates



the number of white cells required to deliver the max-
gain. Because h has 4 children in ¢,d, e, f, the cost
is simply 4 minus the number of occurrences. Here
there are two interesting cases. First, for candidate
(4,h), the X indicates that there is at least a red cell
in the region, and is therefore ruled out. Second, for
candidate (2, h), the cost is 0, indicating that the en-
tire (2, h) region is already blue, and no more white
cell can be chosen. The remaining candidates (1, h),
(3,h) and (5,h) move on to the next round for sort-
ing. But before we explain the sorting, we obtain the
following tables for the other parents: g for the first
hierarchy, and 7,8 for the second hierarchy (cf: the
lists in Figure 10).

[ candidate [[ (T,9) | (2,9) [ (3,9) | (4,9) [ (5.9) [ (6,9) |
[occurrence || 1 | 2 [ 1 [ 1 [ 1 [ 1 ]
[ max-gain [ 0 [ T T[T 0 [ 0 [ 0 T 0 ]
[ cost [ 1T 1T o [ X | 1T [ 1 [ 1 |
[ candidate || (7,a) [ (7,0) [ (7,c) | (7.d) | (7,e) [ (7, ]) |
[occurrence | 3 [ 1 [ 2 | 3 [ 1 [ 1 |
[ max-gain [ 2 [ 0 [ 1 [ 2 T 0 T 0 1]
[ cost o [ X 1 1 1T o [ 2 [ 2 7]

[ candidate [ (8,a) [ (8,0) | (8,¢c) [ (8,d) |

[occurrence [ 2 [ 1T | 2 [ 1 |

[ max-gain [ 1 [ 0 T 1 T 0 1]

[ cost T 1 1 2 [ 1 1 X ]

Finally, the sorting step is to sort all remaining can-
didates (i.e., those with a positive cost) in descending
order of max-gain, then in ascending order of cost.
This corresponds to picking first the regions with the
highest max-gain and the lowest cost of white cells.
For our example, the sorted candidate list is: (7,c¢),
(8,a) (8,¢), (1,h), (1,9), etc. For a given white bud-
get w, the white cells are allocated based on the sorted
candidate list, essentially a greedy strategy.

Figure 11 shows a skeleton of the algorithm. While
the above example illustrates all the key aspects of the
algorithm, step (3) requires further elaboration. As
the ranked list is being traversed, let say that candi-
dates Ry,..., R, have been picked, and the next can-
didate R is being considered. If R is to be selected, the
“true” cost value of R must be within the remaining
budget. Note that because in step (1) the cost value
of R is computed in isolation, R may overlap with
some of the picked candidates Ry,...,Ry- To avoid
over-counting white cells, the cost value of R may be
reduced to reflect the number of extra white cells re-
quired to select R. If the reduced cost is still too high
for the remaining budget, the next candidate in the
ranked list is considered.

Notice that in searching for candidates, step (1) re-
stricts its search space to parents of leaves. Clearly, the
search space can be extended to grandparents, great
grandparents and so on. While the benefit is that the
white cell budget may be spent more aggressively, the
tradeoff is that the selection process in step (3) will
become more complicated to deal with double count-
ing. Furthermore, a grandparent is more likely than a

Algorithm GMDL-Tree

1 Repeat the following steps on T; for all 1 < ¢ < k:

(a) For each leaf node d in T}, initialize list[d] to contain
all the blue cells involving d.

(b) For each parent e of a leaf node in T}, do:

i. Let di,...,d, be all the children of e. Create a
candidate set S = list[d1] U ... U list[dy].

ii. Create a table having one column for each can-
didate in the candidate set S. For each can-
didate, set the occurrence value to be the to-
tal number of occurrences of the candidate in
list[d1],...,list[dy]. For each candidate, set the
max-gain value to be the number of occurrences -
1. Finally, for each candidate, set the cost value
to be equal to ‘X’ if the candidate contains a red
cell, or to (u— occurrence) otherwise.

2 Collect all those candidates from the above step, omitting
those whose cost value is either X or 0. Sort all the candi-
dates first in descending order of the max-gain value, then in
ascending order of the cost value.

3 Select the first w white cells based on the sorted list.

4 Run MDL with the original set of blue cells and the set of the

chosen white cells (treating them as blue).

Figure 11: Pseudo Code for Algorithm GMDL-Tree

parent to encounter a red cell in its leaves. Thus, we
restrict the search space to parents only. But to com-
pensate, we allow candidates with the max-gain value
0 to be selected in step (3) if there is enough white
budget. This in turn may permit larger regions to be
formed. For instance, when (8,b) is picked, (8,a) has
already been selected, and the two of them allow the
bigger region (8, g) to be formed.

5.4 Experiments

To evaluate the effectiveness of the MDL-Tree and the
GMDL-Tree algorithms, we developed a hierarchy gen-
erator. The generator produces hierarchies of different
fanouts to mimic the hierarchies used in data ware-
housing benchmarks. For the results shown in Fig-
ure 12, there are 3 tree hierarchies, each of the form 1
x4x4x6x6 (i.e., 4 great grandparents, each having 4
children, etc.). There are 1 million blue cells randomly
picked from a clustered region of about 110 leaves per
hierarchy (i.e., a blue density of about 75%).

1201
100
8o

sof

Compression Gein

aof

201

0%

Figure 12: Gain vs White Budget: Hierarchical case

Figure 12 shows the compression gain as the white
budget varies from 0% to 60%. Again, when the white



budget is 0, this corresponds to MDL summarization.
The gain is between 1 and 2 (i.e., the number of MDL
regions is at least half the number of blue cells). The
key reason for the low gain is that under the MDL
principle, if the fanout is 6, say, it only takes 1 out
of 6 children to be non-blue to prevent any general-
ization from happening. In other words, to generalize
to a parent, all the 6 leaves must be blue. Because
we generate blue cells randomly, this situation does
not occur frequently. (It does occur occasionally, as
there are some big MDL regions involving grandpar-
ent nodes.) In general, the smaller the fanout, the
higher the compression gain for MDL.

Compression gain improves dramatically once the
white budget is raised. The four curves in the figure
show the compression gain relative to the white bud-
get, when the number of red cells are 0, 400, 1000 and
2000. When there is no red cell, the compression gain
is over 100 times. As expected, as the number of red
cells increases, the compression gain is reduced.

The following table shows the effects of changing
dimensionality. Here the number of blue and red cells
are kept constant at 1 million and 1000; the white
budget is 100% of the number of blue cells.

| [3d [ &d [ 5d |
compression gain || 39.2 | 26.4 | 5.9
run time (secs.) 159 | 514 | 1573

The results above shows that the GMDL approach
is still superior to the MDL approach. The improve-
ment is easily an order of magnitude (e.g., 39 times
in the 3-dimensional case). The key reason why the
compression gain in the 5-dimensional case shown
above is only single digit is that, to provide for a
fair comparison, the number of blue cells is kept at
1,000,000. To do so, blue cells are generated from a
clustered region of only 17 leaves per hierarchy (i.e.,
175 > 1,000, 000), as opposed to 110 leaves per hierar-
chy in the 3-dimensional case. Thus, with this setup,
there is relatively little chance for generalization per
hierarchy in the 5-dimensional case.

6 Summary and Future Work

In this paper, we study the GMDL region finding prob-
lem for numeric data, and both the MDL and the
GMDL region finding problem for data with hierar-
chies. The GMDL approach in both cases is very ef-
fective in reducing the number of summaries beyond
those found by the MDL approach. The reduction in
many cases can be 2 orders of magnitude. In terms
of algorithms, we recommend the CAS-Corner algo-
rithm and the BP algorithm for the numeric/spatial
case. For lower dimensionality, the top-down splitting
CAS-Corner algorithm is the best, whereas for higher
dimensionality the bottom-up merging BP algorithm
is the choice. As for data with hierarchies, we show

that MDL region finding can be solved in time linear
in the sizes of the hierarchies, and develop a near op-
timal MDL-Tree algorithm for it. This algorithm is
then extended to form the GMDL-Tree algorithm for
GMDL region finding. Experimental results show that
the GMDL-Tree algorithm is effective in delivering sig-
nificant compression.

In ongoing work, we attempt to summarize data
with both numeric and hierarchical dimensions. One
obvious way to do so is to use the algorithms reported
here to first deal with the numeric dimensions, then
with the hierarchical dimensions, or vice versa. We
hypothesize that region finding in this manner may not
be as effective as region finding in a more interleaved
fashion.

References

[1] Rakesh Agrawal et al. Automatic subspace clustering
of high dimensional data for data mining applications.
ACM SIGMOD, May 1998, pp. 94-105.

S

S. Berchtold, D. Kiem and H. P. Kriegel. The X-tree: an
Index Structure for High-dimensional Data. VLDB 1996,
pPp- 28-39.

[3] Kevin S. Beyer, Raghu Ramakrishnan. Bottom-Up Com-
putation of Sparse and Iceberg CUBEs. ACM SIGMOD
Conference 1999, pp. 359-370.

[4] Min Fang, Narayanan Shivakumar, Hector Garcia-
Molina, Rajeev Motwani, Jeffrey D. Ullman. Computing
Iceberg Queries Efficiently. VLDB 1998, pp. 299-310.

[5] Yvan J. Garcia, Mario A. Lopez and Scott Leutenegger.
On Optimal Node Splitting for R-trees. VLDB 1998, pp.
334-344.

[6] Haisong Gu, Yoshiaki Shirai, Minoru Asada. MDL-Based
Segmentation and Motion Modeling in a Long Image Se-
quence of Scene with Multiple Independently Moving Ob-
jects. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 18(1), pp. 58-64, 1996.

[7] A. Guttman. R-trees: a Dynamic Index Structure for
Spatial Searching. ACM SIGMOD 1984, pp. 47-57.

[8] Pekka Kilpelinen, Heikki Mannila, Esko Ukkonen. MDL
learning of unions of simple pattern languages from pos-
itive examples. FuroCOLT 1995, pp. 252-260.

[9] Manish Mehta, Jorma Rissanen, and Rakesh Agrawal.
MDL-based decision tree pruning. KDD 1995, pp. 216-
221.

[10] Raymond T. Ng, Alan Wagner and Yu Yin. Iceberg-cube
computation with PC Clusters. ACM SIGMOD 2001,
pp. 25-36.

[11] R. A. Reckhow and J. Culberson. Covering Simple Or-
thogonal Polygon with a Minimum Number of Orthog-
onally Convex Polygons. ACM Annual Computational
Geomeltry Conference, pp. 268-277, 1987.

[12] Eric S. Ristad and Robert G. Thomas. Context models
in the MDL framework. Data Compression Conference
1995, pp. 62-71.

[13] J. Ross Quinlan, Ronald L. Rivest. Inferring Decision
Trees Using the Minimum Description Length Principle.
Information and Computation, 80(3), pp. 227-248, 1989.



