
XMark: A Benchmark for XML Data Management

Albrecht Schmidt1 Florian Waas2 Martin Kersten1 Michael J. Carey3

Ioana Manolescu4 Ralph Busse5

1 CWI, Kruislaan 413, 1090 GB Amsterdam, The Netherlands,firstname.lastname@cwi.nl
2 Microsoft Corporation, Redmond (WA), USA,florianw@microsoft.com

3 BEA Systems, Inc., USA,mcarey@bea.com
4 INRIA-Rocquencourt, 78153 Le Chesnay Cedex, France,Ioana.Manolescu@inria.fr

5 FHG-IPSI, Dolivostr. 15, 64293 Darmstadt, Germany,busse@ipsi.fraunhofer.de

Abstract

While standardization efforts for XML query
languages have been progressing, researchers
and users increasingly focus on the database
technology that has to deliver on the new
challenges that the abundance of XML doc-
uments poses to data management: valida-
tion, performance evaluation and optimiza-
tion of XML query processors are the up-
coming issues. Following a long tradition in
database research, we provide a framework
to assess the abilities of an XML database to
cope with a broad range of different query
types typically encountered in real-world sce-
narios. The benchmark can help both imple-
mentors and users to compare XML databases
in a standardized application scenario. To
this end, we offer a set of queries where each
query is intended to challenge a particular as-
pect of the query processor. The overall work-
load we propose consists of a scalable doc-
ument database and a concise, yet compre-
hensive set of queries which covers the ma-
jor aspects of XML query processing ranging
from textual features to data analysis queries
andad hocqueries. We complement our re-
search with results we obtained from running
the benchmark on several XML database plat-
forms. These results are intended to give a
first baseline and illustrate the state of the art.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy oth-
erwise, or to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

1 Introduction

The data exchange format XML has been penetrating
virtually all areas of Internet application programming.
Thus, electronic commerce sites and content providers
who rely heavily on the new technology are increas-
ingly interested in deploying advanced data manage-
ment systems for sites whose data volume exceeds toy
sizes. The complexity of the challenge has also at-
tracted the attention of the database research commu-
nity. Early efforts mainly concentrated on schema is-
sues and the theory of organizing data without a fixed
schema, which first seemed incompatible with exist-
ing technology. However, as XML gained more and
more momentum and numerous commercial products
have been appearing on the market – many more being
under development – the focus of research shifted; spe-
cific technical issues like physical data breakdown and
query performance have started to determine the suc-
cess or failure of implemented XML-based solutions.

Increasingly, major and minor database vendors
(see [4] for a seemingly ever-growing list) are scram-
bling to leverage their existing products – well be-
yond the rudimentary XML support like conversion
of purely relational data to XML documents which
most products already provide – with whatever one
may need to meet the new requirements. However,
these new requirements are still somewhat sketchy and,
though the differences between XML and relational or
object-relational data are easy to grasp, the implica-
tions on the underlying data store are not fully under-
stood yet.

XML, by definition, is a textual markup language
which means that unlike relations in (O)RDBMS, data
elements are ordered by nature;string is the core data
type, from which richer data types,e.g., integers, floats
and even user-defined abstract data types are derived.
Externally provided schema information, which may
or may not be present, can help to avoid excessive
and expensive coercions between data types. Addition-

ally, to cope with the tree structure of XML documents
and the resulting intricate hierarchical relationships be-
tween data, regular path expressions are an essential
ingredient of query languages and hence call for effi-
cient evaluation strategies. References are a powerful
language feature to model relationships that exceed the
limitations of tree structures and require further map-
ping logics like logical OIDs or join indexes for effi-
cient management.

Earlier work on how to extend existing data mod-
els to cope with the new XML requirements provided
helpful guidance; but since almost all of these proto-
types were implementedon topof data or object stores,
i.e., using standard APIs but without direct access to
the internal workings of a product, the conclusions
drawn are only valid to a certain extent and the effec-
tiveness of a particular mapping remains unclear. Of-
ten, simple extensions to the product could have caused
significant performance improvements [17]. Due to
their complexity and interdependencies with various
system components, most of the designs are hard to as-
sess without putting them to the only conclusive test: a
comprehensive quantitative assessment, or in short the
right benchmark.

The need for new benchmarks has been a recur-
ring momentum in database research, and so, over
the past years the database community developed a
rich tradition in performance assessment of systems
ranging from research developments like the Hyper-
model [1], OO1-Benchmark [10], OO7-Benchmark [8]
or the BUCKY benchmark [9] to industrial standards
like the family of TPC benchmarks [15] just to men-
tion a few examples. However, none of the available
benchmarks offers the coverage needed for XML pro-
cessing: all of them are geared towards a certain data
model but the flexibility and expressiveness of semi-
structured query languages exceed existing systems’
limitations by far.

The XMark Benchmark described in this paper
takes on the challenge and features a tool kit for eval-
uating the retrieval performance of XML stores and
query processors: a workload specification, a scal-
able benchmark document and a comprehensive set of
queries, which were designed to feature natural and
intuitive semantics. To facilitate analysis and inter-
pretation, each of the queries is intended to challenge
the query processor with an important primitive of
the query language. This is useful in a number of
ways. In the first place, a systematic examination of
the query processors proves beneficial as a such a pro-
cessor can operate on a variety of architectures, each of
which tends to be suited for different application work-
loads and exhibits special characteristics. For instance,
XML stores have been derived from relational, object-
relational, main-memory and object-oriented database
technology as well as from textual information retrieval
data structures and persistent object stores. Therefore,

different products can be expected to display diverging
behavior in performance and stress tests according to
their system architecture and physical data breakdown.
Second, the benchmark document and the queries can
aid in the verification of query processors, which has
been a challenging problem since high level query lan-
guages were introduced [24]. In the world of XML,
the problem of equivalence of query processor output
goes from bad to worse: the degrees of freedom that the
different possible physical representations of the docu-
ment (see [5] for an attempt to tackle it) introduce, are
combined with the degrees of freedom in query execu-
tion with regards to the order of set-valued attributes,
different character encodings, namespacesetc.Our ex-
perience suggests that the problem of deciding when to
regard the output of XML query processors as equiva-
lent still requires research. Third, executing the bench-
mark query set exhibits details of the work required
to incorporate the query processor into an application
scenario. Consequently, the benchmark can also help
users to estimate the costs of actually deploying such a
system in their application scenario and to answer the
question what systems fits best their needs.

XML processing systems usually consist of various
logical layers and can be physically distributed over a
network. To make the benchmark results interpretable
we abstract from the systems engineering issues and
concentrate only on the core ingredients: the query pro-
cessor and its interaction with the data store. We do
not consider network overhead, communication costs
(e.g., RMI, HTTP, CORBA, Sockets, RPC, Java Beans,
or others) or transformations (e.g., XSLT) of the output.
As for the choice of language, we use XQuery [11],
an amalgamation of many research languages for semi-
structured data or XML (see [3] for an overview) and
a proposed standard. It is in the process of standard-
ization as the language of choice of the major competi-
tors in the field. We do not consider updates other than
bulkload as there is little agreement on semantics and a
standard is yet to be defined.

The target audience of this paper can be divided into
three groups. First, the framework presented here can
help database vendors to verify and refine their query
processors by comparing them to other implementa-
tions. Second, customers can be assisted in choosing
between products by using our setting as a simple case
study or pilot project that yet provides essential ingre-
dients of the targeted system. For researchers, lastly,
we provide example data and a framework for helping
to tailor existing technology for use in XML settings
and for refinement or design of algorithms.

The rest of the paper is structured as follows: First,
we motivate the necessity of a benchmark for XML
query processors, then we introduce the structure of
the document database. After presenting the queries
we give some results and interpretations obtained by
running the queries in our test environments.

2 XML Query Processing
Existing database benchmarks cover a plethora of as-
pects of traditional data management ranging from
query optimization to transaction processing. But even
if we make use of established techniques to store and
process XML, it is not clear if and in what way the
semi-structured nature of the data impacts on perfor-
mance and engineering issues; it might impede on the
effectiveness that these techniques have in their origi-
nal area. In the sequel, we motivate the need for a new
benchmark specifically for XML query processors.

The evolution of XML differs significantly from the
evolution of relational databases in that for XML there
was an agreed-upon standard at an early stage which
was accepted and supported by a large community.
This imposes a top-down perspective for the bench-
mark designer resulting in a kind of thematic bench-
mark, in the sense that it should provide challenges for
typical query primitives. Thus, the combination of tra-
ditional and new features present in XML processing
systems results in the need for a new quality of systems
engineering and, hence, a new benchmark.

While it has been shown that many ‘data-centric’
documents, i.e., documents which logically repre-
sent data structures [4], map very nicely to relational
databases (e.g., see [14, 20, 23]) or object-relational
databases [16], it is less clear how the same systems
can handle efficiently documents that are ‘document-
centric’, i.e., natural language with mark-up inter-
spersed. Therefore we want to hint at how different
DBMS architectures respond to the XML challenge,
which can be summarized as follows: (1) The textual
order of XML structures as in the original document
can be incorporated into queries: a feature that can
make simple look-up queries expensive in systems that
are not prepared for this challenge (see Queries 2 and
3 in Section 6). (2) Strings are the basic data type;
they can vary greatly in length posing additional stor-
age problems.Type problemscan also arise as the typ-
ing rules of query languages tend to clash the generic
string tokens of XML. (3) Queries involvinghierar-
chical structuresin the form of complicated path ex-
pressions, especially1 : n relationships in connec-
tion with order being queried tend to require expensive
join and aggregation operations when executed on re-
lational systems. (4) What compounds matters is the
loose schemaof many XML documents which tends to
make query formulation tedious from a user’s point of
view. Technically, NULL values can blow up the size
of the database. Also, specifying long and complicated
path expressions is error-prone.

Activities in the context of XML Schema [25] try to
allay some of these challenges by making data-centric
documents more accessible for (O)RDBMS by refor-
mulating concepts integrity constraints in an XML con-
text. This can indeed solve many problems but requires
additional engineering efforts and thus sacrifices some

buyer, seller

author

watch

seller
bidder,

interest

itemref

person

from,to

categoryannotation

item

closed auctionopen auction

itemref

categoryref

Figure 2: References

of the quick-and-easy-to-use appeal that helped XML
gain popularity so quickly. The benchmark queries
have been designed to address these matters specifi-
cally.

3 Related Work

By now there are other benchmarks available that can
be used to evaluate certain aspects of XML reposito-
ries or database systems. XMach-1 [2] is a benchmark
developed at the University of Leipzig. It consists of
eight queries and three update operations. The goal of
the benchmark is to test how many queries per second a
database can process at what cost. Additional measures
include response times, bulk load times and database
or index sizes. The main objective of the benchmark
is to stress-test XML systems under a multi-user work-
load. XOO7 [7] is the XML counterpart of the OO7
benchmark [8], which is geared towards object repos-
itories; it comprises an XML version of the origi-
nal OO7 database against which reformulations of the
original queries are run; accordingly, the challenges are
traversal-oriented. The benchmark also features exten-
sions which are tailored towards testing XML-specific
features. Our work differs from them in that it aims
at large-scale analytical XML processing (unlike [7])
and at the same time offers query challenges that are
designed along the lines of XML query algebras (un-
like [2]) thus helping to analyze and improve the un-
derlying query processor rather than merely measuring
systems performance.

4 Database Description

The design of an XML Benchmark requires a cau-
tiously modeled example database to make the behav-
ior of queries predictable and to allow for the formula-
tion of queries that both feel natural and present con-
cise challenges. Let us first outline the characteristics
of the document and then have a closer look at the tech-
nical issues of generating such documents.

item

regions

site

{africa, asia, ...}

closed_auctionsopen_auctionspeople

person

description

category

categoriescatgraph

reservedescription name open_auction

closed_auction

edge

tofrom

mailbox

mail

annotation bidder

increasedescription

itemrefinitial

annotation

description

itemrefpricehomepage creditcard

name profile

income

Figure 1: Element relationships between most of the queried elements

4.1 Hierarchical Element Structure

The nesting of elements renders the overall tree struc-
ture of XML documents. In this subsection we de-
scribe the structure of the benchmark document, which
is modeled after a database as deployed by an Internet
auction site. The main entities come in two groups:
person, open auction, closed auction, item, andcate-
gory on the one side andannotationand description
on the other side. The relationships between the enti-
ties in the first group are expressed through references
while those of the second group, which take after nat-
ural language text and are document-centric element
structures, are embedded into the sub-trees to which
they semantically belong. The hierarchical schema is
depicted in Figure 1; an ER diagram can be found
in [7]. The semantics of the entities just mentioned
is as follows: (1)Itemsare the objects that are on for
sale or that already have been sold. Eachitem carries
a unique identifier and bears properties like payment
(credit card, money order, . . .), a reference to the seller,
a descriptionetc., all encoded as elements. Each item is
assigned a world region represented by the item’s par-
ent. (2)Open auctionsare auctions in progress. Their
properties are the privacy status, the bid history (i.e., in-
creases or decreases over time) along with references
to the bidders and the seller, the current bid, the time
interval within which bids are accepted, the status of
the transaction and a reference to the item being sold,
among others. (3)Closed auctionsare auctions that are
finished. Their properties are the seller (a reference to a
person), the buyer (a reference to a person), a reference
to the respective item, the price, the number of items

sold, the date when the transaction was closed, the type
of transaction, and the annotations that were made be-
fore, during and after the bidding process. (4)Persons
are characterized by name, email address, phone num-
ber, mail address, homepage URL, credit card number,
profile of their interests, and the (possibly empty) set
of open auctions they are interested in and get notifi-
cations about. (5)Categoriesfeature a name and a de-
scription; they are used to implement a classification
scheme ofitems. A categorygraph links categories
into a network.

These entities constitute the relatively structured
and data-oriented part of the document: the schema is
regular on a per entity basis and exceptions, such as
that not every person has a homepage, are predictable.
Apart from occasional list types such as bidding histo-
ries, the order of the input is not particularly relevant.
On the other hand, the offspring ofannotationandde-
scriptionelements makes up the document-centric side
of the document. Here the length of strings and the
internal structure of sub-elements varies greatly. The
markup now comprises itemized lists, keywords, and
even formatting instructions and character data, imitat-
ing the characteristics of natural language texts. This
ensures that the database covers the full range of XML
instance incarnations, from marked-up data structures
to traditional prose. At [19] we have made available
some snippets of the benchmark document.

4.2 References

An overview of the references that connect sub-trees
is given in Figure 2. Care has been taken that the

references feature diverse distributions, derived from
uniformly, normally and exponentially distributed ran-
dom variables. Also note that all references are typed,
i.e., all instances of an XML element point to the same
type of XML element; for example, references that
model interests always refer to categories.

4.3 Generated Text

To generate text that bears similarities with natural
language, we analyzed Shakespeare’s plays and de-
termined statistic characteristics like word frequency,
stopwordsetc. The generator mimics these characteris-
tics by using the 17000 most frequent words excluding
stop words. We did not incorporate additional charac-
teristics like punctuation as they are only of little rel-
evance for the performance assessment. We believe
that tokenization and other text compression methods
commonly used can be sufficiently well assessed with
the text we provide. For entities like names, email ad-
dressesetc.we used various Internet sources like elec-
tronically available phone directories and scrambled
them. We refer to [22] for more details.

4.4 XML Constructs

The XML Standard [6] defines constructs that are use-
ful for producing flexible markup but do not justify the
definition of queries to challenge them directly. There-
fore, we only made use of a restricted set of XML
features in the data generator which we consider per-
formance critical in the context of XML processing in
databases. We do not generate documents with Enti-
ties or Notations. Neither do we distinguish between
Parsed Character Data and Character Data assuming
that both are string types from the viewpoint of the stor-
age engine. Furthermore, we don’t include namespaces
into the queries. We also restrict ourselves to the seven
bit ASCII character set. A DTD and schema informa-
tion are provided to allow for more efficient mappings.
However, we stress that this is additional information
thatmaybe exploited.

4.5 xmlgen – Or How to Generate a Document

We designed and implemented a document generator,
called xmlgen , to provide for a scalable XML doc-
ument database. Besides the obvious requirement to
be capable of producing the XML document speci-
fied above we were eager to meet the following addi-
tional demands. The generation of the XML document
should be: (1)platform independentso that any user in-
terested in running the benchmark is able to download
the binary and generate the same document no matter
what hardware or operating system is used; to achieve
this plain ANSI C was used to implementxmlgen ;
(2) accurately scalableranging from a minimal docu-
ment to any arbitrary size limited only by the capac-
ity of the system; (3) bothtime and resource efficient,

Name Scaling Factor Document Size
tiny 0.1 10 MB

standard 1 100 MB
large 10 1 GB
huge 100 10 GB

Figure 3: Scaling the benchmark document

i.e., elapsed time ideally scales linearly whereas the re-
source allocation is constant – independent of the size
of the generated document; (4)deterministic, that is,
the output should only depend on the input parameters.

First, in order to be able to reproduce the document
independently of the platform, we incorporated a ran-
dom number generator rather then relying on the op-
erating system’s built-in random number generators.
Together with basic algorithms which can be found
in statistics textbooks thisxmlgen implements uni-
form, exponential, and normal distributions of fairly
high quality. We assigned to each of the elements in
the DTD a plausible distribution of its children and
its references, observing consistency among referenc-
ing elements, that is, the number of items organized
by continents equals the sum of open and closed auc-
tions,etc. Second, to provide for accurate scaling we
scale selected sets like the number of items and per-
sons with the user defined factor. Moreover, we cal-
ibrated the numbers to match a total document size
of slightly more than 100 MB for scaling factor 1.0
(cf. Fig. 3). Finally, it is a challenge to implement the
data generator efficiently because references are cre-
ated at various places throughout the document; since
we have to abide by the integrity constraint that every
reference points to a valid identifier we could go for
the straight-forward solution of keeping some sort of
log and record which identifier has already been ref-
erenced; unfortunately this seems infeasible for large
documents. We solved this problem by modifying the
random number generation to produce several identical
streams of random numbers. That way, we are able to
implement a partitioning of sets like the item IDs that
are referenced from both open and closed auctions. In
its current version,xmlgen requires less than 2 MB of
main-memory, and produces documents of sizes of 100
MB and 1 GB in 33.4 and 335.5 seconds, respectively
(450MHz Pentium III). A more detailed description of
the tool and downloads can be found at the project Web
page [18].

5 Bulkloading the Document

In the context of XML, the role of bulkloading stands
apart from its importance in other benchmarks. As
(prospective) standards like XQuery [11] are not ex-
clusively designed as database but data integration lan-
guages, we can, strictly speaking, neither assume the
need to bulkload documents nor the presence of a

database. However, there should be little doubt that
databases can help with managing large amounts of
XML data. We therefore resort to the following inter-
pretation: We take the XQuery syntax for

FOR $a in document(”auction.xml”)/...
literally and formulate all queries with respect to a sin-
gle large document without committing ourselves to a
specific database scenario.

Although the authors themselves did not experience
problems when bulkloading the document in our test
environments, they are aware that the size of the doc-
ument may be too large for some systems. Hence,
the data generatorxmlgen additionally offers a mode
that outputsn entities (as defined in Section 4) per file
wheren can be chosen by the user.

Note that in this case, modifications to the one-
document version of the benchmark may become nec-
essary. For example, if the user chooses to make use
of the DTD we supply, parser-controlled references,
i.e., ID and IDREF declared attributes, should be con-
verted to REQUIRED attributes. Otherwise a validat-
ing parser tries to check for uniqueness and existence of
IDs and IDREFs, respectively. With respect to queries,
changes to the path expressions, which as presented as-
sume a single document, are necessary. Nevertheless,
all changes remain local. However, we stress that this
solution should be regarded as a work-around and that
the semantics of the queries as defined in the following
section should not differ no matter whether they are
executed against a single document or a collection of
documents. The query semantics of theonedocument
version are normative.

6 Benchmark Queries

This section lists the queries of the benchmark. We
chose to express the queries in XQuery [11], the suc-
cessor to Quilt [12], which is about the be standardized.
Due to lack of space, this is the only query we present
in source code. The remaining queries can be down-
loaded from the project Web site at [19]. The Queries
are grouped under subsection headings which indicate
the concept to be tested.

6.1 Exact Match

This simple query is mainly used to establish a perfor-
mance baseline, which should help to interpret subse-
quent queries. It tests the database ability to handle
simple string lookups with a fully specified path.

Q 1. Return the name of the person with ID ‘person0’.

FOR $b IN /site/people/person/[@id=”person0”]
RETURN $b/name/text()

Now we are ready for more challenging queries:

6.2 Ordered Access

These queries should help users to gain insight how the
DBMS copes with the intrinsic order of XML docu-
ments and how efficiently they can expect the DBMS
to handle queries with order constraints.

Q 2. Return the initial increases of all open auctions.

This query evaluates the cost of array lookups. Note
that it may actually be harder to evaluate than it looks;
especially relational back-ends may have to struggle
with rather complex aggregations to select the bidder
element with index 1.

Q 3. Return the first and current increases of all open
auctions whose current increase is at least twice as
high as the initial increase.

This is a more complex application of array lookups.
In the case of a relational DBMS, the query can take ad-
vantage of set-valued aggregates on the index attribute
to accelerate the execution. Queries Q2 and Q3 are
akin to aggregations in the TPCD [15] benchmark.

Q 4. List the reserves of those open auctions where a
certain person issued a bid before another person.

This time, we stress the textual nature of XML doc-
uments by querying the tag order in the source docu-
ment.

6.3 Casting

Strings are the generic data type in XML documents.
Queries that interpret strings will often need to cast
strings to another data type that carries more seman-
tics. This query challenges the DBMS in terms of the
casting primitives it provides. Especially, if there is no
additional schema information or just a DTD at hand,
casts are likely to occur frequently. Although other
queries include casts, too, this query is meant to chal-
lenge casting in isolation.

Q 5. How many sold items cost more than 40?

6.4 Regular Path Expressions

Regular path expressions are a fundamental building
block of virtually every query language for XML or
semi-structured data. These queries investigate how
well the query processor can optimize path expressions
and prune traversals of irrelevant parts of the tree.

Q 6. How many items are listed on all continents?

A good evaluation engine or path encoding scheme
should help realize that there is no need to traverse the
complete document tree to evaluate such expressions.

Q 7. How many pieces of prose are in our database?

Also note thatCOUNTaggregations do not require a
complete traversal of the document tree. Just the cardi-
nality of the respective parts is queried.

6.5 Chasing References

References are an integral part of XML as they al-
low richer relationships than just hierarchical element
structures. These queries define horizontal traver-
sals with increasing complexity. A good query opti-
mizer should take advantage of the cardinalities of the
operands to be joined.

Q 8. List the names of persons and the number of items
they bought. (joins person, closedauction)

Q 9. List the names of persons and the names of
the items they bought in Europe. (joins person,
closedauction, item)

6.6 Construction of Complex Results

Constructing new elements may put the storage engine
under stress especially when the newly constructed ele-
ments are to be queried again. The following query re-
verses the structure of person records by grouping them
according to the interest profile of a person. Large parts
of the person records are repeatedly reconstructed. To
avoid simple copying of the original database we trans-
late the mark-up into French.

Q 10. List all persons according to their interest; use
French markup in the result.

6.7 Joins on Values

This query tests the database’s ability to handle large
(intermediate) results. This time, joins are on the basis
of values. The difference between these queries and the
reference chasing queries Q8 and Q9 is that references
are specified in the DTD and may be optimized with
logical OIDs for example. The two queries Q11 and
Q12 differ mainly in the size of the result set and hence
provide various optimization opportunities.

Q 11. For each person, list the number of items cur-
rently on sale whose price does not exceed 0.02% of
the person’s income.

Q 12. For each person with an income of more than
50000, list the number of items currently on sale whose
price does not exceed 0.02% of the person’s income.

6.8 Reconstruction

A key design for XML-to-DBMS mappings is to deter-
mine the fragmentation criteria. The complementary
action is to reconstruct the original document from its
broken-down representation. Query 13 tests for the
ability of the database to reconstruct portions of the
original XML document.

Q 13. List the names of items registered in Australia
along with their descriptions.

6.9 Full Text

We continue to challenge the textual nature of XML
documents; this time, we conduct a full-text search
in the form of keyword search. Although full-text
scanning could be studied in isolation we think that
the interaction with structural mark-up is essential as
the concepts are considered orthogonal; so Q14 is re-
stricted to a subset of the document by combining con-
tent and structure.

Q 14. Return the names of all items whose description
contains the word ‘gold’.

6.10 Path Traversals

In contrast to Section 6.4 we now try to quantify the
costs of long path traversals that don’t include wild-
cards. We first descend deep into the document tree
(Query 15); in Query 16 we additionally ascend the
tree with a selection. Note that both queries only check
for the existence of paths.

Q 15. Print the keywords in emphasis in annotations
of closed auctions.

Q 16. (Confer Q 15.) Return the IDs of the sellers
of those auctions that have one or more keywords in
emphasis.

6.11 Missing Elements

This is to test how well the query processors know
to deal with the semi-structured aspect of XML data,
especially elements that are declared optional in the
DTD.

Q 17. Which persons don’t have a homepage?

The fraction of people without a homepage is rather
high so that this query also presents a challenging path
traversal to non-clustering systems.

6.12 Function Application

This query puts the application of user defined func-
tions (UDF) to the proof. In the XML world, UDFs are
of particular importance because they allow the user to
assign semantics to generic strings that go beyond type
coercion.

Q 18. Convert the currency of the reserves of all open
auctions to another currency.

6.13 Sorting

Due to the lack of a schema, SORTBY clauses often
play the role of the SQL-ish ORDER BY and GROUP
BY. This query requires a sort on generic strings.

Q 19. Give an alphabetically ordered list of all items
along with their location.

6.14 Aggregation

The following query computes a simple aggregation
by assigning each person to a category. Note that the
aggregation is truly semi-structured as it also includes
those persons for whom the relevant data is not avail-
able.

Q 20. Group customers by their income and output the
cardinality of each group.

These twenty queries constitute the challenges
posed in XMark. While deploying them in various en-
vironments we felt that the number and type of queries
exhibit a good balance between conciseness and detail,
making it possible to run the benchmark in acceptable
time while still acquiring interesting characteristics of
the system(s) tested.

7 Experiments and Experiences

The benchmark has been a group-design activity of
academic and industry researchers and is known to be
used with success to evaluate progress in both commer-
cial and research settings. The evaluation in this sec-
tion here is meant to present the highlights we encoun-
tered when running the benchmark on a broad range
of the systems; an in-depth analysis of the behavior of
all individual systems would be beyond the scope of
this paper. We anonymized the systems due to well-
known license restrictions; instead, we simply speak
of systems A through G. Our test platforms fall into
two categories: (1) Systems that are designed aslarge
scale repositoriesand therefore can be expected per-
form well at handling large amounts of data. We call
them System A through System F; in the sequel, we
will also refer to these systems asmass storage sys-
tems.Some of the systems, namely A to C, are based
on relational technology, come with a cost-based query
optimizer and allow the kind of hand-optimization and
hints as the relational product. While A and B do not
require the user to provide a mapping for physical data
breakdown, System C reads in a DTD and lets the user
generate an optimized database schema. Systems D to
F are main-memory based and only come with heuris-
tic optimizers; however, they also allow rewriting the
queries by hand if necessary. (2) Query processors that
are intended to serve asembedded query processorsin
programming languages and aim at small to medium
sized documents. We call the software system that falls
into this category System G.

A note on the analysis. Some systems provided us
with the opportunity to look at query execution in de-
tail, i.e., find out how much time is spent for query op-
timization, metadata access or during I/O wait; others
only allowed a black-box analysis augmented with the
usual monitoring tools that operating systems provide.
The tools to run the benchmark document have been

made available on the project Web site [18]. They in-
clude the data generator and the query set along with a
mapping tool to convert the benchmark document into
a flat file that may be bulk-loaded into a (relational)
DBMS; a variety of formats are available.

The experiments we conducted are based on a va-
riety of set-ups: some systems required us to prepare
the data and translate the queries into a proprietary lan-
guage that was then executed, other systems processed
the queries as they are presented in [19, 22] possibly
with minor syntactic changes. All queries were run on
machines equipped with 550 MHz Pentium III proces-
sors, SCSI Ultra2 harddisks and 1 GB of main mem-
ory; operating systems were Windows 2000 Advanced
Server and Linux 2.4 respectively depending on what
the packages required. Although the systems were all
equipped with at least two processors, only one proces-
sor was used during bulk load and query execution.

System Size Bulkload time
A 241 MB 414 s
B 280 MB 781 s
C 238 MB 548 s
D 142 MB 50 s
E 302 MB 96 s
F 345 MB 215 s

Table 1: Database sizes

Concerning the scaling factor, we were not able to
run all queries on all systems at scaling factor 1.0 as
we had intended to do. The mass storage Systems A-
F were able to process the queries, but the embedded
System G failed to do so. So for the Systems A-F,
which with we commence our evaluation, the bench-
mark document was generated at scaling factor 1.0.
Note that it took the XML parserexpat [13] 4.9 sec-
onds (user time on the above Linux machine includ-
ing system time and disk I/O) to scan the benchmark
document (this time only includes the tokenization of
the input stream and normalizations and substitutions
as required by the XML standard and no user-specified
semantic actions). The bulkload times are summarized
in Table 1: they range from 49 seconds to 781 seconds.
They constitute completed transactions and include the
conversion effort needed to map the XML document
to a database instance. Note that System C requires
a DTD to derive a database schema; the time for this
derivation is not included in the figure, but is negligi-
ble anyway. The resulting database sizes are also listed
in Table 1; we remark that some systems which are not
included in this comparison require far larger database
sizes.

We now turn our attention to the running times and
statistics as displayed in Table 3 and present some ba-
sic insights. Since we do not have the space to discuss
all timings and experiments in detail, we only present

Query System Compilation CPU Compilation total Execution CPU Execution total
A 16% 25% 31% 75%

Q 1 B 13% 51% 30% 49%
C 0% 29% 20% 71%
A 9% 13% 41% 87%

Q 2 B 12% 20% 65% 80%
C 3% 16% 77% 84%

Table 2: Detailed timings of Q1 and Q2 for Systems A, B, C

System A System B System C System D System E System F
Q 1 689 784 257 120 1597 2814
Q 2 3171 1971 707 2900 4659 7481
Q 3 41030 6389 1942 3900 4630 8074
Q 5 259 221 237 160 246 204
Q 6 293 331 509 10 336 508
Q 7 719 741 1520 10 287 2845
Q 8 1684 1466 667 470 3849 9143
Q 9 3530 10189 92534 980 5994 13698

Q 10 3414285 86886 1568 22000 54721 69422
Q 11 205675 2551760 2533738 8700 602223 741730
Q 12 126127 965118 976026 7500 268644 270577
Q 17 1008 1117 240 250 2103 3598
Q 20 821 939 1254 620 1065 1759

Table 3: Performance in ms of queries discussed in Section 7

a selection. In most physical XML mappings found
in the literature, Query Q1 consists of a table scan or
index lookup and a small number of additional table
look-ups. It is mainly supposed to establish a perfor-
mance baseline: At scaling factor 1.0, the scan goes
over 10000 tuples and is followed by two table look-
ups if a mapping like [20] is used.

Queries Q2 and Q3 are the first ones to provide sur-
prises. It turns out that the parts of the query plans that
compute the indices are quite complex TPC/H-like ag-
gregations: they require the computation of set-valued
attributes to determine the bidder element with the least
index with respect to the open auction ancestor. There-
fore the complexity of the query plan is higher than the
rather innocent looking XQuery representations of the
queries might suggest. Consequently, running times
are quite high. Although System A was able to find an
execution plan which was as good as that of the other
systems, it spent too much of its time on optimization.
Table 2 displays some interesting characteristics of Q1
and Q2 that can be traced back to the physical map-
pings the systems use. System A basically stores all
XML data on one big heap,i.e., only a single relation.
System B on the other hand uses a highly fragment-
ing mapping. Consequently, System A has to access
fewer metadata to compile a query than System B, thus
spending only half as much time on query compilation
(i.e., optimization) as System B. However, this comes
at a cost. Because the data mapping deployed in Sys-

tem A has less explicit semantics, the actual cost of ac-
cessing the real data is higher than in System B (75%
vs49%). System C as mentioned needs a DTD to de-
rive a storage schema; this additional information helps
to get favorable performance. Still in Table 2, we also
find the detailed execution times for Q2. They show
that mappings that structure the data according to their
semantics can achieve significantly higher CPU usage
(compare 77% of System C and 65% of System Bvs
System A’s 41%). We remark that System C also uses
a data mapping in the spirit of [23] that results in com-
paratively simple and efficient execution plans and thus
outperforms all other systems for Q2 and Q3.

Q4 (no results presented due to lack of space) fea-
tures the ‘BEFORE’ predicate which may be expensive
to evaluate. Some mappings like [26] which store the
extentof tags,i.e., not only the position of the start tag
but also that of the corresponding end tag, may be able
to exploit this additional information and achieve good
running times.

We now come to Query Q5 which tries to quantify
the cost of casting or type-coercion operations such as
those necessary for the comparisons in Q3. For all
mass-storage systems, the cost of this coercion is rather
low with respect to the relative complexity of Q3’s
query execution plan and given the execution times of
Q5. In any case, Q5 does not exhibit great differences
in execution times. We note that all character data
in the original document, including references, were

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

tim
e

in
 s

ec
on

ds

1 MB document 100 kB document

Figure 4: Performance figures for the embedded query processor System G

stored as strings and cast at runtime to richer data types
whenever necessary as in Queries 3, 5, 11, 12, 18, 20.
We did not apply any domain-specific knowledge; nei-
ther did the systems use schema information nor pre-
calculation or caching of casting results.

Regular path expressions are the challenge pre-
sented by queries Q6 and Q7. System D keeps a de-
tailed structural summary of the database and can ex-
ploit it to optimize traversal-intensive queries; this ac-
tually makes Q6 and Q7 surprisingly fast. However, on
systems without access to structural summaries, which
effectively play the role of an index or schema, these
queries often are significantly more expensive to ex-
ecute. The problem that Q7 actually looks for non-
existing paths is efficiently solved by exploiting the
structural summary in the case of System D. For some
systems, the cost of accessing schema information was
very high and dominated query performance.

Queries Q8 and Q9 are usually implemented as
joins. In the systems that we could analyze in detail,
chasing the references basically amounted to executing
equi-joins on strings. We were surprised that Q8 and
Q9 were relatively cheap in comparison to Q2 and Q3
as we would have deemed the individual elements sim-
ilarly expensive. For Q9, System C was not able to find
a good execution plan in acceptable time. Apart from
that anomaly, the implementation of the executed join
algorithms seemed to determine the performance.

The construction of complex query results is ad-
dressed in Q10. The path expressions and join expres-
sion used in the query are kept simple so that the bulk
of the work lies in the construction of the answer set
which amount to more than 10 MB of (unindented)

XML text.

Whereas Q10 produced massive amounts of output
data, Q11 and Q12 test the ability to cope with large in-
termediate results by theta-joining potential buyers and
items that might be of interest to them. The theta-join
produces more than 12 million tuples. Q12 especially
is also a challenge to the query optimizer to pick a good
execution plan and allows insights into how the data
volume influences query and output performance. For
Systems B and C, the optimizer chose a sub-optimal
execution plan. For Systems D through F we had to ex-
periment with several hand-optimized execution plans.

The queries so far have not attempted to estimate the
cost of long path expressions with respect to short ones.
This is exactly where Q15 and Q16 can help. For the
sake of space, we do not present figures here but report
that Systems A, B and C needed about 8 times longer to
execute Q16 than they needed for Q15. This is due to
the many joins that the more complicated path expres-
sion in Q16 brings about – both in execution and op-
timization. Also, the SQL output of System E needed
some massaging to keep intermediate results small.

Q17 again stresses the loose schema of many XML
documents by querying for non-existing data. The
query execution plan computes the intersection of two
sets. The timings in Table 3 show a typical situation:
although all systems are able to process the query in
less than four seconds, there is still an order magni-
tude of difference in the performance. Queries Q18
and Q19 (no performance figures are presented due to
lack of space) are primarily of interest to establish the
relative costs of function application and sorting oper-
ations when comparing two system architectures. The

aggregations of Q20 conclude the query set with a com-
bination of three table scans and a set difference. All
systems show similar performance.

A general note on the queries: we often had to refor-
mulate the queries into SQL or proprietary XML query
languages to satisfy a query processor; frequently it
was also necessary to hand-optimize multi-pass SQL,
i.e., sequences of SQL statements that reuse interme-
diate results, that were generated by the ‘native’ XML
engines E and F. Systems A to C on the other hand
did not need manual intervention. As a separate obser-
vation, we would like to mention that the installation
effort for the tested systems differed greatly and that
in a production setting this effort may be very impor-
tant [21].

In some of the performance figures certain systems
(particularly Systems A to C) show pathological run-
ning times. This does not necessarily mean that the
relevant systems are inferior to the others; we rather
relied on the built-in query optimizers and did not at
all change or reformulate queries by hand. This was
to show that the benchmark queries indeed present rea-
sonable challenges that can be solved even if not opti-
mally. The analysis of the query translation and opti-
mization process showed that search spaces for XML
queries are often larger than necessary since, during
the translation from XQuery to a lower-level algebra,
information especially about path expression is often
lost. To improve on this, experimenting with new prun-
ing strategies and extended low-level algebras to bet-
ter capture query semantics, might be a good starting
point.

For comparison, Figure 4 presents the performance
behavior of an embedded query processor on document
sizes 100 kB (scaling factor 0.001) and 1MB (scaling
factor 0.01), which were the largest sizes we could
sensibly execute on the System G without running
out of resources. On the smaller document, no query
took longer than 5 seconds but none was faster than
2.5 seconds; this means that the implementation tech-
niques used for the embedded processor incur a signifi-
cant performance overhead compared to the mass stor-
age systems, which were overall competitive in many
cases. With respect to join queries one should note that
the result sizes were very small in comparison to those
of the mass storages systems, on which we used a much
larger scaling factor (1.0) for our experiments. An ad-
vantage of the embedded systems is that they usually
allow more control over query execution by providing
hooks into their execution engine or by letting users
implement certain operators themselves.

We also would like to mention one point that would
facilitate query formulation enormously. If a query
processor was able to validate path expressions online,
i.e., tell the user whether a given sequence of tags ac-
tually exists in the database instance, it would often be
of great help to users as quite regularly, simple typos

in path names often evaluate to empty results. While
the DBMS of course can’t decide whether a given path
expression contains a typo or not, it could well issue
a warning if a path expression contains non-existing
tags. An approach like Query By Example could pos-
sibly lead to very helpful results.

8 Conclusion

In this paper, we presented the benchmark specifi-
cations developed for XMark, a set of queries and
lessons learned while executing the workload speci-
fication on a number of platforms. The benchmark
was designed top-down taking the standardization is-
sues around XML as a starting point. The queries try
to capture the essential primitives of XML processing
in Data Management Systems such as path expressions,
querying for NULL values, full-text search, hierarchi-
cal data with varying fan-outs, ordered data and coer-
cions between data types and complex results.

Our experiences during the experiments can be sum-
marized as follows: (1) The physical XML mapping
has a far-reaching influence on the complexity of query
plans. Each mapping favors certain types of queries
by enabling efficient execution plans for them. How-
ever, no mapping was able to outperform the others
across the board. (2) The complexity of query plans
is often aggravated by information-loss during transla-
tion from the declarative high-level query language to
the low-level execution algebra. There often appears to
be a semantic gap between the two. Thus, cost-based
query optimizers have to deal with larger search spaces
than necessary. (3) Meta-data access can be a dominant
factor in query execution especially in simple lookup
queries with small result sizes (see Table 2 and expla-
nations in Section 7). (4) Schema information often en-
ables better database schema design and is also useful
in query optimization; see the running times of System
C versus the comparable Systems A and B in Table 3.

Important parts of a complete application scenario
are still missing: update specifications, for which a
W3C standard has yet to be defined, are the most
prominent one. Therefore, we expect our work to con-
tinue and evolve in the future along with the standard-
ization efforts.

References

[1] T. Anderson, A. Berre, M. Mallison, H. Porter,
and B. Schneider. The HyperModel Bench-
mark. In International Conference on Extend-
ing Database Technology, volume 416 ofLec-
ture Notes in Computer Science, pages 317–331,
1990.

[2] T. Böhme and E. Rahm. XMach-1: A Benchmark
for XML Data Management. InProceedings of
BTW2001, 2001.

[3] A. Bonifati and S. Ceri. Comparative Analysis
of Five XML Query Languages.ACM SIGMOD
Record, 29(1):68–79, 2000.

[4] R. Bourett. XML Database Products. available
at http://www.rpbourret.com/xml/
XMLDatabaseProds.htm , 2000.

[5] J. Boyer. Canonical XML Version 1.0, 1
2001. available athttp://www.w3.org/
TR/xml-c14n .

[6] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and
E. Maler. Extensible Markup Language (XML)
1.0 (Second Edition). available athttp://
www.w3.org/TR/REC-xml , 2000.

[7] S. Bressan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li,
and U. Nambiar. X007: Applying 007 Bench-
mark to XML Query Processing Tools. InInter-
national Conference on Information and Knowl-
edge Management, pages 167–174, 2001.

[8] M. Carey, D. DeWitt, and J. Naughton. The OO7
Benchmark. InProceedings of the ACM SIG-
MOD International Conference on Management
of Data, pages 12–21, 1993.

[9] M. Carey, D. DeWitt, J. Naughton, M. Asgarian,
P. Brown, J. Gehrke, and D. Shah. The BUCKY
Object-Relational Benchmark. InProceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 135–146, 1997.

[10] R. Cattell and J. Skeen. Object Operations Bench-
mark. TODS, 17(1):1–31, 1992.

[11] D. Chamberlin, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu. XQuery: A Query Language
for XML, February 2001. available athttp://
www.w3.org/TR/xquery .

[12] D. Chamberlin, J. Robie, and D. Florescu. Quilt:
An XML Query Language for Heterogeneous
Data Sources. InInternational Workshop on
the Web and Databases (WebDB), pages 53–62,
2000.

[13] James Clark et al. Expat XML Parser.
available at http://sourceforge.net/
projects/expat/ , 2001.

[14] D. Florescu and D. Kossmann. Storing and
Querying XML Data using an RDMBS.IEEE
Data Engineering Bulletin, 22(3):27–34, 1999.

[15] J. Gray. Database and Transaction Process-
ing Performance Handbook. available at
http://www.benchmarkresources.
com/handbook/contents.asp , 1993.

[16] M. Klettke and H. Meyer. XML and Object-
Relational Database Systems - Enhancing Struc-
tural Mappings Based on Statistics. InInter-
national Workshop on the Web and Databases
(WebDB), pages 63–68, 2000.

[17] K. Ramasamy, J. Patel, J. Naughton, and
R. Kaushik. Set Containment Joins: The Good,
The Bad and The Ugly. InProceedings of the
International Conference on Very Large Data
Bases, pages 351–362, 2000.

[18] A. Schmidt, M. Kersten, D. Florescu, M. Carey,
I. Manolescu, and F. Waas. The XML Store
Benchmark Project, 2000. http://www.
xml-benchmark.org .

[19] A. Schmidt, M. Kersten, D. Florescu, M. Carey,
I. Manolescu, and F. Waas. Example Snip-
pet and Queries, 2002. available athttp:
//monetdb.cwi.nl/xml/snippet.txt
and http://monetdb.cwi.nl/xml/
queries.txt .

[20] A. Schmidt, M. Kersten, M. Windhouwer, and
F. Waas. Efficient Relational Storage and Re-
trieval of XML Documents. InInternational
Workshop on the Web and Databases (WebDB),
pages 47–52, Dallas, TX, USA, 2000.

[21] A. Schmidt, F. Waas, M. Kersten, D. Florescu,
M. Carey, I. Manolescu, and R. Busse. Why And
How To Benchmark XML Databases.ACM SIG-
MOD Record, 30(3):27–32, 2001.

[22] A. Schmidt, F. Waas, M. Kersten, D. Florescu,
I. Manolescu, M. Carey, and R. Busse. The
XML Benchmark Project. Technical Report INS-
R0103, April 2001.

[23] J. Shanmugasundaram, K. Tufte, C. Zhang,
G. He, D. J. DeWitt, and J. F. Naughton. Rela-
tional Databases for Querying XML Documents:
Limitations and Opportunities. InProceedings of
the International Conference on Very Large Data
Bases, pages 302–314, 1999.

[24] D. R. Slutz. Massive Stochastic Testing of SQL.
In Proceedings of the International Conference
on Very Large Data Bases, pages 618–622, 1998.

[25] W3C. W3C XML Schema.http://www.w3.
org/XML/Schema , 2001.

[26] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman. On Supporting Containment Queries
in Relational Database Management Systems. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2001.

