Active XML: Peer-to-Peer Data and Web Services
Integration

Serge Abiteboul
INRIA
and Xyleme

Omar Benjelloun
INRIA

1 Introduction

Data integration has been extensively studied in the
past, in the context of company infrastructures. In
the context of the web, data integration faces new
problems, due in particular to the heterogeneity of
sources and their non-interoperability. These issues
have been recently addressed, and partially resolved
by (proposed) standards like XML, RDF, SOAP and
WSDL, see [10]. Peer-to-peer architectures seem to be
a promising solution to approach other issues raised by
data integration over the web, namely its large scale
and the independence and autonomy of sources. Peer-
to-peer architectures are becoming increasingly popu-
lar, as they provide a decentralized infrastructure, in
sync with the spirit of the web and that scales well to
its size, as demonstrated by recent applications such
as [4, 5]. We believe that this technology, together
with the aforementioned standards, form the proper
ground for data and service integration over the web.
But what is still lacking is the “glue”, and this is what
Active XML (AXML, in short) provides: a declarative
framework for peer-to-peer data and service integra-
tion at the scale of the web.

The AXML framework is centered around AXML
documents, which are XML documents that may con-
tain calls to web services. When calls included in an
AXML document are fired, the latter is enriched by the
corresponding results. In some sense, an AXML docu-
ment can be seen as a (partially) materialized view, in-
tegrating plain XML data and dynamic data obtained
from service calls. Documents with embedded calls
is an old idea. For instance, in Microsoft Office XP,
Smart Tags within XML documents can be linked to
Microsoft’s .NET platform for web services [8]. How-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Ioana Manolescu
INRIA

Tova Milo
INRIA
and Tel Aviv U.

Roger Weber
ETH Zurich

ever, to our knowledge, AXML is the first proposal
that actually turns calls to web services embedded in
XML documents into a powerful tool for data integra-
tion.

The content of an AXML document is dynamic,
since it is possible to specify when a service call should
be activated (e.g. when needed, every hour, etc.), and
for how long its result should be considered valid. This
simple mechanism thus allows to capture and combine
different styles of data integration such as warehous-
ing and mediation. To fully take advantage of the use
of services, AXML also allows calling (i) continuous
services (that provide streams of answers) and (ii) ser-
vices supporting intensional data (AXML document
including service calls) as parameters and/or result.
The latter feature leads to powerful, recursive integra-
tion schemes.

The AXML framework allows to use arbitrary
SOAP-based web services. It also allows to specify
and use more elaborate services, that may query and
update AXML documents.

Demonstration highlights To illustrate the main
aspects of AXML and show how the framework may
be used for easy development of distributed, data-
oriented applications, we define a peer-to-peer auc-
tioning system in AXML and run it using an AXML
prototype developed at INRIA.

Two AXML peers will interact, and will also call a
standard web service such as eBay.net. The demonstra-
tion will feature both manual and automatic bidding.
Interactions between peers will be tracked by a dis-
tributed logging system and displayed to illustrate the
system’s underlying computation. We will also show
how an effective web-based user interface can be cre-
ated, so that end-users can use the auctioning appli-
cation from a standard browser.

The remaining of this paper is structured as fol-
lows: Section 2 briefly describes the AXML data and
service integration framework. Then, Section 3 illus-
trates AXML through the auction demonstration sce-
nario.

AXML peer S1

T
XQuery
processor

AXML peer S2

query .
results

read -

. o ~
update “tead ~ - SOAP

. update ‘consults wrapper|- = = = < _
AXML storage v *<[soapP
N service

mﬂ\\'\ AXML service AN
definitions Se=- :
SOAP client

—

service call service result

Figure 1: Outline of the AXML data and web services
integration architecture.

2 Active XML

In this section, we describe the AXML integration ar-
chitecture, and outline the main features of AXML
data and services. More details on the syntax, for-
mal semantics and an evaluation strategy can be found
in [1].

2.1 AXML integration architecture

The AXML peer-to-peer integration architecture is
shown in Figure 1. In general, we consider a peer to
be any site that provides some XML data and/or web
services and is able to call other peers. In particular,
we distinguish A XML peers that contain AXML doc-
uments (which hold calls to other peers), and define
AXML services. An AXML peer (like S; in Figure 1)
thus contains an AXML storage module, and a cata-
log of the AXML services defined on this peer. The
Evaluator module is responsible for activating the calls
contained in the AXML documents. A call to a locally
defined service entails a local computation, while a call
to a service provided by another peer is encoded in a
SOAP message by the SOAP wrapper, which trans-
mits it to the service provider, and eventually receives
the result as a SOAP message. In both cases, the
service call result enriches the document, i.e., the doc-
ument is updated to include the service call result.

Therefore, AXML peers are data and service inte-
grators: They can integrate XML data obtained from
various sources through service calls. But they are also
service providers. The web services they define may
be called by other XML peers as well as (with some
restrictions) by peers that ignore AXML and simply
know of SOAP. A call to an AXML peer is received
by the SOAP wrapper, is decoded, processed, and the
result (when obtained) is again sent via SOAP to the
caller.

A first AXML peer prototype has been implemented
in Java, relying on the Axis SOAP engine, and the
Tomcat servlet engine, both by Apache [3]. For the
purpose of the demonstration, we use a file-persistent
DOM implementation as a repository and a simple
home-made query processor [2].

2.2 AXML documents and services

AXML documents are XML documents that may in-
clude some special elements carrying the tag <sc> for
service call 1. The special interpretation attached to
these elements is that they embed calls to web services.
More precisely, an <sc> element encodes the URL of
the site providing the service, the service name, the
particular operation of the service that is invoked, and
the appropriate parameters for the call. The latters
are allowed to be XPath expressions. In this case,
the XPaths expressions are instantiated in the docu-
ment, and a service call is made for each combination
of instantiated parameters. This feature turns out to
greatly facilitate specifying integration. In the sim-
plest case, the results of a service call are simply in-
serted in the document as siblings of the <sc> node.
If unique identifiers (keys) exist in the document and
in the service result, this insertion is done by the more
elaborated mechanism of ID-based fusion. The details
are omitted.

Defining services AXML allows not only to use ex-
isting web services in documents, but also to define
new ones services on top of the enriched AXML docu-
ments. The definition of AXML web services relies on
parameterized XML queries expressed in XQuery [11]
extended with updates [9]. AXML services may query
and update AXML or regular XML documents. The
AXML service specification allows, in particular, the
definition of continuous services, and of services with
intensional input/output, which are detailed next.
Continuous services Simple services are similar to
remote procedure calls. The service is called with
some arguments, and eventually returns an answer.
For the interesting class of continuous services, the
interaction is more complex. Once a service call has
been registered, a stream of answers is returned for
this single service call. Streams of answers are en-
countered in many real-life applications: the stream
of source updates for the maintenance of a data ware-
house, the readings of a temperature sensor or surveil-
lance system, answers returned by continuous queries
or publish-subscribe systems like [6, 7], etc. Note that
in the case of continuous services, the activation of the
service call encapsulates a service subscription. The
results received subsequently from the service are in-
serted in the caller document in a similar way as for
simple calls.

Intensional service parameters and results In a
perhaps more radical change to standard frameworks,
we allow the parameters and result of a service call
to contain service calls. A peer receiving a call with
parameter containing service calls may have to acti-
vate the calls it includes before actually performing
the service. Similarly, a service result may contain
further service calls, which have to be activated by the

IThe actual syntax relies on namespaces for clean separation,
but is not used here for brievety.

site receiving the result. Thus, service call activations
entail exchanging intensional data, and lead to a form
of distributed computation.

The use of intensional parameters/results leads to

security issues. For instance, a malicious user may
force a site to perform a dangerous action by calling
one of the site’s services with an intensional parameter,
that contains a call to a dangerous service. Besides se-
curity issues, the heterogeneous peer capabilities need
to be taken into consideration. For instance, if the
receiving site is a non-AXML peer (hence unable to
activate the service calls embedded in the data) only
fully extensional data must be sent. We address these
two issues (security and source capability) using a sim-
ple model where each site publishes what it is willing
to do (e.g., the services it is willing to call and the sites
it is willing to serve). In the absence of such informa-
tion as it is the case for non-AXML web services, we
make conservative assumptions.
Controlling service call activation The moment
when a service call should be activated is controlled
by two special attributes of <sc> elements: mode and
frequency. The frequency of a service call can be speci-
fied as a time interval (e.g., every week), a moment in
time (e.g., on March 1st) or triggered by a change in
the enclosing document. We say that a service call has
expired when, according to its frequency attribute, it
should be called again. The call mode may be either
immediate, in which case the call is activated whenever
it expires, or lazy, meaning that the expired call has to
be activated when its result is needed (e.g., by a query
over the AXML document, or by another service). The
prototype we demonstrate only supports the immediate
mode and time-related events.

Tightly related to the control of service call acti-
vation is the notion of life span of the returned data.
Some data nodes in an AXML document are attached
a special valid attribute, indicating for how long the
data of this node remains valid (e.g. until March 1st,
etc.) When the node becomes invalid, the entire sub-
tree rooted at that node is removed from the docu-
ment. The limit of the validity of the data may also
be linked to the acquisition of new data, e.g., the data
returned by a service call may be valid until this ser-
vice call is re-executed.

3 Peer-to-peer auctions

We demonstrate the features of AXML by declara-
tively building a simple distributed auction system.
Each AXML peer may get information about interest-
ing items from his peers, place bids on others’ auctions,
and propose auctions for others to bid on.

An AXML auctions peer Each peer contains two
AXML documents. The first one, called myAuc-
tions.axml, is a standard XML document listing the
auctions held by this particular peer and the current
bids for these auctions. The second one, called know-

nAuctions.axml, is an AXML document that provides all
the auctions that the peer is aware of. This document
first contains this particular peer’s auctions; and is
augmented by auctions gathered from other AXML or
non-AXML peers as specified by the document. This
allows building a distributed, collective knowledge. In
both documents, the auctions are grouped by cate-
gories. We assume that the category name and the
auction id are unique identifiers for category and auc-
tion items, respectively. We will detail further on the
structure of the two documents.

To allow for peers interaction, each peer provides
a few web services: (1) getAuctions($c) gets as input a
category name and returns the list of all auctions that
the peer is aware of in this category; (2) getMyAuc-
tions() simply returns the document myAuctions.axml;
(3) placeBid(%a,$b) places a new bid of amount $b for
the auction $a of the receiving peer in the name of the
calling peer; and (4) getHighestBid($a) gets as input the
identifier of an auction held by the peer and returns
the highest bid for that auction. Observe that a ser-
vice call to (3) results in an update of myAuctions.xml.
Note also that the service in (4) is continuous; once
activated by a caller, it notifies the caller whenever a
new higher bid is placed on this auction item. These
services are defined by parameterized XQuery queries.
We will see further an example of such a definition.
Gathering data The knownAuctions.axml document is
defined and maintained as follows. First, the docu-
ment lists the auctions categories that the peer is in-
terested in. For each category, it gives the service calls
that should be used to obtain auctions in this particu-
lar category. We will not detail how this list of service
calls is constructed (It could typically be obtained as
well from some web services.). For each call, the fre-
quency of call activations, and the validity time of the
acquired data are also specified. The document also
contains a (local) call to getMyAuctions() to augment
the above with the peer’s own auctions.

A fraction of the document, at Peer “peer10”, before
the calls are activated, is given next. For brevity, we
show only one category and omit the specification of
the frequency and validity attributes.
<knownAuctions ID="peer10">
<category name="Toys">

<sc>eBay.net/getOffers(" Toys") < /sc>

<sc>babel.org/translate("Czech", "English",
<sc>crystal.cz/getToys())< /sc></sc>
<sc>peer25/getAuctions([../@name])< /sc>
< /category>

<sc>getMyAuctions()</ sc>

< /knownAuctions>

The first <sc> element is a call to a standard, non
AXML, eBay peer. The second <sc> element illus-
trates the use of intensional AXML parameters for a
call: The getToys service of crystal.cz returns an answer

in Czech. The translate service of babel.org translates
from Czech to English. Its input file is specified here
intensionally as an AXML document containing the
call to getToys

Finally, the third <sc> element illustrates a call to
another AXML auctions server. Rather than providing
here explicitly the category name, the call parameter
is given intensionally using a relative XPath expres-
sion. Observe that the called AXML peer also gathers
its data from other peers, who themselves gather data
from other peers, etc. So transitively, we potentially
have access to all the reachable data. (The formal
computation model is essentially a fixpoint computa-
tion). The last call in the document is the one that
gets the peer’s own auctions.

When the calls are activated, the document is en-
riched by the actual data they return. Note that due
to the ID-based fusion mechanism, the common cate-
gories will be merged, resulting in a document having
one entry per category name, containing both the local
and acquired category auctions in that category.

As mentioned above, service call attributes are used
to control the activation of the calls and the life span
of the acquired data. This will be demonstrated by
having one particular peer archiving all bids made on
a distant auction of interest, whereas the other one will
keep only the highest bid.

Automatic bidding The language features that con-
trol calls activation also allow us to easily build a sim-
ple automatic bidding mechanism. On the seller’s site,
the mechanism is the following. Once created, each
auction lasts until a specific moment in time, after
which the bidder that placed the highest bid is de-
clared the winner. This winner is then notified and
the auction is closed. To capture this, we use the fol-
lowing structure for the auction elements in the myAuc-
tions.axml document. Each auction element contains
the auction ID, the name of the peer holding the auc-
tion, a description of the item for sale, the list of the
bids which have been placed for this item, and a call
to a local service that will close the auction when the
specified time has arrived.

<auction alD="1">

<heldBy>peer10< /heldBy>

<item>Pink and yellow dragon...</item>

<bid><who>peer5< /who>

<amount>$5</amount>
< /bid>

<bid>...</bid>

<sc mode="immediate" >
frequency="on March 1st">
closeAuction([../])</sc>
< [auction>
The service closeAuction gets as input an auction el-
ement, which is specified here using an XPath parame-
ter (“../” enclosed in square brackets) that evaluates to

the <auction> element itself. The role of closeAuction
is the following: it selects the highest bid among the
bids of the given auction, identifies who placed that
bid, and appends to the auction element (i) a call to a
notification service, (that will notify the winning bid-
der about the winning), and (ii) a new status element
that declares that the auction is closed. The closeAuc-
tion service is defined by the following parameterized
XQuery query:
let sc closeAuction($a) be
for $b in $a/bid
where $b/amount = max($a/bid/amount)
return <sc mode="immediate" frequency="now">
notifyWinner($b/who, $a/alD, $b/amount)
</[sc>
<status> "closed" </status>

The return of the call to closeAuction includes in the
document the status element and the service call to no-
tifyWinner. Finally, the firing of the notifyWinner service
call will result in the sending of the proper notifica-
tion. The details are omitted. We omit as well here
the definition of services for bidding and getting the
highest current bid of an auction item.

References

[1] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo,
and R. Weber. Active XML: a data-centric perspective
of Web services. Submitted for publication, 2002.

[2] V. Aguilera. The X-OQL homepage.
http://wuw-rocq.inria.fr/ aguilera/xoql.

[3] The Apache Software Foundation.
http://wuw.apache.org/.

[4] The Kazaa Homepage.
http://wuw.kazaa.com.

[5] The Morpheus homepage.
http://wuw.morpheus-os.com.

[6] J. Naughton, D. DeWitt, and D. Maier et al. The
Niagara Internet query system. In IEEE Data Engi-
neering Bulletin, volume 24(2), 2001.

[7] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda.
Monitoring XML data on the web. In Proc. of ACM
SIGMOD Conf., 2001.

[8] Jim Powell and Taylor Maxwell. Integrating Office XP
Smart Tags with the Microsoft .NET Platform.
http://msdn.microsoft.com.

[9] I. Tatarinov, Z. Ives, A. Levy, and D. Weld. Updating
XML. In Proc. of ACM SIGMOD Conf., 2001.

[10] The World Wide Web Consortium (W3C).
http://wuw.w3.org.

[11] XQuery 1.0 : An XML Query Language.
http://wuw.w3.org/TR/xquery.

