Scheduling for shared window joins over data streams

Moustafa A. Hammad*
Purdue University UC Berkeley

mhammad@cs.purdue.edu

Abstract

Continuous Query (CQ) systems typically exploit
commonality among query expressions to achieve
improved efficiency through shared processing. Re-
cently proposed CQ systems have introduced win-
dow specifications in order to support unbounded
data streams. There has been, however, little in-
vestigation of sharing for windowed query opera-
tors. In this paper, we address the shared execu-
tion of windowed joins, a core operator for CQ) sys-
tems. We show that the strategy used in systems
to date has a previously unreported performance
flaw that can negatively impact queries with rela-
tively small windows. We then propose two new
erecution strategies for shared joins. We evalu-
ate the alternatives using both analytical models
and implementation in a DBMS. The results show
that one strategy, called MQT, provides the best
performance over a range of workload settings.

1 Introduction

In many emerging applications, particularly in pervasive
computing and sensor-based environments, data streams
play a central role as devices continuously report up-to-
the-minute readings of sensor values, locations, status up-
dates etc. Data streams also feature prominently in other
networked applications such as “real-time” business pro-
cessing, network monitoring, and enterprise application in-
tegration. Data streams break a number of the assump-
tions upon which traditional query processing technology
is built, and thus, they require a rethinking of many fun-
damental database management techniques.

* The authors’ work was supported in part by the National Science
Foundation under Grants IIS-0093116, EIA-9972883, IIS-9974255,
11S-0209120, and EIA-9983249.

§ Michael Franklin’s work was supported in part by the National
Science Foundation under ITR grant IIS-0086057.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

Michael J. Franklin$

franklin@cs.berkeley.edu

Walid G. Aref*

Purdue University

Ahmed K. Elmagarmid*
Purdue University

aref@cs.purdue.edu ake@cs.purdue.edu

One major difference that arises in data stream process-
ing (compared to more traditional stored database man-
agement) is the notion of long-running Continuous Queries
(CQs) over those streams. The emerging data stream
processing architecture involves potentially large numbers
of such queries that are effectively constantly running,
and that continuously react to new data as it arrives at
the system. The availability of a collection of standing
queries raises the potential for aggressively sharing pro-
cessing needed by multiple queries. Furthermore, the high
data rates and tight responsiveness constraints in many
streaming applications require that such opportunities for
efficiency be exploited.

In this paper, we focus on a fundamental problem that
arises in C(Q processing over data streams. Namely, we
investigate the problem of scheduling multiple windowed
joins over a common set of data streams. As in tradi-
tional query processing systems, join is a fundamental op-
erator. In streaming systems, joins allow data from mul-
tiple streams (e.g., different sensors or probes) to be com-
bined for further processing, aggregation, and analysis.
The role of joins in emerging CQ systems is further en-
hanced, however, due to the use of “selection pull up”. As
demonstrated in the NiagaraCQ system [4], the traditional
heuristic of pushing selection predicates below joins is of-
ten inappropriate for CQ systems because early selection
destroys the ability to share subsequent join processing.
Given the high cost of joins (relative to selections), it is
often most efficient to process a join once and then send
those results to the selection operators. Similar arguments
also hold for Group By and aggregation operators. Thus,
systems like NiagaraCQ push joins down in query plans
and process joins with a common signature (i.e.,the same
input relations and join predicates) using just a single in-
stance of that join. As a result, shared joins are often at
the very core of query plans in CQ systems.

Emerging data stream processing systems add another
component to the problem. Since data streams are typi-
cally assumed to be unbounded, traditional join operators
would need to maintain unbounded state. As a result,
query languages for data stream systems typically include
a windowing predicate that limits the scope of the opera-
tors. The window size varies according to the semantics
of each query. A naive approach would treat identical
joins with different window constraints as having differ-
ent signatures and would execute them separately, thereby

negating the benefits of selection pull up and perform-
ing redundant join processing. Recent systems, such as
CACQ [10] and PSoup [3], have sought to avoid this prob-
lem, and indeed do share processing of joins with identical
signatures. As we discuss later, however, those systems
adopted a scheduling strategy for such joins that discrim-
inates against queries with small windows. Ironically, it is
exactly such queries that are likely to have strict respon-
siveness constraints.
In this paper we make several contributions:

o We formulate the problem of shared window join pro-
cessing and identify an important property than can
be exploited in scheduling them.

e We present two initial scheduling algorithms for such
processing that favor either small or large windows,
and evaluate them analytically.

e Based on insights from this analysis, we develop a
new algorithm called Maximum Query Throughput
(MQT) that can work well across a range of window
sizes.

e We describe our implementation of the three ap-
proaches in an existing DBMS and present results
from a detailed performance study of the implemen-
tations.

The rest of the paper is organized as follows. Section 2
presents the model of window join, the problem definition
and the related work. Section 3 describes the proposed
scheduling algorithms. Sections 4 and 5 present the pro-
totype implementations and the experimental results. Sec-
tion 6 contains the concluding remarks.

2 Preliminaries
2.1 Context and Environment

We consider a centralized architecture for stream query
processing in which data streams continuously arrive to
be processed against a set of standing continuous queries
(CQs). Streams are considered to be unbounded sequences
of data items. Each data item in a stream is associated
with a timestamp that identifies the time at which the
data item enters the system. The data items of a single
stream may arrive in a bursty fashion (i.e., a group of data
items arriving within a short period of time) or they may
arrive at regularly-spaced intervals. Examples of bursty
streams include network monitoring streams, phone call
records, and event-driven sensors. In contrast, pull-based
sensors driven by periodic polling would produce a regular
stream. Our discussion here focuses on bursty streams.
Queries over streams often exploit the temporal aspects
of stream data. Furthermore, due to the unbounded nature
of streams, queries over streams are often defined in terms
of sliding windows. For example, consider a data center
containing thousands of rack-mounted servers, cooled by a
sophisticated cooling system [13]. In modern data centers,

sensors are used to monitor the temperature and humidity
at locations throughout the room. For a large data center,
thousands of such sensors could be required. A control
system monitors these sensors to detect possible cooling
problems. We can model this example scenario as a system
with two streams, one for temperature sensors and one for
humidity sensors. The schema of the streams can be of the
form (Locationld, Value, TimeStamp), where LocationId
indicates a unique location in the data center, Value is the
sensor reading, and TimeStamp is as described above. A
window query, @1, that continuously monitors the count of
locations that have both humidity and temperature values
above a specific thresholds within a one-minute interval
could be specified as follows:

SELECT COUNT(DISTINCT A.Locationld))
FROM Temperature A, Humidity B

WHERE A.Locationld = B.Locationld and
A.Value > Threshold; and B.Value > Thresholdp,
WINDOW 1 min;

A second example query, ()2, continuously reports the
maximum temperature and humidity values per location
in the last one hour interval as follows:

SELECT A.Locationld, MAX(A.Value), MAX(B.Value)
FROM Temperature A, Humidity B

WHERE A.Locationld = B.Locationld

GROUP BY A.Locationld

WINDOW 1 hour;

The WINDOW clause in the query syntax indicates that
the user is interested in executing the queries over the sen-
sor readings that arrive during the time period beginning
at a specified time in the past and ending at the current
time. When such a query is run in a continuous fashion,
the result is a sliding window query. Note that the two
example queries contain an equijoin with a common sig-
nature, but have significantly different window sizes (one
minute and one hour).

Window queries may have forms other than the time
sliding window described in the preceding examples. One
variation of the window join is to identify the window in
terms of the number of tuples instead of the time units.
Another variation is to define the beginning of the window
to be a fixed rather than a sliding time. Other variations
associate different windows with each stream [9] or with
each pair of streams in a multi-way join [7]. In this pa-
per, we address sliding windows that are applied across all
streams and where the windows can be defined either in
terms of time units or tuple counts. We present our algo-
rithms using time windows; the algorithms can be applied
to windows defined in terms of tuple counts in the same
way.

As with any query processing system, resources such as
CPU and memory limit the number of queries that can be
supported concurrently. In a streaming system, resource
limitations can also restrict the data arrival rates that can
be supported. Recently proposed stream query process-
ing system, Aurora [1], proposes mechanisms to respond

W1

‘ W2 -
LWL | _("COUNTY _
all a9 a7a5a3al | Aggregate

400

w2

Shared Window Join
Figure 1: The shared execution of two window joins.

to resource overload by reducing quality of service (e.g.,
dropping tuples from the input or answers). In contrast,
in our work, we focus on the case where no loss occurs.
That is, we ensure that the system is run at a rate where
it is possible to execute all queries completely. While such
a restriction may be unsupportable in some applications,
our main argument is that the workload volume that can
be sustained by a shared CQ system can be dramatically
increased by exploiting, wherever possible, shared work
among the concurrent queries.

2.2 Problem Definition

Consider the case of two or more queries, where each query
is interested in the execution of a sliding window join over
multiple data streams. We focus on concurrent queries
with the same signature (i.e., that have the same join pred-
icate over the same data streams'), and where each query
has a sliding window that represents its interest in the data.
The goal is to share the execution of the different window
joins to optimize the utilization of system resources.

We illustrate this definition using an example of two
queries in Figure 1. The syntax of @)1 and @2 were de-
scribed in Section 2.1. In the figure, tuples arrive from the
left, and are tagged with their stream identifier and times-
tamp. We indicate tuples that satisfy the join predicate
(but not necessarily the window clause) by marking them
with the same symbol (e.g., star, black circle, etc.). In the
figure, ()1 performs a join between the two streams A and
B, using predicate p with window size w; = one minute.
Q2 performs a join between the same two streams A and
B, using predicate p with window size ws = one hour.
There is an obvious overlap between the interests of both
queries, namely, the answer of the join for @; (the smaller
window) is included in the answer of the join for Q)2 (the
larger window). We refer to this as the containment prop-
erty for the join operation; that is, the join answer of any
query is also contained in the join answer of the queries
having the same signature with larger windows.

INote, the restriction to a single equijoin predicate allows us to
use hash-based implementations of the algorithm. Our nested loop
implementations could be extended to deal with different join predi-
cates.

Executing both queries separately wastes system re-
sources. The common join execution between the two
queries will be repeated twice, increasing the amount of
memory and CPU power required to process the queries.
Implementing both queries in a single execution plan
avoids such redundant processing.

The shared join produces multiple output data streams
for each separate query. The output data streams are iden-
tified by their associated window sizes, and at least one
query must be attached to each output data stream. The
shared join operator is divided into two main parts: the
join part and the routing part. The join part produces a
single output stream for all queries and the routing part
produces the appropriate output data streams for the var-
ious queries.

While shared execution has significant potential benefits
in terms of scalability and performance, we need to ensure
that such sharing does not negatively impact the behav-
ior of individual queries. That is, the shared execution of
multiple queries should be transparent to the queries. We
define two objectives for such transparency:

1. The shared execution of window joins should abide by
the isolated execution property, i.e., each window join,
say jw, that is participating in the shared execution,
produces an output stream that is identical to the
output stream that j, produces when executing in
isolation.

2. The response time penalty imposed on any query
when a new query is included in a shared plan should
be kept to a minimum.

In our example queries, changing the order of the out-
put during shared execution (a violation of objective 1
above) could potentially produce different COUNT and
MAX results than isolated execution. In addition, when
the shared execution imposes a high response time penalty
for one query (e.g., 1), that query’s output could be sig-
nificantly delayed. As we show in Section 3, the average
response time per tuple for small window queries could in-
crease from milliseconds (in isolated execution) to seconds,
delaying crucial notifications, for example, that many sen-
sors in some part of the data center are reporting a spike
in their temperature and humidity values.

This paper investigates methods for sharing the exe-
cution of multiple window join queries which satisfy the
above two objectives.

2.3 Related Work

Stream query processing has been addressed by many
evolving systems such as Aurora [1], Telegraph [2] and
STREAM [11] systems. The shared execution of mul-
tiple queries over data streams is recently presented in
CACQ [10] and PSoup [3]. Both CACQ and PSoup ad-
dress the shared window join among multiple queries by
using the largest window, similar to our first proposed al-
gorithm. Qur research in this paper focuses on the shared

neves (&912) all,b8
<.
w3 ; (al,b12) - (a11,08) Q1 20 ‘ ‘ ‘ ‘
w2 ! i (a5,b12) \\\\ Lwo
W1 ‘ ! 3 (agyb(laz:l?]: \605 (a5’b12) ; Isolated Execution
= | ! ,b0) "~ 15+
all a9 a7 & a3 al, (a11’b4‘)x\\ (a9,b12) z
A @ OOy (al1b8 (al1b4) :
‘ (allb8) @2 =10t
bl2 : b10 b8 b6 b4 b2 M (a1,b12) g
e ! ‘ , g
B .3 ® Lo (a5,b12) |
LA Lo (@9,b12) :
L W2 Lo (all(,g:(a o
w3 (’all,b8) Q3 00 Lo a0 G a0 s e
Join Part Routing Part Output Data Streams

Figure 2: (a) Scheduling the Shared Window Join using LWO.

window join and we provide several alternatives to sched-
ule the join beyond that used in CACQ and PSoup.

The recent work in [9] addresses the window join over
two streams where the two arriving streams have different
arrival rates. The authors suggest using asymmetric join
(e.g., building a nested loop on one stream and a hash table
on the other stream), to reduce the execution cost. Our
research is different as we consider the problem of sharing
the window join execution among multiple queries.

Scheduling the processing of a single join over non
streaming data had been studied in [6, 8, 14]. Although,
similar in spirit to the research we propose in this pa-
per, scheduling individual joins does not address the issues
raised by sharing and by window-based processing.

3 The Scheduling Algorithms

In this section, we present three scheduling algorithms
for performing a shared window join among multiple
queries. These are: Largest Window Only (LWO), Short-
est Window First (SWF), and Maximum Query Through-
put (MQT). LWO was implicitly used, but not elaborated
upon in [3, 10]. LWO is a natural way to address the prob-
lem of shared join processing, but as we will see, has some
significant performance liabilities. The SWF and MQT
algorithms are contributions of this paper.

One important consideration for all three scheduling al-
gorithms is the order in which the output tuples are pro-
duced. We adopt a “stream-in stream-out” philosophy.
Since the input stream is composed of tuples ordered by
some timestamp, the output tuples should also appear as
a stream ordered by a timestamp. In our algorithms, the
output tuples are emitted as a stream ordered by the max-
imum (i.e., most recent) timestamp of the two tuples that
form the join tuple.

All three scheduling algorithms presented in this section
abide by the isolated execution property (Section 2.2). In
this section, we describe the algorithms assuming a nested
loops-based implementation. As will be described in Sec-
tion 3.4, all of the algorithms can be implemented using
either nested loops or hashing.

(b) LWO versus Isolated Execution.
3.1 Largest Window Only (LWO)

The simplest approach for sharing the execution of multi-
ple window joins is to execute a single window-join with
a window size equal to the maximum window size over all
queries. Due to the containment property, the processing
of the maximum window query will produce output that
satisfies the smaller window queries as well. The join op-
eration then needs to route its output to the interested
queries. We call this approach Largest Window Only, or
LWO for short.

The join is performed as follows. When a new tuple
arrives on a stream, it is matched with all the tuples on
the other stream that fall within the time window. This
matching can be done in a nested loops fashion, working
backwards along the other stream, from most to least re-
cent arrival, or can be done using hashing as described in
Section 3.4. Tuples can be aged out of the system once
they have joined with all subsequently arriving tuples that
fall within the largest window.

To perform the routing part for the resulting tuples,
the join operator maintains a sorted list of the windows
that are interested in the results of the join. The win-
dows are ordered by window size from smallest to largest.
Fach output tuple maintains the maximum and minimum
timestamps of the input tuples that constitute the out-
put tuple. The routing part uses the difference between
these two timestamps to select the windows, and hence
the output data streams that will receive this tuple. The
output tuple is sent to all output streams that have win-
dows greater than or equal to the time difference of the
tuple.

We illustrate the operation of the shared window join
with the example given in Figure 2(a). The figure shows a
shared window join over two data streams A and B. The
join is shared by three queries, 1, @2, and 3 with win-
dow sizes (ordered from smallest to largest) wy,ws, and
ws, respectively. In the figure, tuples with similar sym-
bols join together (i.e., they satisfy the common join pred-
icate). The join part uses the largest window (ws). As
tuple ay; arrives, it joins with tuples bg, by, by in Stream
B and the output tuples are streamed to the the routing
part. The routing part determines that the output tuple
(a11,bg) must be routed to all three queries, tuple (a11,bs)

be routed to queries @2 and @3, and tuple (ai1,bg) be
routed only to query Q)3. After completing the join of
tuple a1; with stream B, the join part begins to join tu-
ple bis with stream A. The resulting output tuples are
(ag, b12), (a5, b12), (a1, b12) and they are routed in the same
way to the queries.

One advantage of LWO, besides its simplicity, is that
arriving tuples are completely processed (i.e., joined with
the other streams) before considering the next incoming
tuple. In this way, the output can be streamed out as the
input tuples are processed, with no extra overhead. This
property satisfies our objective of isolated execution. How-
ever, LWO delays the processing of small window queries
until the largest window query is completely processed. In
the preceding example, query ()1 cannot process tuple b2
until tuple a;; completely joins a window of size w3 from
stream B. This means that tuple b, waits unnecessarily
(from @Q1’s perspective) and increases the output response
time of query ()1. The effect is more severe as we consider
large differences between the smallest and largest windows.
Thus, LWO may not satisfy our other objective, as a large
window query could severely degrade the performance of
smaller window queries. In the following section we exam-
ine the average response time of each window involved in
the shared window join when using the LWO algorithm.

3.1.1 Analysis of Response Time

In this section, we analyze the average response time of N
queries sharing the execution of a window join operator.
We assume that the shared window join operates on only
two streams and that each query (; has a unique win-
dow, w;. The mean time between tuple arrivals at each
stream follows an exponential distribution with rate A tu-
ples/sec. The size of the join buffer (the amount of mem-
ory needed to hold the tuples for the join operation) for
each stream differs for every query and is determined by
the window size associated with the query. The buffer size
S; per stream for an individual query @); is approximately
equal to S; = Aw;. Let wy,q, be the maximum window size
among all the N query windows and Sy,,, be the maxi-
mum buffer size per stream. Then, S0 = AMUez- AS a
new tuple arrives, the expected number of tuples that join
with this tuple inside a query window w; can be estimated
by aS; tuples, where « is the selectivity per tuple.
Consider the case when m tuples arrive simultaneously
in one of the streams, say stream A. LWO needs to sched-
ule the execution of the window-join of each of the m tuples
with the tuples in the other stream, say stream B. Each of
the m tuples sin A is checked against S; tuples in B. Let
AT (a) and CT'(a) be the arrival and completion times of
tuple a, respectively. For query Q;, let AvgRT(Q;) be the
average response time of joining each of the m tuples for
query @;. Then,
maS; (CT(joinTupley) — AT (joinTupley))

maS;

AvgRT(Q;) = k=1

where the sum is taken over all output join tu-
ples and joinTupler corresponds to the tuple (a,b).

Since joinTuple; is an output tuple of window wj,
then, |AT(a) — AT(b)| < w; and AT (joinTupley) =
maz{AT (a), AT (b)}. CT(joinTupley) represents the time
at which the output tuple is received by @;. For simplicity
of the analysis, let a = 1 (other values of a will not affect
the analysis as the average is taken over all the output).

Let t, be the time needed to check that a tuple pair,
say (a,b), satisfies the join predicate and the window con-
straint |AT (a) — AT (b)| < w;. Then, for window w;, the
first tuple of the m tuples will produce S; output tuples
with a total delay of ¢, +2t, + ... 4+ Sit, or %Si(Si +1).
The second tuple of the m arriving tuples will have an ad-
ditional delay of t,Smqs as the second tuple has to wait
until the first tuple scans the maximum window. Simi-
larly, the third tuple will have additional delay of 2¢,S:42
and so on. By averaging the response time of all m input
tuples, therefore, ;

AvgRT(Q;) = Ep((S,- + 1)+ (m—1)Snaz) (1)

To clarify this equation we plot the AvgRT for multiple
queries while using the following values: ¢, = 1 usec, A =
100 Tuples/Sec, m = 50 tuples. The windows are chosen
to span a wide range (from 1 second to 10 minutes). Fig-
ure 2(b) compares the average response time for each query
when executed in isolation from the other queries, with the
average response time of the query when executed using
LWO. When executed in isolation,);’s average response
time? is AvgRT(Q;) = %’”(mSi + 1). It is clear from the
graph that the query with smallest window, i.e., Q1 (with
wy = 1 sec.) is severely penalized when using LWO. This
penalty is expected because newly arriving tuples have to
wait until the old tuples scan the largest window. While a
simple analysis clearly predicts these results, it is impor-
tant to recall that LWO is the only previously published
scheduling approach for shared join processing in CQ sys-
tems.

These analytical results are validated by experiments on
an implementation of the algorithm in Section 5.1.

3.2 Smallest Window First (SWF)

To address the performance issues that arise with small
windows in LWO, we developed an alternative approach
called Smallest Window First (SWF). As the name sug-
gests, in this algorithm, the smallest window queries are
processed first by all new tuples, then the next (larger) win-
dow queries and so on until the largest window is served.
A new tuple does not proceed to join with a larger window
as long as another tuple is waiting to join with a smaller
window. Under our basic assumption (Section 2.1) that
the system can process all queries completely, tuples will
eventually proceed to join with larger windows.

We illustrate SWF with the example in Figure 3(a).
When tuple aq1 arrives, it scans a window of size w; in
stream B. The result is the output tuple (a11,bg). After
this scan, tuple by5 arrives. Since tuple by2 will join window
wy (the smallest window), bio is scheduled immediately.

2This equation can be obtained from Equation (1) by substituting
Smaz With S;.

(1
P (2) -
- (3
V(4)
-(5]
' (6) s .) \
; g ****************) ! ¥ : 3.0
***** ' ' 12) |
W3 ! . b12 // /,’ ; : %1 ””””””) l" ‘: (ag‘b) \' ;z\g;ed Execution
w2 ;(ad,)‘7";’"",' i | | ‘(al1,b8)
wi 1 (adlb0) 4 —— :
D . (85012) § | (e5,012) ! geof
A all & a7 & B al (allbd) v | @"b’l’z’)“(a’}im“ H
L e I aOp12) 1 ' £
! ! ((a)11,b81 33(all b8)
bl2 : bl0 b8 b6 b4 b2 b0 o n g 1o
B o OO0 OO D &
| ! ! C oy
L (al1,b0)
w2 @11,94)_ \\(all,b8)_. oo
ws = Q3 ’ 1 100 200 300 400 500 600
Window size (sec.)
Join Part Routing Part Output Data Streams

Figure 3: (a) Scheduling the Shared Window Join using SWF.

Tuple a1; has not finished its join with stream B so it is
stored along with a pointer to tuple bg. b;2 now scans a
window of size w; in stream A, resulting in the output
tuple (ag, b12). The scheduler is invoked again to switch to
tuple a11. Tuple a1 proceeds to join with the remaining
part of window ws, namely, the partial window ws —w; in
stream B. The resulting output is (a11,bs). The scheduler
then switches back to tuple bi2 to join with the remaining
part of window wsy in stream A. The process continues
until tuple bis joins with the partial window ws — ws, of
stream B. Figure 3(a) shows the output upto this point.

SWF needs to store bookkeeping information with the
arriving tuples. When the scheduler switches from serving
one tuple to serving another, the current status of the first
tuple must be maintained. This status describes where to
resume scanning in the other stream and the new window
size (the next window size) to be applied. When a tuple
gets rescheduled, it starts to join beginning at this pointer
until it completes the new window.

Note that the output of the join part is shuffled com-
pared to that of LWO scheduling. This shuffling occurs as
we switch back and forth to serve the different arriving tu-
ples. To produce the desired output stream for each query
we need to modify the routing part from that of LWO. The
routing part must hold the output tuples and release them
only when the outer tuples (a;; and by in our example)
have completely scanned the corresponding windows.

Figure 3(a) illustrates how the output tuples are re-
leased to the queries. In the figure, when the output tu-
ple (a11,bg) is produced (Step 1), the routing part decides
that tuple a;; completely scanned window w; and hence
(a11, bg) can be released to query Q1. We can also release
(a11,bs) to queries Q2 and @3 (Step 2). When the out-
put tuple (ag,b12) is produced (Step 3), the routing part
releases it to ()1 since tuple by completely scanned win-
dow w; (Step 4). Note that (ag,bi2) cannot be released
to queries ()2 and @3 as these two queries are waiting to
receive the remaining output tuples that may result from
joining a;; with their partial windows (we—w; and w3 —wy,

(b) SWF versus Isolated Execution.

respectively). When tuple (a11,bs) is produced (Step 5),
it is released to both query Q)2 and Q3 (Step 6). When tu-
ple (as,b12) is produced (Step 7), the tuples (ag, b12) and
(as,b12) are both released to query @2 (Step 8). In the
same way, tuple (a11,bg) will be released to query @3 and
tuple (a1,b12) (Step 11) will release the tuples (ag, bi2),
(a5, b12), (al, b12) to query Qg (Step 12)

Having described the operation of SWF, we now present
the data structures and the detailed steps for the join and
routing parts of the algorithm. For the join part, SWF
scheduling algorithm uses the following data structures:

e joinBuffers, one for each input stream: joinBuffers
are main memory buffers used to store the tuples
arriving from the input data streams. The size of a
single joinBuffer is limited by the maximum window
size in the query mix.

e A list of queues for storing the tuples that need
to be scheduled (or rescheduled). Each queue,
SchedulingQueue(w), represents one window (w),
and contains the tuples waiting to be scheduled to
join with w. The list of queues is ordered according to
the size of the windows associated with each queue.

Given these structures, the join part of SWF can be de-
scribed as follows:

1. Get a new tuple ¢ (if exists) from any of the input
data streams, say stream A. Store ¢ in joinBuffer(A).

2. If Step (1) results in a new tuple ¢, schedule the join of
t with stream B using a window of smallest size and
starting at the most recent tuple of B. Goto Step (4).

3. If Step (1) results in no tuples, get a tuple ¢ from the
list of SchedulingQueues. Assume that ¢ belongs to
stream A and is stored in SchedulingQueue(w;). If no
such tuple t exists, i.e., all the SchedulingQueues are
empty, return to Step (1). Otherwise, schedule ¢ for a
join with stream B using window w; and starting at
the pointer location previously stored with t.

4. Tf the scheduled join of ¢ results in output tuples, no-
tify the router by sending the output tuples along
with ¢ to the routing part. Add ¢ to the next queue,
i.e., SchedulingQueue(w;41) in the list along with a
pointer to stream B indicating where to restart next.
Go to Step (1).

In Step 3 to retrieve a tuple from the list of Schedul-
ingQueues, SWF finds the first nonempty queue (scanning
smaller window queues to larger window queues) and re-
trieves the tuple at the head of the queue. Also, in order
to keep joinBuffer sizes small, the join part drops the old
tuples in one stream that are outside the largest window.
This process of tuple dropping is performed dynamically
while the join is in progress.

The routing part of SWF is implemented as follows: A
data structure, called the outputBuffer, is used to hold re-
sult tuples until they can be released. Step 4 of the join
part sends the outer tuple along with the corresponding
output tuples to the routing part. Let the outer tuple be
t, where ¢ may either be a new tuple or an rescheduled
tuple. In the first case, t is added to outputBuffer, and
the output tuples are stored with ¢ in outputBuffer but
are also sent to all output data streams. In the second
case, t is a rescheduled tuple from a scheduling queue, say
SchedulingQueue(w;). In this case, all the output tuples
currently held for ¢ along with the new output tuples are
released to the queries with windows > w;. If w; is not the
maximum window, the output tuples are added to the cur-
rent outputBuffer of t. Otherwise, the entry for ¢ is deleted
from outputBuffer since ¢ has been completely processed.

3.2.1 Analysis of Response Time

To estimate the average response time per query when us-
ing SWF, we use the same assumptions we outlined in Sec-
tion 3.1.1. For a new arriving tuple, say outer tuple ¢ in
stream A, the resulting output tuples for a certain window
w; are only produced when ¢ completely scans a window of
size S; in stream B. The average response time for window
w; can be estimated as the average waiting time of ¢ until
t joins completely with the window of size S;.

For a query with window w;, the first arriving tuple
waits for time Sit,, the second tuple waits for time 25:t,
and the third tuple waits for time 3Sitp,...etc. The av-
erage waiting time for m tuples to scan window w; is:
mtl Gt,. For the second window, the waiting time for
the first tuple is mSit, + (S2 — S1)t,, for the second
tuple is mSity, + 2(S2 — S1)tp and for the mt* tuple is
mSit, + m(Sz — S1)t,. Therefore, the average waiting
time for the second window is: mSit, + mTH(Sg — S1)tp
Generally, for window w;, the average waiting time (also
the average response time) can be computed as follows:

ity +m+1(5 Sic)t, (2)

Figure 3(b) shows the response times for seven queries us-
ing the same setup as described in Section 3.1.1. Also, we
plot the response time for the isolated execution of each

AvgRT(Q;) = mS;

6w newest ~.

w D (aLb12) .
! | (a3, b12)
W, | (@5,012)
all a9 a7|a5 a3 al (@l1b0)"-
A o+ 1 (all(b2) o To the Routing Step
bl2 bl0 b8 b6 b4 b2 b0 @b .
B O : (29,b12) -
Do : (a11,b12) ™
L ; (all, b6)
3w | (a11,b8)"
' ew ; (al1,b10)
d olda
Join Part

MazQT(PW (w;, wj))

L [lw [w [ws]
Wy || - v | %
Wa - - =

* MazQT(PW (0,w5)) = maz{-20L, €02} — mag{;L 2w’ 3w} ~ 3w

Pwo1 ' Pwo2

Figure 4: Scheduling the Shared Window Join using MQT.

query. The figure shows that the average response time for
small queries is greatly reduced at the expense of the aver-
age response time for the larger queries. The performance
of SWF is explored further in Section 5.

3.3 Maximum Query Throughput (MQT)

In comparing the performance of SWF and LWO, it can be
seen that SWF favors small window queries at the expense
of larger window queries, whereas LWO favors larger win-
dow queries over smaller ones. This clear tradeoff between
SWF and LWO motivates the development of our third
scheduling algorithm, which we call “MQT” for Maximum
Query Throughput. Intuitively, MQT is more flexible than
either LWO or SWF, choosing at any instant to process the
tuple that is likely to serve the maximum number of queries
per unit time (query throughput).

Recall that SWF suspends the processing of the join of a
tuple with its next window whenever a newly arrived tuple
needs to join with a smaller window. The suspended tuple,
however, was supposed to scan partial windows (the differ-
ence between the window it had already scanned and the
next larger windows). Scanning one of these partial win-
dows could actually serve more queries in less time than
scanning the smallest full window. This leads us to con-
sider a new selection criteria for scheduling tuples in the
shared window-join. We present the following definitions
before describing the basis of this selection.

Assume that the windows w; ---wpn are sorted in in-
creasing order of their size. Assume further that the tuple
toq arrives followed by the tuple t,eq. torg Scans the win-
dows from smallest to largest starting at w;. The same is
true for ¢,¢, when it arrives. Let window w; be a window
already completely scanned by t,4, and w; be a window al-
ready completely scanned by ¢, at a given point in time.
Notice that it must always be true that ¢ < j, otherwise,
output tuples will not be emitted in the right order. So,
the set of possible (partial) windows that the scheduler can
assign to t,e, depends only on ¢ and j and is defined as:
PW (w;,w;) = {pwr|pwir, = wr, —w;, for i+1 <k < j}. Two

special sets of PW (w;,w;) are PW(0,w;) (i.e., tuple tpeqy
has not scanned any window) and PW (w;, 00) (i.e., tuple
tnew has no preceding tuple, in this case PW (w;,o0) =
PW (w;,wn), where N is the number of distinct windows).

Let C; be the count of queries that will be serviced
while scanning window w;. C; = Y,_, Queries(w;), where
Queries(w;) is the number of queries with window wy.
The count of queries Cj; that will be serviced exclusively
by scanning partial window pw;; is C3; = C; — C;. The
time to scan a (partial) window is proportional to the size
of the (partial) window. Therefore, we can use the ra-
the partial window pw;;. The maximum query through-
put for a tuple ¢t if the tuple is allowed to scan any of its
pwi; € PW (w;,w;) is defined as: MazQT(PW (w;,w;)) =
max{z,cw—"jj|pwij € PW (ws, w;)}.

The MQT algorithm schedules the tuple with the max-
imum value of MaxQT (PW (w;,w;)) among all the wait-
ing tuples. MazQT(PW (w;,w;)) depends on the rela-
tive order between two windows. Therefore the value of
MazQT (PW (w;,w;)) can be calculated and stored in a
two dimensional matrix of fixed size N2, where N is the
number of distinct windows. The matrix changes only
when a new query is added or an old query is removed
from the shared window join.

We illustrate MQT by the example in Figure 4. In the
figure, we have three queries with three different windows
of sizes wn = 2w,ws = 3w, and ws = 6w, respectively.
For illustration purposes, we assume that the arriving tu-
ple will join with all tuples in the other stream (a = 1).
We also present in Figure 4 the MazQT (PW (w;,w;)) ma-
trix for the given windows’ setting along with the detailed
derivation for the value in entry MazQT (PW (0, ws)).

As shown in the figure, tuple a;; joins for the small
window 2w and continues the join for the next window
3w since after finishing w;, MaxQT (PW (w1, ws)) for a;;
is larger than MazQT(PW (0,w)) for bia. MQT will
switch back to bio when finishing aq; with ws since by
this time the MaxQT (PW (w2, ws)) for ai1 is less than
the MazQT (PW (0, ws)) for bia. Finally, MQT will serve
a1 with the partial window w3 — ws, followed by by2 with
the partial window ws — ws.

The steps for MQT are the same as those for SWF, ex-
cept in selecting a tuple from the SchedulingQueues and
in the routing part. In MQT, we traverse the list of
the SchedulingQueues from largest to smallest windows.
We choose the non-empty SchedulingQueue at window w;
that has the largest MazQT (PW (w;, w;)) among all non-
empty SchedulingQueues, where w; is the window of the
previous non-empty SchedulingQueue (w; = oo if no such
SchedulingQueue exists). Therefore, Step (2) in the SWF
algorithm is deleted and Step (3) is modified to traverse the
SchedulingQueues list searching for a tuple with the largest
MazQT (PW (w;,w;)). In the routing part for MQT, we
can release the output tuples before the outer tuple com-
pletely scans the corresponding window. This means that
in Figure 4, the output tuples (a11,b12) and (ag, b12) can

as an estimate of query throughput for scanning

be released to the query of window ws, even before byo
completely scans ws.

3.4 Hash-based Implementation

The algorithms in the previous sections were described
assuming a nested-loop implementation of the join part.
Here, we briefly describe a hash-based implementation of
shared window-join using a symmetric hash join [15].

Each tuple in the hash table is a member of two linked
lists. The first linked list includes all tuples in the hash
table. The order of tuples in the list represents the arrival
order of tuples in the sliding window. The second linked
list includes the tuples that belong to the same hash bucket
(have the same hash value). The size of the first linked list
is equal to the maximum window size of the shared queries.
Whenever a new tuple arrives, it is added at the head of
the first linked list. In addition, the new tuple is linked
to the list corresponding to its hash bucket. Tuples at the
tail of the sliding window are dropped from the hash ta-
ble when it is probed by arriving tuples from the other
stream. The sliding window hash table structure requires
two extra pointers per each tuple (compared to the tradi-
tional in-memory hash table) to maintain the first linked
list. However, the sliding window hash table provides great
flexibility in dropping expired tuples, even if they do not
belong to the probed hash bucket. Therefore, the size of
the hash table always reflects the size of the largest win-
dow.

Although the size of each hash bucket is relatively small,
it is costly to scan the whole bucket (e.g., during LWOQO)
to serve multiple window queries. However, based on our
implementation inside PREDATOR [12], we found that the
cost of producing output tuples constitutes a major part
of the cost of join processing. Our experiments show that
the production of output tuples can be as high as 40% of
execution time. Thus, scheduling of tuples at the bucket
level is still advantageous.

4 Prototype Implementation

In order to compare our three scheduling algorithms, we
implemented them in a prototype database management
system, PREDATOR [12], which we modified to accom-
modate stream processing. We implemented both hash-
based and nested loop versions of the shared window
join. Streaming is introduced using an abstract data
type stream-type that can represent source data types with
streaming capability. Stream-type provides the interfaces
InitStream, ReadStream, and CloseStream. The stream
table has a single attribute of stream-type. To interface
the query execution plan to the underlying stream, we in-
troduce a StreamScan operator to communicate with the
stream table and retrieve new tuples.

As the focus of this paper is on the operation of the
shared join, we used the simple optimization already im-
plemented in PREDATOR to generate the query plan for
a new query. The execution plan consists of a single multi-
way join operation at the bottom of the plan followed by

selection and projection and (if present) the aggregate op-
erator. Using this simple plan one can determine if the new
query actually shared its join with other running queries
or not. When adding a new query to the shared plan, the
shared join operator creates a new output data stream (if
the query uses a new window) or uses the output of an
already existing data stream with the same window as the
input to the next query operators. For the case of SWF
and MQT, the shared window join operator creates a new
SchedulingQueue if the query introduces a new window
and updates the matrix in the case of MQT. The window
specification is added as a special construct for the query
syntax as was shown in the examples of Section 2.1.

5 Experiments

All the experiments were run on a Sun Enterprise 450,
running Solaris 2.6 with 4GBytes main memory. The data
used in the experiments are synthetic data streams, where
each stream consists of a sequence of integers, and the
inter-arrival time between two numbers follows the expo-
nential distribution with mean A. The selectivity of a sin-
gle tuple, «, is approximated as 0.002. The windows are
defined in terms of time units (seconds).

In all experiments, we measure the average and maxi-
mum response time per output tuple as received by each
query. In some cases we also report on the maximum
amount of the main memory required during the lifetime
of the experiment.

All the measurements represent steady state values (i.e.,
the window queries had been running for some time). As
the maximum window could be large (e.g., 10 minutes),
the experiments are “fast forwarded” by initially loading
streams of data that extend back in time to the maximum
window length. We collect performance metrics starting
after this initial loading has been completed, and run the
experiments until 100,000 new tuples are completely pro-
cessed by the shared window join operator. The response
times we report include both the cost of producing output
tuples and the cost of the routing part.

5.1 Varying Window Distributions

0,025
Lwo
SWF

0.020 Mt 1

0.015

0.010

Response time (Sec.)

0.005

0.000

Mosty-Small _ Mosty-Large _ Smal-Large

Figure 5: Average response time for all windows using
different window distributions (hash-based).

In the first set of experiments we study the performance
of our implementations of the LWO, SWF and MQT algo-

Table 1: Window Sizes (in seconds)
Dist. wi | w2 | w3 | w4 | wWs | We | Wy
Uniform 1 100 | 200 | 300 | 400 | 500 | 600
Mostly-Small | 1 5 15 30 60 800 | 600
Mostly-Large 1 60 300 | 420 | 510 | 570 | 600
Small-Large 1|45 15 300 | 510 | 570 | 600

rithms using four different window size distributions. We
consider query workloads consisting of seven window-join
queries with the same query signature, but each having a
different window size. While we ran experiments on many
different distributions and sizes, here we report on results
using four representative distributions (shown in Table 1).
All of these distributions include windows ranging in size
from 1 second to 10 minutes (i.e., 600 seconds).

In the Uniform distribution, windows are evenly dis-
tributed in the range from 1 second and ten minutes.
The Mostly-Small distribution has window sizes skewed
towards the smaller range while the Mostly-Large has win-
dows skewed towards the larger end of the range. Finally,
the Small-Large distribution has windows skewed towards
both extremes.

Note that the arrival rate is exponential with mean A
for each data stream in these experiments. We examine
the impact of more bursty arrival patterns in Section 5.2.
Here, we first describe the results obtained using the hash-
based implementation of the algorithms. We briefly report
on the results obtained using nested loops afterwards.
Hash-based Implementations
Figure 5 shows the output response time per output tuple
averaged over all of the windows for each of the four dis-
tributions (the average and maximum response times are
broken down per window for the first two distributions in
Figure 6). The arrival rate,), is set to 100 tuples/sec. As
can be seen in the figure, MQT has the best average re-
sponse time of the three algorithms, while LWO provides
the second-best response time for all of the distributions
except for (as might be expected) Mostly-Small. LWO fa-
vors larger windows at the expense of smaller ones. Since
these averaged numbers tend to emphasize performance
of the larger windows, LWQ’s overall performance here
is fairly stable (we will look at performance for each of
the window sizes shortly). Even by this metric, however,
LWO is consistently outperformed by MQT. Comparing
MQT and SWF, the reasons that MQT does well overall
are twofold. First, recall that MQT’s scheduling always
chooses to work on the smallest outstanding window or
partial window, which compared to SWF can result in sat-
isfying larger queries in a shorter amount of time. There
are some cases, however, where MQT and SWF generate
effectively the same scheduling steps for new tuples. Even
in these cases, however, MQT has the advantage that be-
cause it can predict the next scheduling step for outer tu-
ples, it can release the output of the largest window earlier
than SWF can.

We now drill down on these results to examine the be-
havior of the scheduling algorithms for the different win-

Average Average
008 004

Lwo Lo
SwF SWE
MQT MQT

Response time (Sec.)
Response time (Sec.)

002

T 100 200 300 400 500 600 1 5 15 30 60 300 600
Window sizes (Sec.) Window sizes (Sec.)

Maximum Maximum

Lwo

Lwo SWF
SWF mMQT

MQT

Response time (Sec.)

Response time (Sec.)

. LLL LAl

1 10 200 300 400 500 600 1
Window sizes (Sec.) Window sizes (Sec.)

(a) Uniform (b) Mostly-Small
Figure 6: Response time with hash-based implementation.

dow sizes in the distribution. This breakdown is shown in
Figure 6. The top row of graphs in the figure show the
average response time for each window size; the bottom
row of graphs show the maximum response time observed
during the run of the experiment for each window size.

As can be seen in all of the figures, LWO’s performance
is relatively stable across window sizes for each workload.
This is expected since in LWO, new tuples that need to
join with the smaller windows will have to wait until the
largest window is completely processed by an older tuple.
As a result, the output response time for all the windows
is approximately equal to the response time for the largest
window. The slight increase observable when comparing
smaller windows to larger windows in LWO stems from
the fact that if a tuple arrives when the system is idle, it
can immediately start joining with previously arrived tu-
ples. For such tuples, the joins for smaller windows are
not delayed by joins for the larger windows. This behav-
ior is predicted by the formulas derived in Section 3.1.1.
There, equation (1) clearly shows that the largest term in
the equation is the second term, (m — 1)Spaz, which in-
volves the largest window size, whereas only a small effect
is expected due to the individual window size, (S; + 1).

In contrast to LWO, both SWF and MQT tend to pro-
vide faster response times for smaller windows than for
large ones. The performance of these two algorithms in
this regard is in fact, heavily dependent on the window
distribution, so we address their performance for the first
two distributions, below. Before doing so, however, we
note that the maximum response times provided by the
algorithms (shown in the bottom row of Figure 6) gener-
ally follow the trends (on a per window size basis) observed
for the average response time. The key fact to notice how-
ever, is that there can be substantial variance in the re-
sponse time for individual output tuples; in some cases,
the maximum response time is one or two orders of mag-
nitude worse than the average.

Turning to the Uniform window distribution (Fig-

ure 6 (a)), we can see that in this case, MQT and SWF
provide similar performance for all but the largest window.
This is because, here, they generate the same scheduling
order for new tuples (recall that the difference in response
time for the larger window is due to MQT’s ability to re-
lease tuples early for that window). Both algorithms favor
the processing of smaller window queries with new tuples
over resuming the join of older tuples with larger window
queries. This is clear from the incremental increase in the
SWF and MQT as we move from smallest to largest win-
dows. Again, these results validate our analysis in Sec-
tion 3.2.1 where equation (2) shows that the average re-
sponse time depends on the current and previous window
sizes which is incrementally increasing as we move from
smaller to larger windows.

For the Mostly — Small window distribution, Fig-
ure 6 (b), one would expect a good scheduling algorithm to
be SWF, given that most of the windows are small. As was
seen in the Uni form case, however, MQT performs much
like SWF for the small windows here, and has an advan-
tage for the largest window. Note, however, that SWF’s
response time for the largest window is half as much in
this case than it is for the Uniform case. This behavior
is predicted by the previous analysis equation (2), where
the response time for a window includes the size of both
the current window and the previous window. Since the
two largest windows are further apart here than in the
Uniform case SWF’s response time decreases here.

The conclusion of the previous experiments is that the
MQT algorithm provides the best overall average response
time when compared to the LWO and the SWF and when
using a variety of window distributions. For the SWF and
LWO algorithms there is no clear winner as their relative
performance is highly dependent on the particular win-
dow distribution. In terms of maximum response time,
the MQT algorithm is always better than the SWF algo-
rithm for large windows, although it has some irregularity
for middle windows. This irregularity is mainly the result
of switching back and forth to serve small as well as large
windows. The LWO algorithm has a uniform maximum
value over all the windows due to the fixed scheduling or-
der used by LWO.

Nested Loop Implementations

We also repeated the experiment for measuring the out-
put response time using different window size distribu-
tions, however using the nested loops implementations of
the scheduling algorithms. In this case, due to the in-
creased cost of join processing, we had to lower the arrival
rate of the data streams to 15 tuples/sec in order to en-
sure that all algorithms could keep up with the incoming
streams.

The average response time for the different window dis-
tributions resemble those obtained with the hash-based im-
plementations, with approximately order of magnitude in-
crease than the values reported in Figure 5 and Figure 6.
Due to space constraints, we omit the detailed performance
figures.

5.2 Varying the Level of Burstiness

In the previous experiments, tuple arrival rates were driven
by an exponential distribution. The analyses of the algo-
rithms in Section 3 showed that their performance is highly
dependent on the burstiness of the arrival pattern. To ex-
amine this issue more closely, we ran several experiments
studying the behavior of the three algorithms as the level
of burstiness (i.e., tendency of tuples to arrive within short
period of time) is increased for both streams. In these ex-
periments, we generate the burst arrival of data streams
using a pareto [5] distribution, which is often used to sim-
ulate network traffic where packets are sent according to
ON OFF periods. In the ON periods a burst of data is
generated and in the OFF periods no data is produced.
The interval between the ON and OFF periods is gener-
ated using the exponential distribution with rate A. The
density function of pareto distribution is, P(x) = m";L:l,
where b > z and « is the shape parameter. The expected
burst count, E(z), is -2%. For a much larger than 1, the
expected value is almost one, and for o between 2 and 1,
the expected value increases. We vary the expected burst
size, E(x) between one and five (and choose «a accordingly).
We also modify the arrival rate between the ON periods
to provide a fixed overall average rate of, ﬁ As we in-

crease the level of burstiness, more tuples wait to schedule
their join with the other stream.
Average
E nor

15

I3
o

Response time (Sec.)
o
&

0.0 o
0

1 5 6

2 3 4
Expected burst size

Figure 7: Response time for different burst arrival sizes.

LWO
SWF
MQT

Average

4.0

Response time (Sec.)

1.0 H I I I
0.0
1 5 _15 0 510 570 600
Window sizes (Sec.)

Figure 8: Response time per window size and for burst size
equals five.

In this section we report on an experiment using the
hash-based implementation for the three scheduling algo-
rithms and considering the Small — Large windows distri-
bution. The overall arrival rate is maintained at 100 tu-

0.05

0.04

0.03

0.02

Response time (Sec.)

0.01

0.00

1 5 300 510 570 600
Window size (in sec.) with the majority of queries

Figure 9: Average response time for all windows using
different query distributions (hash-based).

ples/sec per stream. Figure 7 shows the average response
time (averaged over all window sizes). In the figure, we can
see that as the burst size increases, the scheduling becomes
more important; as bad scheduling decisions can increase
the overall average response time dramatically. The MQT
scheduling outperforms all other scheduling for all of the
burst sizes here. This behavior is more evident as we in-
crease the expected burst size (e.g, at expected burst of
sizes three, four and five, respectively). As shown in the
Figure, the improvement of MQT over LWO and SWF is
as high as 60% and 30%, respectively, (in the case of burst
size of three).

Figures 8 shows the average response time per window
for the Small — Large distribution using an expected burst
size of five. Figure 8 indicates that with large burst sizes,
the SWF scheduling algorithm has a response time of 4
seconds for the largest window, whereas using the MQT
scheduling algorithm it is bounded by 1 second. These re-
sults demonstrate the fact that efficient scheduling is im-
portant to maintain a reasonable response time, particu-
larly in unpredictable environments.

5.3 Varying Query Distribution

In the previous experiments we assume a uniform query
workload (single query per window size) over different win-
dow distributions. In this experiment we consider different
skewness in query workload over a distribution of windows.
Although, we present the results using the Small-Large
window distribution, we obtained similar results when try-
ing all the other windows distributions. We consider 80%
of the queries share a single window, w;, while the remain-
ing 20% are uniformly distributed among the rest of the
windows. We use hash-based implementations with same
settings as in Section 5.1 and consider a pool of 30 queries.
We vary w; from w; to wy and report the results of aver-
age response time using each of the scheduling algorithms
as shown in Figure 9. The MQT has the lowest average
response time in all cases. When 80% of the queries are
clustered at small windows we expect that SWF performs
better than LWO. MQT outperforms SWF in this case.
When the majority of the queries are clustered at large
window, LWO performs better than SWF. However, MQT
also schedules small window queries and provides the best
average response time. The conclusion of this experiment
is that, MQT adapts to a skewed query workloads and

outperforms both LWO and SWF in terms of the average
response time.

5.4 Memory Requirements

One concern about the SWF and MQT approaches is that
they might use excessive memory compared to LWO, due
to their need to hold back some output tuples to preserve
the proper ordering of the output stream. In order to de-
termine the impact of this issue, we examined the max-
imum amount of memory required by each of the algo-
rithms. While small differences are not likely to be impor-
tant (given the low cost of memory these days), a large
difference could have a negative impact on the data rates
that could be supported by the various algorithms without
dropping tuples, for a particular memory size. We briefly
present our experimental findings here.

For all of the scheduling algorithms, the joinBuffer is
needed to hold the tuples of each stream during the join
processing. The maximum size of a single joinBuffer is
MUmaz. SWF and MQT also use an extra input buffer
(a list of scheduling queues) to hold the new tuples from
one stream until they complete their join with the other
stream. LWO has a similar input buffer (a queue) to store
the arriving tuples from one stream before they are ac-
tually used to scan the maximum window in the other
stream. SWF and MQT algorithms maintain an output
buffer to sort the output before releasing it to the out-
put data streams. The maximum size of the input buffer
is a function of the maximum response time for a newly
arriving tuple. In the experiments we reported on above
the maximum response time was seen to reach 2 minutes
in some cases with high burst sizes. When considering an
arrival rate of 100 tuples/sec and a maximum window of
size 600 seconds, the size of the joinBuffer is approximately
60,000 tuples and the maximum input buffer size is 12,000
tuples, or 20% of the joinBuffer size. This, however, is
a worst case analysis. We experimentally obtained lower
bounds for the maximum input buffer size, and found them
to be less than 10% of the joinBuffer size, for SWF.

Our conclusions are that the memory requirement for
the SWF and MQT scheduling algorithms are roughly
comparable to that of the LWO algorithm. The maximum
size for the output buffer in both the SWF and MQT al-
gorithm was less than 3% the size of the joinBuffer. This
supports our conclusion that the memory requirement for
the extra input and output buffers in the SWF and MQT
algorithms are negligible when compared to the joinBuffer
sizes.

6 Conclusions

Window joins are at the core of emerging architectures for
continuous query processing over data streams. Shared
processing of window joins is a key technique for achieving
scalability and enhancing the operating range of such sys-
tems. We have described and evaluated three scheduling
algorithms that prioritize such shared execution to reduce
the average response time per query while preserving their

original semantics. LWO was used previously, SWF and
MQT were developed as part of the work described here.
SWF directly addressed the performance flaw identified for
LWO. MQT was motivated by the tradeoffs between LWO
and SWF as identified by an analytical study of the two
approaches. Experiments performed on an implementa-
tion of the three techniques in an extended DBMS under a
variety of workloads and mixes of window sizes, validated
the analytical results and showed that the MQT algorithm
provides up to 60% improvement in average response time
over the LWO algorithm. These experiments also demon-
strated that the benefits of MQT become more pronounced
as the burstiness of the input data streams is increased.
The experiments also demonstrated that the benefits of
MQT come at the cost of only a small increase in memory
overhead.

References

[1] D. Carney, U. Cetintemel, M. Cherniack, and et al. Monitoring
streams - a new class of data management applications. In 28th
VLDB Conference, Aug., 2002.

[2] S. Chandrasekaran, O. Cooper, A. Deshpande, and et al.
Telegraphcq: Continuous dataflow processing for an uncertain
world. In 1st CIDR Conf., Jan., 2003.

[3] S. Chandrasekaran and M. J. Franklin. Streaming queries over
streaming data. In 28th VLDB Conference, Aug., 2002.

[4] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and evalu-
ation of alternative selection placement strategies in optimizing
continuous queries. In ICDE, Feb., 2002.

[5] M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed
probability distributions in the world wide web. In A practi-
cal guide to heavy tails: statistical techniques and applications,
chapter 1, Chapman & Hall, New York, pp. 3-26., 1998.

[6] P.J. Haas and J. M. Hellerstein. Ripple joins for online aggre-
gation. In Proc. of SIGMOD Conference, 1999.

[7] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid. Stream
window join: Tracking moving objects in sensor-network
databases. In Proc. of the 15th SSDBM Conference, July, 2003.

[8] Z. G. Ives, D. Florescu, M. Friedman, and et al. An adaptive
query execution system for data integration. In Proc. of the
SIGMOD Conference, 1999.

[9] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window
joins over unbounded streams. In ICDE, Feb., 2003.

[10] S. Madden, M. A. Shah, J. M. Hellerstein, and et al. Contin-
uously adaptive continuous queries over streams. In Proc. of
SIGMOD Conference, 2002.

[11] R. Motwani, J. Widom, A. Arasu, and et al. Query process-
ing, approximation, and resource management in a data stream
management system. In 1st CIDR Conf., Jan., 2003.

[12] P. Seshadri. Predator: A resource for database research. SIG-
MOD Record, 27(1):16-20, 1998.

[13] R.Sharma, C. Bash, and C. Patel. Dimensionless parameters for
evaluation of thermal design and performance of large-scale data
centers. In Proc. of the 8th AIAA/ASME Joint Thermophysics
and Heat Transfer Conference in St. Louis, June25., 2002.

[14] T. Urhan and M. Franklin. Dynamic pipeline scheduling for im-
proving interactive query performance. In Proc. of 27th VLDB
Conference, September, 2001.

[15] A.N. Wilschut and P. M. G. Apers. Dataflow query execution in
a parallel main-memory environment. In Proc. of the 1st PDIS
Conference, Dec., 1991.

