Checks and Balances:
Monitoring Data Quality Problems
in Network Traffic Databases

Flip Korn
AT&T Labs-Research
Florham Park, NJ 02932
flip@research.att.com

S. Muthukrishnan*

Rutgers University and AT&T Labs-Research

Piscataway, NJ 08854
muthu@cs.rutgers.edu

Yunyue Zhut
New York University
New York, NY 10012
yunyue@cs.nyu.edu

Abstract

Internet Service Providers (ISPs) use real-
time data feeds of aggregated traffic in their
network to support technical as well as busi-
ness decisions. A fundamental difficulty
with building decision support tools based
on aggregated traffic data feeds is one of
data quality. Data quality problems stem
from network-specific issues (irregular polling
caused by UDP packet drops and delays, topo-
logical mislabelings, etc.), and make it difficult
to distinguish between artifacts and actual
phenomena, rendering data analysis based on
such data feeds ineffective.

In principle, traditional integrity constraints
and triggers may be used to enforce data qual-
ity. In practice, data cleaning is done outside
the database and is ad-hoc. Unfortunately,
these approaches are too rigid and limited for
the subtle data quality problems arising from
network data where existing problems morph
with network dynamics, new problems emerge

Work supported in part by NSF CCR 00-87022, NSF ITR
0220280 and EIA 02-05116.

This work was started while the author was a DIMACS
visitor at AT&T Labs.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

over time, and poor quality data in a local
region may itself indicate an important phe-
nomenon in the underlying network. We need
a new approach — both in principle and in
practice — to face data quality problems in net-
work traffic databases.

We propose a continuous data quality mon-
itoring approach based on probabilistic, ap-
proximate constraints (PACs). These are sim-
ple, user-specified rule templates with open
parameters for tolerance and likelihood. We
use statistical techniques to instantiate suit-
able parameter values from the data, and show
how to apply them for monitoring data qual-
ity. In principle, our PAC-based approach can
be applied to data quality problems in any
data feed. We present PAC-Man, which is the
system that manages PACs for the entire ag-
gregate network traffic database in a large ISP,
and show that it is very effective in monitoring
data quality problems.

1 Introduction

In the internet world, much has been discussed about
various databases: database of customers and their
purchases, web clicks, DNS lookups, etc. Our focus
here is on network measurement databases that are in
the bowels of the internet, namely, those that capture
the IP traffic in the routing elements of the internet.
Unfortunately, there is a fundamental data man-
agement problem that arises in (aggregated) IP traffic
logs. That is one of data quality. The mechanism of
automatically gathering data from management sta-
tions and setting up data feeds over the internet causes

unique data quality problems; these are not problems
that arise, for example, from manual entry of cus-
tomer care records. (We describe this in more detail
in Section 2.) Data quality problems that stem from
network-specific issues make it difficult to distinguish
between artifacts and actual phenomena. In turn, this
renders data analysis based on such data feeds ineffec-
tive. This is of serious concern to ISPs.

There are ways to deal with data quality problems
in practice and in principle. In practice, the data is
cleaned outside the database. For example, missing
values may be interpolated, or the database may get
populated with default values, etc. This approach is
often ad-hoc, executed in scripting environments, and
does not scale as new data quality problems emerge
and old problems morph over time and due to net-
work dynamics. In addition, developing scripts is time-
consuming. Furthermore, synthetically cleaning the
database may not be desirable because data quality
problems may by themselves indicate important net-
work phenomenon. For example, missing values may
indicate loss of UDP packets which may in turn indi-
cate high congestion levels in the network. In principle,
data quality problems can be monitored using tradi-
tional integrity constraints (ICs) and triggers to en-
force database integrity. Unfortunately, this approach
is too rigid and limited for the subtle data quality
problems arising from network data; it is not always
possible to make a binary decision regarding the cor-
rectness of network data at insertion time and these
tools do not offer the capability required to detect
them. We need a new approach — both in principle
and in practice — to face data quality problems in net-
work traffic databases.

We propose a novel approach for detecting and
monitoring data quality problems in network traffic
databases. Our approach is inspired by database in-
tegrity constraints but is quite different since ICs are
inadequate for network data feeds. We propose us-
ing probabilistic and approximate constraints (PACs).
One imagines the exact constraints one would like to
impose on the logical view of the network database.
Then, one defines various templates that are proba-
bilistic, approximate versions of these constraints with
parametrized tolerance levels and likelihoods of viola-
tion. PACs are therefore user-driven rule templates
which are specified by the DBA or analyst; the param-
eters are instantiated based on training data. We use
statistical techniques to derive these parameters. Our
data monitoring system now manages various PACs
that are learned from the database and adapted over
time, and which are used to monitor the quality of the
data feed.

Our PAC-based approach is quite general, and can
be applied in principle to any database. However, in
this paper, we use the aggregate IP traffic database ex-
ample to demonstrate the effectiveness of PACs. We

Figure 1: Network and poller.

have built a data quality detection and monitoring sys-
tem for a large ISP on the entire aggregated IP traflic
in their network, based on our PAC-based approach.
All our experiments here are based on this real data.
They show PACs are highly effective in both detect-
ing data quality problems and in monitoring them over
time. Our approach can learn stable and effective PAC
rules from these real data.

The rest of the paper is organized as follows. In
Section 2, we present a detailed view of network traffic
databases and data quality problems. In Section 3, we
provide detailed description of various types of PACs
— domain, unique key and functional dependency-
based PACs — all instantiated in the context of the
aggregated IP traffic database. In Section 4, we de-
scribe our system, PAC-Man, that manages PACs
and monitors data quality problems in network traffic
databases. We also discuss the issues in integrating
PAC-Man into a database in section 5. We present
our experimental study in Section 6, related work in
Section 7 and concluding remarks in Section 8.

2 Data Quality in Network
Databases

In this section we describe an example network
database and the associated data generation and data
quality issues.

2.1 The Network

We focus on a large IP network such as an Internet
Service Provider (ISP) where there are typically thou-
sands of network elements configured in a topological
hierarchy consisting of routing devices, each contain-
ing multiple interfaces that are endpoints for incom-
ing and outgoing links connecting the devices. These
links can have high-speed capacities, up to OC-48 (2.4
Gbps) or even OC-192 (9.6 Gbps). There can be mul-
tiple links between device pairs; traffic on any link is
unidirectional. Thus, the network can be abstracted
as a directed multigraph G(V, E) containing a multiset

of nodes (devices) V and a multiset of weighted edges
(links) E connecting these devices; weights correspond
to link speed capacities. Figure 1 depicts a toy exam-
ple with links in both directions (illustrated between
devices A and B). The topology data also contains
device and interface names, geographic locations, etc.
We assume that snapshots of the topology data are
obtained from router configuration files and provided
on a regular basis (e.g., daily).

2.2 Network Databases: An Example

IP traffic consists of packets of data sent on links be-
tween routers, and can be captured in multiple levels.
For example, there is a physical level traffic log which
may comprise of the packet headers on the packets on
each link: source, destination IP addresses, number of
bytes in the packets, type of traffic, etc. Then, there
is a logical level obtained by grouping packets on a
link into logical “flows” and assembling packet level
information into flow level information containing for
example, source, destination IP addresses, number of
packets and number of bytes in each flow. Finally,
there is the aggregated level in which we only capture
the amount of traffic — number of bytes — in each
link per time interval, without regard to the source
and/or destination IP addresses, type of traffic etc.
As we zoom in from the aggregated level to the phys-
ical level, the amount of information in the logs in-
creases because we get a refined look of the traffic data;
but, the data sizes increase too, rather dramatically.
Thus, while it is clear that finer traffic logs will re-
veal more about the network dynamics, few vendors,
if any, provide data feeds at the physical level of packet
traffic.! On the contrary, almost every router vendor
supports aggregated level data logs. In fact, such ag-
gregated trafic information is collected network-wide
and used crucially in everyday network operations in
today’s ISPs.

We focus on network databases that store aggre-
gated traffic logs of ISPs. These logs are collected by
network management stations using the Simple Net-
work Management Protocol (SNMP) that is ubiqui-
tous. SNMP data is collected by polling IP network
elements. Figure 1 illustrates pollers P1 and P2, which
periodically request measurements at various inter-
faces; inbound as well as outbound traffic get polled
at both endpoints of each link. These requests are
sent and received using SNMP, which is implemented
over UDP. UDP has less overhead than TCP because
it lacks a protocol for verifying packet receipts; this
can result in packet drops and delays. For simplicity,
we consider only the (cyclic) count of bytes for each

1Special packet sniffers and monitoring tools are developed
in research enviroments and deployed in test mode within ISPs,
or special data processing systems are built in order to perform
query processing in the router itself because ISP-wide datafeed
of packet level traffic log is simply infeasible.

interface along with a timestamp (e.g., in GMT) and
an ID for the interface.

We say network traffic databases have a multigraph
of topology and a data feed. The topology data is
contained in two tables with the following schemas:

DEVICE (date, ifaceID, devID, lat, long)

specifies which device an interface is attached to
and the geographic location of the device;

LINK (date, ifaceID1, name, speed,
ifaceID2)

specifies the two endpoints(interfaces) of a link and
the name and speed of the link. The data feed con-
tains periodically-polled inbound and outbound traffic
rates and is recorded with a timestamp as well as an
interface ID. The schema, is

TRAFFIC (date, time, ifaceID, inrate,
outrate).

We assume that this data is insert-only and arrives
in time order, or is only slightly out of order so that it
can be reordered within a reasonably sized window.

2.3 Data Quality Problems

The quality of SNMP-polled data is poor for a number
of reasons. The data management systems that gather
aggregated traffic statistics use the underlying IP net-
work to collect the data. So if there are problems in the
network — minor problems with unreachable elements
are common — then the data feed is delayed or dis-
rupted. Similarly, these stations use the UDP protocol
to collect SNMP traffic, which is unreliable: congestion
in links can lead to lost UDP packets which disrupts
data feeds. Also, these stations poll the network ele-
ments periodically: there are variations in the polling
times because polling proceeds in some sequence, dif-
ferent polling stations may not be synchronized, etc.
This leads to some fundamental difficulties in logically
modelling the network database. For example, triv-
ially, one would like to believe that the traffic that
leaves one end of the link is the same as the traffic that
reaches the other end, for any given time interval. This
is difficult to ensure if the two endpoints are polled at
slightly different time intervals, as frequently happens
due to the sequencing delays in polling network ele-
ments. Also, there are cases where elements get polled
multiple times because different pollers end up having
common polling responsibility due to errors. Further-
more, configuration tables at various pollers may be
out of date or erroneous, which leads to further data
quality problems in the polled data. Finally, there are
various counters in routers for aggregating traffic data
in the links. At backbone routers where the links are
exceedingly fast, these counters can wrap-around very
quickly, and the reading on the counters may have to
be adjusted to the proper traffic count. To summa-
rize, the mechanism of automatically gathering data
from management stations and setting up data feeds
over the internet causes unique data quality problems;

these are not problems that arise, for example, from
manual entry of customer care records.

We focus on SNMP data quality problems that arise
from the architecture described in Section 2.2, such as
the following:

e Missing polls: There are either continuous or
sporadic chunks of missing data which may be
due to several factors: faults in a network device
(e.g., failures, memory over-utilization), dropped
UDP packets from SNMP polls, incorrect topol-
ogy data, etc.

e Irregular polls: The polling rates are irregular
due to UDP delays or to high CPU utilization at
the network elements.

¢ Extraneous polls: A mislabeling of interfaces in
the topology metadata and multiple pollers can
accidentally result in double-polling.

e Repeated values: This often results from pre-
set defaults (typically zeros), truncations result-
ing from exceeded capacity, or counters not being
reset.

e Violation of network traffic laws: Disparity
in traffic received from and transmitted to a link
or device (& la Kirchoff’s Laws from circuits stat-
ing that the sum of the electric currents entering
a node in the circuit must equal the sum of the
currents exiting a node).

These observed symptoms can serve as the basis for
‘sanity’ checks for data quality control in that they
indicate underlying problems. Indeed, we will employ
these observations in Section 3 for designing example
rules. These are many other data quality problems
which can arise that are not listed here, and new ones
are continually encountered.

3 Specific Constraints of Our Interest

Our proposed approach is based on probabilistic, ap-
prozimate constraints (PACs). Whereas traditional
ICs exactly define a set of legal values, in contrast
PACs are flexible, indicating the likelihood of correct-
ness of a given value. These constraints are expressed
as a quantity over a single or multiple attributes to
be satisfied within a tolerance of €. If € is zero, then
the constraint is said to be ezact and the quantity is
expressed as an equality; otherwise, if € is greater than
zero, then the constraint is said to be approximate. A
PAC summarizes the likelihood d of a constraint be-
ing satisfied within tolerance € as a cumulative (proba-
bility) distribution function (CDF). Unlike traditional
ICs, which are time-invariant, PACs are adaptive and
govern temporal localities. We can specify associated
time windows over which to measure and apply each
constraint.

For example, a constraint could enforce a regular
rate that a network device is polled every 5 minutes.
However, interfaces are polled via UDP, which is prone
to small and unpredictable delays. Hence, if this con-
straint were to be enforced using traditional ICs then,
in practice, a very small portion of the data would
be allowable and would thus result in false dismissals.
One can attempt to get around this by relaxing this
IC, for example, by permitting polling intervals of 4-6
minutes. However, this may not be deemed acceptable
as it would allow consistent 4-minute polls as well as
alternating polling intervals of 4 and 6 minutes. Hence,
we need a way to express degrees of constraint satisfac-
tion, both in terms of magnitude and rate. We give the
PAC for this constraint in the following section. Be-
low we describe three general classes of PACs (domain
constraints, functional dependencies, and unique key
constraints) and give examples of each. These classes
are inspired by standard integrity constraints from a
DBMS.

3.1 Domain PACs

A domain constraint requires that an attribute value
must be drawn from a specific set or range. The PAC
analog is a straightforward generalization of this.

Definition 1 (Domain PAC) Given a legal ordered
domain D on an attribute, a Domain PAC specifies
that all attribute values x fall within € of D with at
least probability 0, that is,

Pr(z € [D £¢€]) > 4.

We will give a few examples of the constraints in net-
work database and show how they are analogs of tra-
ditional ICs. The advantages of PACs will become
obvious.

A simple domain constraint of interest is that traffic
should be bounded by the capacity of an individual
link. Thus, if V; is the traffic rate between [ti_1,t;)
(that is, V; is the volume per second) and C'is the total
capacity of bytes that can be transferred during the
unit time interval,? the constraint is Vi, V; < C. This is
an exact constraint. However, in network operations,
one often overengineers the link and, hence, there is
a designed-for capacity of the link DC' < C. One
typically wants the traffic level to be less than DC.
This is an approximate constraint. The rule can be
expressed as follows.

Rule 1 (Capacity Constraint) The traffic rate is
mostly less than a designed-for capacity DC.

Here is an effort to express this in traditional IC:
Traditional IC 1
Vi <DC Vi

2(C is usually constant except when there is a change in the
network topology (e.g., the link speed is upgraded).

The problem of the traditional IC for expressing the
constraint is that “mostly” in the rule is replaced by
“always”. To overcome the problem, we will propose
PAC as follows. Two ways to formalize this are based
on instantaneous or windowed average terms. For ex-
ample, the instantaneous PACs is as follows:

PAC 1

Vi
Pripe <

Another way to formalize this is in terms of the

average over a window of size w. The PAC for this is

as follows:

PAC Y

€) >4 (1)

avg(Vi,w)

DC
where avg(Vj,w) is the average traffic rate in w.

Next we explore the smoothness property of the
data. SNMP data aggregates flows from numerous
sources, so it tends to have smooth properties in gen-
eral.Data quality problems often lead to violations of
such smoothness. So we explore this using constraints
that are designed to capture the posited smoothness
of SNMP traffic. One approach might be to bound the
change in traffic between consecutive polls:

Rule 2 (Smoothness Constraint) The difference
between consecutive traffic rates should be small most
of the time.

Let V be the current daily average traffic rate, this
rule in IC and its PAC analog are expressed as follows:

Traditional IC 2

Pr(<e)>68 Vi

[Vit1 — V| Vi
v
where p is a pre-defined constant.
PAC 2 v v
(M <e€)>4 (2)
Vv

Note that the IC version is very difficult to express in
SQL due to the sequential nature of it. Also, the IC
version can not capture the probabilistic nature of the
constrains as does the PAC version.

We can also measure the regularity of the polling
rate as we had discussed. This involves setting up a
constraint over the time field.

Rule 3 (Polling Regularity Constraint) The
polling rate should be at a constant rate A.

The IC and PAC for this rule could be expressed as
follows.
Traditional IC 3

(ti —ti1) = A
PAC 3

3.2 Functional Dependency PACs

A functional dependency X — Y enforces that two
tuples must agree on the values in the set of attributes
Y if they agree in attributes X.

Definition 2 (Functional Dependency PAC) A
Functional Dependency PAC X — Y specifies that, if

|Ti.Ag — Tj.Ag| <Ay VA;€e X,

then

P’I‘(lT,Bg - Tj.Bgl < 64) >0 VBeY.

We generalize the concept of functional dependency
further by allowing for an aggregate f over a set of
values in attributes X to functionally determine an
aggregate g over a set of values in attributes Y. No-
tationally, we say f(X) — g(Y). Below we give two
examples of Functional Dependency PACs.

Let e; and ey be the endpoints of a link. Let Vi
be the outbound traffic polled at interface e; and V2
be the inbound traffic polled at the other endpoint es.
If the link is functioning properly, we should have the
following rule.

Rule 4 (Left-right Balance Constraint) The
outbound and inbound traffics at the two end points of
a link should be roughly the same.

In this case, a trigger could be set to ensure that the
traffic volumes at both endpoints at the same times-
tamps are identical.

Traditional IC 4

Vour(ti) = Vi2 (t:)

However, the endpoints may be polled at different
times and hence this constraint is inflexible. Let ¢; be
a timestamp at which e; is polled and let ¢; be the
closest timestamp to ¢; at which es is polled. We give

the FD PAC as follows:
PAC 4

(l out()

For another example, consider a network traffic ver-
sion of “Kirchoft’s Law”.

Vi)| <€) 26 (4)

Rule 5 (In-out Balance Constraint) The total
traffic flowing into a router should approximately
equal that flowing out.

Traditional IC 5

z V:m z):

in—links

z Vout tz

out—links

The above IC is too rigid for a network database. This
constraint should be expressed as a PAC:

PAC 5

in—links

Z Vout| S 6) Z 6 (5)

out—links

The sums are over traffic volumes close together in
time from the same router. We can also specify a time
window w in which these sums are computed.

3.3 Unique Key PACs

A wunique key constraint says that no two tuples may
agree in their values for all of the attributes that con-
stitute a key. The PAC analog is a straightforward
generalization of this.

Definition 3 (Unique Key PAC) Let T be a table
and Ay be an attribute in T. A Unique Key PAC spec-
ifies it is unlikely that more than one tuple exists with
approzimately the same key:

PT‘(|T,'.A4 - Tj.Ag| S 64) S 5@
for each attribute A, in the key.?

We can set up a unique key PAC to detect spurious
traffic values whose values occur at a suspiciously high
rate.

Rule 6 (Nonrepeating Values Constraint) The
same traffic value should not repeat too many times.

Let t; and ¢; be consecutive polling times for an inter-
face. A unique key IC is as follows.

Traditional IC 6

V(ti) # V(tit1)

This is infeasible because some instances of repeats
may be valid (if unlikely). Hence, we use the following
PAC to measure this likelihood:

PAC 6
Pr(V(ti) =V(tiy1)) <9 (6)

4 Managing PACs: PACMAN

In this section, we describe the PAC Manager, called
PAC-Man, that manages PACs in a network database.
It has a visual interface for the DBA or user to specify
PACs. Each PAC has parameters € and §, as we saw in
the previous section, with e being the approximation
to a constraint we allow and § being the probability
for each data item to satisfy the constraint with the
given approximation. PAC-Man monitors the data in
the database and performs two main tasks.

e It maintains a collection of PACs and picks thresh-
olds 6* and €* suitably.

3The values of ¢, (as well as §;) are independent of one an-
other.

e It monitors new data in the database over time
and alarms when data deviates from the PACs.

It performs all the bookkeeping activities associated
with the two tasks and manages all the PACs for the
given database over time. We will now discuss how
PAC-Man performs its two main tasks.

Initially, the list of PACs in PAC-Man is empty.
The user enters a set of rule-templates, using a vi-
sual form, whose parameters are to be instantiated as
PACs over the existing training data. New PACs can
be added at any time. Which PACs does PAC-Man
choose to maintain and how are thresholds chosen?
One may rely on the user to specify both but with
thousands of elements and PACs in the database, this
may be infeasible. Hence, we rely on a variety of ways
to automate this process.

PAC-Man will fit the rule-template on different
grouping partitions of the training data: on a per-
interface basis, aggregated by interface class (e.g., OC-
48s), by day-of-week (e.g., Mondays), by time-of-day
(e.g., evenings), etc. In total, we consider the following
group-by lattices:

e topological: interface C device pair C device C
ALL;

e categorical: interface C link speed class C ALL;

e temporal: instant C hour C day C week C ALL;
or
instant C time-of-day C ALL; or
instant C day-of-week C ALL.

Notice that the product of these hierarchies defines
a lattice, and there is a well-defined notion of going
up and down this lattice to refine or coarsen the gran-
ularity in one or more of these attributes. Following
factors are relevant in evaluating a PAC.

e Usefulness: The distribution must be skewed so
that it is possible to tell the good from the bad.
For example, the approximation distribution from
a PAC may reveal that practically any e-value will
make § small and always be violated, or that § will
be large and never be violated. (More formally, §
may be 0 or 1 except for trivial values of €.) In
these cases, the PAC is effectively useless.

e Stability: A distribution that is not stable can-
not be used for a PAC rule. For example, the
approximation distributions may differ substan-
tially on each interface and on each day, which
might render the PACs unstable for a given rule-
template.

e Granularity: The distribution of a statistic de-
pendents on the sampling space. The PACs can
be derived on different grouping partitions and
different granularity of the data. Suppose we have

the current distribution of the data at certain
granularity. If any distribution of a subpartition
of the data is significantly different from the dis-
tribution, the conclusion drawn from the current
distribution will not apply to that subgroup. One
can have the grouping of the data in the finest
granularity, but this will result in numerous dis-
tributions that are similar to each other. A better
strategy is to merge these fine partitions of the
data with similar distribution into coarser parti-
tions recursively.

Currently, PAC-Man works as follows. We use a
month of data (so ALL in the hierarchy above in
time attribute is a month) as training data, and learn
thresholds and pick a set of PACs at suitable granular-
ity in the lattice. This is used to monitor data hence-
forth. That is, learning and tuning may be thought
of as being offline with sufficient resources to perform
all the computations. In particular, we have the space
to store a month of data and the computations on a
month of data will take less than a month. *We will
only describe algorithms for implementing this frame-
work. However a close look at the algorithms will
quickly reveal that the algorithms we describe below
can be implemented using recently discovered stream-
ing algorithms in small space to a guaranteed approx-
imation if needed, so this task can be performed by
PAC-Man in a dynamic, online manner. However, we
do not explicitly explore the online learning of the
PACs in this work. This is because of two reasons:
first, online learning of thresholds often leads to over-
fitting of data to local effects and further research is
needed to finely tune the learning process, and second,
in our preliminary study, we have not yet found this
to be very useful in our SNMP database. Henceforth,
we will only discuss the offline learning framework.

4.1 Choosing PAC Thresholds

Based on the above criteria, PAC-Man will use some
heuristic algorithms to learn and manage PACs. We
will now describe how PAC-Man chooses PACs and
learns thresholds in some detail. The algorithms we
use are simple; in fact, our focus has been on choosing
straightforward algorithms that will work effectively
in our setting, rather than design sophisticated algo-
rithms that are more general than needed.

A specific PAC rule in a particular granularity is
instantiated as an Empirical Cumulative Distribution
Function (ECDF). We maintain the percentiles (or his-
tograms) over the approximation errors €’s to estimate
their probabilities. That is, for a PAC rule, we main-
tain €1, €, ..., €99, where Pr(e < €;) > ﬁ. In other
words, the empirical probability that the approxima-
tion errors of the PAC rule are less than ¢; is more

4This is trivial since we can now do this on a standard laptop
for the entire SNMP database from a large ISP.

than 1%. We have observed that, for the PACs used in
our application, only the tails in the ECDF's are useful.
We care about only those points where the approxima-
tion errors are unacceptable. PAC-Man can therefore
maintain only the higher percentiles in the tails, say,
€90, €91, ---, €99- In general, the threshold (here, 90) can
be set based on the § one considers the absolute lower
bound on any reasonable threshold. PAC-Man picks
thresholds from ECDFs. Typical ECDFs have a nat-
ural “knee” or “sweet spot” where choosing (e*, §*) in
various PACs is preferable. This is because increas-
ing tolerance €* does not change §* significantly. The
heuristic algorithm PAC-Man uses to decide the sweet
spot €5 is based on finding the largest difference in the
list €90, €91, .-+, €99. That iS,

s = aTgmaxgoqggg(Ci —€1)-

This simple rule turns out to be very effective in prac-
tice, as is confirmed in our experimental study in sec-
tion 6. Notice that we could have actually taken the
entire training data, sorted it and used the precise
ECDF to make the threshold selection, but in all our
experience, the simpler heuristic above of maintaining
“equiwidth histogram” on the tail of the ECDF suf-
ficed.

Stability of PACs. We also need algorithm to de-
cide the stability of the PACs over time. This can be
done in a number of ways dependent on comparing
the ECDFs over different windows of a given gran-
ularity. Here, we will present a simple heuristic we
use that proves adequate; more sophisticated compar-
ison techniques can be used if necessary. PAC-Man
achieves this stability by monitoring the changes of the
ECDFs. First we define the differences between two
ECDFs fl = (690, €91y +ny 699) and fg = (égo, égl, veey égg)
to be their L,,-norm distance:

d(‘fla 52) = max

90<i<99 lei = &l

The historical incremental differences between ECDFs
for a particular PAC are stored as a vector d. When a
new ECDF is updated based on the new data, PAC-
Man checks the change in ECDFS, derp. If dpew €x-

- -

ceeds avg(d)+k-std(d), then PAC-Man knows that the
ECDF is not stable, where avg(d) and std(d) are the

average and standard deviation of d respectively, and
k is a predefined parameter. Given the definition of
the distance between ECDF's above, we can also check
if a group of ECDFs are close to each. That is, given a
predefined parameter 1, we say that a group of ECDFs
&1,&, ..., & are close to each if the following holds:

V1 S 7’7.7 S kad(§Z7£J) < -

4.2 Overview of PAC Selection

Combining the above algorithms, PAC-Man can man-
age a large number of PAC rules automatically. PAC-
Man starts by constructing ECDF for each PAC rule

in the finest granularity. Then, we perform a traver-
sal up (and down) the granularity lattice. PAC-Man
will merge the ECDFs of the same PAC rule in the
same granularity to a coarser granularity if they are
close to each other. Also those ECDFs that are not
stable will be separated into finer granularity to check
whether stability can be achieved. Those PAC rules
with unstable ECDF's will not be used. For PAC rules
with stable ECDFs, the sweet spots will be computed
and be set as their thresholds. In this manner, PAC-
Man automates the process of learning set of PACs
and their thresholds for data quality monitoring.

4.3 Alarming

The second major task that PAC-Man performs is
“alarming”. The rationale is that the thresholds asso-
ciated with PACs were chosen to be indicative of the
data distribution, so any significant deviation from it is
an occasion for an alarm. Alarming is most naturally
based on the thresholds learnt. In the most general
scenario, users may choose a pair (a,) of alarming
thresholds where o and 3 are fractions. A PAC with
thresholds (€*,6*) leads to an alarm if the number of
tuples in the window at specified granularity of the
PAC that violate the constraint with approximation
ae* is at least (1 —4)/8. Intuitively a and 8 are frac-
tions that are allowances for alarming over the thresh-
olds that represent the data distribution. In practice,
one does not want to choose these fractions for each of
the PACs monitored by the PAC-Man. In our expe-
rience, it suffices to set & = 1 by default because the
approximation thresholds are fairly robust. In our ex-
periments we studied the effect of gradually changing
B, but our experience is that setting 8 to be close to
0.5 is a good choice since often when violations occur,
they occur in significant fraction of tuples. The online
monitoring algorithm is trivial, since when a new item
arrives, we can determine in O(1) time if it contributes
to a violation or not with simple arithmetic to check
the approximation thresholds.

5 Integrating PACMAN into a

Database

As described so far, PAC-Man is a database applica-
tion. It interacts with the database in a straightfor-
ward manner. The underlined database (in our case,
Daytona) handles the transactions and manages the
SNMP data. PAC-Man manages the satellite data
(configuration files, routing details etc.) and perform
the analysis. So, as such, PAC-Man works like a data
quality browser and monitor. In this section, we dis-
cuss how to integrate PAC-Man into a database. There
are several issues to consider that we describe below.

An important issue concerns specification of PACs.
PAC-Man currently supports a few standard templates
for specifying the checks and balances via a graphi-

cal form to be filled in. This will do as an applica-
tion. However, if it is integrated into a database, one
needs a systematically designed language to specify the
checks. Integrity constraints which are our underlying
inspiration are either incorporated into SQL or as spe-
cial purpose TRIGGERS. To exploit the full power
of PACs, we need to carefully design an extension of
TRIGGERS. We leave this issue open.

Another issue concerns violations. In classical con-
text of ICs, a violation automatically leads to an excep-
tion, so the data item is not inserted into the database.
However, automatic datafeeds such as network traf-
fic data come at a great rate, and contain many data
quality problems both on a regular basis as well as in
transitory basis. It is unrealistic to fjord such a stream
so that all updates pass data quality checks. Instead,
a practical approach is to populate the database with
the logs and postprocess the database appropriately.
There are multiple ways to postprocess the database
for addressing data quality problems concerns.

One approach is data cleaning, which is reasonable
in many traditional settings [4]. But this is not always
appropriate in our setting. For example, one sugges-
tion is to extrapolate the missing values and popu-
late the database with these premised values. How-
ever missing polls may be an indication of network
anomaly and cleaning this out of the database greatly
affects the accuracy of the data analysis for network
management.

A different approach is to abstract the burden away
from the user and to rewrite queries automatically.
The database uses the data quality monitor such as
PAC-Man to understand the data, and automatically
rewrites users’ queries into “equivalent” ones. This has
an intuitive appeal. But it hides major conceptual and
technical problems and is highly nontrivial.

The final approach is to involve the user in the loop.
We use PAC-Man to expose the data quality issues to
the user through a visual interface. An informed user
can pose database queries more carefully. This may
seem like punting the problem, and putting the entire
burden on the user. But we have routinely found that
this works. Let us give an example. Say a user wants
to determine the correlation between the traffic at two
links on a given day. The user who is made aware
of the fact that there are several missing polls may
modify the query as follows: compute the correlation
only restricted to observations which were made in the
system. This approach is typically not a favorite in
academic research, but it is successful in real systems.
Engaging a knowledgeable and thoughtful user is fa-
cilitated by data quality monitors such as PAC-Man.
This is what inspired us to develop PAC-Man as a
database application, merely monitoring data quality
and reporting alarms.

6 Experiments

We tested our PAC-based approach on a real network
traffic database of a large ISP. Our system is fully op-
erational on over more than 6 months of data, with
a rate of approximately 128 Mb of data arriving per
day. In all of our experiments, we used a (landmark)
windows of one month’s worth of data for training and
one day’s worth of data for testing; we did not consider
the effects of varying these window sizes.

6.1 Granularity Selection

100
90
801 /
70 A
60 -
50
40
30 ----link 1

link 3

—link 4

Probability[|(ti-t i-1)-5|<e] (%)

10 4
O T T T T T T T
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

E

100

Probability[Vi/C<e] (%)
- N WA G
oo &5 o

- -link 1
—link 2
link 3
VoS —— link 4
0 ‘ : : :
0.000 0004 0008 0012 0016 0.020
£

Figure 2: Distributions of PAC 1 (Capacity)

&£ 100
) /’7‘_
\'
Yl 7=
T 70 //
>.| 60 1 17
= 50 1+
= 40 - /
2 30 - ——link 1
3§ 20 ——link 2
g 10 1t ----link 3
4] 0 V I|nk4
& ; ; ; ; ;

0.00 005 0.0 015 020 025 030 0.35

E

Figure 3: Distributions of PAC 2 (Smoothness)

In the first set of experiments, we examined the
ECDFs of several PACs to understand their behavior
at different granularities. Figure 2 shows the distribu-
tions of PAC 1 (Capacity) over all days in Month 2 for
four randomly selected links. We observed that differ-
ent links have different distributions. This is because
each link has its own designed-for capacity; hence, a
rule trained over (the aggregate of) all links would not
be very meaningful. The same observation holds for
PAC 2 (Smoothness) as well, as shown in Figure 3

Figure 4: Distributions of PAC 3 (Polling Regularity)

for the same sample of links. On the other hand, we
observed the ECDF's of different links to be roughly
the same for PAC 3 (Polling Regularity), as shown in
Figure 4. This makes it unnecessary to maintain a sep-
arate PAC instantiation for each link when using this
rule. These examples illustrate how sensitive PACs are
to topological granularity selection. In all these cases,
PAC-Man automatically determined the appropriate
granularity levels based on the heuristics discussed in
Section 4.

100 S
9 /,/‘_
& g0 -
© 70 -
Q 0
>
'S 50 -
= 40
]
% 301 ——alldays
s 20 1, weekends
10 4
- -weekdays
O T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06
E

Figure 5: PAC 1 at different temporal granularities,
for a single link

In addition to topological granularity, the temporal
granularity can also affect PACs. For example, Fig-
ure 5 shows ECDFs of PAC 1 at two different tem-
poral granularities (within Month 2) on the training
data from a single link: keeping all days together in
one group, and partitioning the days into two groups
corresponding to weekdays and weekends. It can be
seen that, at the finer granularity level, the distribu-
tion for weekdays is quite different from that for week-
ends. The distribution based on the (coarser) all-days
granularity averages the weekend and weekday distri-
butions together. As a result, it may not be effective

enough to detect data quality problems on a single day.
Indeed, this is confirmed by considering alarms on a
weekend day based on these PACs. Given the values
of (¢*,0*) in the respective ECDFs, the percentage of
tuples that are above €* is 47% based on the week-
end granularity, but only 3% based on the all-days
granularity. Hence, data quality problems may not be
detected if the granularity of a PAC is not partitioned
into weekdays and weekends.> Based on the heuris-
tics from Section 4, PAC-Man appropriately chose the
finer temporal granularity of partitioning into week-
day/weekend for PAC 1.

6.2 Parameter Selection

Here we illustrate by example that, for the PACs we
considered, there is a clear “sweet spot”, or “knee”,
in the ECDF curves. This characteristic, which was
evident throughout the data, is what enables useful
PAC parameters for (¢*,*) to be chosen by PAC-Man.
In Figure 4, the curve bends abruptly at roughly (e* =
0.1,0* = 0.85). Note that € is a fraction of 5-minute
units (300 seconds), so €* is actually 0.1 x 300 = 30
seconds. This means that the polling interval is in
the range [4:30, 5:30] for 85% of the polls. The sweet
spots are less definitive in Figures 2 and 3, but are still
evident. All of these occur in the tails of the curves
for §-values in the range [90%,100%].

6.3 Alarms Based on PACs

2083 149

140 1
120 1
100 1
80 1
60 1
40 1
20 1

Number of links

0~9 10~29 20~39 30~39 40~49 50~59 60 ~69

Pecentage of Alarms (%)

Figure 6: Percentages of violations of PAC 2 for all
links in a certain day

Note that the e-values above the sweet spots spread
over a wide range in Figures 2-4. This separation (of
outliers) is what enables effective alarming without
many false-positives. Figure 6 illustrates this further
by plotting the distribution of alarm thresholds from
PAC 2 after training over all links in Month 1 and

5In this case, the problem resulted from the link capacity
being upgraded without a prompt change to the configuration
tables.

20 A

1074.__._J__lﬁ_-_h-
0 ‘

Day1 Day2 Day3 Day4 Day5 Day6é Day7

Percentage(%)
w
o

Day8 Day8
cleaned

Date

Figure 7: Percentages of violations of PAC 3 for a
certain link in a certain week

applying the PACs to monitor traffic on a day from
Month 2. (Recall that PAC-Man maintains a sepa-
rate PAC instantiation for each link.) For different
threshold ranges, it shows the number of additional
alarms that would be raised if §* were increased to
within each range. The rapid decrease in the number
of marginal alarms allows for outliers to be identified
from non-outliers (due to a fairly crisp separation),
thus enabling useful PACs.

6.4 Case Study

Here we describe an example of a data quality problem
discovered using our approach. This case involves the
detection of double polling. On a particular day during
Month 2 (namely, Day 8), an alarm was raised by PAC
3 on an individual link. Figure 7 shows the percent-
age of tuples that were above the threshold e* for that
day. We can see that there is a clear spike in the per-
centage on Day 8. A possible reason for double polling
is that two different links are polled at the same time
(perhaps due to mislabeling). As a reasonable heuris-
tic to “clean” the data, we regarded two consecutive
polls occuring close together in time as coming from
separate pollers; that is, the polls alternate between
two different pollers. In this figure, we can see that
the percentage looks normal after separating out the
even and odd polls.

7 Related Work

Several tools exist and are widely used for monitoring
network traffic such as RRDTool [8]; these tools pro-
vide graphical plots of network traffic, but put the bur-
den on the user to detect data quality problems. Re-
cently there has been some work in the networking lit-
erature on automatically identifying anomalies in ag-
gregated traffic measurements using wavelets [1]; but
they address specific quality problems in the network
database context, and there is no underlying mecha-
nism for detecting data quality problems in general.
There is a large body of work in the statistics litera-
ture dedicated to defining and evaluating data quality

(e.g., see [15]): outlier detection, imputation of miss-
ing values, etc. Mostly, these too tend to be focused
on developing efficient, statistically grounded methods
for detecting particular data quality problems.

A more principled approach for enforcing data qual-
ity in general in large scale data has been taken in
the database literature. (There are a number of re-
sults in the database literature too that focus on de-
tecting specific data quality problems; we do not sur-
vey them here because they are not directly relevant
to our PAC approach here.) Traditionally, integrity
constraints (ICs) and triggers are used to define de-
terministic constraints a priori as opposed to mining
existing, non-deterministic rules from the data. Ad-
hoc approaches to approximate functional dependen-
cies have been defined in [7, 10, 9, 12]. Our work here
is more general, abstracting from a variety of ICs, and
employing a probabilistic, approximate framework in a
systematic manner, to detect user-directed constraints
and violations.

Recently, there has been work in providing various
browsers for quality mining and cleaning. For example,
Bellman [5] is a data quality browser that helps iden-
tify fields with similar values, estimate join sizes, trac-
ing join paths, etc. This is useful in a database with
many tables, but it does not address most of the crucial
data quality problems that arise in network database
context summarized in Section 2.3. Also, no principled
approach akin to PACs is evident in Bellman.

The related problem of data cleaning has been
studied extensively in the literature for several spe-
cific data quality problems (mapping schemas, find-
ing approximate matches, etc.). For excellent surveys,
see [3, 4, 13]; for additional references, see [11, 2]. Pot-
ter’s Wheel [14], like our work here, makes the observa-
tion that data discrepancies are best dealt with using
extensible, domain-specific techniques, but addresses
the problem of cleaning data rather than discovering
data quality violations. Ajax [6] uses a language to
express data cleaning specifications declaratively. The
important problems of how to express general integrity
constraints and how to automatically discover such
constraints were missing in these works. Our flexi-
ble framework of probabilistic ICs can provide a solid
base for other data cleaning tools.

Finally, our underlying approach to use PACs (that
is, to introduce tolerance and confidence parameters
into ICs) is a generic approach in data mining and
statistical data analysis. However, we are not aware
of any application of this approach to address data
quality problems.

8 Concluding Remarks

We have focused on network database of aggregated IP
traffic data, gathered using the SNMP protocol, which
is an integral part of daily operations of today’s ma-
jor ISPs. A fundamental problem in such databases

is one of data quality which is poor due to many
network-specific issues. We have proposed a novel,
principled approach to detecting and monitoring such
data quality problems. Our proposal is to use prob-
abilistic, approximate rules inspired by integrity con-
straints (PACs). These are specified as user-defined
templates with tolerances and probability thresholds.
We use the statistical properties of the data to learn
the parameters. PAC-Man manages the PACs.

We have built the PAC-Man based system for a
large ISP. We use this system to perform extensive
experiments and show that our PAC-based approach
is highly effective for detecting and monitoring data
quality problems. PACs are general, powerful, logical
constructs to verbalize users’ insight into structural
properties of the data (much as ICs are intended to
be, but PACs are more flexible and powerful); hence,
we believe they will prove fundamental within the
general, database context beyond their effectiveness
in addressing data quality problems within network
databases. Future work will involve adapting PACs to
study “bursty” data quality problems in a systematic
manner.

References

[1] P.Barford, P. Kline, D. Plnka, and A. Ron. A sig-
nal analysis of network traffic anomalies. In Pro-
ceedings of ACM SIGCOMM Internet Measure-
ment Workshop, 2002.

[2] Data Cleaning
http://epoch.cs.berkeley.edu:8000
/ rshankar /pwheel /bibliography.html.

Bibliography.

[3] T. Dasu and T. Johnson. Ezploratory Data Min-
ing and Data Cleaning. John Wiley & Sons, New
York.

[4] T. Dasu and T. Johnson. Problems, solutions and
research in data quality. In STAM International
Conference on Data Mining, 2002.

[5] T. Dasu, T. Johnson, S. Muthukrishnan, and
V. Shkapenyuk. Mining database structure; or,
how to build a data quality browser. In SIGMOD
2002, Proceedings ACM SIGMOD International
Conference on Management of Data, 2002.

[6] H. Galhardas, D. Florescu, D. Shasha, E. Simon,
and C.-A. Saita. Declarative data cleaning: Lan-
guage, model, and algorithms. In VLDB 2001,
2001.

[7] R. Haux and U. Eckert. Nondeterministic depen-
dencies in relations: An extention of the concept
of functional dependency. Information Systems,
10(2):139-148, 1985.

[8] RRDtool homepage. http://www.caida.org/tools
/utilities/rrdtool/.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Wen-Chi Hou. Extraction and applications of
statistical relationships in relational databases.
TKDE, 8(6):939-945, 1996.

Yki Huhtala, Juha Kérkkéinen, Pasi Porkka, and
Hannu Toivonen. Efficient discovery of functional
and approximate dependencies using partitions.
In Proceedings of the Fourteenth International
Conference on Data Engineering, February 23-
27, 1998, Orlando, Florida, USA, pages 392—401.
IEEE Computer Society, 1998.

Research in Data Quality Web Site.
http://www.dataquality-research.com.

H. Mannila and K. Raiha. Algorithms for infer-
ring functional dependencies from relations. Data
and Knowledge Engineering, 12(1):83-99, 1994.

E. Rahm and H.H. Do. Data cleaning: Problems
and current approaches. In Data Engineering Bul-
letin 23(4), pages 3-13, 2000.

Vijayshankar Raman and Joseph M. Hellerstein.
Potter’s wheel: An interactive data cleaning sys-
tem. In The VLDB Journal, pages 381-390, 2001.

T Redman. Data Quality: Managemetn and Tech-
nology. Bantam Books, 1992.

