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Abstract 
The ascendance of networked information in our 
economy and daily lives has increased the 
awareness of the importance of dependability 
features. OLTP (On-Line Transaction Process-
ing) systems constitute the kernel of the informa-
tion systems used today to support the daily 
operations of most of the business. Although 
these systems comprise the best examples of 
complex business-critical systems, no practical 
way has been proposed so far to characterize the 
impact of faults in such systems or to compare 
alternative solutions concerning dependability 
features. This paper proposes a dependability 
benchmark for OLTP systems. This 
dependability benchmark uses the workload of 
the TPC-C performance benchmark and specifies 
the measures and all the steps required to evaluate 
both the performance and key dependability 
features of OLTP systems, with emphasis on 
availability. This dependability benchmark is 
presented through a concrete example of bench-
marking the performance and dependability of 
several different transactional systems configura-
tions. The effort required to run the dependability 
benchmark is also discussed in detail. 

1. Introduction 
This paper proposes a dependability benchmark for On-
Line Transaction Processing (OLTP) systems. The goal of 
this benchmark is to provide a practical way to measure 

both performance and dependability features (with 
emphasis on availability) of OLTP systems. These 
systems constitute the kernel of the information systems 
used today to support the daily operations of most of the 
businesses and comprise some of the best examples of 
business-critical applications. However, in spite of the 
pertinence of having dependability benchmarks for this 
important class of systems, the reality is that no 
dependability benchmark (or even a really practical 
approach to characterize dependability features such as 
availability) has been proposed so far, in a clear contrast 
with the benchmark of performance, where the Processing 
Performance Council (TPC) organization has started long 
ago a family of performance benchmarks.1 

Database Management Systems (DBMS), which are 
the kernel of OLTP systems, have a long tradition in high 
dependability, particularly in what concerns to data 
integrity and recovery aspects. However, in most of the 
DBMS the effectiveness of the recovery mechanisms is 
very dependent on the actual configuration chosen by the 
database administrator. The problem is complex, as tuning 
a large database is a very difficult task and database 
administrators tend to concentrate on performance tuning, 
often disregarding the recovery mechanisms. The constant 
demands for increased performance from the end-users 
and the fact that database administrators seldom have 
feedback on how good a given configuration is 
concerning recovery (because faults are relatively rare 
events) largely explain the present scenario.  

Performance benchmarks such as the TPC benchmarks 
have contributed to improve peak performance of 
successive generations of DBMS, but in many cases the 
systems and configurations used to achieve the best 
performance are very far from the systems that are 
actually used in practice. The fact that many businesses 
require very high availability for their database servers 
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(including small servers used in many e-commerce 
applications) shows that it is necessary to shift the focus 
from measuring pure performance to the measurement of 
both performance and recoverability. This is just the goal 
of the dependability benchmark proposed in this paper. 

Computer benchmarking is primarily an experimental 
approach. As an experiment, its acceptability is largely 
based on two salient facets of the experimental method: 1) 
the ability to reproduce the observations and the 
measurements, either on a deterministic or on a statistical 
basis, and 2) the capability of generalizing the results 
through some form of inductive reasoning. The first 
aspect (ability to reproduce) gives confidence in the 
benchmark results and the second (ability to generalize) 
makes the benchmark results meaningful and useful 
beyond the specific set up used in the benchmark process.  

In practice, benchmark results are normally 
reproducible in a statistical basis. On the other hand, the 
necessary generalization of the results is inherently related 
to the representativeness of the benchmark experiments. 
The notion of representativeness is manifold and touches 
almost all the aspects of benchmarking, as it really means 
that the conditions used to obtain the measures are 
representative of what can be found in the real world.  

The key aspect that distinguishes benchmarking from 
existing evaluation and validation techniques is that a 
benchmark fundamentally represents an agreement 
(explicit or tacit) that is accepted by the computer industry 
and by the user community. This technical agreement is in 
fact the key that turns a benchmark into a standard. In 
other words, a benchmark is something that the user 
community and the computer industry accept as 
representative enough of a given application domain to be 
deemed useful and to be generally used as a (standard) 
way of measuring specific features of a computer system 
and, consequently, a way to compare different systems. 

The concept of benchmarking can then be summarized 
in three words: representativeness, usefulness, and 
agreement. A benchmark must be as representative as 
possible of a given domain but, as an abstraction of that 
domain, it will always be an imperfect representation of 
reality. However, the objective is to find a useful 
representation that captures the essential elements of the 
given domain and provides practical ways to characterize 
the computer features that help the vendors/integrators to 
improve their products and help the users in their 
purchase decisions.  

A dependability benchmark can then be defined as a 
specification of a standard procedure to assess 
dependability related measures of a computer system or 
computer component. Given the agreement nature of all 
benchmarks, it is obvious that a real dependability 
benchmark can only be established by the computer 
industry or by the user community. Nevertheless, the 
dependability benchmark proposed in this paper shows a 
possible path to benchmark the dependability of OLTP 
systems and contributes this way to the technical 

discussion required to create the conditions for the 
establishment of actual dependability benchmarks.  

The paper is structured into six sections. Section 2 
presents the key components and the main properties of a 
dependability benchmark for OLTP systems. Section 3 
presents the DBench-OLTP dependability benchmark, 
discussing and justifying at the same time the most 
relevant design choices. Section 4 presents several 
benchmarking examples that have resulted from an 
extensive study meant to validate the key properties of the 
proposed dependability benchmark. Section 5 discusses 
the effort required to run this benchmark and section 6 
concludes the paper. 

2.   Benchmarking dependability in OLTP 
application environments 
A typical OLTP environment consists of a number of 
users managing their transactions via a terminal or a 
desktop computer connected to a database management 
system (DBMS) via a local area network or through the 
Web. An OLTP system is thus a typically client-server 
system or a multi-tier system. In a simplified approach, 
the server is composed by three main components: the 
hardware platform (including the disk subsystem), the 
operating system, and the transactional engine. Most of 
the transactional systems available today use a DBMS as 
transactional engine, which is in practice the main 
component of any OLTP systems, assuring not only the 
transactional properties but also the recovery mechanisms.   

Dependability is an integrative concept that includes 
the following attributes [1, 2]:  
− Availability: readiness for correct service. 
− Reliability: continuity of correct service. 
− Safety: absence of catastrophic consequences on the 

user(s) and the environment. 
− Confidentiality: absence of unauthorised disclosure of 

information. 
− Integrity: absence of improper system state alterations.  
− Maintainability: ability to undergo repairs and 

modifications. 
Among all the possible dependability attributes, 
availability is one of the most relevant in databases and 
OLTP systems in general. Thus, the proposed benchmark 
is particularly focused on the availability of the system 
under benchmark.  

The main problem in measuring the availability of a 
given computer system or component is that this measure 
is very dependent on the fault probability, which is 
dependent on many factors, either internal to the system 
(hardware and software) or external (environment or 
human made).  Assessing system availability is in fact a 
very difficult problem and has been addressed in the 
dependability research community by using both model-
based and measurement-based techniques. The former 
include analytical [3] and simulation [4] techniques and 



the latter include field measurement [5], fault injection [6, 
7] and robustness testing [8, 9]. 

Our proposal to dependability benchmarking is mainly 
inspired on measurement-based techniques. Comparing to 
well-established performance benchmarks, this new type 
of benchmarks includes two new elements: 1) the 
measures related to dependability and 2) the faultload. 
In this way, the main components of the proposed 
dependability benchmark are: 
− Workload: represents the work that the system must 

perform during the benchmark run. 
− Faultload: represents a set of faults and stressful 

conditions that emulate real faults experienced by 
OLTP systems in the field.  

− Measures: characterize the performance and 
dependability of the system under benchmark in the 
presence of the faultload when executing the workload. 
The measures must be easy to understand and must 
allow the comparison between different systems. 

− Benchmark procedure and rules: description of the 
procedures and rules that must be followed during a 
benchmark run.  

− Experimental setup: describes the setup required to 
run the benchmark. 

In addition to the repeatability and representativeness 
properties mentioned before, benchmark portability [10] 
is also a very important property. In the DBench-OLTP 
the faultload is clearly the most problematic component 
concerning portability, as it is necessary to assure that the 
faults used in the faultload are equivalent across the 
different target systems (see section 3.4). 

3.   DBench-OLTP: Component design and 
properties discussion 
The DBench-OLTP dependability benchmark uses the 
basic setup, the workload, and the performance measures 
specified in the TPC-C and introduces the new 
components mentioned before: measures related to 
dependability and faultload. This section presents and 
discusses the DBench-OLTP dependability benchmark, 
with particular emphasis on the new components.  

3.1   Experimental setup and benchmark procedure 

Figure 1 presents the key elements of the experimental 
setup required to run the DBench-OLTP. As in TPC-C, 
the main elements are the System Under Test (SUT) and 
the Driver System. 

The goal of the driver system is to emulate the client 
applications and respective users and control all the 
aspects of the benchmark run. In DBench-OLTP the 
driver system has been extended to handle the insertion of 
the faultload. Additionally, the driver system also records 
the raw data needed to calculate the benchmark measures 
(measures are computed afterwards by analyzing the 
information collected during the benchmark run). 

The SUT represents a client-server system fully 
configured to run the workload, and whose performance 
and dependability is to be evaluated. From the benchmark 
point of view, the SUT is the set of processing units used 
to run the workload and to store all the data processed. 
That is, given the huge variety of systems and 
configurations used in practice to run OLTP applications, 
the definition of the SUT is tied to the transactional 
workload instead of being defined in a structural way. In 
other words, the SUT can be any (hardware + software) 
system able to run the workload under the conditions 
specified by the benchmark.  

A DBench-OLTP run includes two main phases: 
− Phase 1: First run of the workload without any 

(artificial) faults. This phase corresponds to a TPC-C 
measurement interval (see [11]), and follows the 
requirements specified in the TPC-C standard 
specification. Phase 1 is used to collect the baseline 
performance measures that represent the performance 
of the system with normal optimization settings. The 
idea is to use them in conjunction to the other 
measures (see below) to characterize both the system 
performance and dependability. 

− Phase 2: In this phase the workload is run in the 
presence of the faultload to measure the impact of 
faults on the transaction execution (to evaluate 
specific aspects of the target system dependability). As 
shown in Figure 2, Phase 2 is composed by several 
independent injection slots. An injection slot is a 
measurement interval during which the workload is 
run and one fault from the faultload is injected. 

In order to assure that each injection slot portraits a 
realistic scenario as much as possible, and at the same 
time assures that important properties such result 
repeatability and representativeness of results are met by 
the  DBench-OLTP dependability benchmark, the 
definition of the profile of the injection slot has to follow 
several rules. The following points briefly summarize 
those rules (see also Figure 2): 

1) The SUT state must be explicitly restored in the 
beginning of each injection slot and the effects of the 
faults do not accumulate across different slots.  

2) The tests are conducted with the system in a steady 
state condition, which represents the state in which 
the system is able to maintain its maximum 
transaction processing throughput. The system 
achieves a steady state condition after a given time 
executing transactions (steady state time). 

TPC-C Transactions 
Faults 

Information on 
system behavior 

System  
Under Test

(SUT) 

Driver 
System 

Figure 1 – DBench-OLTP experimental setup.



Recovery 
time 

Phase 1 Phase 2 Time

Injection 
Slot 1 

Injection 
Slot 2 

Injection 
Slot 3 

Injection 
Slot N

Steady 
state 
time 

Keep
time 

Recovery 
start 

Fault 
activation 

Recovery 
end 

Steady state 
condition 

Data 
Integrity 
Testing 

Injection 
time Detection 

time 

Injection  
Slot 
Start 

Injection 
Slot 
End

Figure 2 – Benchmark run and injection slots.

3) Each fault is injected a certain amount of time 
(injection time) after the steady state condition has 
been achieved (this time is specified for each fault in 
the faultload). 

4) The detection time is dependent on the system 
features but it is also dependent on the type of faults. 
Furthermore, for some classes of faults such as 
operator faults, the detection time could be human 
dependent, as in some cases an operator faults can be 
only detected by the system administrator (i.e., 
another operator). In these cases it is necessary to 
assign a typical detection time, which has been 
estimated taking into account the nature of the fault 
and field experience in OLTP system administration.  

5) After that detection time an error diagnostic 
procedure has to be executed to evaluate the effects 
of the fault and the required recovery procedure 
started (if an error is detected).  

6) The recovery time represents the time needed to 
execute the recovery procedure. If no error is 
detected or no recovery is needed, then the recovery 
time is not considered (equal to zero).  

7) When the recovery procedure completes, the 
workload must continue to run during a keep time in 
order to evaluate the system speedup after recovery. 

8) After the workload end, a set of application 
consistency tests must be run to check possible data 
integrity violations caused by the fault injected. The 
integrity tests are performed on the application data 
(i.e., the data in the database tables after running the 
workload) and use both business rules and the 
database metadata to assure a comprehensive test. 

It is worth noting that the duration of each injection slot 
depends on the fault injected and correspondent times 
(steady state time, injection time, detection time, recovery 
time, and keep time). However, the workload must run for 
at least 15 minutes after the steady state condition has 
been achieved, to assure the database run under realistic 
conditions concerning memory and disk accesses. 

3.2 Workload 

The DBench-OLTP dependability benchmark adopts the 
workload of the well-established TPC-C performance 

benchmark, which represents a typical database 
installation. The business represented by TPC-C is 
a wholesale supplier having a number of 
warehouses and their associated sale districts, and 
where the users submit transactions that include 
entering and delivering orders, recording 
payments, checking the status of orders, and 
monitoring the level of stock at the warehouses. 
This workload includes a mixture of read-only and 
update-intensive transactions that simulate the 
activities of most OLTP application environments, 
including transactions resulting from human 
operators working on interactive sessions. The 
TPC-C workload is submitted by the external 

driver system, which emulates all the terminals and their 
emulated users during the benchmark run. 

3.3 Measures 

The DBench-OLTP dependability benchmark measures 
are computed from the information collected during the 
benchmark run and follow the well-established measuring 
philosophy used in the performance benchmark world. In 
fact, the measures provided by existing performance 
benchmarks give relative measures of performance (i.e., 
measures related to the conditions disclosed in the 
benchmark report) that can be used for system 
comparison or for system/component improvement and 
tuning. It is well known that performance benchmark 
results do not represent an absolute measure of 
performance and cannot be used for planning capacity or 
to predict the actual performance of the system in field. In 
a similar way, the measures proposed for this first 
dependability benchmark must be understood as 
benchmark results that can be useful to characterize 
system dependability in a relative fashion (e.g., to 
compare two alternative systems) or to improve/tune the 
system dependability. The proposed set of measures has 
the following characteristics/goals: 
− Focus on the end-user point of view (real end-user and 

database administrators). 
− Focus on measures that can be derived directly from 

experimentation. 
− Allow the characterization of both dependability and 

performance features. 
− Are easy to understandable (in both dependability and 

performance aspects) by database users and database 
administrators. 

All the performance and dependability measures are 
collected from the point of view of the emulated users. In 
other words, the measures correspond to an end-to-end 
characterization of performance and dependability from 
the end-user point of view. 

The DBench-OLTP measures are divided in three 
groups: baseline performance measures, performance 
measures in the presence of the faultload, and 
dependability measures. 



The baseline performance measures are inherited 
from the TPC-C performance benchmark and are obtained 
during Phase 1. These measures include the number of 
transactions executed per minute (tpmC) and price per 
transaction ($/tpmC). The number of transactions 
executed per minute represents the total number of 
completed New Order transactions (one of the 5 types of 
TPC-C transactions) divided by the elapsed time of the 
measurement interval. The price per transaction is a ratio 
between the price and the SUT performance (the system 
price is calculated based in a set of pricing rules provided 
in TPC-C specification and includes hardware, software, 
and system maintenance for a 3 years period). In the 
context of the DBench-OLTP, these measures represent a 
baseline performance instead of optimized pure 
performance (as it is the case of TPC-C), and should 
consider a good compromise between performance and 
dependability. 

The performance measures in the presence of the 
faultload are:  
− Tf: Number of transactions executed per minute in the 

presence of the faultload during Phase 2 (measures the 
impact of faults in the performance and favors systems 
with higher capability of tolerating faults, fast 
recovery time, etc). 

− $/Tf: Price-per-transaction in the presence of the 
faultload during Phase 2 (measures the relative benefit 
of including fault handling mechanisms in the target 
systems in terms of the price). 

The dependability measures reported are: 
− Ne: Number of data errors detected by the consistency 

tests and metadata tests (measures the impact of faults 
on the data integrity). 

− AvtS: Availability from the SUT point-of-view in the 
presence of the faultload during Phase 2 (measures the 
amount of time the system is available from the SUT 
point-of-view). The system is available when it is able 
to respond at least to one terminal within the minimum 
response time defined for each type of transaction by 
the TPC-C benchmark.  The system is unavailable 
when it is not able to respond to any terminal. 

− AvtC – Availability from the end-users (terminals) 
point-of-view in the presence of the faultload during 
Phase 2 (measures the amount of time the system is 
available from the client’s point-of-view). The system 
is available for one terminal if it responds to a 
submitted transaction within the minimum response 
time defined for that type of transaction by the TPC-C 
benchmark. The system is unavailable for that 
terminal if there is no response within that time or if 
an error is returned. 

It is worth noting that in the context of the DBench-OLTP 
benchmark, availability is defined based on the service 
provided by the system. This way, the system is 
considered available when it is able to provide the service 
defined by the transactions. For example, from the client’s 

point-of-view the system is not available if it submits a 
transaction and gets no answer within the specified time 
(see transaction profile in TPC-C specification [11) or 
gets an error. In this case, the unavailability period is 
counted from the moment when a given client submits a 
transaction that fails until the moment when it submits a 
transaction that succeeds. From the server point of view, 
the system is available when it is able to execute 
transactions submitted by the clients. The measures AvtS 
and AvtC are given as a ratio between the amount of time 
the system is available and the Phase 2 duration. 

3.4 Faultload 

The faultload represents a set of faults and stressful 
conditions that emulates real faults experienced by OLTP 
systems in the field. A faultload can be based on three 
major types of faults: operator faults, software faults, and 
hardware faults. Although some of the published studies 
on the analysis of computer failures in the field are not 
directly focused on transactional systems, available 
studies clearly point operator faults and software faults as 
important causes for computer failures [5, 12, 13, 14, 15].  

Operator faults in database systems are database 
administrator mistakes. The great complexity of database 
administration tasks and the need of tuning and 
administration in a daily basis, clearly explains why 
operator faults (i.e., wrong database administrator actions) 
are prevalent in database systems.  

Concerning software faults, in spite of being 
considered an important source of failures, the emulation 
of software faults is still a research issue and there are no 
practical methods (at least well established enough to be 
used in a real dependability benchmark) readily available 
to inject this kind of faults [16, 17,18]. Thus we decided 
to include only operator faults in this first dependability 
benchmark proposal. 

3.4.1   Operator faults in DBMS 

The problem of operator faults in OLTP systems is 
essentially a problem of database administrator mistakes. 
End-user errors are not considered, as the end-user actions 
do not affect directly the dependability of DBMS. 
Database administrators manage all aspects of DBMS. In 
spite of constant efforts to introduce self-maintaining and 
self-administering features in DBMS, database 
administration still is a job heavily based on human 
operators. 

The injection of operator faults in a DBMS can be 
easily achieved by reproducing common database 
administrator mistakes. That is, operator faults can be 
injected in the system by using exactly the same means 
used in the field by the real database administrator. 

Different DBMS include different sets of 
administration tasks and consequently have different sets 
of possible operator faults. However, as shown in [19], it 
is possible to establish equivalence among many operator 



faults in different DBMS. In other words, a faultload 
based on operator faults is fairly portable across typical 
OLTP systems (see [19] for a detailed discussion on 
operator faults portability in three leading DBMS, 
respectively Oracle 8i, Sybase Adaptive Server 12.5, and 
Informix Dynamic Server 9.3). Furthermore, operator 
faults also emulate the high-level hardware failures (e.g., 
disk failures, network failures, etc) normally found in 
OLTP environments. 

3.4.2   Faultload definition 

The types of faults considered for the faultload have been 
chosen based on a estimation of the rate of occurrence, 
ability to emulate the effects of other types of faults (to 
improve the faultload representativeness), diversity of 
impact in the system, complexity of required recovery, 
and portability. The faultload is composed by a number of 
faults from these types, injected in different instants (i.e., 
with different injection times). Table 1 summarizes the 
faultload definition steps. Detailed guidelines to define 
and implement the faultload are provided in the 
benchmark specification [20]. 

As we can see, the faultload depends mainly on the 
size and configuration of the data storage of the system 
under benchmarking (mainly, the files and disks 
configuration). This way, for systems with identical data 
storage configurations (in terms of the number and size of 
files and disks) the faultload to consider is exactly the 

same. For instance, the number of faults to inject from the 
type Delete all files from one disk depends only on the 
number of disks used, which means that two systems with 
the same number of disks will have the same number of 
faults of this type.  

It is important to note that the comparison between 
systems of very different sizes is not a goal of the 
DBench-OLTP dependability benchmark. This way, in a 
given benchmarking campaign the faultload to use is 
normally identical. 

3.5 DBench-OLTP specification overview 

The DBench-OLTP benchmark consists of a specification 
defined in the form of an addendum to the TPC-C 
standard benchmark (see [20]). In order to run the 
DBench-OLTP dependability benchmark it is necessary to 
implement the TPC-C workload in the target system and 
the new benchmark elements (new measures and 
faultload) defined in the DBench-OLTP specification. 

The DBench-OLTP specification follows the well 
accepted style of the TPC-C standard specification, and is 
structured in clauses that define and specify how to 
implement the different components of the benchmark. 
Briefly, the structure of the DBench-OLTP dependability 
benchmark specification is as follows: 
− Clause 1. Preamble: This clause provides an 

introduction to the DBench-OLTP benchmark and to 
the benchmark specification. 

Type of fault Target Detection time

Abrupt operating 
system shutdown 

Ten faults injected at the following injection times: 3, 5, 7, 9, 10, 11, 12, 13, 14, and 15 
minutes. 

0 Seconds  

Abrupt 
transactional 

engine shutdown 
Ten faults injected at the following injection times: 3, 5, 7, 9, 10, 11, 12, 13, 14, and 15 
minutes. 

30 Seconds 

Kill set of user 
sessions 

Five faults injected at the following injection times: 3, 7, 10, 13, and 15 minutes. The set of 
sessions to be killed in each fault injection must be randomly selected during the 
benchmark run and consists of 50% of all the active sessions from the users holding the 
TPC-C tables. 

– 

Delete table 
Three faults for each one of the following TPC-C tables: ware, order, new-order, and 
order-line (a total of 12 faults). The injection times to be considered are the following: 3, 
10, and 15 minutes. 

2 Minutes 

Delete user 
schema 

Three faults using the following injection times: 3, 10, and 15 minutes. The user to be 
considered is the one that holds the TPC-C tables. If the objects are distributed among 
several users then the user holding the greater number of TPC-C tables must be selected. 

1 Minute 

Delete file from 
disk 

The set of faults to inject is defined performing the following steps: 
 For each TPC-C table: 

1) Select randomly 10% of the disk files containing data from the TPC-C table 
being considered (in a minimum of 1). 

2) Inject 3 faults for each disk file selected before, using the following injection 
times: 3, 10, and 15 minutes. 

4 Minutes 

Delete set of files 
from disk 

Three faults for each set of files containing each TPC-C table (a total of 27 faults). The 
injection times are the following: 3, 10, and 15 minutes. 

2 Minutes 

Delete all files 
from one disk 

The set of faults to inject is defined performing the following steps: 
1) Select randomly 10% of the disks containing data from any TPC-C table (in a 

minimum of 1). 
2) Inject 3 faults for each disk selected before, using the following injection times: 

3, 10, and 15 minutes. 

1 Minute 

Table 1 – Faultload definition guidelines. 



− Clause 2. Benchmark Setup: The benchmark setup is 
presented in this clause. The following elements of the 
setup are defined: Test configuration, System Under 
Test (SUT), Driver System, and Driver System/SUT 
Communications Interface. 

− Clause 3. Benchmark Procedure: The benchmarking 
procedure, the phase 1 and phase 2 requirements, and 
the integrity testing requirements are presented in 
clause 3. 

− Clause 4. Measures: This clause defines the measures 
provided by the DBench-OLTP benchmark and gives 
some guidelines on how to compute those measures. 

− Clause 5. Faultload: Clause 5 presents the fault types 
that compose faultload and provides detailed 
guidelines to define and implement the faultload. The 
steps needed to inject the faults are also presented. 

− Clause 6. Full Disclosure Report: Clause 6 specifies 
what needs to be included in the full disclosure report. 
Like in TPC-C performance benchmark, the DBench-
OLTP benchmark requires that all the aspects 
concerning the benchmark implementation are 
disclosed together with the benchmark results.  
To implement the DBench-OLTP dependability 

benchmark, existing code and examples can be adapted to 
new target systems, which greatly simplify the 
implementation process. This way, following the spirit of 
benchmarking, in which it is very important to reproduce 
the experiments (in other sites, in other systems, etc), the 
DBench-OLTP benchmark implementation used in this 
work is available at [21]. This implementation must be 
used together with the TPC-C implementation, following 
the specification available at [11]. 

4.   Dependability benchmarking examples 
using DBench-OLTP  
The benchmarking examples presented in this section 
have resulted from an extensive study meant to validate 
the key properties of the proposed benchmark. All the 
systems represent quite realistic alternatives for small and 
medium size OLTP applications.  

Table 2 shows the systems under benchmarking 
(letters in the most left column will be used later to refer 
to each system). Two different versions of a leading 
commercial DBMS (DB-1 and DB-2), three different 
operating systems (Windows 2000, Windows Xp, and 
SuSE Linux 7.3), and two different hardware platforms 
(one based on a 800 MHz Pentium III with 256 MB of 
RAM and the other on a 2 GHz Pentium IV with 512 MB 
of RAM) have been used. We have decided to keep as 
anonym the brand and the versions of the DBMS to assure 
neutrality and because commercial DBMS licenses do not 
allow in general the publication of performance results. 
Both DB-1 and DB-2 were used in two different 
configurations: Config. A and Config. B. The main 
difference between these two configurations is the size of 
the redo log files (100 MB for Config. A and 1MB for 
Config. B) and the checkpoint frequency (approximately 
6 minutes for Config. A and 4 seconds for Config. B). As 
it is easy to see, Config. A should provide better recovery 
capabilities than Config. B. In fact, as we are particularly 
interested in the validation of our dependability 
benchmark proposal, we use these two configurations to 
check the impact of different tuning on the benchmark 
results, considering both performance and dependability 
measures.   

As mentioned earlier in the paper, the number of faults 
in the faultload is dependent on the size and configuration 
of the data storage of the system under benchmarking. In 
the present benchmarking experiments the configuration 
of the data storage is similar for all systems (the size of 
the database tables and the distribution of files among the 
available disks is almost the same). This way, the 
faultload used to benchmark a given system has exactly 
the same number of faults (and all the faults are 
equivalent) of the faultload used in the other. Table 3 
summarizes that faultload. 

The following sub-sections present and discuss the 
results of the benchmarking process conducted. The 
results are presented in a way that compares different 
alternatives for each one of the main components that 
compose a transactional system (the hardware platform, 
the operating system, and the DBMS) and for the DBMS 

System Operating System DBMS DBMS Config. Hardware 
A Windows 2000 Prof. SP 3 DB-1 Config. A 
B Windows 2000 Prof. SP 3 DB-2 Config. A 
C Windows Xp Prof. SP 1 DB-1 Config. A 
D Windows Xp Prof. SP 1 DB-2 Config. A 
E Windows 2000 Prof. SP 3 DB-1 Config. B 
F Windows 2000 Prof. SP 3 DB-2 Config. B 
G SuSE Linux 7.3 DB-1 Config. A 
H SuSE Linux 7.3 DB-2 Config. A 

•  Processor: Intel Pentium III 800 MHz 
•  Memory: 256MB 
•  Hard Disks: Four 20GB / 7200 rpm 
•  Network: Fast Ethernet 

I Windows 2000 Prof. SP 3 DB-1 Config. A 

J Windows 2000 Prof. SP 3 DB-2 Config. A 

•  Processor: Intel Pentium IV 2 GHz 
•  Memory: 512MB 
•  Hard Disks: Four 20GB / 7200 rpm 
•  Network: Fast Ethernet 

Table 2 – Systems under benchmarking. 



configuration. The last sub-section presents a summary of 
the results and a comparison among the systems under 
benchmarking. 

It is important to note that the system prices used to 
calculate the price per transaction presented are based in 
the set of pricing rules provided in TPC-C specification 
[11]. However, the prices considered in this 
benchmarking process are approximated prices and serve 
only as reference to compare the systems under 
benchmarking. 
 

4.1 Different operating systems and DBMS  

Figure 3 shows the results regarding six different 
transactional systems using two versions of a leading 
commercial DBMS (DB-1 and DB-2), three different 
operating systems (Windows 2000, Windows Xp, and 
SuSE Linux 7.3), and the same hardware platform 
(systems A, B, C, D, G, and H from Table 2). 

As we can see, results show that the baseline 
performance (tpmC) depends both on the DBMS and on 
the operating system used. In fact, a considerable 
difference in the baseline performance is observed for 

systems based in different types of operating systems 
(systems using Windows achieve a better number of 
transactions executed per minute than systems using SuSE 
Linux). For the systems based on the SuSE Linux 
operating system, the baseline performance is similar 
independently of the DBMS used. On the other hand, for 
the systems based on Windows the baseline performance 
depends mainly on the DBMS and the same DBMS 
running over different Windows operating systems 
present a similar baseline performance. In terms of the 
price per transaction ($/tpmC), and in spite of being less 
expensive, the systems based on SuSE Linux present the 
higher prices per transaction (due to the poor performance 
reached). Considering only systems running Windows, 
the more expensive ones (using the DB-2 DBMS) present 
a lower price per transaction than the less expensive ones 
(using the DB-1 DBMS), due to the better performance 
achieved. 

Concerning the performance measures in the presence 
of faults, results show that the number of transactions 
executed per minute (Tf) also depends on the operating 
system and on the DBMS used. For the systems running 
DB-1, Windows Xp is clearly more effective than 
Windows 2000 and for the systems running DB-2 the 
reverse seems to occur (however, the small difference in 
the results for the systems using the DB-2 DBMS does 
not allow a solid conclusion). On the other hand, and as 
happened with baseline performance, the transactional 
systems based on the SuSE Linux operating system 
present similar results, independently of the DBMS used 
(which are also the worst results).  

In terms of the price per transaction ($/Tf), the less 
expensive systems (systems A, G and H) have the worst 
results (due to their poor performance in the presence of 
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Figure 3 – Benchmarking results for systems using different DBMS and operating systems. 

Type of fault # of faults % of faults
Abrupt operating system shutdown 10 10.3 
Abrupt transactional engine shutdown 10 10.3 
Kill set of user sessions 5 5.2 
Delete table 12 12.4 
Delete user schema 3 3.1 
Delete file from disk 27 27.8 
Delete set of files from disk 27 27.8 
Delete all files from one disk 3 3.1 
Total 97 100 

Table 3 – Faultload used in the experiments. 



faults) and the two systems based on DB-2 over 
Windows, although of having the same $/tpmC, present 
quite different prices per transaction in the presence of 
faults.  

Regarding the dependability measures, results show 
that the availability observed for the systems running 
DB-1 over Windows Xp is better than over SuSE Linux, 
which in turn is better than Windows 2000. Considering 
only Windows operating systems, a similar result has 
been observed for the systems running DB-2. For the 
system based on the DB-2 DBMS running over SuSE 
Linux (system H), the availability is much higher than for 
any other system, which means that, although of being a 
slow system, it recovers from faults faster than the others 
(increasing the unavailability time). 

An important aspect concerning the dependability 
features of the systems is that no data integrity errors (Ne) 
were detected, which shows that the DBMS transactional 
engine is very effective in handling faults caused by the 
operator. 

4.2 Different DBMS configurations 

Figure 4 compares four different transactional systems 
using two versions of a leading commercial DBMS (DB-1 
and DB-2) running over the Windows 2000 operating 
system and using the same hardware platform (systems A, 
B, E, and F from Table 2). In these experiments, each 
DBMS was tested using two different configurations of 
the recovery mechanisms. As mentioned before, the main 
difference between these two configurations is the size of 
the redo log files (100 MB for Config. A and 1MB for 
Config. B) and the checkpoint frequency (approximately 
6 minutes for Config. A and 4 seconds for Config. B). 

Results show that Config. A is better than Config. B in 
both DB-1 and DB-2. 

It is worth noting, that the use of Config. B in DB-1 
leads to smaller losses (comparatively to Config. A) than 
in DB-2. For instance, while the tpmC decreases 37.1% 
from Config. A to Config. B in DB-1, it decreases 38.7% 
in DB-2. A similar behavior can be observed for all the 
other measures except AvtS. Table 4 summarizes the 
results for Config. A and Config. B in both DBMS and 
shows the results variation from Config. A to Config. B 
(note that the increase of $/tpmC and $/Tf represents an 
increasing of the price per transaction, which is a bad 
result). 

 

4.3 Different hardware platforms 

In order to assess the impact of the hardware platform in a 
transactional system, Figure 5 compares four different 
systems using two versions of a leading commercial 
DBMS (DB-1 and DB-2) running over the Windows 2000 
operating system and using two different hardware 
platforms (systems A, B, I, and J from Table 2). The main 
differences between these two platforms are the CPU used 
and the amount of RAM available (one of the hardware 
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Figure 4 – Benchmarking results for systems using two different DBMS configurations. 

 DB-1 DB-2 
Measures Conf. A Conf. B Var. Conf. A Conf. B Var. 
tpmC 2244 1411 -37,1 % 2493 1529 -38,7 %
$/tpmC 12 19,1 +59,2 % 11,6 19 +63,8 %
Tf 1525 896 -41,2 % 1818 969 -46,7 %
$/Tf 17,7 30,1 +70,1 % 16 29,9 +86,9 %
AvtS 86,1 74,2 -13,8 % 87,2 76,6 -12,2 %
AvtC 75,4 68,7 -8,9 % 79,5 69,7 -12,3 %

Table 4 – Results variation using two different DBMS 
configurations. 



platforms is based on a 800 MHz Pentium III with 256 
MB of RAM and the other is based on a 2 GHz Pentium 
IV with 512 MB of RAM). It is important to note that the 
DBMS has been configured to use different amounts of 
memory according to the size of the RAM available. As 
expected, results show that the hardware platform based 
on the Pentium IV presents better performance results 
(baseline and in the presence of faults) than the hardware 
platform based on the Pentium III. However, concerning 
dependability measures the hardware platform has some 
impact but it is not as visible as for the other measures. 

4.4 Results summary 

In the previous sub-sections, we have compared different 
alternatives for each one of the main components of an 
OLTP system (the hardware platform, the operating 
system, and the DBMS). In this sub-section we present a 
summary of the results and propose a ranking for the 
systems under benchmarking. 

Figure 6 shows the DBench-OLTP results for all 
systems (see Table 2 for the correspondence between the 
labels in the X axis and the systems under benchmarking). 
As we can see, the baseline performance and the 
performance in the presence of faults are strongly 
dependent on the hardware platform and DBMS 
configuration used. The DBMS and operating system 
have a lower impact. 

An interesting result is that availability depends 
mainly on the DBMS configuration. In fact, systems with 
the same DBMS configuration present a similar level of 
availability, independently of the hardware platform, 
operating system and DBMS used. Another interesting 
result is that the availability from the clients point-of-view 
(AvtC) is always much lower than the availability from 

the server point-of-view (AvtS), which seems to be 
normal because some types of faults affect the system in a 
partial way (e.g., when a given file is removed from disk 
only the transactions that need to access to the data stored 
in that file are affected). 

Table 5 summarizes the ranking proposed according to 
several criteria. Concerning a global ranking, the analysis 
of Table 5 and all the results presented before allow us to 
propose the following order (from the best to the worst): I, 
J, D, B, C, H, G, A, F, and E. It is important to note that 
the global ranking always depends on the benchmark 
performer point-of-view (i.e., depends on what he is 
looking for). 

 

5.   Benchmark execution effort  
Usually benchmarking is seen as an expensive and 
laborious process. During the course of the present work, 
we had the opportunity to assess the necessary effort to 
implement the benchmark and to conduct the 
benchmarking process. Several indicators have been 
collected, such as: the time needed to implement the 
TPC-C benchmark, the time needed to implement the 
DBench-OLTP benchmark, and the time needed to 
conduct the benchmarking process. Table 6 summarizes 
the observations in terms of the number of working days 
of one experienced person. 
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Figure 5 – Benchmarking results for systems using two different hardware platforms. 

Criteria System Ranking  
(best to worst) 

Baseline performance (tpmC) J, I, D, B, C, A, G, H, F, E
Performance with faults (Tf) J, I, B, D, C, A, G, H, F, E
Availability (AvtS and AvtC) H, I, D, J, C, B, G, A, F, E
Table 5 – Systems ranking according to several criteria. 



As we can see, although being the most complex task, 
the implementation of the TPC-C benchmark tokes only 
about 10 days. This was possible due to the reuse of 
existing code and examples from several previous imple-
mentations. In a normal situation the TPC-C implementa-
tion alone could take more than 30 working days. 

Comparing to TPC-C, the DBench-OLTP benchmark 
presents a similar implementation time. However, as for 
TPC-C we can reduce the effort needed to implement this 
dependability benchmark by reusing code from previous 
implementations (in our case this was not possible 
because this was the first implementation of this 
benchmark).  

 
Type of fault # of days 

TPC-C benchmark implementation 10 
DBench-OLTP benchmark implementation 10 
Benchmarking process execution 30 
Total time 50 
Average time per system 5 

Table 6 – Benchmark execution effort. 

Concerning the time needed to conduct the 
benchmarking process, the effort was very low, mainly 
because the benchmark run is fully automatic. In fact, 
considering the class of systems used in this work we 
have been able to benchmark ten different systems in 
about one month. The ratio between the total effort and 
number of systems benchmarked is of about 5 working 
days. However, it is important to note that this ratio 
decreases when the number of systems under 
benchmarking increases (e.g., if instead of having 
benchmarked ten transactional systems we had 
benchmarked twenty, the average time would decrease 

from 5 to about 4 working days). Thus, we can conclude 
that after having the benchmark implemented (TPC-C and 
DBench-OLTP) the effort needed to benchmark 
additional systems is relatively small. 

6.   Conclusions  
This paper proposes a new dependability benchmark for 
OLTP application environments – the DBench-OLTP 
dependability benchmark. This benchmark specifies the 
measures and all the steps required to evaluate both the 
performance and key dependability features of OLTP 
systems. The DBench-OLTP uses the basic setup, the 
workload, and the performance measures specified in the 
TPC-C performance benchmark, and adds two new 
elements: 1) measures related to dependability; and 2) a 
faultload based on operator faults. 

Several different transactional systems have been 
benchmarked using the DBench-OLTP benchmark. Two 
different versions of a leading commercial DBMS (DB-1 
and DB-2), three different operating systems (Windows 
2000, Windows Xp, and SuSE Linux 7.3), and two 
different hardware platforms (one based on a 800 MHz 
Pentium III with 256 MB of RAM and the other on a 2 
GHz Pentium IV with 512 MB of RAM) have been used. 
Concerning the DBMS, two different configurations have 
been considered for each DBMS version. The results 
obtained were analyzed and discussed in detail. These 
results allowed us to rank the systems under 
benchmarking concerning both performance and 
dependability and clearly show that dependability 
benchmarking can be successfully applied to OLTP 
application environments. 

The paper ends with a discussion on the effort 
required to run the DBench-OLTP dependability 
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Figure 6 – Benchmarking results summary. 



benchmark. From the indicators collected during this 
work, we could observe that that effort is not an obstacle 
for not using this kind of tools on small and medium size 
transactional systems evaluation and comparison. 
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