
A Dependability Benchmark for OLTP
Application Environments

Marco Vieira

ISEC/CISUC - Polytechnic Institute of Coimbra
3030 Coimbra

Portugal
mvieira@isec.pt

Henrique Madeira

DEI/CISUC - University of Coimbra
3030 Coimbra

Portugal
henrique@dei.uc.pt

Abstract
The ascendance of networked information in our
economy and daily lives has increased the
awareness of the importance of dependability
features. OLTP (On-Line Transaction Process-
ing) systems constitute the kernel of the informa-
tion systems used today to support the daily
operations of most of the business. Although
these systems comprise the best examples of
complex business-critical systems, no practical
way has been proposed so far to characterize the
impact of faults in such systems or to compare
alternative solutions concerning dependability
features. This paper proposes a dependability
benchmark for OLTP systems. This
dependability benchmark uses the workload of
the TPC-C performance benchmark and specifies
the measures and all the steps required to evaluate
both the performance and key dependability
features of OLTP systems, with emphasis on
availability. This dependability benchmark is
presented through a concrete example of bench-
marking the performance and dependability of
several different transactional systems configura-
tions. The effort required to run the dependability
benchmark is also discussed in detail.

1. Introduction
This paper proposes a dependability benchmark for On-
Line Transaction Processing (OLTP) systems. The goal of
this benchmark is to provide a practical way to measure

both performance and dependability features (with
emphasis on availability) of OLTP systems. These
systems constitute the kernel of the information systems
used today to support the daily operations of most of the
businesses and comprise some of the best examples of
business-critical applications. However, in spite of the
pertinence of having dependability benchmarks for this
important class of systems, the reality is that no
dependability benchmark (or even a really practical
approach to characterize dependability features such as
availability) has been proposed so far, in a clear contrast
with the benchmark of performance, where the Processing
Performance Council (TPC) organization has started long
ago a family of performance benchmarks.1

Database Management Systems (DBMS), which are
the kernel of OLTP systems, have a long tradition in high
dependability, particularly in what concerns to data
integrity and recovery aspects. However, in most of the
DBMS the effectiveness of the recovery mechanisms is
very dependent on the actual configuration chosen by the
database administrator. The problem is complex, as tuning
a large database is a very difficult task and database
administrators tend to concentrate on performance tuning,
often disregarding the recovery mechanisms. The constant
demands for increased performance from the end-users
and the fact that database administrators seldom have
feedback on how good a given configuration is
concerning recovery (because faults are relatively rare
events) largely explain the present scenario.

Performance benchmarks such as the TPC benchmarks
have contributed to improve peak performance of
successive generations of DBMS, but in many cases the
systems and configurations used to achieve the best
performance are very far from the systems that are
actually used in practice. The fact that many businesses
require very high availability for their database servers

1 Funding for this paper was provided, in part, by Portuguese
Government/European Union through R&D Unit 326/94 (CISUC) and
by DBench Project, IST 2000 - 25425 DBENCH, funded by the
European Union.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

(including small servers used in many e-commerce
applications) shows that it is necessary to shift the focus
from measuring pure performance to the measurement of
both performance and recoverability. This is just the goal
of the dependability benchmark proposed in this paper.

Computer benchmarking is primarily an experimental
approach. As an experiment, its acceptability is largely
based on two salient facets of the experimental method: 1)
the ability to reproduce the observations and the
measurements, either on a deterministic or on a statistical
basis, and 2) the capability of generalizing the results
through some form of inductive reasoning. The first
aspect (ability to reproduce) gives confidence in the
benchmark results and the second (ability to generalize)
makes the benchmark results meaningful and useful
beyond the specific set up used in the benchmark process.

In practice, benchmark results are normally
reproducible in a statistical basis. On the other hand, the
necessary generalization of the results is inherently related
to the representativeness of the benchmark experiments.
The notion of representativeness is manifold and touches
almost all the aspects of benchmarking, as it really means
that the conditions used to obtain the measures are
representative of what can be found in the real world.

The key aspect that distinguishes benchmarking from
existing evaluation and validation techniques is that a
benchmark fundamentally represents an agreement
(explicit or tacit) that is accepted by the computer industry
and by the user community. This technical agreement is in
fact the key that turns a benchmark into a standard. In
other words, a benchmark is something that the user
community and the computer industry accept as
representative enough of a given application domain to be
deemed useful and to be generally used as a (standard)
way of measuring specific features of a computer system
and, consequently, a way to compare different systems.

The concept of benchmarking can then be summarized
in three words: representativeness, usefulness, and
agreement. A benchmark must be as representative as
possible of a given domain but, as an abstraction of that
domain, it will always be an imperfect representation of
reality. However, the objective is to find a useful
representation that captures the essential elements of the
given domain and provides practical ways to characterize
the computer features that help the vendors/integrators to
improve their products and help the users in their
purchase decisions.

A dependability benchmark can then be defined as a
specification of a standard procedure to assess
dependability related measures of a computer system or
computer component. Given the agreement nature of all
benchmarks, it is obvious that a real dependability
benchmark can only be established by the computer
industry or by the user community. Nevertheless, the
dependability benchmark proposed in this paper shows a
possible path to benchmark the dependability of OLTP
systems and contributes this way to the technical

discussion required to create the conditions for the
establishment of actual dependability benchmarks.

The paper is structured into six sections. Section 2
presents the key components and the main properties of a
dependability benchmark for OLTP systems. Section 3
presents the DBench-OLTP dependability benchmark,
discussing and justifying at the same time the most
relevant design choices. Section 4 presents several
benchmarking examples that have resulted from an
extensive study meant to validate the key properties of the
proposed dependability benchmark. Section 5 discusses
the effort required to run this benchmark and section 6
concludes the paper.

2. Benchmarking dependability in OLTP
application environments
A typical OLTP environment consists of a number of
users managing their transactions via a terminal or a
desktop computer connected to a database management
system (DBMS) via a local area network or through the
Web. An OLTP system is thus a typically client-server
system or a multi-tier system. In a simplified approach,
the server is composed by three main components: the
hardware platform (including the disk subsystem), the
operating system, and the transactional engine. Most of
the transactional systems available today use a DBMS as
transactional engine, which is in practice the main
component of any OLTP systems, assuring not only the
transactional properties but also the recovery mechanisms.

Dependability is an integrative concept that includes
the following attributes [1, 2]:
− Availability: readiness for correct service.
− Reliability: continuity of correct service.
− Safety: absence of catastrophic consequences on the

user(s) and the environment.
− Confidentiality: absence of unauthorised disclosure of

information.
− Integrity: absence of improper system state alterations.
− Maintainability: ability to undergo repairs and

modifications.
Among all the possible dependability attributes,
availability is one of the most relevant in databases and
OLTP systems in general. Thus, the proposed benchmark
is particularly focused on the availability of the system
under benchmark.

The main problem in measuring the availability of a
given computer system or component is that this measure
is very dependent on the fault probability, which is
dependent on many factors, either internal to the system
(hardware and software) or external (environment or
human made). Assessing system availability is in fact a
very difficult problem and has been addressed in the
dependability research community by using both model-
based and measurement-based techniques. The former
include analytical [3] and simulation [4] techniques and

the latter include field measurement [5], fault injection [6,
7] and robustness testing [8, 9].

Our proposal to dependability benchmarking is mainly
inspired on measurement-based techniques. Comparing to
well-established performance benchmarks, this new type
of benchmarks includes two new elements: 1) the
measures related to dependability and 2) the faultload.
In this way, the main components of the proposed
dependability benchmark are:
− Workload: represents the work that the system must

perform during the benchmark run.
− Faultload: represents a set of faults and stressful

conditions that emulate real faults experienced by
OLTP systems in the field.

− Measures: characterize the performance and
dependability of the system under benchmark in the
presence of the faultload when executing the workload.
The measures must be easy to understand and must
allow the comparison between different systems.

− Benchmark procedure and rules: description of the
procedures and rules that must be followed during a
benchmark run.

− Experimental setup: describes the setup required to
run the benchmark.

In addition to the repeatability and representativeness
properties mentioned before, benchmark portability [10]
is also a very important property. In the DBench-OLTP
the faultload is clearly the most problematic component
concerning portability, as it is necessary to assure that the
faults used in the faultload are equivalent across the
different target systems (see section 3.4).

3. DBench-OLTP: Component design and
properties discussion
The DBench-OLTP dependability benchmark uses the
basic setup, the workload, and the performance measures
specified in the TPC-C and introduces the new
components mentioned before: measures related to
dependability and faultload. This section presents and
discusses the DBench-OLTP dependability benchmark,
with particular emphasis on the new components.

3.1 Experimental setup and benchmark procedure

Figure 1 presents the key elements of the experimental
setup required to run the DBench-OLTP. As in TPC-C,
the main elements are the System Under Test (SUT) and
the Driver System.

The goal of the driver system is to emulate the client
applications and respective users and control all the
aspects of the benchmark run. In DBench-OLTP the
driver system has been extended to handle the insertion of
the faultload. Additionally, the driver system also records
the raw data needed to calculate the benchmark measures
(measures are computed afterwards by analyzing the
information collected during the benchmark run).

The SUT represents a client-server system fully
configured to run the workload, and whose performance
and dependability is to be evaluated. From the benchmark
point of view, the SUT is the set of processing units used
to run the workload and to store all the data processed.
That is, given the huge variety of systems and
configurations used in practice to run OLTP applications,
the definition of the SUT is tied to the transactional
workload instead of being defined in a structural way. In
other words, the SUT can be any (hardware + software)
system able to run the workload under the conditions
specified by the benchmark.

A DBench-OLTP run includes two main phases:
− Phase 1: First run of the workload without any

(artificial) faults. This phase corresponds to a TPC-C
measurement interval (see [11]), and follows the
requirements specified in the TPC-C standard
specification. Phase 1 is used to collect the baseline
performance measures that represent the performance
of the system with normal optimization settings. The
idea is to use them in conjunction to the other
measures (see below) to characterize both the system
performance and dependability.

− Phase 2: In this phase the workload is run in the
presence of the faultload to measure the impact of
faults on the transaction execution (to evaluate
specific aspects of the target system dependability). As
shown in Figure 2, Phase 2 is composed by several
independent injection slots. An injection slot is a
measurement interval during which the workload is
run and one fault from the faultload is injected.

In order to assure that each injection slot portraits a
realistic scenario as much as possible, and at the same
time assures that important properties such result
repeatability and representativeness of results are met by
the DBench-OLTP dependability benchmark, the
definition of the profile of the injection slot has to follow
several rules. The following points briefly summarize
those rules (see also Figure 2):

1) The SUT state must be explicitly restored in the
beginning of each injection slot and the effects of the
faults do not accumulate across different slots.

2) The tests are conducted with the system in a steady
state condition, which represents the state in which
the system is able to maintain its maximum
transaction processing throughput. The system
achieves a steady state condition after a given time
executing transactions (steady state time).

TPC-C Transactions
Faults

Information on
system behavior

System
Under Test

(SUT)

Driver
System

Figure 1 – DBench-OLTP experimental setup.

Recovery
time

Phase 1 Phase 2 Time

Injection
Slot 1

Injection
Slot 2

Injection
Slot 3

Injection
Slot N

Steady
state
time

Keep
time

Recovery
start

Fault
activation

Recovery
end

Steady state
condition

Data
Integrity
Testing

Injection
time Detection

time

Injection
Slot
Start

Injection
Slot
End

Figure 2 – Benchmark run and injection slots.

3) Each fault is injected a certain amount of time
(injection time) after the steady state condition has
been achieved (this time is specified for each fault in
the faultload).

4) The detection time is dependent on the system
features but it is also dependent on the type of faults.
Furthermore, for some classes of faults such as
operator faults, the detection time could be human
dependent, as in some cases an operator faults can be
only detected by the system administrator (i.e.,
another operator). In these cases it is necessary to
assign a typical detection time, which has been
estimated taking into account the nature of the fault
and field experience in OLTP system administration.

5) After that detection time an error diagnostic
procedure has to be executed to evaluate the effects
of the fault and the required recovery procedure
started (if an error is detected).

6) The recovery time represents the time needed to
execute the recovery procedure. If no error is
detected or no recovery is needed, then the recovery
time is not considered (equal to zero).

7) When the recovery procedure completes, the
workload must continue to run during a keep time in
order to evaluate the system speedup after recovery.

8) After the workload end, a set of application
consistency tests must be run to check possible data
integrity violations caused by the fault injected. The
integrity tests are performed on the application data
(i.e., the data in the database tables after running the
workload) and use both business rules and the
database metadata to assure a comprehensive test.

It is worth noting that the duration of each injection slot
depends on the fault injected and correspondent times
(steady state time, injection time, detection time, recovery
time, and keep time). However, the workload must run for
at least 15 minutes after the steady state condition has
been achieved, to assure the database run under realistic
conditions concerning memory and disk accesses.

3.2 Workload

The DBench-OLTP dependability benchmark adopts the
workload of the well-established TPC-C performance

benchmark, which represents a typical database
installation. The business represented by TPC-C is
a wholesale supplier having a number of
warehouses and their associated sale districts, and
where the users submit transactions that include
entering and delivering orders, recording
payments, checking the status of orders, and
monitoring the level of stock at the warehouses.
This workload includes a mixture of read-only and
update-intensive transactions that simulate the
activities of most OLTP application environments,
including transactions resulting from human
operators working on interactive sessions. The
TPC-C workload is submitted by the external

driver system, which emulates all the terminals and their
emulated users during the benchmark run.

3.3 Measures

The DBench-OLTP dependability benchmark measures
are computed from the information collected during the
benchmark run and follow the well-established measuring
philosophy used in the performance benchmark world. In
fact, the measures provided by existing performance
benchmarks give relative measures of performance (i.e.,
measures related to the conditions disclosed in the
benchmark report) that can be used for system
comparison or for system/component improvement and
tuning. It is well known that performance benchmark
results do not represent an absolute measure of
performance and cannot be used for planning capacity or
to predict the actual performance of the system in field. In
a similar way, the measures proposed for this first
dependability benchmark must be understood as
benchmark results that can be useful to characterize
system dependability in a relative fashion (e.g., to
compare two alternative systems) or to improve/tune the
system dependability. The proposed set of measures has
the following characteristics/goals:
− Focus on the end-user point of view (real end-user and

database administrators).
− Focus on measures that can be derived directly from

experimentation.
− Allow the characterization of both dependability and

performance features.
− Are easy to understandable (in both dependability and

performance aspects) by database users and database
administrators.

All the performance and dependability measures are
collected from the point of view of the emulated users. In
other words, the measures correspond to an end-to-end
characterization of performance and dependability from
the end-user point of view.

The DBench-OLTP measures are divided in three
groups: baseline performance measures, performance
measures in the presence of the faultload, and
dependability measures.

The baseline performance measures are inherited
from the TPC-C performance benchmark and are obtained
during Phase 1. These measures include the number of
transactions executed per minute (tpmC) and price per
transaction ($/tpmC). The number of transactions
executed per minute represents the total number of
completed New Order transactions (one of the 5 types of
TPC-C transactions) divided by the elapsed time of the
measurement interval. The price per transaction is a ratio
between the price and the SUT performance (the system
price is calculated based in a set of pricing rules provided
in TPC-C specification and includes hardware, software,
and system maintenance for a 3 years period). In the
context of the DBench-OLTP, these measures represent a
baseline performance instead of optimized pure
performance (as it is the case of TPC-C), and should
consider a good compromise between performance and
dependability.

The performance measures in the presence of the
faultload are:
− Tf: Number of transactions executed per minute in the

presence of the faultload during Phase 2 (measures the
impact of faults in the performance and favors systems
with higher capability of tolerating faults, fast
recovery time, etc).

− $/Tf: Price-per-transaction in the presence of the
faultload during Phase 2 (measures the relative benefit
of including fault handling mechanisms in the target
systems in terms of the price).

The dependability measures reported are:
− Ne: Number of data errors detected by the consistency

tests and metadata tests (measures the impact of faults
on the data integrity).

− AvtS: Availability from the SUT point-of-view in the
presence of the faultload during Phase 2 (measures the
amount of time the system is available from the SUT
point-of-view). The system is available when it is able
to respond at least to one terminal within the minimum
response time defined for each type of transaction by
the TPC-C benchmark. The system is unavailable
when it is not able to respond to any terminal.

− AvtC – Availability from the end-users (terminals)
point-of-view in the presence of the faultload during
Phase 2 (measures the amount of time the system is
available from the client’s point-of-view). The system
is available for one terminal if it responds to a
submitted transaction within the minimum response
time defined for that type of transaction by the TPC-C
benchmark. The system is unavailable for that
terminal if there is no response within that time or if
an error is returned.

It is worth noting that in the context of the DBench-OLTP
benchmark, availability is defined based on the service
provided by the system. This way, the system is
considered available when it is able to provide the service
defined by the transactions. For example, from the client’s

point-of-view the system is not available if it submits a
transaction and gets no answer within the specified time
(see transaction profile in TPC-C specification [11) or
gets an error. In this case, the unavailability period is
counted from the moment when a given client submits a
transaction that fails until the moment when it submits a
transaction that succeeds. From the server point of view,
the system is available when it is able to execute
transactions submitted by the clients. The measures AvtS
and AvtC are given as a ratio between the amount of time
the system is available and the Phase 2 duration.

3.4 Faultload

The faultload represents a set of faults and stressful
conditions that emulates real faults experienced by OLTP
systems in the field. A faultload can be based on three
major types of faults: operator faults, software faults, and
hardware faults. Although some of the published studies
on the analysis of computer failures in the field are not
directly focused on transactional systems, available
studies clearly point operator faults and software faults as
important causes for computer failures [5, 12, 13, 14, 15].

Operator faults in database systems are database
administrator mistakes. The great complexity of database
administration tasks and the need of tuning and
administration in a daily basis, clearly explains why
operator faults (i.e., wrong database administrator actions)
are prevalent in database systems.

Concerning software faults, in spite of being
considered an important source of failures, the emulation
of software faults is still a research issue and there are no
practical methods (at least well established enough to be
used in a real dependability benchmark) readily available
to inject this kind of faults [16, 17,18]. Thus we decided
to include only operator faults in this first dependability
benchmark proposal.

3.4.1 Operator faults in DBMS

The problem of operator faults in OLTP systems is
essentially a problem of database administrator mistakes.
End-user errors are not considered, as the end-user actions
do not affect directly the dependability of DBMS.
Database administrators manage all aspects of DBMS. In
spite of constant efforts to introduce self-maintaining and
self-administering features in DBMS, database
administration still is a job heavily based on human
operators.

The injection of operator faults in a DBMS can be
easily achieved by reproducing common database
administrator mistakes. That is, operator faults can be
injected in the system by using exactly the same means
used in the field by the real database administrator.

Different DBMS include different sets of
administration tasks and consequently have different sets
of possible operator faults. However, as shown in [19], it
is possible to establish equivalence among many operator

faults in different DBMS. In other words, a faultload
based on operator faults is fairly portable across typical
OLTP systems (see [19] for a detailed discussion on
operator faults portability in three leading DBMS,
respectively Oracle 8i, Sybase Adaptive Server 12.5, and
Informix Dynamic Server 9.3). Furthermore, operator
faults also emulate the high-level hardware failures (e.g.,
disk failures, network failures, etc) normally found in
OLTP environments.

3.4.2 Faultload definition

The types of faults considered for the faultload have been
chosen based on a estimation of the rate of occurrence,
ability to emulate the effects of other types of faults (to
improve the faultload representativeness), diversity of
impact in the system, complexity of required recovery,
and portability. The faultload is composed by a number of
faults from these types, injected in different instants (i.e.,
with different injection times). Table 1 summarizes the
faultload definition steps. Detailed guidelines to define
and implement the faultload are provided in the
benchmark specification [20].

As we can see, the faultload depends mainly on the
size and configuration of the data storage of the system
under benchmarking (mainly, the files and disks
configuration). This way, for systems with identical data
storage configurations (in terms of the number and size of
files and disks) the faultload to consider is exactly the

same. For instance, the number of faults to inject from the
type Delete all files from one disk depends only on the
number of disks used, which means that two systems with
the same number of disks will have the same number of
faults of this type.

It is important to note that the comparison between
systems of very different sizes is not a goal of the
DBench-OLTP dependability benchmark. This way, in a
given benchmarking campaign the faultload to use is
normally identical.

3.5 DBench-OLTP specification overview

The DBench-OLTP benchmark consists of a specification
defined in the form of an addendum to the TPC-C
standard benchmark (see [20]). In order to run the
DBench-OLTP dependability benchmark it is necessary to
implement the TPC-C workload in the target system and
the new benchmark elements (new measures and
faultload) defined in the DBench-OLTP specification.

The DBench-OLTP specification follows the well
accepted style of the TPC-C standard specification, and is
structured in clauses that define and specify how to
implement the different components of the benchmark.
Briefly, the structure of the DBench-OLTP dependability
benchmark specification is as follows:
− Clause 1. Preamble: This clause provides an

introduction to the DBench-OLTP benchmark and to
the benchmark specification.

Type of fault Target Detection time

Abrupt operating
system shutdown

Ten faults injected at the following injection times: 3, 5, 7, 9, 10, 11, 12, 13, 14, and 15
minutes.

0 Seconds

Abrupt
transactional

engine shutdown
Ten faults injected at the following injection times: 3, 5, 7, 9, 10, 11, 12, 13, 14, and 15
minutes.

30 Seconds

Kill set of user
sessions

Five faults injected at the following injection times: 3, 7, 10, 13, and 15 minutes. The set of
sessions to be killed in each fault injection must be randomly selected during the
benchmark run and consists of 50% of all the active sessions from the users holding the
TPC-C tables.

–

Delete table
Three faults for each one of the following TPC-C tables: ware, order, new-order, and
order-line (a total of 12 faults). The injection times to be considered are the following: 3,
10, and 15 minutes.

2 Minutes

Delete user
schema

Three faults using the following injection times: 3, 10, and 15 minutes. The user to be
considered is the one that holds the TPC-C tables. If the objects are distributed among
several users then the user holding the greater number of TPC-C tables must be selected.

1 Minute

Delete file from
disk

The set of faults to inject is defined performing the following steps:
 For each TPC-C table:

1) Select randomly 10% of the disk files containing data from the TPC-C table
being considered (in a minimum of 1).

2) Inject 3 faults for each disk file selected before, using the following injection
times: 3, 10, and 15 minutes.

4 Minutes

Delete set of files
from disk

Three faults for each set of files containing each TPC-C table (a total of 27 faults). The
injection times are the following: 3, 10, and 15 minutes.

2 Minutes

Delete all files
from one disk

The set of faults to inject is defined performing the following steps:
1) Select randomly 10% of the disks containing data from any TPC-C table (in a

minimum of 1).
2) Inject 3 faults for each disk selected before, using the following injection times:

3, 10, and 15 minutes.

1 Minute

Table 1 – Faultload definition guidelines.

− Clause 2. Benchmark Setup: The benchmark setup is
presented in this clause. The following elements of the
setup are defined: Test configuration, System Under
Test (SUT), Driver System, and Driver System/SUT
Communications Interface.

− Clause 3. Benchmark Procedure: The benchmarking
procedure, the phase 1 and phase 2 requirements, and
the integrity testing requirements are presented in
clause 3.

− Clause 4. Measures: This clause defines the measures
provided by the DBench-OLTP benchmark and gives
some guidelines on how to compute those measures.

− Clause 5. Faultload: Clause 5 presents the fault types
that compose faultload and provides detailed
guidelines to define and implement the faultload. The
steps needed to inject the faults are also presented.

− Clause 6. Full Disclosure Report: Clause 6 specifies
what needs to be included in the full disclosure report.
Like in TPC-C performance benchmark, the DBench-
OLTP benchmark requires that all the aspects
concerning the benchmark implementation are
disclosed together with the benchmark results.
To implement the DBench-OLTP dependability

benchmark, existing code and examples can be adapted to
new target systems, which greatly simplify the
implementation process. This way, following the spirit of
benchmarking, in which it is very important to reproduce
the experiments (in other sites, in other systems, etc), the
DBench-OLTP benchmark implementation used in this
work is available at [21]. This implementation must be
used together with the TPC-C implementation, following
the specification available at [11].

4. Dependability benchmarking examples
using DBench-OLTP
The benchmarking examples presented in this section
have resulted from an extensive study meant to validate
the key properties of the proposed benchmark. All the
systems represent quite realistic alternatives for small and
medium size OLTP applications.

Table 2 shows the systems under benchmarking
(letters in the most left column will be used later to refer
to each system). Two different versions of a leading
commercial DBMS (DB-1 and DB-2), three different
operating systems (Windows 2000, Windows Xp, and
SuSE Linux 7.3), and two different hardware platforms
(one based on a 800 MHz Pentium III with 256 MB of
RAM and the other on a 2 GHz Pentium IV with 512 MB
of RAM) have been used. We have decided to keep as
anonym the brand and the versions of the DBMS to assure
neutrality and because commercial DBMS licenses do not
allow in general the publication of performance results.
Both DB-1 and DB-2 were used in two different
configurations: Config. A and Config. B. The main
difference between these two configurations is the size of
the redo log files (100 MB for Config. A and 1MB for
Config. B) and the checkpoint frequency (approximately
6 minutes for Config. A and 4 seconds for Config. B). As
it is easy to see, Config. A should provide better recovery
capabilities than Config. B. In fact, as we are particularly
interested in the validation of our dependability
benchmark proposal, we use these two configurations to
check the impact of different tuning on the benchmark
results, considering both performance and dependability
measures.

As mentioned earlier in the paper, the number of faults
in the faultload is dependent on the size and configuration
of the data storage of the system under benchmarking. In
the present benchmarking experiments the configuration
of the data storage is similar for all systems (the size of
the database tables and the distribution of files among the
available disks is almost the same). This way, the
faultload used to benchmark a given system has exactly
the same number of faults (and all the faults are
equivalent) of the faultload used in the other. Table 3
summarizes that faultload.

The following sub-sections present and discuss the
results of the benchmarking process conducted. The
results are presented in a way that compares different
alternatives for each one of the main components that
compose a transactional system (the hardware platform,
the operating system, and the DBMS) and for the DBMS

System Operating System DBMS DBMS Config. Hardware
A Windows 2000 Prof. SP 3 DB-1 Config. A
B Windows 2000 Prof. SP 3 DB-2 Config. A
C Windows Xp Prof. SP 1 DB-1 Config. A
D Windows Xp Prof. SP 1 DB-2 Config. A
E Windows 2000 Prof. SP 3 DB-1 Config. B
F Windows 2000 Prof. SP 3 DB-2 Config. B
G SuSE Linux 7.3 DB-1 Config. A
H SuSE Linux 7.3 DB-2 Config. A

• Processor: Intel Pentium III 800 MHz
• Memory: 256MB
• Hard Disks: Four 20GB / 7200 rpm
• Network: Fast Ethernet

I Windows 2000 Prof. SP 3 DB-1 Config. A

J Windows 2000 Prof. SP 3 DB-2 Config. A

• Processor: Intel Pentium IV 2 GHz
• Memory: 512MB
• Hard Disks: Four 20GB / 7200 rpm
• Network: Fast Ethernet

Table 2 – Systems under benchmarking.

configuration. The last sub-section presents a summary of
the results and a comparison among the systems under
benchmarking.

It is important to note that the system prices used to
calculate the price per transaction presented are based in
the set of pricing rules provided in TPC-C specification
[11]. However, the prices considered in this
benchmarking process are approximated prices and serve
only as reference to compare the systems under
benchmarking.

4.1 Different operating systems and DBMS

Figure 3 shows the results regarding six different
transactional systems using two versions of a leading
commercial DBMS (DB-1 and DB-2), three different
operating systems (Windows 2000, Windows Xp, and
SuSE Linux 7.3), and the same hardware platform
(systems A, B, C, D, G, and H from Table 2).

As we can see, results show that the baseline
performance (tpmC) depends both on the DBMS and on
the operating system used. In fact, a considerable
difference in the baseline performance is observed for

systems based in different types of operating systems
(systems using Windows achieve a better number of
transactions executed per minute than systems using SuSE
Linux). For the systems based on the SuSE Linux
operating system, the baseline performance is similar
independently of the DBMS used. On the other hand, for
the systems based on Windows the baseline performance
depends mainly on the DBMS and the same DBMS
running over different Windows operating systems
present a similar baseline performance. In terms of the
price per transaction ($/tpmC), and in spite of being less
expensive, the systems based on SuSE Linux present the
higher prices per transaction (due to the poor performance
reached). Considering only systems running Windows,
the more expensive ones (using the DB-2 DBMS) present
a lower price per transaction than the less expensive ones
(using the DB-1 DBMS), due to the better performance
achieved.

Concerning the performance measures in the presence
of faults, results show that the number of transactions
executed per minute (Tf) also depends on the operating
system and on the DBMS used. For the systems running
DB-1, Windows Xp is clearly more effective than
Windows 2000 and for the systems running DB-2 the
reverse seems to occur (however, the small difference in
the results for the systems using the DB-2 DBMS does
not allow a solid conclusion). On the other hand, and as
happened with baseline performance, the transactional
systems based on the SuSE Linux operating system
present similar results, independently of the DBMS used
(which are also the worst results).

In terms of the price per transaction ($/Tf), the less
expensive systems (systems A, G and H) have the worst
results (due to their poor performance in the presence of

Baseline Performance

19581961

22702244
2493 2502

13,8
12,7

11,611,912 11,6

1300
1500
1700
1900
2100
2300
2500

DB-1(A) DB-2(B) DB-1(C) DB-2(D) DB-1(G) DB-2(H)
10

12

14
16

18

20
$tpmC

$/tpmC

Win 2k Win Xp SuSE

Performance With Faults

14001406

17641818

1525
1667

19,3
17,81617,7 16,2 16,4

1300
1500
1700
1900
2100
2300
2500

DB-1(A) DB-2(B) DB-1(C) DB-2(D) DB-1(G) DB-2(H)
10

12

14
16

18

20
$Tf

$/Tf

Win 2k Win Xp SuSE

Availability
93,5

86,388,687,286,1 88
83,9

7779,579,479,575,4

50

60

70
80

90

100

DB-1(A) DB-2(B) DB-1(C) DB-2(D) DB-1(G) DB-2(H)

% AvtS (Server)
AvtC (Clients)

Win 2k Win Xp SuSE
Figure 3 – Benchmarking results for systems using different DBMS and operating systems.

Type of fault # of faults % of faults
Abrupt operating system shutdown 10 10.3
Abrupt transactional engine shutdown 10 10.3
Kill set of user sessions 5 5.2
Delete table 12 12.4
Delete user schema 3 3.1
Delete file from disk 27 27.8
Delete set of files from disk 27 27.8
Delete all files from one disk 3 3.1
Total 97 100

Table 3 – Faultload used in the experiments.

faults) and the two systems based on DB-2 over
Windows, although of having the same $/tpmC, present
quite different prices per transaction in the presence of
faults.

Regarding the dependability measures, results show
that the availability observed for the systems running
DB-1 over Windows Xp is better than over SuSE Linux,
which in turn is better than Windows 2000. Considering
only Windows operating systems, a similar result has
been observed for the systems running DB-2. For the
system based on the DB-2 DBMS running over SuSE
Linux (system H), the availability is much higher than for
any other system, which means that, although of being a
slow system, it recovers from faults faster than the others
(increasing the unavailability time).

An important aspect concerning the dependability
features of the systems is that no data integrity errors (Ne)
were detected, which shows that the DBMS transactional
engine is very effective in handling faults caused by the
operator.

4.2 Different DBMS configurations

Figure 4 compares four different transactional systems
using two versions of a leading commercial DBMS (DB-1
and DB-2) running over the Windows 2000 operating
system and using the same hardware platform (systems A,
B, E, and F from Table 2). In these experiments, each
DBMS was tested using two different configurations of
the recovery mechanisms. As mentioned before, the main
difference between these two configurations is the size of
the redo log files (100 MB for Config. A and 1MB for
Config. B) and the checkpoint frequency (approximately
6 minutes for Config. A and 4 seconds for Config. B).

Results show that Config. A is better than Config. B in
both DB-1 and DB-2.

It is worth noting, that the use of Config. B in DB-1
leads to smaller losses (comparatively to Config. A) than
in DB-2. For instance, while the tpmC decreases 37.1%
from Config. A to Config. B in DB-1, it decreases 38.7%
in DB-2. A similar behavior can be observed for all the
other measures except AvtS. Table 4 summarizes the
results for Config. A and Config. B in both DBMS and
shows the results variation from Config. A to Config. B
(note that the increase of $/tpmC and $/Tf represents an
increasing of the price per transaction, which is a bad
result).

4.3 Different hardware platforms

In order to assess the impact of the hardware platform in a
transactional system, Figure 5 compares four different
systems using two versions of a leading commercial
DBMS (DB-1 and DB-2) running over the Windows 2000
operating system and using two different hardware
platforms (systems A, B, I, and J from Table 2). The main
differences between these two platforms are the CPU used
and the amount of RAM available (one of the hardware

Baseline Performance
2493

2244

1411 1529

19
11,612

19,1

800
1100
1400
1700
2000
2300
2600

Conf A (A) Conf B (E) Conf A (B) Conf B (F)
10
14
18
22
26
30
34
$

tpmC
$/tpmC

DB-1 DB-2

Performance With Faults

969896

1525
1818

30,1

17,7 16

29,9

800
1100
1400
1700
2000
2300
2600

Conf A (A) Conf B (E) Conf A (B) Conf B (F)
10
14
18
22
26
30
34
$

Tf
$/Tf

DB-1 DB-2

Availability

87,286,1

74,2 76,675,4
68,7

79,5
69,7

50

60

70

80

90

100

Conf A (A) Conf B (E) Conf A (B) Conf B (F)

% AvtS (Server)
AvtC (Clients)

DB-1 DB-2
Figure 4 – Benchmarking results for systems using two different DBMS configurations.

 DB-1 DB-2
Measures Conf. A Conf. B Var. Conf. A Conf. B Var.
tpmC 2244 1411 -37,1 % 2493 1529 -38,7 %
$/tpmC 12 19,1 +59,2 % 11,6 19 +63,8 %
Tf 1525 896 -41,2 % 1818 969 -46,7 %
$/Tf 17,7 30,1 +70,1 % 16 29,9 +86,9 %
AvtS 86,1 74,2 -13,8 % 87,2 76,6 -12,2 %
AvtC 75,4 68,7 -8,9 % 79,5 69,7 -12,3 %

Table 4 – Results variation using two different DBMS
configurations.

platforms is based on a 800 MHz Pentium III with 256
MB of RAM and the other is based on a 2 GHz Pentium
IV with 512 MB of RAM). It is important to note that the
DBMS has been configured to use different amounts of
memory according to the size of the RAM available. As
expected, results show that the hardware platform based
on the Pentium IV presents better performance results
(baseline and in the presence of faults) than the hardware
platform based on the Pentium III. However, concerning
dependability measures the hardware platform has some
impact but it is not as visible as for the other measures.

4.4 Results summary

In the previous sub-sections, we have compared different
alternatives for each one of the main components of an
OLTP system (the hardware platform, the operating
system, and the DBMS). In this sub-section we present a
summary of the results and propose a ranking for the
systems under benchmarking.

Figure 6 shows the DBench-OLTP results for all
systems (see Table 2 for the correspondence between the
labels in the X axis and the systems under benchmarking).
As we can see, the baseline performance and the
performance in the presence of faults are strongly
dependent on the hardware platform and DBMS
configuration used. The DBMS and operating system
have a lower impact.

An interesting result is that availability depends
mainly on the DBMS configuration. In fact, systems with
the same DBMS configuration present a similar level of
availability, independently of the hardware platform,
operating system and DBMS used. Another interesting
result is that the availability from the clients point-of-view
(AvtC) is always much lower than the availability from

the server point-of-view (AvtS), which seems to be
normal because some types of faults affect the system in a
partial way (e.g., when a given file is removed from disk
only the transactions that need to access to the data stored
in that file are affected).

Table 5 summarizes the ranking proposed according to
several criteria. Concerning a global ranking, the analysis
of Table 5 and all the results presented before allow us to
propose the following order (from the best to the worst): I,
J, D, B, C, H, G, A, F, and E. It is important to note that
the global ranking always depends on the benchmark
performer point-of-view (i.e., depends on what he is
looking for).

5. Benchmark execution effort
Usually benchmarking is seen as an expensive and
laborious process. During the course of the present work,
we had the opportunity to assess the necessary effort to
implement the benchmark and to conduct the
benchmarking process. Several indicators have been
collected, such as: the time needed to implement the
TPC-C benchmark, the time needed to implement the
DBench-OLTP benchmark, and the time needed to
conduct the benchmarking process. Table 6 summarizes
the observations in terms of the number of working days
of one experienced person.

Baseline Performance
4394

3655

2244
24937,7

12 11,6

6,8
1000

2000

3000

4000

5000

P III (A) P IV (I) P III (B) P IV (J)
6

9

12

15

18
$

tpmC
$/tpmC

DB-1 DB-2

Performance With Faults

30432784

1525 181810,1

17,7 16

9,9

1000

2000

3000

4000

5000

P III (A) P IV (I) P III (B) P IV (J)
6

9

12

15

18
$

Tf
$/Tf

DB-1 DB-2

Availability

8889,486,1 87,2
80,979,578,575,4

50

60

70

80

90

100

P III (A) P IV (I) P III (B) P IV (J)

% AvtS (Server)
AvtC (Clients)

DB-1 DB-2
Figure 5 – Benchmarking results for systems using two different hardware platforms.

Criteria System Ranking
(best to worst)

Baseline performance (tpmC) J, I, D, B, C, A, G, H, F, E
Performance with faults (Tf) J, I, B, D, C, A, G, H, F, E
Availability (AvtS and AvtC) H, I, D, J, C, B, G, A, F, E
Table 5 – Systems ranking according to several criteria.

As we can see, although being the most complex task,
the implementation of the TPC-C benchmark tokes only
about 10 days. This was possible due to the reuse of
existing code and examples from several previous imple-
mentations. In a normal situation the TPC-C implementa-
tion alone could take more than 30 working days.

Comparing to TPC-C, the DBench-OLTP benchmark
presents a similar implementation time. However, as for
TPC-C we can reduce the effort needed to implement this
dependability benchmark by reusing code from previous
implementations (in our case this was not possible
because this was the first implementation of this
benchmark).

Type of fault # of days

TPC-C benchmark implementation 10
DBench-OLTP benchmark implementation 10
Benchmarking process execution 30
Total time 50
Average time per system 5

Table 6 – Benchmark execution effort.

Concerning the time needed to conduct the
benchmarking process, the effort was very low, mainly
because the benchmark run is fully automatic. In fact,
considering the class of systems used in this work we
have been able to benchmark ten different systems in
about one month. The ratio between the total effort and
number of systems benchmarked is of about 5 working
days. However, it is important to note that this ratio
decreases when the number of systems under
benchmarking increases (e.g., if instead of having
benchmarked ten transactional systems we had
benchmarked twenty, the average time would decrease

from 5 to about 4 working days). Thus, we can conclude
that after having the benchmark implemented (TPC-C and
DBench-OLTP) the effort needed to benchmark
additional systems is relatively small.

6. Conclusions
This paper proposes a new dependability benchmark for
OLTP application environments – the DBench-OLTP
dependability benchmark. This benchmark specifies the
measures and all the steps required to evaluate both the
performance and key dependability features of OLTP
systems. The DBench-OLTP uses the basic setup, the
workload, and the performance measures specified in the
TPC-C performance benchmark, and adds two new
elements: 1) measures related to dependability; and 2) a
faultload based on operator faults.

Several different transactional systems have been
benchmarked using the DBench-OLTP benchmark. Two
different versions of a leading commercial DBMS (DB-1
and DB-2), three different operating systems (Windows
2000, Windows Xp, and SuSE Linux 7.3), and two
different hardware platforms (one based on a 800 MHz
Pentium III with 256 MB of RAM and the other on a 2
GHz Pentium IV with 512 MB of RAM) have been used.
Concerning the DBMS, two different configurations have
been considered for each DBMS version. The results
obtained were analyzed and discussed in detail. These
results allowed us to rank the systems under
benchmarking concerning both performance and
dependability and clearly show that dependability
benchmarking can be successfully applied to OLTP
application environments.

The paper ends with a discussion on the effort
required to run the DBench-OLTP dependability

Baseline Performance

800
1300
1800
2300
2800
3300
3800
4300

A B C D E F G H I J
6
10
14
18
22
26
30
34
$

tpmC
$/tpmC

Performance With Faults

800
1300
1800
2300
2800
3300
3800
4300

A B C D E F G H I J
6
10
14
18
22
26
30
34

$

Tf
$/Tf

Availability

50

60

70

80

90

100

A B C D E F G H I J

% AvtS (Server)
AvtC (Clients)

Figure 6 – Benchmarking results summary.

benchmark. From the indicators collected during this
work, we could observe that that effort is not an obstacle
for not using this kind of tools on small and medium size
transactional systems evaluation and comparison.

7. References

[1] [Laprie 1995] J.-C. Laprie, “Dependable Computing:
Concepts, Limits, Challenges”, in Proc. 25th Int. Symp.
on Fault-Tolerant Computing (FTCS-25). Special Issue,
(Pasadena, CA, USA), pp.42-54, IEEE Computer Society
Press, 1995.

[2] A. Avizienis, J.-C. Laprie and B. Randell,
Fundamental Concepts of Dependability, LAAS Research
Report, N°1145, April 2001.

[3] K. S. Trivedi, B. R. Haverkort, A. Rindos and V.
Mainkar, “Methods and Tools for Reliability and
Performability: Problems and Perspectives”, in Proc. 7th
Int'l Conf. on Techniques and Tools for Computer
Performance Evaluation (G. Haring and G. Kotsis, Eds.),
Lecture Notes in Computer Science, 794, pp.1-24,
Springer-Verlag, Vienna, Austria, 1994.

[4] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson and J.
Karlsson, “Fault Injection into VHDL Models: The
MEFISTO Tool”, in Predictably Dependable Computing
Systems (B. Randell, J.-C. Laprie, H. Kopetz and B.
Littlewood, Eds.), pp.329-46, Springer, Berlin, Germany,
1995.

[5] J. Gray, “A Census of Tandem Systems Availability
Between 1985 and 1990”, IEEE Transactions on
Reliability, Vol. 39, No. 4, pp. 409-418, October 1990.

[6] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar
K. Iyer, Fault Injection Techniques and Tools, IEEE
Computer, 30(4), pp. 75-82, 1997.

[7] J. Carreira, H. Madeira, and J. G. Silva, “Xception:
Software Fault Injection and Monitoring in Processor
Functional Units", IEEE Transactions on Software
Engineering, vol. 24, no. 2, February 1998.

[8] D. P. Siewiorek, J. J. Hudak, B.-H. Suh and Z. Segall,
“Development of a Benchmark to Measure System
Robustness”, in Proc. 23rd Int. Symp. on Fault-Tolerant
Computing (FTCS-23), (Toulouse, France), pp.88-97,
IEEE CS Press, 1993.

[9] P. Koopman and J. DeVale, “Comparing the
Robustness of POSIX Operating Systems”, in Proc. 29th
Int. Symp. on Fault-Tolerant Computing (FTCS-29),
(Madison, WI, USA), pp.30-7, IEEE CS Press, 1999.

[10] J. Gray (Ed.), “The Benchmark Handbook”, Morgan
Kaufmann Publishers, San Francisco, CA, USA, 1993.

[12] M. Sullivan and R. Chillarege, “Software defects and
their impact on systems availability – A study of field
failures on operating systems”, Proceedings of the 21st
IEEE Fault Tolerant Computing Symposium, FTCS-21,
pp. 2-9, June 1991.

[11] Transaction Processing Performance Consortium,
“TPC Benchmark C, Standard Specification, Version
5.1”, 2002, available at: http://www.tpc.org/tpcc/.

[13] I. Lee and R. K. Iyer, “Software Dependability in the
Tandem GUARDIAN System”, IEEE Transactions on
Software Engineering, Vol. 21, No. 5, pp. 455-467, May
1995.

[14] M. Kalyanakrishnam, Z. Kalbarczyk, R. Iyer,
”Failure Data Analysis of a LAN of Windows NT Based
Computers”, Symposium on Reliable Distributed
Database Systems, SRDS18, October, Switzerland, pp.
178-187, 1999.

[15] Sunbelt Int., “NT Reliability Survey Results”,
http://www.sunbelt-software.com/ntrelres3.htm, published
on March, 23, 1999.

[16] J. Christmansson and R. Chillarege, “Generation of
an Error Set that Emulates Software Faults”, Proceedings
of the 26th IEEE Fault Tolerant Computing Symposium,
FTCS-26, Sendai, Japan, pp. 304-313, June 1996.

[17] H. Madeira, M. Vieira and D. Costa, “On the
Emulation of Software Faults by Software Fault
Injection,” Intl. Conf. on Dependable Systems and
Networks, New York, USA, June, 2000, pp. 417-426.

[18] J. Durães, and H. Madeira, “Emulation of Software
Faults by Selective Mutations at Machine-code Level”,
Proceedings of the 13th IEEE International Symposium
on Software Reliability Engineering, ISSRE 2002,
Annapolis, USA, November 2002.

[19] M. Vieira and H. Madeira, “Definition of Faultloads
Based on Operator Faults for DMBS Recovery
Benchmarking”, 2002 Pacific Rim International
Symposium on Dependable Computing, PRDC2002,
Tsukuba, Japan, December 16-18, 2002.

[20] M. Vieira and H. Madeira, “DBench – OLTP: A
Dependability Benchmark for OLTP Application
Environments”, Technical Report DEI-006-2002, ISSN
0873-9293, Departamento de Engenharia Informática –
Faculdade de Ciências e Tecnologia da Universidade de
Coimbra, 2002, available at:
http://eden.dei.uc.pt/ ~henrique/DBenchOLTP.htm.

[21] M. Vieira and H. Madeira, “DBench-OLTP
Implementation”, 2002, available at:
http://eden.dei.uc.pt /~henrique/DBenchOLTP.htm.

