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Abstract

Ranking queries produce results that are or-
dered on some computed score. Typically,
these queries involve joins, where users are
usually interested only in the top-k join re-
sults. Current relational query processors do
not handle ranking queries efficiently, espe-
cially when joins are involved. In this pa-
per, we address supporting top-k join queries
in relational query processors. We introduce
a new rank-join algorithm that makes use of
the individual orders of its inputs to produce
join results ordered on a user-specified scoring
function. The idea is to rank the join results
progressively during the join operation. We
introduce two physical query operators based
on variants of ripple join that implement the
rank-join algorithm. The operators are non-
blocking and can be integrated into pipelined
execution plans. We address several practi-
cal issues and optimization heuristics to inte-
grate the new join operators in practical query
processors. We implement the new operators
inside a prototype database engine based on
PREDATOR. The experimental evaluation of
our approach compares recent algorithms for
joining ranked inputs and shows superior per-
formance.
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1 Introduction

Rank-aware query processing has become a vital need
for many applications. In the context of the Web,
the main applications include building meta-search en-
gines, combining ranking functions and selecting doc-
uments based on multiple criteria [6]. Efficient rank
aggregation is the key to a useful search engine. In
the context of multimedia and digital libraries, an im-
portant type of query is similarity matching. Users
often specify multiple features to evaluate the similar-
ity between the query media and the stored media.
Each feature may produce a different ranking of the
media objects similar to the query, hence the need to
combine these rankings, usually, through joining and
aggregating the individual feature rankings to produce
a global ranking. Similar applications exist in the con-
text of information retrieval and data mining.

Most of these applications have queries that involve
joining multiple inputs, where users are usually inter-
ested in the top-k join results based on some score
function. Since most of these applications are built on
top of a commercial relational database system, our
goal is to support top-k join queries in relational query
processors. The answer to a top-k join query is an or-
dered set of join results according to some provided
function that combines the orders on each input.

More precisely, consider a set of relations R1 to Rm.
Each tuple in Ri is associated with some score that
gives it a rank within Ri. The top-k join query joins
R1 to Rm and produces the results ranked on a total
score. The total score is computed according to some
function, f , that combines individual scores. Note that
the score attached with each relation can be the value
of one attribute or a value computed using a predi-
cate on a subset of its attributes. A possible SQL-like
notation for expressing a top-k join query is as follows:

SELECT *

FROM R1, R2, . . ., Rm

WHERE join condition(R1, R2, . . . , Rm)
ORDER BY f(R1.score, R2.score, . . . , Rm.score)
STOP AFTER k;



1.1 Motivation

The join operation can be viewed as the process of
spanning the space of Cartesian product of the input
relations to get valid join combinations. For example,
in the case of a binary join operation, the Cartesian
space of the input relations A and B is a two dimen-
sional space. Each point is a tuple pair (Ai, Bj), where
Ai is the ith tuple from the first relation and Bj is the
jth tuple from the second relation. The join condi-
tion needs to be evaluated for all the points in the
space. However, only part of this space needs to be
computed to evaluate top-k join queries. This partial
space evaluation is possible if we make use of the in-
dividual orderings of the input relations.

Current join operators cannot generally benefit
from orderings on their inputs to produce ordered join
results. For example, in sort-merge join (MGJN) only
the order on the join column can be preserved. In
nested-loops join (NLJN), only the orders on the outer
relations are preserved through the join, while in hash
join (HSJN), orders from both inputs are usually de-
stroyed after the join, when hash tables do not fit in
memory. The reason is that these join operators de-
couple the join from sorting the results. Consider the
following example ranking query:

Q1: SELECT A.1,B.2

FROM A,B,C

WHERE A.1 = B.1 and B.2 = C.2

ORDER BY (0.3*A.1+0.7*B.2)

STOP AFTER 5;

where A, B and C are three relations and A.1,B.1,B.2

and C.2 are attributes of these relations. The Stop Af-
ter operator, introduced in [3, 4], limits the output to
the first five tuples. In Q1, the only way to produce
ranked results on the expression 0.3∗A.1+0.7∗B.2 is
by using a sort operator on top of the join. Figure 1 (a)
gives an example query execution plan for Q1. Follow-
ing the concept of interesting orders [16] introduced in
system R, the optimizer may already have plans that
access relations A and B ordered on A.1 and B.2, re-
spectively. Interesting orders are those that are useful
for later operations (e.g., sort-merge joins), and hence,
need to be preserved. Usually, interesting orders are
on the join column of a future join, the grouping at-
tributes (from the group by clause), and the ordering
attributes (from the order by clause).

Despite the fact that individual orders exist on A.1

and B.2, current join operators cannot make use of
these individual orders in producing the join results
ordered on the expression 0.3 ∗A.1 + 0.7 ∗B.2. Hence,
the optimizer ignores these orders when evaluating the
order by clause. Therefore, a sort operator is needed
on top of the join. Moreover, consider replacing B.2
by B.3 in the order by clause. According to current
query optimizers, B.3 is not an interesting order since

it does not appear (by itself) in the order by clause.
Hence, generating a plan that produces an order on
B.3 is not beneficial for later operations. On the other
hand, B.3 is definitely interesting if we have a rank-
join operator that uses the orders on A.1 and B.3 to
produce join results ordered on 0.3 ∗ A.1 + 0.7 ∗ B.3.
Having a rank-join operator will probably force the
generation of base plans for B that has an order on
B.3.
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Figure 1: Alternative plans for Query Q1.

Two major problems arise when processing the pre-
vious rank-join query using current join implementa-
tions: (1) sorting is an expensive operation that pro-
duces a total order on all the join results while the user
is only interested in the first few tuples. (2) Sorting is
a blocking operator and if the inputs are from exter-
nal sources, the whole process may stall if one of the
sources is blocked.

1.2 Our Contribution

The two aforementioned problems result from decou-
pling the sorting (ranking) from the join operation and
losing the advantage of having already ranked inputs.
We need a ranking-aware join operator that behaves
in a smarter way in preserving the interesting orders
of its inputs. We need the new rank-join operator to:
(1) perform the basic join operation under general join
conditions. (2) conform with the current query opera-
tor interface so it can be integrated with other query
operators (including ordinary joins) in query plans.
(3) make use of the individual orders of its inputs
to avoid the unnecessary sorting of the join results.
(4) produce the first ranked join results as quickly as
possible. (5) adapt to input fluctuations; a major char-
acteristic in the applications that depend on ranking.
We summarize our contribution in this paper as fol-
lows:

• We propose a new rank-join algorithm, with the
above desired properties, along with its correct-
ness proof.



• We implement the proposed algorithm in prac-
tical pipelined rank-join operators based on rip-
ple join, with better capabilities of preserving or-
ders of their inputs. The new operators can be
integrated in query plans as ordinary join oper-
ators and hence give the optimizer the chance
to produce better execution plans. Figure 1 (b)
gives an example execution plan for Q1, using the
proposed rank-join operator (RANK-JOIN). The
plan avoids the unnecessary sort of the join re-
sults by utilizing the base table access plans that
preserve interesting orders. Moreover, the plan
produces the top-k results incrementally.

• We propose a novel score-guided join strategy
that minimizes the range of the Cartesian space
that needs to be evaluated to produce the top-
k ranked join results. We introduce an adaptive
join strategy for joining ranked inputs from ex-
ternal sources, an important characteristic of the
applications that use ranking.

• We experimentally evaluate our proposed join op-
erators and compare them with other approaches
to join ranked inputs. The experiments validate
our approach and show a superior performance of
our algorithm over other approaches.

The remainder of this paper is organized as fol-
lows. Section 2 describes relevant previous attempts
and their limitations. Section 3 gives some necessary
background on ripple join. Section 4 describes the
query model for answering top-k join queries. Also,
in Section 4, we introduce the new rank-join algorithm
along with its correctness proof. We present two phys-
ical rank-join operators in Section 5. In Section 6, we
generalize the rank-join algorithm to exploit any avail-
able random access to the input relations. Section 7
gives the experimental evaluation of the new rank-join
operator and compares it with alternative techniques.
We conclude in Section 8 with a summary and final
remarks.

2 Related Work

A closely related problem is supporting top-k selec-
tion queries. In top-k selection queries, the goal is to
apply a scoring function on multiple attributes of the
same relation to select tuples ranked on their combined
score. The problem is tackled in different contexts. In
middleware environments, Fagin [7] and Fagin et al. [8]
introduce the first efficient set of algorithms to answer
ranking queries. Database objects with m attributes
are viewed as m separate lists, each supports sorted
and, possibly, random access to object scores. The
TA algorithm [8] assumes the availability of random
access to object scores in any list besides the sorted
access to each list. The NRA algorithm [8] assumes

only sorted access is available to individual lists. Sim-
ilar algorithms are introduced (e.g., see [9, 10, 15]).
In [2], the authors introduce an algorithm for evaluat-
ing top-k selection queries over web-accessible sources
assuming that only random access is available for a
subset of the sources. Chang and Hwang [5] address
the expensive probing of some of the object scores in
top-k selection queries. They assume a sorted access
on one of the attributes while other scores are obtained
through probing or executing some user-defined func-
tion on the remaining attributes.

A more general problem is addressed in [14]. The
authors introduce the J∗ algorithm to join multiple
ranked inputs to produce a global rank. J∗ maps the
rank-join problem to a search problem in the Cartesian
space of the ranked inputs. J∗ uses a version of the A∗

search algorithm to guide the navigation in this space
to produce the ranked results. Although J∗ shares the
same goal of joining ranked inputs, our approach is
more flexible in terms of join strategies, is more general
in using the available access capabilities, and is easier
to be adopted by practical query processors. In our
experimental study, we compare our proposed join op-
erators with the J∗ and show significant enhancement
in the overall performance. The top-k join queries are
also discussed briefly in [5] as a possible extension to
their algorithm to evaluate top-k selection queries.

Top-k selection queries over relational databases
can be mapped into range queries using high dimen-
sional histograms [1]. In [13], top-k selection queries
are evaluated in relational query processors by intro-
ducing a new pipelined join operator termed NRA-RJ.
NRA-RJ modifies the NRA algorithm [8] to work on
ranges of scores instead of requiring the input to have
exact scores. NRA-RJ is an efficient rank-join query
operator that joins multiple ranked inputs based on
a key-equality condition and cannot handle general
join conditions. In [13], it is shown both analytically
and experimentally that NRA-RJ is superior to J∗ for
equality join conditions on key attributes.

3 An Overview on Ripple Join

Ripple join is a family of join algorithms introduced
in [11] in the context of online processing of aggre-
gation queries in a relational DBMS. Traditional join
algorithms are designed to minimize the time till com-
pletion. However, ripple joins are designed to mini-
mize the time till an acceptably precise estimate of the
query result is available. Ripple joins can be viewed
as a generalization of nested-loops join and hash join.
We briefly present the basic idea of ripple join below.

In the simplest version of a two-table ripple join, one
previously-unseen random tuple is retrieved from each
table (e.g., R and S) at each sampling step. These new
tuples are joined with the previously-seen tuples and
with each other. Thus the Cartesian product R×S is
swept out as depicted in Figure 2.
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Figure 2: Three steps in Ripple Join

The square version of ripple join draws samples from
R and S at the same rate. However, in order to pro-
vide the shortest possible confidence intervals, it is of-
ten necessary to sample one relation at a higher rate.
This requirement leads to the general rectangular ver-
sion of the ripple join where more samples are drawn
from one relation than from the other. Variants of rip-
ple join are: (1) Block Ripple Join, where the sample
units are blocks of tuples of size b (In classic ripple
join, b = 1), (2) Hash Ripple Join, where all the sam-
pled tuples are kept in hash tables in memory. In this
case, calculating the join condition of a new sampled
tuple with previously sampled tuples is very fast (sav-
ing I/O). The second variant is exactly the symmetric
hash join [12, 19] that allows a high degree of pipelin-
ing in parallel databases. When the hash tables grow
in size and exceed memory size, the hash ripple join
falls back to block ripple join.

4 Supporting Top-k Join Queries

In this section we address the problem of supporting
top-k join queries. We start by defining the query
model and present our approach to support evaluat-
ing this type of queries in relational query engines.

4.1 Query Model

In traditional relational systems the answer to a join
query is a set of m − tuple records, where m is the
number of joined relations and each join result is a
new tuple that consists of the concatenation of the
tuples from the joined relations. There is no order
requirement imposed on the join results although the
join technique may be able to preserve partial orders
of the inputs. In contrast, the answer to a top-k join
query is an ordered set of join results according to some
provided function that combines the orders on each
input.

4.2 The New Rank Join Algorithm

Current implementations of the join operator do not
make use of the fact that the inputs may be already
ordered on their individual scores. Using these indi-
vidual orderings, we can perform much better in eval-
uating the top-k join queries by eliminating the need
to sort the join results on the combined score.

The join operation can be viewed as the process of
spanning the space of Cartesian product of the input
relations to get valid join combinations. An important
observation is that, only part of this space needs to be
computed to evaluate top-k join queries, if we have the
inputs ordered individually.

In this section we describe a new join algorithm,
termed rank-join. The algorithm takes m ranked in-
puts, a join condition, a monotone combining ranking
function f and the number of desired ranked join re-
sults k. The algorithm reports the top k ranked join
results in descending order of their combined score.
The rank-join algorithm works as follows:

• Retrieve objects from the input relations in a de-
scending order of their individual scores. For each
new retrieved tuple:

1. Generate new valid join combinations with
all tuples seen so far from other relations,
using some join strategy.

2. For each resulting join combination,
J , compute the score J.score as
f(O1.score, O2.score, . . . , Om.score), where
Oi.score is the score of the object from the
ith input in this join combination.

3. Let the object O
(di)
i be the last object seen

from input i, where di is number of objects

retrieved from that input, O
(1)
i be the first

object retrieved from input i, and T be
the maximum of the following m values:

f(O
(d1)
1 .score, O

(1)
2 .score, . . . , O

(1)
m .score),

f(O
(1)
1 .score, O

(d2)
2 .score, . . . , O

(1)
m .score),

. . ., f(O
(1)
1 .score, O

(1)
2 .score, . . . , O

(dm)
m .score).

4. let Lk be a list of the k join results with the
maximum combined score seen so far and let
scorek be the lowest score in Lk, halt when
scorek ≥ T .

• Report the join results in Lk ordered on their com-
bined scores.

The value T is an upper-bound of the scores
of any join combination not seen so far. An ob-
ject O

p
i , where p > di, not seen yet from in-

put i, cannot contribute to any join combination
that has a combined score greater than or equal

f(O
(1)
1 .score, . . . , O

(di)
i .score, . . . , O

(1)
m .score). The

value T is continuously updated with the score of the
newly retrieved tuples.

Theorem 4.2.1: Using a monotone combining func-
tion, the described rank-join algorithm correctly reports
the top k join results ordered on their combined score.

Proof: For simplicity, we prove the algorithm for two
inputs l and r. The proof can be extended to cover the



m inputs case. We assume that the algorithm access
the same number of tuples at each step, i.e., d1 = d2 =
d. The two assumptions do not affect the correctness
of the original algorithm.

The proof is by contradiction. Assume that the al-
gorithm halts after d sorted accesses to each input and

reports a join combination Jk = (O
(i)
l , O

(j)
r ), where

O
(i)
l is the ith object from the left input and O

(j)
r is the

jth object from the right input. Since the algorithm
halts at depth d, we know that Jk.score ≥ T (d), where

T (d) is the maximum of f(O
(1)
l .score, O

(d)
r .score) and

f(O
(d)
l .score, O

(1)
r .score). Now assume that there ex-

ists a join combination J = (O
(p)
l , O

(q)
r ) not yet pro-

duced by the algorithm and J.score > Jk.score. That
implies J.score > T (d), i.e.,

f(O
(p)
l .score, O(q)

r .score) > f(O
(1)
l .score, O(d)

r .score)
(1)

and

f(O
(p)
l .score, O(q)

r .score) > f(O
(d)
l .score, O(1)

r .score)
(2)

Since each input is ranked in descending order of ob-

ject scores, then O
(p)
l .score ≤ O

(1)
l .score. Therefore,

O
(q)
r .score must be greater than O

(d)
r .score. Other-

wise, Inequality (1) will not hold because of the mono-

tonicity of the function f . We conclude that O
(q)
r must

appear before O
(d)
r in the right input, i.e.,

q < d (3)

Using the same analogy, we have O
(q)
r .score ≤

O
(1)
r .score. Therefore, O

(p)
l .score must be greater

than O
(d)
l .score. Otherwise, Inequality (2) will not

hold because of the monotonicity of the function f .

We conclude that O
(p)
l must appear before O

(d)
l in the

left input, i.e.,
p < d (4)

From (3) and (4), if valid, the combination J =

(O
(p)
l , O

(q)
r ) must have been produced by the algo-

rithm, which contradicts the original assumption.

Theorem 4.2.1: The buffer maintained by the rank-
join algorithm to hold the ranked join results is
bounded and has a size that is independent of the size
of the inputs.

Proof: Other than the space required to perform the
join, the algorithm needs only to remember the top k
join results independent of the size of the input.

Following this abstract description of the rank-join
algorithm, we show how to implement the algorithm in
a binary pipelined join operator that can be integrated
in commercial query engines. Theoretically, any cur-
rent join implementation can be augmented to sup-
port the previously described algorithm. Practically,

the join technique greatly affects the performance of
the ranking process. We show the effect of the selec-
tion of the join strategy on the stopping criteria of the
rank-join algorithm.

4.3 The Effect of Join Strategy

The order in which the points in the Cartesian space
are checked as a valid join result has a great effect
on the stopping criteria of the rank-join algorithm.
Consider the two relations in Figure 3 to be joined
with the join condition L.A = R.A. The join results
are required to be ordered on the combined score of
L.B + R.B.

id A B
1 1 5
2 2 4
3 2 3
4 3 2

id A B
1 3 5
2 1 4
3 2 3
4 2 2

L R

Figure 3: Two example relations

Following the new rank-join algorithm, described
in Section 4.2, a threshold value will be main-
tained as the maximum between f(L(1).B, R(d2).B)
and f(L(d1).B, R(1).B), where L(d1) and R(d2) are the
last tuples accessed from L and R, respectively. Fig-
ure 4 shows two different strategies to produce join
results.

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

(a) (b)

Figure 4: Two possible join strategies.

Strategy (a) is a nested-loops evaluation while
Strategy (b) is a symmetric join evaluation that tries
to balance the access from both inputs. To check
for possible join combinations, Strategy (a) accesses
four tuples from L and one tuple from R while Strat-
egy (b) accesses two tuples from each relation. The
rank-join algorithm at this stage computes a different
threshold value T in both strategies. In Strategy (a),
T = max(5 + 2, 5 + 5) = 10, while in Strategy (b)
T = max(5+4, 5+4) = 9. At this stage, the only valid
join combination is the tuple pair [(1, 1, 5), (2, 1, 4)]
with a combined score of 9. In Strategy (a), this join
combination cannot be reported because of the thresh-
old value of 10 while the join combination is reported
as the top-ranked join result according to Strategy (b).



The previous discussion suggests using join strate-
gies that reduce the threshold value as quickly as pos-
sible to be able to report top ranked join results early
on. In the next section, we present different implemen-
tations of the rank-join algorithm by choosing different
join strategies.

5 New Physical Rank Join Operators

The biggest advantage of encapsulating the rank-join
algorithm in a real physical query operator is that
rank-join can be adopted by practical query engines.
The query optimizer will have the opportunity to op-
timize a ranking query by integrating the new opera-
tor in ordinary query execution plans. The only other
alternative to develop a query operator is to imple-
ment the rank-join algorithm as a user defined func-
tion. This approach will lose the efforts of the query
optimizer to produce a better overall query execution
plan. Figure 5 gives alternative execution plans to
rank-join three ranked inputs.

R S

L

Top(k)

Sort

r

r

R S

L

Top(k)

r

r

R S

Top(k)

Sort L

(a)             (b)                 (c)

: The proposed rank−join operator (HRJN).
: Ordinary join operator.

Figure 5: Alternative execution plans to rank-join
three ranked inputs.

In this section, we present two alternatives to re-
alize the new rank-join algorithm as a physical join
operator. The main difference between the two alter-
natives is in the join strategy that is used in order to
produce valid join combinations. Reusing the current
join strategies (nested-loops join, merge join and hash
join) results in a poor performance. Nested-loops join
will have a high threshold value because we access all
the tuples of the inner relation for only one tuple from
the outer relation. Merge join requires sorting on the
join columns (not the scores) of both inputs and hence
cannot be used in the rank-join algorithm. Similarly,
hash join destroys the order through the use of hashing
when hash tables exceed memory size. The join strate-
gies presented here depend on balancing the access of
the underlying relations.

Since the join operation is implemented in most sys-
tems as a dyadic (2-way) operator, we describe the new
operators as binary join operators. Following common
query execution models, we describe the new physi-

Open(L,R,C,f)
input L,R: Left and right ranked input

C: join condition.
f: monotone combining ranking function.

begin
Allocate a priority queue Q;
Build two hash tables for L and R;
Set the join condition to C;
Set the combining function to f ;
Threshold = 0;
L.Open();
R.Open();

end

Table 1: The HRJN Open operation
.

cal join operators in terms of the three basic interface
methods Open, GetNext and Close. The Open method
initializes the operator and prepares its internal state,
the GetNext method reports the next ranked join re-
sult upon each call, and the Close method terminates
the operator and performs the necessary clean up.

In choosing the join strategy, the discussion in Sec-
tion 4.3 suggests sweeping the Cartesian space in a
way that reduces the threshold value. We depend on
the idea of ripple join as our join strategy. Instead
of randomly sampling tuples from the input relations,
the tuples are retrieved in order to preserve ranking.
One challenge is to determine the rate at which tuples
are retrieved from each relation. We present two vari-
ants of our rank-join algorithm. The two variants are
based on adopting two ripple join variants: the hash
ripple join and the block ripple join.

5.1 Hash Rank Join Operator (HRJN)

HRJN can be viewed as a variant of the symmetrical
hash join algorithm [12, 19] or the hash ripple join al-
gorithm [11]. The Open method is given in Table 1.
The HRJN operator is initialized by specifying four pa-
rameters: the two inputs, the join condition, and the
combining function. Any of the two inputs or both of
them can be another HRJN operator 1. The join con-
dition is a general equality condition to evaluate valid
join combinations. The combining function is a mono-
tone function that computes a global score from the
scores of each input. The Open method sets the state
and creates the operator internal state which consists
of three structures. The first two structures are two
hash tables, i.e., one for each input. The hash tables
hold input tuples seen so far and are used in order to
compute the valid join results. The third structure is a
priority queue that holds the valid join combinations
ordered on their combined score. The Open method
also calls the initialization methods of the inputs.

1Because HRJN is symmetric, we can allow pipelined bushy
query evaluation plans.



The GetNext method encapsulates the rank-join al-
gorithm and is given in Table 2. The algorithm main-
tains a threshold value that gives an upper-bound of
the score of all join combinations not yet seen. To
compute the threshold, the algorithm remembers the
two top scores and the two bottom scores (last scores
seen) of its inputs. These are the variables Ltop,
Rtop, Lbottom and Rbottom, respectively. Lbottom and
Rbottom are continuously updated as we retrieve new
tuples from the input relations. At any time dur-
ing execution, the threshold upper-bound value (T )
is computed as the maximum of f(Ltop, Rbottom) and
f(Lbottom, Rtop).

The algorithm starts by checking if the priority
queue holds any join results. If exists, the score of
the top join result is checked against the computed
threshold. A join result is reported as the next Get-
Next answer if the join result has a combined score
greater than or equal the threshold value. Otherwise,
the algorithm continues by reading tuples from the left
and right inputs and performs a symmetric hash join
to generate new join results. For each new join result,
the combined score is obtained and the join result is
inserted in the priority queue. In each step, the al-
gorithm decides which input to poll. This gives the
flexibility of optimizing the operator to get faster re-
sults depending on the joined data. A straight forward
strategy is to switch between left and right input at
each step.

5.2 Local Ranking in HRJN

Implementing the rank-join algorithm as a binary
pipelined query operator raises several issues. We sum-
marize the differences between HRJN and the logical
rank-join algorithm as follows:

• The total space required by HRJN is the sum
of two hash tables and the priority queue. In a
system that supports symmetrical hash join, the
extra space required is only the size of the pri-
ority queue of join combinations. As shown in
Section 4.2, in the proposed rank-join algorithm
(with all inputs processed together), the queue
buffer is bounded by k, the maximum number of
ranked join results that the user asks for. In this
case, the priority queue will hold only the top-k
join results. Unfortunately, in the implementation
of the algorithm as a pipelined query operator, we
can only bound the queue buffer of the top HRJN
operator since we do not know in advance how
many partial join results will be pulled from the
lower-level operators. The effect of pipelining on
the performance is addressed in the experiments
in Section 7.

• Realizing the algorithm in a pipeline introduces a
computational overhead as the number of pipeline
stages increases. To illustrate this problem, we

GetNext()
output : Next ranked join result.
begin

if (Q is not empty)
tuple = Q.Top;
if (tuple.score ≥ T)
return tuple;

Loop
Determine next input to access, I ; (Section 5.3)
tuple= I .GetNext();
if (I firstTuple)

Itop = tuple.score;
I firstTuple = false;

Ibottom = tuple.score;
T = MAX(f(Ltop, Rbottom), f(Lbottom, Rtop));
insert tuple in I Hash table;
probe the other hash table with tuple;
For each valid join combination

Compute the join result score using f ;
Insert the join result in Q;

if (Q is not empty)
tuple = Q.Top;
if (tuple.score ≥ T)
break loop;

End Loop;
Remove tuple from Q;
return tuple;

end

Table 2: The HRJN GetNext operation.

elaborate on how HRJN works in a pipeline of
three input streams, say L1, L2 and L3. When
the top HRJN operator, OP1, is called for the next
top ranked join result, several GetNext calls from
the left and right inputs are invoked. According
to the HRJN algorithm, described in Table 2, at
each step, OP1 gets the next tuple from its left
and right inputs. Hence, OP2 will be required
to deliver as many top partial join results of L2

and L3 as the number of objects retrieved by L1.
These excessive calls to the ranking algorithm in
OP2 result in retrieving more objects from L2 and
L3 than necessary, and accordingly larger queue
sizes and more database accesses. We call this
problem the Local Ranking problem.

Solving The Local Ranking Problem Another
version of ripple join is the blocked ripple join [11].
At each step, the algorithm retrieves a new block of
one relation, scans all the old tuples of the other re-
lation, and joins each tuple in the new block with the
corresponding tuples there. We utilize this idea to
solve the local ranking problem by unbalancing the
retrieval rate of the inputs. We issue less expensive
GetNext calls to the input with more HRJN operators
in its subtree of the query plan. For example, in a left-
deep query execution plan, for each p tuples accessed



from the right input, one tuple is accessed from the
left input. The idea is to have less expensive GetNext
calls to the left child, which is also an HRJN operator.
This strategy is analogous to the block ripple join al-
gorithm, having the left child as an outer and the right
child as inner with a block of size p. Using different
depths in the input streams does not violate the cor-
rectness of the algorithm, but will have a major effect
on the performance. This optimization significantly
enhances the performance of the HRJN operator as
will be demonstrated in Section 7. Through the rest
of this paper, we call p the balancing factor. Choosing
the right value for p is a design decision and depends
on the generated query plan, but a good choice of p
boosts the performance of HRJN.
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328 328

333 333

102

(b)(a)

HRJN

HRJN HRJN

HRJN
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p=2

p=1
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577

328

Figure 6: The effect of applying the heuristic to solve
the local ranking problem in HRJN.

For example, in a typical query with three ranked
inputs, we compare between the total number of ac-
cessed tuples by the HRJN operator before and after
applying the heuristic. Figure 6 shows the number
of retrieved tuples for each case. In the plan in Fig-
ure 6 (a), p is set to 1 for both HRJN operators. This
query pipeline is applied on real data to retrieve the
top 50 join results. The top HRJN operator retrieves
328 tuples from both inputs, hence the top 328 partial
join results are requested from the HRJN child oper-
ator. The child HRJN operator has to retrieve 577
tuples from each of its inputs, for a total of 1482 tu-
ples. In the plan in Figure 6 (b), p is set to 2 for the
top HRJN operator. While retrieving the same an-
swers, the total number of tuples retrieved is 994 tu-
ples, which is much less than that of the HRJN before
applying the heuristic, since the top HRJN operator
requested only 102 tuples from its left child.

5.3 HRJN∗: Score-Guided Join Strategy

As discussed in Section 4.3, the way the algorithm
schedules the next input to be polled can affect the
operator response time significantly. One way is to
switch between the two inputs at each step. However,
this balanced strategy may not be the optimal. Con-
sider the two relations L and R to be rank-joined. The
scores from L are 100, 50, 25, 10 . . . while the scores
from R are 10, 9, 8, 5, . . .. After 6 steps using a bal-

anced strategy (three tuples from each input) we will
have the threshold of max(108, 35) = 108. On the
other hand, favoring R by retrieving more tuples from
R than L (four tuples from R and two tuples from L)
will give a threshold of max(105, 60) = 105.

One heuristic is to try to narrow the gap between
the two terms in computing the threshold value. Re-
call that the threshold is computed as the maximum
between two virtual scores: T1 = f(Ltop, Rbottom) and
T2 = f(Lbottom, Rtop), where f is the ranking func-
tion. If T1 > T2 more inputs should be retrieved from
R to reduce the value of T1 and hence the value of
the threshold, leading to possible faster reporting of
ranked join results.

This heuristic will cause the join strategy to adap-
tively switch between the hash join and nested-loops
join strategies. Consider the previous example, since
T1 > T2, more tuples will be retrieved from R till the
end of that relation. In this case, Ltop can be reduced
to 50. In fact, because all the scores in L are sig-
nificantly higher than R, the strategy will behave ex-
actly like a nested-loops join. On the other extreme,
if the scores from both relations are close, the strat-
egy will behave as a symmetric hash join with equal
retrieval rate. Between the two extremes, the strat-
egy will gracefully switch between nested-loops join
and hash join to reduce the threshold value as quickly
as possible. Of course, this heuristic does not consider
the I/O and memory requirements that may prefer one
strategy on the other. In the experimental evaluation
of our approach, discussed in Section 7, we implement
the new join strategy using the HRJN operator. We
call the enhanced operator HRJN∗. HRJN∗ shows
better performance than those of other rank-join op-
erators including the original HRJN.

5.4 An Adaptive Join Strategy

When inputs are from external sources, one of the in-
puts may stall for some time. An adaptive join algo-
rithm makes use of the tuples retrieved from the other
input to produce valid join results. This processing
environment is common in applications that deal with
ranking, e.g., a mediator over web-accessible sources
and distributed multimedia repositories.

In these variable environments, the join strategy
of the rank-join operators may use input availability
as a guide instead of the aforementioned score-guided
strategy. If both inputs are available, the operator
may choose the next input to process based on the
retrieved scores. Otherwise, the available input is pro-
cessed. HRJN can be easily adapted to use XJoin [18].
XJoin is a practical adaptive version of the symmetric
hash join operator. The same GetNext interface will
be used with the only change that the next input to
poll is determined by input availability and rate. The
adaptive version of HRJN will inherit the adaptability
advantage of the underlying XJoin strategy with the



added feature of supporting top-k join queries over ex-
ternal sources.

6 Generalizing Rank-Join to Exploit
Random Access Capabilities

The new rank-join algorithm and query operators as-
sume only sorted access to the input. Random access
to some of these inputs is possible when indexes exist.
Making use of these indexes may give better perfor-
mance depending on the type of the index and the
selectivity of the join operation. We would like to give
the optimizer the freedom to choose whether to use
indexes given the necessary cost parameters.

In this section, we generalize the rank-join algo-
rithm to make use of the random access capabilities
of the input relations. The main advantage to using
random access is to further reduce the upper-bound of
the score of unseen join combinations, and hence being
able to report the top-k join results earlier. For sim-
plicity, we present the algorithm by generalizing the
HRJN operator to exploit the indexes available on the
join columns of the ranked input relations. Consider
two relations L and R, where both L and R support
sorted access to their tuples. Depending on index ex-
istence, we have two possible cases. The first case is
when we have an index on only one of the two inputs,
e.g., R. Upon receiving a tuple from L, the tuple is
first inserted in L’s hash table and is used to probe
the R index. This version can be viewed as a hybrid
between hash join and index nested-loops join. The
second case is when we have an index on each of the
two inputs. Upon receiving a tuple from L(R), the
tuple is used to probe the index of R(L). In this case,
there is no need to build hash tables.

On-the-fly Duplicate Elimination The general-
ization, as presented, may cause duplicate join results
to be reported. We eliminate the duplicates on-the-
fly by checking the combined score of the join result
against the upper-bound of the scores of join results
not yet produced. Consider the two relations L and R
with an index on the join column of R. A new tuple
from L, with score Lbottom, is used to probe R’s index
and generate all valid combinations. A new tuple from
R, with score Rbottom, is used to probe the L’s hash
table of all seen tuples from L. A key observation is
that any join result, not yet produced, cannot have a
combined score greater than U = f(Lbottom, Rbottom).
Notice that Lbottom is an upper-bound of all the scores
from L not yet seen. All join combinations with scores
greater than U were previously generated by probing
R’s index. Hence, A duplicate tuple can be detected
and eliminated on-the-fly if it has a combined score
greater than U . A similar argument holds for the case
when both L and R have indexes on the join columns.
One special case is when the two new tuples from L

and R can join. In this case, only one of them is used
to probe the other relation.

Faster Termination Although index probing looks
similar to hash probing in the original HRJN algorithm
in Table 2, it has a significant effect on the threshold
values. The reason is that since the index contains
all the tuples from the indexed relation (e.g., L), the
tuple that probes the index from the other relation
(e.g., R) cannot contribute to more join combinations.
Consequently, the top value of Relation R should be
decreased to the score of the next tuple. For example,
for the two ranked relations L and R in Figure 3, as-
sume that relation R has an index on the join column
to be exploited by the algorithm. In the first step of the
algorithm, the first tuple from L is retrieved:(1, 1, 5).
We use this tuple to probe the index of R, the result-
ing join combination is [(1, 1, 5), (2, 1, 4)]. Since the
tuple from L cannot contribute to other join combi-
nations, we reduce the value Ltop to be that of the
next tuple (2, 2, 4), i.e., 4. In this case we always have
Ltop = Lbottom which may reduce the threshold value
T = max(Ltop + Rbottom, Lbottom + Rtop). Note that
if no indexes exists, the algorithm behaves exactly like
the original HRJN algorithm.

7 Performance Evaluation

In this section, we compare the two rank-join oper-
ators, HRJN and HRJN∗ introduced in Section 5,
with another rank-join operator based on the J∗ al-
gorithm. The experiments are based on our research
platform for a complete video database management
system (VDBMS) running on a Sun Enterprise 450
with 4 UltraSparc-II processors running SunOS 5.6
operating system. The research platform is based on
PREDATOR [17], the object relational database sys-
tem from Cornell University. The database tables have
the schema (Id, JC, Score, Other Attributes). Each ta-
ble is accessed through a sorted access plan and tuples
are retrieved in a descending order of the Score at-
tribute. JC is the join column (not a key) having D
distinct values.

We use a simple ranking query that joins four tables
on the non-key attribute JC and retrieves the join re-
sults ordered on a simple function. The function com-
bines individual scores which in this case a weighted
sum of the scores (wi is the weight associated with
input i). Only the top k results are retrieved by the
query. The following is a SQL-like form of the query:

Q: SELECT T1.id, T2.id, T3.id, T4.id

FROM T1, T2, T3, T4

WHERE T1.JC=T2.JC and

T2.JC=T3.JC and

T3.JC=T4.JC

ORDER BY w1*T1.Score + w2*T2.Score +

w3*T3.Score + w4*T4.Score

STOP AFTER k;



One pipelined execution plan for the query Q is the
left-deep plan, Plan A, given in Figure 7. We limit the
number of reported answers to k by applying the Stop-
After query operator [3, 4]. The operator is imple-
mented in the prototype as a physical query operator
Scan-Stop, a straightforward implementation of Stop-
After and appears on top of the query plan. Scan-Stop
does not perform any ordering on its input.

RANK−JOIN

Scan−Stop(k)

RANK−JOIN Index−Scan
Score

RANK−JOIN

T4

Index−Scan
Score
T1

Index−Scan
Score
T3

Index−Scan
Score
T2

w1*T1.Score+w2*T2.Score+w3*T3.Score

w1*T1.Score+w2*T2.Score

w1*T1.Score+w2*T2.Score+w3*T3.Score+w4*T4.Score

Figure 7: Plan A: A left-deep execution plan for Q.

7.1 A Pipelined Bushy Tree

Plan A is a typical pipelined execution plan in cur-
rent query optimizers. Plan B is a bushy execution
plan given in Figure 8. Note that bushy plans are not
pipelined in current query processors because of the
current join implementations. Because rank-join is a
symmetric operation, a bushy execution plan can also
be pipelined. The optimizer chooses between these
plans depending on the associated cost estimates.

Index−Scan
Score
T1

Index−Scan
Score
T2

Index−Scan
Score
T3

Index−Scan

T4
Score

RANK−JOINRANK−JOIN

RANK−JOIN

Scan−Stop(k)

w1*T1.Score+w2*T2.Score+w3*T3.Score+w4*T4.Score

w1*T1.Score+w2*T2.Score w3*T3.Score+w4*T4.Score

Figure 8: Plan B: A bushy execution plan for Q.

Plan B does not suffer from the local ranking prob-
lem, described in Section 5.2, because each operator
has almost the same cost for accessing both of its in-
puts (same number of plan levels). However, having
large variance of the score values between inputs, re-
trieving more inputs from one side may result in a
faster termination. This is a typical case where the op-
erator HRJN∗ can perform better, because HRJN∗

uses input scores to guide the rate at which it retrieves

tuples from each input.

7.2 Comparing the Rank-Join Operators

In this section, we evaluate the performance of the
introduced operators by comparing them with each
other and with a rank-join operator based on the J∗ al-
gorithm [14]. We limit our presentation to comparing
three rank-join operators: the basic HRJN operator,
the HRJN∗ operator and the J∗ operator. HRJN ap-
plies the basic symmetric hash join strategy; at each
step one tuple is retrieved from each input. The lo-
cal ranking minimization heuristic, proposed in Sec-
tion 5.2, is applied in HRJN. The HRJN∗ operator
uses the score-guided strategy, proposed in Section 5.3,
to determine the rate at which it retrieves tuples from
both inputs. The J∗ operator is an implementation
of the J∗ algorithm. We do not compare with the
näıve approach of joining the inputs then sorting since
all the rank-join algorithms give a better performance
by orders of magnitude. We choose four performance
metrics: the total time to retrieve k ranked results,
the total number of accessed disk pages, the maximum
queue size, and the total occupied space. In the follow-
ing experiments, we use Plan A as the execution plan
for Q. Using Plan B gave similar performance results.

Changing the number of required answers In
this experiment, we vary the number of required an-
swers, k, from 5 to 100 while fixing the join selectiv-
ity to 0.2%. Figure 9 (a) compares the total time to
evaluate the query. HRJN and HRJN∗ show a faster
execution by an order of magnitude for large values of
k. The high CPU complexity of the J∗ algorithm is
because it retrieves one join combination in each step.
In each step, J∗ tries to determine the next optimal
point to visit in the Cartesian space. Since both HRJN
and HRJN∗ use symmetric hash join to produce valid
join combinations, more join combinations are ranked
at each step. Figure 9 (b) compares the number of ac-
cessed disk pages. The three algorithms have a com-
parable performance in terms of the number of pages
retrieved. J∗ and HRJN∗ achieve better performance
because retrieving a new tuple is guided by the score
of the inputs, which makes both algorithms retrieve
only the tuples that makes significant decrease in the
threshold value and hence less I/O. Figure 9 (c) com-
pares the number of maintained buffer space. HRJN
and HRJN∗ have low space overhead because they
use the buffer only for ranking the join combinations,
while J∗ maintains all the retrieved tuples in its buffer.
Had we also included the space of the hash tables, J∗

will have a lower overall space requirement. In most
practical systems the hash space is already reserved
for hash join operations. Hence, the space overhead is
only the buffer needed for ranking.

Changing the join selectivity In this experiment,
we fix the value of k to 50 and vary the join selectivity
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Figure 9: Comparing HRJN , J∗ and HRJN∗ for m = 4 and selectivity = 0.2%.
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Figure 10: The effect of selectivity on HRJN , J∗ and HRJN∗ for m = 4 and K = 50.
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Figure 11: The effect of pipelining on HRJN , J∗ and HRJN∗ for selectivity 0.2% and K = 50.

from 0.12% to 2%. Figure 10 (a) compares the total
time to report 50 ranked results, while Figures 10 (b)
and 10 (c) compare the number of accessed disk pages
and the extra space overhead, respectively. For all se-
lectivity values, HRJN∗ shows the best performance.
J∗ has a better performance than HRJN for high se-
lectivity values while HRJN performs better for low se-
lectivity values. The reason is that HRJN ∗ combines

the advantages of J∗ and HRJN . While HRJN∗ uses
a score-guided strategy to navigate in the Cartesian
space for a faster termination (similar to J∗), it also
uses the power of producing fast join results by using
the symmetric hash join technique (similar to HRJN).

The effect of pipelining In this experiment, we
evaluate the scalability of the rank-join operators. We



vary the number of join inputs, m, from 3 to 6 and fix
k = 50 and the join selectivity to 0.2%. Figure 11 (a)
gives the effect of pipelining on the total query time.
HRJN and HRJN∗ show much better scalability than
that of J∗ by orders of magnitude. The CPU complex-
ity of J∗ increases significantly as m increases. On
the other hand, J∗ and HRJN∗ show better perfor-
mance in terms of the number of accessed pages com-
pare to HRJN (Figure 11 (b)), because of the score-
guided strategy they are using. HRJN∗ is the most
scalable in terms of the space overhead as shown in
Figure 11 (c).

8 Conclusion

In this paper, we address supporting top-k join queries
in practical relational query processors. We introduce
a new rank-join algorithm that is independent of the
join strategy, along with its correctness proof. The
proposed rank-join algorithm makes use of the ranking
on the input relations to produce ranked join results
on a combined score. The ranking is performed pro-
gressively during the join and hence, there is no need
for a blocking sort operation after join. We present a
physical query operator to implement rank-join based
on ripple join; the hash rank join (HRJN). We propose
a new join strategy that is guided by the input score
values. We apply the new strategy on the original
HRJN algorithm and call the new operator HRJN ∗.
We address exploiting available indexes on the join
columns. We propose a general rank-join algorithm
that utilizes these indexes for faster termination of the
ranking process. We experimentally evaluate the pro-
posed join operators and compare their performance
with a recent algorithm to join ranked inputs. We
conduct several experiments varying the number of re-
quired answers, the join selectivity, and the number of
inputs in the pipeline. The experiments prove the con-
cept and show a significant performance enhancement,
especially for low values of join selectivity.
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