A Platform Based on the Multi-dimensional Data Model
for Analysis of Bio-Molecular Structures

Srinath Srinivasa

Indian Institute of Information Technology

“Innovator” Towers, ITPL,
Whitefield Road,
Bangalore 560066, INDIA
sri@iiitb.ac.in

Abstract

A platform called AnMol for supporting an-
alytical applications over structural data of
large biomolecules is described. The term
“biomolecular structure” has various connota-
tions and different representations. AnMol re-
duces these representations into graph struc-
tures. Each of these graphs are then stored
as one or more vectors in a database. Vec-
tors encapsulate structural features of these
graphs. Structural queries like similarity and
substructure are transformed into spatial con-
structs like distance and containment within
regions. Query results are based on inex-
act matches. A refinement mechanism is
supported for increasing accuracy of the re-
sults. Design and implementation issues of
AnMol including schema structure and per-
formance results are discussed in this paper.

Keywords: Biomolecular structures, Vec-
torization of structure, OLAP, Layered star
schema

1 Introduction

Biomolecules like proteins are large molecular struc-
tures having hundreds to thousands of atoms each.
Databases of biomolecular structures hold valuable in-
formation for activities like drug design, understanding
of metabolic processes, etc. However, such informa-
tion is not immediately relevant from the data; which

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

Sujit Kumar

C L Infotech Pvt. Ltd
214, 1st main, 7th Block,
Koramangala,
Bangalore 560095, INDIA
sujit@clinf.com

brings in a need for analytical applications over such
databases.

There are many existing applications that per-
form specific activities over molecular structures. For
example, the SCOP [14], FSSP [6] and CATH [1]
databases maintain structure-based classifications of
protein molecules. While this would be useful for
structural similarity searches, there is still a need for
a more general platform for supporting many analyti-
cal queries in a uniform fashion. An analytical process
may require other operations like clustering based on
common substructures, finding different mutations of
a structure, etc. in addition to structural similarity
searches.

The objective of our work is to design such a com-
putational platform, or an OLAP engine for molecular
structures. This platform is named AnMol.

The design goals of a platform meant for supporting
analysis is different from that of databases that store
specific information like similarity measures. Analy-
sis has to support searches that look for trends over
a large dataset. For instance, collective properties
like finding clusters of molecules satisfying a required
property is more important than finding precise struc-
tural differences between a pair of molecules. Such
queries have to be supported in an interactive fashion.
AnMol hence incorporates searches based on inezact
structure matching, but having a capability of inter-
active response times and refinement mechanisms for
query results.

Biomolecules and their representation: A typ-
ical large biomolecule like a protein, comprises of hun-
dreds to thousands of atoms. Most of these atoms
are hydrocarbons with carbon and hydrogen occur-
ring most frequently. There may also be other atoms
like nitrogen, sulfur and phosphorus found in the
molecules.

Adjacent atoms in a molecule are connected by co-
valent bonds. In addition to covalent bonds there may
be “non-bonded” interactions between atoms that may

be far away in the covalent structure graph. Non-
bonded interactions are responsible for folding the
molecule and giving it a characteristic 3D structure.
Usually, the 3D structure is “rigid” in the sense that
interatomic distances between any two atoms in the
molecule is the same regardless of the orientation of
the molecule.

Biomolecular structures are described using many
different characterizations. For example, proteins are
described as a sequence of amino acids (called the pri-
mary structure), as a map of structural elements like
a-helices and S-sheets (called the secondary structure),
as a set of structural motifs formed by connecting the
structural elements (called the tertiary structure), or
as a set of 3D coordinates identifying the positions of
its atoms (called the quaternary structure).

AnMol converts each of these different character-
izations into one or more labeled undirected graphs.
The graphs are generated such that they are “struc-
ture dominated” [15]. This means that the number of
labels are much smaller than the number of nodes in
the graph. Also, the number of edges are much smaller
than n(n —1)/2, where n is the number of nodes. This
means that there is a large diversity in the connectiv-
ity structure of the graphs and a small diversity in the
labels.

Once the graphs are obtained, AnMol then uses a
concept called “vectorization of structure” to encap-
sulate structural features of these graphs into one or
more vectors. Vectorization enables AnMol to support
many operations that are typical to OLAP applica-
tions.

Structural queries like similarity and substructure
are mapped to spatial queries like vector distance
and containment within regions. The results of such
queries would be based on inexact structure match-
ing. A refinement mechanism is provided by which
the user or application can progressively refine query
results. There is a tradeoff between the maximum ac-
curacy that can be obtained and the time taken to add
molecular structures. The database administrator can
control this using a configurable parameter.

Currently, an AnMol database holding 457 proteins
is implemented on a single Pentium III, 700 MHz PC,
having 64 MB of RAM. While addition of protein
structures is performed in batch mode, queries are in-
teractive.

2 Related Literature

Molecular structure of proteins and other biomolecules
is usually available in the form of 3D (z,y, z) coordi-
nates for each atom in the molecule. An example is the
PDB record available from the Protein Data Bank [13].

A commonly used mechanism of comparing two
molecular structures is to calculate the root-mean-
square distance (RMSD) between corresponding
points of two PDB records. These points of corre-

spondence could be all atoms, the C* atoms that sig-
nify amino acids, centers of mass of amino acids, etc.
Establishing correspondence may be a semi-automatic
process where some manual intervention may be re-
quired. In the DALI algorithm [7] correspondence is
established by first computing a distance matrix for
each molecule that shows the all-pairs distances be-
tween its atoms. Two molecules are compared by
aligning their distance matrices. The matrices are
aligned by moving one over the other until the largest
submatrix is found where the difference between the
corresponding distance elements is minimum. Such an
algorithm is computationally intensive and may not be
able to support interactive queries.

The FSSP database [6] uses the DALI algorithm
to maintain an exhaustive all-against-all 3D structure
comparison between proteins in the protein data bank.
Here, distances are computed offline and the database
statically maintains RMSD values across pairs of pro-
teins. Correspondences are established against C¢
atoms for RMSD calculation.

But as discussed in the earlier section, supporting
analytical tools may require more than a static all-
against-all distance data. Distance calculation may be
just one step in a larger query like: “Find all molecules
that contain fragment g, and are close to the molecule
p'”

The notion of distance in AnMol is different from
that of RMSDs. The vector space in AnMol is not
the 3D physical space that is used in the above ap-
proaches. Also, AnMol does not require costly and
semi-automatic structural alignments. In Section 5,
the AnMol distances between members of a randomly
selected sample is compared against their RMSD val-
ues obtained from FSSP.

A number of algorithms meant for sequences have
been tried for protein structures by representing pro-
teins as sequences (for example, primary structure,
and sequences from secondary structures). Some ex-
amples are Hammel and Patel [5] and Wang et al. [16].

Lamdan and Wolfson [10] propose a technique
called geometric hashing that enables fast comparison
of 3D geometric structures. Here, a geometric struc-
ture is represented as a vector of features that is in-
dependent of any rigid transformations applied to the
structure. The feature vector is placed in a hash ta-
ble and structural congruence is determined by vectors
that hash to the same bucket in the hash table.

Leibowitz et al. [11] use geometric hashing to align
many molecular structures and discern commonly oc-
curring substructures.

Wang et al. [17] also use geometric hashing to mine
for patterns in 3D graphs. A pattern is defined as a
frequently occurring substructure across graphs that
is obtained by an arbitrary number of rigid structure
transformations like rotations and translations, and
a bounded number of edit operations over member

graphs.

To contrast with geometric hashing, vectorization in
AnMol does not require a 3D geometric structure. Vec-
torization is performed on graphs represented by nodes
and edges. In fact, 3D structures are first converted
to graphs before hashing. Hashing graphs rather than
3D structures enables many non-structural but inter-
connected features of molecules to be hashed using the
same algorithm. For example, a hydrogen bond graph
shows the occurrences of hydrogen bonds among atoms
in a protein molecule. Proteins having similar patterns
of hydrogen bonds would be interesting even if their
3D structure vary considerably. Similarly, sequences
are considered as a special case of graphs and are han-
dled in an analogous manner.

A vector in AnMol however, cannot regenerate the
original graph unlike the geometric hashing model of
Lamdan and Wolfson [10]. Two or more graph struc-
tures can hash to the same vector. But AnMol uses
a hierarchy of vector spaces, where a graph is hashed
onto vectors at one or more levels. If two or more
structurally different graphs hash to the same point at
a level [, the probability that they continue to hash to
the same vector keeps progressively decreasing as we
move up the hierarchy above [.

In the SUBDUE |[2, 8] database, a concept called
hierarchical conceptual clustering is used to maintain
graph structures. Here the entire database is repre-
sented as a single graph. Graph nodes appear at dif-
ferent hierarchical levels where a node high in the hier-
archy actually represents a substructure made of lower
level nodes. Conceptual clustering involves replacing
frequently occurring subgraphs with a single node to
form a concept hierarchy.

AnMol incorporates a concept called hierarchical
vector spaces and compression, which are somewhat
analogous to that in SUBDUE. However, the core con-
cept in AnMol is of vector spaces, that can support not
only substructure, but also nearness searches in a uni-
form fashion.

The GraphGrep [4] model developed by Guigno and
Shasha supports retrieval based on ezact subgraph iso-
morphism. Complexity of subgraph isomorphism is
moved to an offline “preparation” phase which is a
one-time database preparation operation. The prepa-
ration phase involves storing member graphs as a set
of paths of length [,, where [, is a configurable pa-
rameter. Query graphs are also converted to a set of
paths, just like the member graphs. Subgraph isomor-
phism is performed by sequence based searches across
paths. While GraphGrep provides results based on
exact matches, enumerating the set of all paths from
member graphs takes up super-polynomial time. This
overhead is justified by saying that determining paths
out of member graphs is a one-time, offline operation.

AnMol differs from GraphGrep in that it has only
polynomial running time both for preparation and

operation.
matches.

However, queries are based on inexact

3 AnMol Vectorization Model
3.1 Overall architecture

AnMol is an extension of our earlier project called
GRACE [9, 15]. The underlying concept of vector-
ization is the same as in GRACE. However, some vital
shortcomings of GRACE have been rectified in AnMol.

Shortcomings in GRACE that have been rectified
in AnMol are as follows:

1. GRACE required two phases of activity: an ini-
tialization phase and an operation phase. In
the initialization phase, a few candidate graphs
were sampled to identify dimensions and cre-
ate vector spaces. In the operation phase, the
database was populated by vectorizing graphs
based on the identified dimensions. If a given
graph did not contain a specific dimension, its
projection was taken to be 0; and if the graph
contained a new dimension, it was silently ig-
nored. The reason for such a design stemmed
from concerns about efficiency of query handling.
The GRACE schema organized tables in the form:
(d1,da,...,d,,name) where dy,ds,...d, are di-
mension names and name is the name of the pro-
tein. The schema was indexed using KD-trees
which enabled fast retrieval based on spatial con-
straints.

However, silently ignoring new dimensions results
in loss of information, and the database relies
heavily on the set of sample structures being rep-
resentative enough. There is no simple way of en-
suring this, given the large and intricate structure
of biomolecules.

AnMol on the other hand adds new dimensions
on the fly, without the need for an initializa-
tion phase. This is enabled by the “layered star
schema” introduced in Section 4.

2. GRACE had another shortcoming with higher-
level vector spaces. As explained later in this sec-
tion, graphs are vectorized at many levels. At the
lowest level, a given graph is treated as a vector
of structural features. The graph is then rewrit-
ten by replacing every occurrence of a structural
feature with a new labeled node. This creates a
graph at a “higher level” which can be further
vectorized in the same fashion.

However, there are many ways in which a graph
can be rewritten, resulting in a number of differ-
ent “views” at the higher level. In order to han-
dle different views, GRACE created many vector
spaces. The vector spaces were organized such
that there was as little overlap in dimensions as

Preprocessors

graph
epresentations

| Vectori zation Engine |

00 O

Structure
spaces

vect or
Query > Query / refinenent engine |(— space
br owser

ResuyRef inenent data

Cor r espondi ng

Vi sual i zation engi ne PDB record

Figure 1: AnMol Architecture

possible among vector spaces. This was to avoid
the problem of sparse tables comprising of a large
number of zeroes. The layered star-schema avoids
this altogether by changing the way in which the
space is stored. In AnMol, every level has only
one vector space.

3. GRACE supported only substructure queries,
while AnMol supports two more kinds of struc-
tural queries.

Figure 1 shows the overall AnMol architecture. The
input to AnMol is the PDB record. Although the vec-
torization engine is not PDB specific, currently prepro-
cessors that have been written, all expect PDB records.

The file format of the PDB record is available from
the content guide [12]. A number of data items present
in the record are interesting from an analysis point of
view. However, here we shall concentrate only on the
quaternary molecular structure.

Molecular structure is described in PDB records by
assigning x, y and z coordinates to atoms. AnMol pre-
processors read this input and generates one or more
labeled undirected graphs.

These graphs capture various views of the molec-
ular structure. The vectorization engine hashes each
of these graphs into one or more vectors. The vectors
generated for each graph are stored in a structure space
which is a hierarchy of vector spaces for graphs of a
particular type.

Analytical queries are handled based on the data
in these vector spaces. The PDB records are not con-
sulted once they have been vectorized, except for vi-
sualization.

Queries are handled both in a textual form and a
visual form using a visual browser. With the visual
browser, vector spaces can be browsed by selecting
any three dimensions from the set of all dimensions in
them. For visualizing individual molecules, AnMol re-
sorts to freely available visualization tools like Protein
Explorer! that reads data directly from the PDB file.

Thttp://www.umass.edu/microbio/rasmol/

3.2 Preprocessing

Preprocessing involves converting a PDB record into a
labeled undirected graph. Each graph so generated de-
picts a particular view of the molecular structure. Pre-
processors for generating the following kinds of graphs
have been built.

Covalent bond graph: This preprocessor takes a
PDB record and generates a graph where nodes
are atoms in the molecule and edges are covalent
bonds among atoms. Nodes are labeled by their
atomic symbol and edges are labeled either b for
“backbone” or o for “other”. The backbone rep-
resents the protein “main chain” which connects
the different amino acids that make up the pro-
tein. Protein primary structure is the sequence of
amino acids in the order that they appear on the
backbone.

Proximity graph: This preprocessor takes each
atom in the PDB record as a node and connects it
to all other atoms that lie within a radius of some
preset parameter r. It then removes all edges that
could denote covalent bonds. Such a graph can
capture some non-bonded interactions that con-
tribute to the 3D structure of the molecule. Iden-
tifying non-bonded interactions is a major area of
research among molecular biologists, and as such
the proximity graph is only a crude mechanism
of identifying such interactions. Just because two
atoms are spatially near, does not necessarily im-
ply the existence of a non-bonded interaction be-
tween them. Nevertheless, the proximity graph
captures useful information about the 3D struc-
ture of the molecule.

Bond-angle graph: The bond-angle graph repre-
sents each covalent bond as graph nodes and the
angle between adjacent bonds as edges. The node
labels are concatenations of atom symbols on ei-
ther end of the bond they represent. For instance,
a bond connecting a nitrogen atom and a carbon
atom is labeled (N.C). Edge labels are the an-
gles between adjacent bonds. In order to keep the
number of labels small, angles are divided into
a small number of regions. For instance, instead
of storing the exact angle between bonds, the pre-
processor can be configured to just label the quad-
rant in which the angle falls in.

Torsion-angle graph: Torsion angle is the angle be-
tween two adjacent planes formed by four adja-
cent atoms. Figure 2 schematically depicts a tor-
sion angle. Torsion angle is usually computed only
for atoms on the backbone in protein molecules.
The torsion angle graph hence is a sequence com-
prising of a series of planes where adjacent plane
labels are separated by a torsion angle label. Tor-
sion angles are usually measured across amino

t or si on
angl e

plane 2 ..

- L4

Figure 2: Schematic description of torsion angle

acids rather than any three atoms. In the torsion
angle graph, node labels are amino acid symbols
and edge labels are regions that classify the tor-
sion angles.

3.3 Vectorization

After the PDB record is preprocessed, one or more la-
beled undirected graphs are obtained. The vectoriza-
tion step hashes these graphs onto one or more vectors
each.

We use the dotty syntax used in Graphviz [3] for
representing undirected graphs. Each kind of graph re-
ceived from the preprocessing phase represents a differ-
ent structural characterization of the molecule. They
are all vectorized separately and placed in different
structure spaces.

Let G = (V,E,VL,EL) be an output graph from
the vectorization phase. Here V' is the set of nodes in
the graph, E is the set of edges, VL is a set of node
labels and Ej, is a set of edge labels. Any given node
v € V has a node label v; € V}, associated with it.
Similarly, any edge e € E has an edge label ¢; € Ef,
associated with it.

For vectorization, it is very much desirable that
VL] < |V| and |EL| < |E|. The preprocessing
phase ensures that this property is satisfied. Some
kinds of graphs like the covalent-bond graph, are eas-
ily amenable to the above property. In such a graph,
|Ey| = 2 (either b or o), representing a bond on the
protein “backbone” or “other”. Node labels are the
atom symbols. Some of the frequently occurring node
labels are: N for nitrogen, CA for C'* atoms that denote
an amino acid on the backbone, CP for the carboxyl
carbon that occurs immediately after C* on the back-
bone, and C for other carbon atoms. The number of
node labels is usually between 5 and 10. The number
of nodes and edges are usually of the order of a few
hundreds to thousands.

Vectorization comprises of two operations: parsing
and compression.

The parsing function takes a graph and creates a
vector out of the graph. Parsing takes place at dif-
ferent levels. Initially, parsing starts at level 0. Af-

ter a vector is created at level 0, the input graph is
compressed to result in zero or more graphs at level
1. Each of these graphs are then parsed and com-
pressed. The process can proceed until such a level
where it is no longer possible to compress graphs any
further. In reality through, a configurable parameter
called maxlevels is set that determines the maximum
number of levels in the database.

Level 0 is consulted for generating an initial re-
sponse to a user’s query. All levels above level 0
are used for refinement queries that are used to make
query results more accurate. maxlevels is hence a
tradeoff between the time saved during addition and
the number of refinements possible.

A vector space is defined as H = (D, V) where, D
is a set of “dimensions” and V is a set of “vectors”.
Any vector v € V is defined as an associative array
comprising of elements of the form (d = p), where
d € D is a dimension name and p is the “projection”
of v on dimension d. Let the term dims(H) denote
the set of all dimensions in H, (D = dims(H)); the
term vec(H) denote the set of all vectors in vector
space H, (V = vec(H)); and the term proj(G, H,d)
denote the projection of vector G on dimension d in
vector space H. In an analogous way, we shall use the
term dims(G), where G is a graph, to mean the set of
all dimensions found when G is parsed, vec(G) to be
an associative array of the form (d = p) showing the
number of occurrences of each dimension d in G, and
proj(G,d) to mean the projection of G on dimension
d in dims(G).

The algorithm for parsing a graph G at any given
level [is as follows:

Algorithm Parse (Graph G, Level 1)

1. Scan the graph G, and identify all substructures of
the form wv,vpe, where v, and vy are node labels and
e is an edge label. The term wv,wvpe identifies a sub-
structure made of two nodes having labels v, and vy
respectively, being connected by an edge having label
e. We shall use the term v, < v to denote such a
substructure. Let dims(G) be the set of all such labels
thus found.

2. For any dimension wveupe, let proj(G,vavse) be the
number of such labeled substructures found.

3. Let S; be the vector space in the DBMS for level [.
If G is the first graph to be inserted at level I, then
Si = ({}, {})- Insert G into S; as follows.

(a) Merge dims(G) to dims(Sy).
dims(S;) = dims(S;) U dims(G)
(b) Add G to the set of vectors in S;.
vec(S) = vee(Sr) Uwvec(G).
(Note that for any d € dims(S;)) and d ¢
dims(QG), proj(G,d) is assumed to be 0).

endAlgorithm Parse.

As is evident from the algorithm, parsing creates
vectors that index different “minimal” substructures
of the graph. The substructures describe two nodes

H __ Covaent bond
. on the backbone
H**(‘:**H o -=-- Other covalent bond
—N—c*—c—
H Carboxyl
Carbon

(3
N:CA:b =1
CACPb =1
CP.0.0 = 1
CA:H:o = 1
CA:Coo = 1
C:H.o = 3

(b)

Figure 3: A graph fragment and its vector

connected by an edge. An edge is the simplest struc-
tural feature of a graph.

It can be easily shown that the dimensions created
from the above algorithm are linearly independent of
one another. No dimension can be expressed in terms
of other dimensions.

Lemma: No two dimensions created by algorithm Parse,
can be expressed in terms of one another.

Proof: First, note that every dimension at a given level
are of the same size. They are made of exactly two node
labels and one edge label. This precludes the possibility of
any dimension being contained within another.

Second, dimensions of a vector space are created by a
union operation (step 3a), out of the dimensions found
in the current graph being parsed. The graph is undi-
rected, therefore v,vpe is considered identical to vpvee dur-
ing union and are not repeated. This precludes the possi-
bility two dimensions being identical.

Hence, no dimension can be expressed in terms of other
dimensions at the same level.

Figure 3 shows an example of vectorization. 3(a)
shows a graph fragment comprising of labeled nodes.
Edges are labeled either b or o. The corresponding
vector created by the above algorithm is shown in 3(b).

If |VL| = v and |EL| = p, then there can be a max-
imum of p - v? dimensions. Since v and p are usually
small numbers, and since not all combinations of node
and edge labels occur, the average number of dimen-
sions is much smaller. In the implementation, after
addition of 457 proteins, and performing a proximity
graph preprocessing, the number of dimensions at dif-
ferent levels from 0 to 6 were as follows: 12, 39, 122,
195, 288, 281, 6.

Parsing requires examining each edge in a graph.
Parsing hence has a complexity of O(|E|).

But as is evident from the algorithm, the parsing

function indexes very simple substructures: namely
two nodes connected by an edge. Such an algorithm
loses interconnectivity information across edges. This
information is obtained when the graph is compressed
to yield a graph at a higher level of abstraction.

The compression process is as follows: the proce-
dure progressively replaces every occurrence of a sub-
structure of the form v, & vy with a single node la-
beled v,vpe. Edges incident on either the node labeled
v, or the node labeled v, are now made incident on
the new node v,vpe. The process proceeds until it is
no longer possible to replace any substructure with a
node. Once this is done, any uncompressed nodes from
the previous level and its incident edges are discarded
from the compressed graph.

The structure of the resulting compressed graph is
dependent upon the order in which substructures are
replaced by nodes. If a graph resulted in n dimensions
at a particular level, the number of ways in which it
can be compressed is greater than even O(n!).

In AnMol not all permutations of dimensions are
considered for compression. Different compressed
graphs usually have a significant overlap in structural
features.

In order to minimize the number of compressions
and overlap, a heuristic is adopted that makes only
|dims(G)| passes on the graph. Initially, dimensions
of the graph G are ordered in decreasing order of the
projection of G onto them. Using this decreasing se-
quence, G is compressed. Once a compressed graph is
obtained, the dimension sequence is rotated such that
the first dimension goes to the end. G is then com-
pressed again using this new sequence. This process is
repeated |dims(G)| times to get m < |dims(G)| com-
pressed graphs.

The algorithm for compression is given as follows:
Algorithm Compress (Graph G, Level 1)

1. dimarray < sort dims(G) in decreasing order based on
proj

2. for i « 0 to |[dims(G)| — 1

do

11j« i G« G

1.2 repeat

1.3 Compress G’ based on dimarray[j] by replacing ev-
ery occurrence of substructure described by dimarray[j]
with a node having label dimarray[j]

1.5 Set the level of each new node created as [+ 1

1.6 j + (j+1) mod |dims(H)|

1.7 until j ==1i

1.8 Remove all nodes whose level is [including the edges
connected to them

1.9 If G’ contains at least one edge connecting nodes at
level I + 1 then add G’ to the list of graphs at level [+ 1,
else discard G’
endfor
endalgorithm

From the above algorithm it is evident that the com-

Compression order:

CHo => 3
NCAb => 1
COo =1

Figure 4: A compressed graph fragment based on Fig-
ure 3

pression process may create more than one compressed
graphs at the next level. These different graphs are
called different “views” of the original graph. All these
views are given different subscripts and added into the
vector space at the higher level. Sometimes a view
may result in a graph with no edges. Such a graph
cannot be vectorized further and is ignored. Figure 4
depicts a compressed graph formed from the fragment
of Figure 3. The figure also shows the sequence of
dimensions used for obtaining this compressed graph.

For any graph G, the number of views that can be
generated is O(|dims(G)|). The number of views is
sensitive to V and Vg. In order to prevent too many
views at a single level, the following rules are adopted:

1. For any generated view G, if there exists an-
other generated view G2 at the same level such
that dims(G1) C dims(G2), and Vd € dims(G1),
proj(G1,d) < proj(Ga,d), then G is discarded.

2. A configurable parameter called maxviews limits
the number of views in a single level.

Observe that in level 0, each graph will have exactly
one view. Also, for any graph G if there exists a vector
for G at level I, there will be at least one vector for G
in all levels below [.

The compression process effectively reduces the size
of the input graph by half. Hence if the initial graph
had |E| edges, the number of levels created would be
O(log(]E|)). In practice, maxlevels limits the number
of levels created.

3.4 Handling queries

AnMol supports three kinds of queries: nearness, sub-
structure and mutation queries. Queries from many
analytical tasks usually require a combination of the
above query types. Definitions of each of the query
types is given as follows:

Nearness: In this query, a molecule is given as in-
put, and query returns molecules that are close
in structure to the input molecule. Nearness is
defined based on the vector distance between the
query vector ¢ and the candidate graph vector v.
For any vector space H, vector distance is given

by: \/Zacaims(a)(proj(q, H,d) — proj(v, H,d))?.

Substructure: In this query, a structural fragment
is given and the query returns molecular struc-
tures that most likely contain the given frag-
ment. If ¢ is the vector of the query frag-
ment, then ¢ is probably a substructure of can-
didate vector v, if for every vector space H, Vd €
dims(H),proj(v, H,d) > proj(g, H,d).

Mutations: Given a molecule as input, mutation
queries return molecular structures that share a
significant percentage of structural features with
the input molecule. Mutation queries are similar
to nearness queries, except that nearness does not
consider molecular structures that do not have all
structural features of the input molecule. Calcu-
lation of mutation queries are explained further
down in this section.

Queries are handled in an interactive fashion. The
first time a query is given, only level 0 is searched. Sub-
sequently, the user or application may choose to refine
query results, in which higher levels are searched.

Let G be a graph that is obtained after preprocess-
ing the query structure. In order to answer the query,
G is first parsed to create a vector at level 0. Query
results now depend on searching the neighborhood of
G’s query vector. To search neighborhoods, a config-
urable parameter called “window length” (denoted by
w) is used. For nearness and mutation queries w/2 is
the radius around the vector of G which is searched.
For substructure queries, the vector of G is the start-
ing point from which a hypercube of length w on each
side is searched for query results.

Let the term w(d, H,G) denote the set of all points
lying within the region characterized by w along di-
mension d in vector space H, given graph G as the
query. Depending on the type of query, G is either at
the center of the region or at the beginning.

For nearness and substructure queries in any vec-
tor space H, query results would be points that sat-
isfty w(d, H,G) for all d € dims(H). Hence the query
result set is calculated as: (Vyeqimsmy w(d, H,G). A
ranking procedure then assigns ranks to each vector
in the query result. Ranking algorithms are discussed
further below.

For mutation queries, it is necessary to consider
points that lie in the vicinity of G, but they may not
share all features in common. As long as graphs share
a significant number of dimensions in common with G
we consider them for the result. In the weak nearness
form of the mutation query, a union of results from all

dimensions are taken. Hence, query result is given by:
Udedims(m w(d, H,G). The results are then ranked
based on the number of dimensions in which they lie
inside w(d, H, G).

In the strict mutation form of the muta-
tion query, query results are calculated as:
Udedz’ms(H) w(d, H,G) ndedz’ms(H) w(d, H,G).
Strict mutation means that the candidate is not near
in all, but is near in at least one dimension. Candi-
dates that are near in all dimensions are returned as
part of nearness queries, which are explicitly removed
from strict mutation.

Ranking query results: Ranking query results
has two aspects: (a). ranking the query and (b). rank-
ing the refinements. Also, the ranking algorithm varies
depending on the type of the query.

For nearness queries, ranks are assigned at level 0,
by sorting query results in increasing order of their
distances with the query graph. During refinements,
the distance metric for each query result is set as the
minimum of the current distance measure and the dis-
tance obtained after refinement. Query results are
then sorted again based on the new distance measures
and ranks assigned accordingly.

For substructure queries ranking proceeds as fol-
lows. Given a query @), at level 0 all its query results
are assigned rank = 0. After each compression of the
query graph @, a set of query results are returned.
For every graph G that has been returned after refine-
ment, if G exists in the original set of query results,
then the rank of G is increased by the level number
after refinement.

Hence, if a graph matches at a higher level of ab-
straction, it gets a greater rank than another graph
which matches at a lower level of abstraction. Simi-
larly, the greater the number of views of a graph that
match the query, the greater is its rank.

Note that in nearness queries, results are ordered
in ascending order of their ranks while in substructure
queries, results are ordered in descending order of their
ranks.

For mutation queries, at level 0 the results are or-
dered based on the amount of dimensional overlap they
have with the query. Ranks are assigned based on this
list. If two or more graphs have the same amount of di-
mensional overlap, the tie is broken using the distance
metric. After every refinement, the list of dimensional
overlap is adjusted by setting it to the maximum of
the current overlap and the overlap obtained after re-
finement. The query set is ordered again based on the
new overlap measures and ranked.

In mutation queries, results are again ordered in
increasing order of their ranks.

3.5 Query APIs

Query APIs are supported by AnMol that enables ap-
plications to embed AnMol queries into programs. As

of now, only searches are supported this way; addition
of new molecules has to be done manually.

The three types of queries namely nearness, sub-
structure and mutation are available as functions
named near (), contains() and mutation() respec-
tively. These functions are in the form of methods of
a Java class called AnMol.

There are two forms of the above functions: (a). a
form that acts on the entire structure space and (b).
a form that acts on a particular scope; typically the
results of another query.

Hence, the function near (G) returns molecules that
are near to G from the vector space at level 0. A
function of the form near (G’ ,near (G)) returns a set
of molecules that are near G' among the set of points
that are near G.

Similar to near() the other two functions
contains() and mutation() also has two analogous
forms. The search scope specified in the second pa-
rameter can be any of the searches. Hence, the func-
tion contains(G’,near(G,mutation(P))) searches
for mutations of the query molecule P, that are struc-
turally similar to G and contain the fragment G'.

Refinement is supported by the refine() func-
tion. This function takes the result of a query or an-
other refinement as parameter, and performs the next
refinement over it. For example refine(near(G))
refines the results of the near() function once.
The term near(G,refine(refine(contains(H))))
searches for molecules containing H, refines the re-
sults twice and then searches among these results for
molecules that are near G.

The above functions are part of a class called AnMol.
Hence their invocation would be more like A.near(),
A.contains(), etc., where A is an object of type
AnMol.

The query molecule structure that is provided is
either in the form of a file name pointing to a file in
the dotty format [3]; or to a character buffer describing
the structure in dotty format.

Query results would be returned in an object of a
class called QueryResults. This object maintains the
state of the query like the query type and the number
of refinements completed. The return type of all the
four functions defined above is QueryResults.

The AnMol class also contains other methods
like setStructureSpace() that identifies a structure
space for answering queries; setWindowLength () that
sets the window length parameter; and rank() that
takes a QueryResults object as parameter and as-
signs a rank for each query result. A window length
of oo can be set by giving a negative parameter
to setWindowLength(). Note that, while a window
length of oo is useful for substructure queries, it would
be of no use to mutation or nearness searches. If win-
dow length is set to oo, then nearness and mutation
searches return all vectors in the structure space.

For a query that requires searching within the re-
sults of another query, the process proceeds by first
searching the structure space and obtaining results.
An intersection is then computed between these re-
sults and those specified in the scope. Such a strat-
egy is not costly because the biggest task in answering
queries is in parsing and compressing the query graph.
This has to be done anyway regardless of whether the
structure space is searched or the former query results
are searched.

4 Schema Design and Implementation

Databanks of biomolecular structures are usually read-
only. Addition to the databanks are rare in comparison
to queries. And modification of an existing structure
almost never happens.

Exploiting the above, the schema of AnMol uses a
number of materialized views to improve query perfor-
mance. The schema of AnMol has various components.
These are as follows:

e The layered star-schema which models the struc-
ture space for answering spatial queries

e The wector tables which hold vectors for each
added molecule

e The distance tables which hold distance informa-
tion between pairs of molecules in each vector
space

Layered Star Schema: The structure space in
AnMol is a hierarchy of vector spaces where member
graphs are represented at different levels.

Also, all three queries on the structure space that
were introduced require searching for points within
ranges. In order to facilitate such queries, a variant
of the star schema is designed called the layered star
schema.?

Figure 5 schematically shows a layered star schema.
At the center of a schema is a table called the “well”
of the schema. This is analogous to the fact table of
a star schema; but has certain differences. The well
maintains facts about member graphs. Each member
graph is given a numerical id, which acts as the pri-
mary key into the well.

Other fields like graph name, the file name of its
PDB record, data about the molecule, etc. are stored
in the other columns of the well. Unlike the fact table
of a star schema, the well does not hold any dimension
information.

In addition to the well, the layered star schema con-
sists of a set of dimension tables. Each dimension table
has a layer associated with it. The first column in a

2A simple table design like
(graph,level, dimension, projection) was discarded since
it requires very complex nested SQL statements for performing
range searches and needs a number of passes on the table.
Handling mutation queries on such a table is especially tricky.

Level 1
p [d-list
0
1 4
2
3
i ml il n2 i 8
Level O N\ |
[/
d| |detafls
L
©
Vel |
Figure 5: Schematic diagram of the layered star
schema

dimension table is a projection value. This is used as
the primary key. Each projection value present in a
dimension table points to a set of one or more graph
ids that are ordered incrementally. For example, in a
dimension table named D at level [, if a row with key
value = 5 points to the sequence 8,12,13, it means
that graphs having ids 8,12 and 13 have a projection
of 5 on dimension D in level . The list of ids stored
for a projection points to their respective records in
the well.

Such a set up enables efficient execution plans for
substructure, nearness and mutation searches. All
these queries involve extraction of a set of ids from each
dimension based on a window. This can be quickly
performed since dimension table records are ordered
according to projections. The set of ids for a given pro-
jection are stored in increasing order. This enables a
fast computation of intersection of query results across
all dimensions.

The layered star schema also allows new dimensions
to be added into the schema whenever they are encoun-
tered while parsing graphs.

The Vector Table: A vector table is available for
each level in a structure space. The vector table holds
vectors for individual graphs. They can be searched
efficiently given a graph id to obtain its correspond-
ing vector. They are useful when a query of the form
“Show all graphs near Protein-B” is encountered. Here
“Protein-B” is a graph that is already in the database.

It would be very inefficient to parse and compress the
query graph when its vector is already present. How-
ever, using just the layered star schema, the vector for
“Protein-B” cannot be efficiently retrieved. For such
situations, the vector table is consulted.

The vector table at any given level, consists of three
columns (id, dim, proj), where id is a graph id, dim is
a dimension name, and proj is the projection of id onto
dim. The table is indexed with respect to id enabling
fast retrieval of the vector for a given graph.

The Distance Table: A distance table is also a
materialized view of a vector space. A distance table is
associated with each level, where all-pairs vector dis-
tances are maintained. This is used for ranking query
results according to distance. The distance table com-
prises of three columns (ida,idp,distap), where ida
and idp are graph ids, and dist 4p is the distance be-
tween the graphs. Rows are inserted such that idy4 is
always smaller than idp, which helps in eliminating re-
dundant records (since dist(A,B) = dist(B,A)) and
establishes a policy for formulating distance queries
(the graph with the smaller id in a nearness search
always has to be searched in the first column).

5 Performance Evaluation

Performance evaluation of an AnMol implementation
was performed for the following criteria:

Load time: Here, loading times (involving parsing,
compression and addition into database) for protein
molecules were measured for loading their covalent-
bond graphs. The objective is to compare graph size
and its loading time. Covalent-bond graphs were cho-
sen because they were usually the largest graphs in
terms of the number of edges generated by any of the
preprocessors.

Figure 6 shows loading time as a function of the
number of edges. The measurements are shown as
points which are fitted with a smooth curve that shows
a growth rate of about 10z with respect to the number
of edges.

Query Time: Query response times varied de-
pending on whether the input query graph was al-
ready present in the database or it needed to be parsed
and compressed. The major time-consuming opera-
tions are parsing and compression. Times taken for
searching the database and computing intersections
were much smaller. Query response time did not vary
significantly with respect to the type of queries, since
all queries require parsing and compression.

If the query graph was already present in the
database, query response time was typically between
200 ms for small queries to 2 seconds for large queries.
When the query graph was not present in the database,
each compression and parsing operation for a given
level needed anywhere between 300 ms to 15 seconds.
The complete response time for a user interaction
ranged from 500 ms to 17 seconds.

600
|

Load time (seconds)
400
1
o

zoo
|

L=l

o-
°
o8-8~
T T T T T T T T
1000 2000 3oon 4000 3000 6000 F00o aoon

Size of input (#edges)

Figure 6: Loading time as a function of the number of
edges

Comparison of Nearness with RMSD: In order
to benchmark effectiveness of the nearness search, a
comparison was made against RMSDs.

It should be noted that the concept of distance in
RMSD and in AnMol are very different. RMSD com-
putation involves establishing a correspondence be-
tween two molecules and computing their displace-
ments with respect to one another. RMSD computa-
tion depends to a large extent on the establishment of
correspondence. When the FSSP database was con-
sulted, RMSD values for several pairs were missing.
For example, no RMSD value was available between
proteins 1a7j and la8y. But, AnMol returns some
distance value between any two graphs. This distance
computation is based on the respective vectors that
have been created for the graphs. The projection of
any dimension that is absent in a graph is taken as 0.

Correspondence between the metrics is determined
by computing RMSD and AnMol distances among a
set of randomly selected pairs and sorting the pairs
according to increasing distance measures. The cor-
respondence measure is then the length of the largest
alignment of pairs between the two lists. For example,
consider four randomly selected molecules A, B, C and
D. Let the list AB, BC,CD,AD, AC, BC depict a se-
quence showing increasing values of RMSDs. Suppose,
after ordering the above based on AnMol distances, we
get the sequence AB,BC,AD,AC,BC,CD. In this,
except for C'D, all other pairs are in the correct rela-
tive positions (i.e. AB > BC > AD...). Hence the
correspondence is % = 0.826.

We found that correspondence between RMSD and
AnMol distances depends on the type of preprocessing
performed. For instance, AnMol distances between
covalent-bond graphs had very little correspondence

Average RMSD correspondence across levels

1.0

=]

Or_r—o————oun_‘___ﬂ /

=]

0.3
|

avy

04

0.z

0.0
|

0:5

Figure 7: Correspondence between RMSD distances
and AnMol distances

with RMSD.

For comparison with RMSD, proximity graphs were
used. In the proximity graph preprocessor, only
backbone atoms (N, CA and CP) were chosen. This
is because, RMSD values available from FSSP were
computed by establishing correspondence on only the
backbone atoms.

Figure 7 shows the average correspondence obtained
between AnMol distances and RMSD across different
levels. The averages were computed over 26 exper-
iments, where each experiment involved aligning se-
quences of up to 28 pairs.

It should be noted that, the proximity graph has
lesser information than what is needed for RMSD cal-
culation. It depicts distance between two atoms, but
does not depict their relative orientation. This is a fac-
tor that affects RMSD values. AnMol is not proposed
to be a replacement for RMSDs for calculating pre-
cise structural differences. As mentioned in the design
goals, fast clustering of similar molecules is more de-
sirable than computing precise structural differences.
Benchmarking was performed against RMSD mainly
due to the lack of any other suitable benchmark.

Performance of substructure queries: We
maintained a window length of oo for substructure
queries. This gave a recall value of 1 for all queries
that were tested. Precision values varied. It depended
on the size of the query graph and the number of re-
finements.

In order to evaluate substructure matches, a se-
quence of amino acids was chosen randomly from some
protein and its corresponding structure was given as
input. Substructure results were then verified by per-
forming a corresponding sequence search on the pri-
mary structures of proteins that were returned by the

| Size of query (edges) | Precision |

11426 1
7834 1
6805 0.957
6789 1
5294 1
2544 0.895
2263 0.878
2249 0.906
1099 0.607
122 0.744
111 0.865

Table 1: Precision values for some substructure queries

Precision versus GQuery size

[=la] Q00 O [a]
sl

1.0

8o &

o
a Rl

0.8
|

Precizion
04

0.z
|

0.0
|

15 20 25 an 35 40 45

Figure 8: Scatter diagram depicting correlation be-
tween query size and precision obtained

query.
If the query was small, either all proteins contained
the structure or the query graph could not be com-
pressed beyond a few levels. If the query structure was
fairly large, then only one protein contained the query
structure. This was the protein from which the query
structure was extracted. In the latter case, the query
graph would usually be big enough to be compressed
to a level where accurate results could be obtained. As
a rule therefore, performance of substructure queries
seemed to be best when the query graphs were large.
Table 5 shows precision metrics obtained for some
query graphs of different sizes. MS Excel returned
a correlation coefficient of 0.459 between size of the
query graph and the precision obtained. Figure 8
shows a scatter diagram for the above correlation.

6 Conclusions

AnMol is a commercial implementation and is targeted
towards small bio-technology firms.
The design goals of AnMol are to provide a fast and

reliable platform for structural analysis of biomolecules
which can be used even over low-end computational
infrastructure. This is a pertinent need since most an-
alytical tools for structural analysis require large com-
putational infrastructure. Some of these tools can be
utilized over the internet, hence obviating the need
for high-end computing at the user’s end. However,
generic tools available over the internet may not suf-
fice for the specific requirements of the user. AnMol is
meant to fill this need and provide a platform for tools
that end users can install locally and use, without in-
vesting in large computational infrastructure.

Currently AnMol is at an alpha stage of implemen-
tation with a beta version expected to be ready in
the coming months. Performance evaluation is carried
out by biologists who are on the AnMol team. Perfor-
mance results for the tests carried out so far have been
rated good to very good from an end user’s point of
view.

7 Acknowledgments

The authors would like to thank members of the An-
Mol team: Sudip Midya, Pradeep Patil, L. Balasun-
daraman, Anitha Y., Sreenu Babu and Vipul Srivat-
sava. The authors are also deeply grateful to the
anonymous reviewers for their valuable comments that
helped in improving the paper.

References

[1] CATH: Protein Structure Classification.
http://www.biochem.ucl.ac.uk/ bsm/cath/

[2] D.J. Cook, L.B. Holder, S. Su, R. Maglothin, and
1. Jonyer. Structural Mining of Molecular Biology
Data. IEEE Engineering in Medicine and Biology
special issue on Advances in Genomics, Vol. 20,
No. 4, pages 67-74, 2001.

[3] E.R. Gansner, S.C. North. An Open
Graph Visualization System and its
Applications to Software Engineering.

http://www.research.att.com/sw/tools/
graphviz/GN99.pdf

[4] R. Guigno, D. Shasha. GraphGrep: A Fast and
Universal Method for Querying Graphs. Proceed-
ings of the 16th International Conference in Pat-
tern recognition (ICPR), Quebec, Canada, Au-
gust 2002.

[5] L. Hammel, J. Patel. Searching on the Secondary
Structure of Protein Sequences. Proc. of VLDB
2002, Hong Kong, China, 2002.

[6] L. Holm and C. Sander. Fold classification based
on Structure-Structure alignment of Proteins.
hitp://www?2.ebi.ac.uk/dali/fssp/

[7] L. Holm, C. Sander. Protein Structure Compar-
ison By Alignment of Distance Matrices. Jour-
nal of Molecular Biology, Vol. 233, pages 123-138.
1993.

[8] I. Jonyer, D.J. Cook, and L.B. Holder. Discov-
ery and Evaluation of Graph-Based Hierarchical
Conceptual Clusters. Journal of Machine Learn-
ing Research, Vol. 2, pages 19-43, 2001.

[9] S. Kumar, S. Srinivasa. A Database System for
Storage and Fast Retrieval of Structure Data: A
Demonstration. to appear in Proc. of ICDE 2003,
IEEE Computer Society Press, Bangalore, India,
Mar 2003.

[10] Y. Lamdan, H.J. Wolfson. Geometric Hashing: A
General and Efficient Model-Based Recognition
Scheme. Proc. of the IEEE Int’l Conf. on Com-
puter Vision, pages 238-249, 1988.

[11] N. Leibowitz, Z.Y. Fligelman, R. Nussinov, H.J.
Wolfson. Multiple Structural Alignment and Core
Detection by Geometric Hashing. Proc. of the
7’th International Conference on Intelligent Sys-
tems in Molecular Biology, Heidelberg, Germany,
pages 169-177, 1999.

[12] PDB File Format Contents Guide Version
2.2. http://www.resb.org/pdb/docs /format/
pdbguide?.2/quide2.2_frame.html

[13] PDB: The Protein Data Bank.

http://www.pdb.org/

[14] SCOP: Structural Classification of Proteins.
http://scop.mre-lmb.cam.ac.uk/scop/

[15] S. Srinivasa, S. Acharya, H. Agrawal, R.
Khare. Vectorization of Structure to Index Graph
Databases. Proc. of IASTED Int’l Conf. on Infor-
mation Systems and Databases (ISDB’02), Acta
Press, Tokyo, Japan, Sep 2002.

[16] J.T.L. Wang, Q. Ma, D. Shasha and C.H. Wu.
New Techniques for FExtracting Features from
Protein Sequences. IBM Systems Journal, Special
Issue on Deep Computing for the Life Sciences,
Vol. 40, No. 2, pages 426-441, 2001.

[17] X. Wang, J.T.L. Wang, D. Shasha, B.A. Shapiro,
I. Rigoutsos and K. Zhang. Finding Patterns in
Three Dimensional Graphs: Algorithms and Ap-
plications to Scientific Data Mining. IEEE Trans.
on Knowledge and Data Engineering, Vol. 14, No.
4, pages 731-749, 2002.

