Managing Distributed Workspaces with Active XML *

Serge Abiteboul

Cosmin Cremarenco Florin Dragan

Jéréme Baumgarten

Toana Manolescu

Angela Bonifati Grégory Cobéna
Tova Milo Nicoleta Preda

INRIA Futurs & LRI, PCRI (INRIA, Ecole Polytechnique, Univ. Paris-Sud, CNRS), France
firstname.lastname@inria fr

1 Introduction

The tremendous evolution of the Web has brought the
need for platforms allowing to easily deploy distributed
data management applications. The current trend
goes towards the de-centralization of such platforms,
and in particular to peer-to-peer architectures. In this
spirit, the Active XML system [1, 2, 3, 7] (AXML, for
short) provides a peer-to-peer data integration plat-
form, based on Web standards such as XML, and Web
services [8]. The system is centered around AXML
documents: XML documents where parts of the con-
tent is explicit XML data, whereas other parts are dy-
namically generated by calls to Web services on the
same or on other peers. By including Web service
calls, AXML documents already have an inherent form
of distributed computation.

A higher level of distribution that also allows (frag-
ments of) AXML documents and (some of the) Web
services that they use to be distributed and/or repli-
cated over several sites is highly desirable in today’s
Web architecture, and was addressed in [2]. The goal
of this demo is to illustrate the power of this novel
distribution and replication paradigm for easy scalable
development of Web applications, via o particular ex-
ample - the management of a collaborative workspace.

To explain this, we now describe in more details
what AXML is, the new issues brought by the distribu-
tion and replication of AXML documents and services,
and why this novel paradigm is particularly attractive
as a foundation for the distributed management of col-
laborative workspaces.

The basic A XML model. As mentioned above,
Active XML is a peer-to-peer platform for data and

* This project was partially supported by EU IST project
DBGlobe (IST 2001-32645)

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

Web service integration. An AXML document is an
XML document having a static part (XML data) and
a dynamic part, consisting of calls to Web services.
Such calls may contain actual XML parameters; the
parameters are wrapped into an input message for the
remote service. The XML data received in the service
output message is inserted into the AXML document,
which thus evolves through Web service call activation.
Each peer has some (A)XML documents and/or
provides web services; communication among peers
takes place through the invocation (on one peer) of
the Web services provided by another peer, as shown
in Figure 1(a). Regular non-(A)XML peers may also
participate as long as they provide some Web services
(like ps in Figure 1), and/or use some Web services
provided by (A)XML peers. We distinguish AXML
services, like sy, s5, s3 in Figure 1, defined by parame-
terized, declarative XQuery queries, from opaque ones,
provided by other peers and whose implementation is
unknown, as, for example, s4 in Figure 1. For opaque
services, the only available information is their sig-
nature, provided, e.g., by a WSDL description. The
AXML platform was demonstrated in [1].
Distributing and replicating AXML docu-
ments. In a recent work [2], we have considered
the distribution and replication of AXML documents
among several peers. The dynamic character of AXML
documents, and the presence of declarative Web ser-
vices, yields a set of new, complex possible replica-
tion scenarios. In a nutshell, replicating a fragment
of AXML including a call to a declarative service may
lead to replicating also the definition of the service,
which in turn may lead to replicating the data used
(queried) by this service. A sample AXML distribu-
tion and replication scenario is depicted in Figure 1(b).
Document Doc; is distributed among p; and p2; a data
link still connects the two parts. Depending on the ap-
plication needs, parent-child data links can be mono-
or bi-directional, or may not appear at all. In Fig-
ure 1(a), p; has also taken a local copy of the declar-
ative service so, as well as part of the document Docs
consulted by s». The local replica of sy has been
adapted (re-formulated in XQuery) so that running on
the local, partial Docy replica, it produces the same

AXML peer p2

AXML peer p2

AXML peer p1l

T
INEIVY NN P
Cf- Vvep =i AXMVL Web
service |s2

v
AXML Web
service|s3

AXML peer pl
v

Doc2 Docl
‘A

Doc2
EN

i AXML Web<
B

Eﬁm‘sﬁ: service|s2
of Doc2 | 4---------__ T T

i i NPV AXML wWeb

reP“_Ca il lr|service s3
service|s2

Partial repl. [~

Peer p3
7

Web serv. s4 |

(a)
® Web service call embedded in an AXML document
»__ 2 Request-response path when a call is activated

S TA, ,

®

‘x Queries/updates performed locally by declarative services

---> Parent-to-child link between distributed document fragments

Figure 1: Peer interactions in the AXML model (a); influence of distribution and replication (b).

results as the remote sy on the original document.

In the presence of data distribution and replication,
the evaluation of a query over an AXML document
may span several peers. For example, a query over
Doc; at p; may cross the data link leading to the re-
mote fragment at py. In a peer-to-peer setting like
ours, no peer has global knowledge about which data
or service is replicated where, and no single peer can
impose some query processing to the others. There-
fore, in [2] we have proposed a cost-based strategy
for query evaluation, based on collaboration. Each in-
volved peer attempts to minimize its own costs, taking
into account its local information about data place-
ment. For example, when processing a query over
Docz, p2 may realize that using the partial replica at
p1 would entail crossing data links back and forth, and
may prefer to use only the original document.

To reduce the evaluation costs of queries/services
often used by a peer, we provided in [2] an algo-
rithm for automatically recommending to a given peer
the data fragments and/or web services that the peer
should replicate, given a set of constraints related to
storage space, bandwidth etc. The partial replica of
Docs, as well as the adjusted replica of s, in Figure 1,
are a possible result of the recommendation algorithm
run at p;. In this case, the replication of s3 and its re-
lated data was not recommended, since it is not found
profitable enough.

We denote the AXML platform, empowered with
distribution and replication capabilities, AXMLPE,

Managing collaborative workspaces with
AXML. The purpose of this demonstration is to il-
lustrate the usage of AXMLPE, for building a specific
class of applications: collaborative management of a
distributed workspace. Similar tools have long been in-
vestigated in the field of Computer-Supported Collab-
orative Work (CSCW) and Groupware. Our aim here
is to demonstrate: (i) the flexibility, declarativeness,
and ease-of-use of AXMLPE for specifying such ap-
plications (besides reducing the coding effort, declara-
tive specification also allows for multiple optimization
opportunities), and (i) the unique data and service

replication opportunities brought by AXMLP® in the
context of such applications.

This paper is organized as follows. The next sec-
tion presents our target application class: distributed
workspaces. Section 3 details the proposed demonstra-
tion scenario: implementing a distributed information
system for a real-estate agency, using AXMLPE, Sec-
tion 4 describes some aspects of the implementation,
and concludes. For space reasons, we delegate to [2] a
more complete comparison with existing related work.

2 DManaging distributed workspaces

In this section, we present the class of applications
that we address in this demonstration: management of
collaborative workspace, and illustrate the strength of
the AXMLPE framework for these target applications.

In our setting, a workspace consists of a set of Active
XML documents, and a set of (possibly declarative)
Web services. A workspace is meant to be exploited by
several users, co-operating to achieve a given common
task. To that purpose, different users may:

e issue declarative queries on the documents;
e invoke the given Web services;

e trigger the execution of Web service calls em-
bedded within Active XML documents, which
amounts to an implicit document update;

e explicitly update the documents (through editing
or declarative update).

Both implicit and explicit updates may modify the set
of service calls contained in a document.

Usage scenario for a focused workspace. At
workspace user, at any moment, is typically using only
part of the cooperative workspace content. We de-
note by focused workspace of a user the portion of the
workspace that the user is interested in. This may con-
sist of: (i) a subset of the workspace services, possibly
restricting the value ranges of some service call pa-
rameters, plus (%) some partial replicas of documents
that the user wants to query, or of documents used by
(#43) the services in (%) above, or (iv) some service call
embedded in the documents in () or (%) above.

To reduce the processing costs associated to the
queries, updates, and web service calls included in the
user’s focused workspace, it may be useful to replicate
the ingredients of this workspace on the user’s ma-
chine. Note however that, due to various constraints
such as storage space, it might be the case that not all
the ingredients can be replicated. Therefore, the eval-
uation of a query, update, or service call is distributed
among the peer where it originated, and other peers.

A focused workspace evolves as follows:

Creation: the user selects, from the workspace docu-
ments and services, those that she wants to work with.
Useful data fragments may be specified by declarative
XQuery queries and/or by calls to existing services.
Configuration parameters: the user may specify
the conditions under which she intends to work on her
device. For example, she may specify that she intends
to work disconnected from the network, or that out-
going communications from her device are expensive
and should be avoided, or that CPU is a scarce re-
source because the device uses a battery etc.
Automatic replication: having declaratively spec-
ified her workspace, the user asks the system to au-
tomatically recommend data and/or declarative Web
services to replicate locally for reducing the processing
costs, and selects among the suggested configurations
(if more then one is offered).

Usage: On the resulting configuration, the user now
perform the processing associated to her task. This
entails querying and modifying the local documents
(through service calls or declarative updates) as well
as distributed query processing and service invocation
(if not all data/services were replicated).

Check-in: at some point, the user may want to check
back her modified workspace fragment in the central
repository. This may entail conflict resolution between
the user’s workspace version, and the repository. Many
conflict resolution policies have been described in pre-
vious work on distribution and replication [4, 5, 6].
We implement a few simple policies [2], and allow for
more complex ones to be plugged in our architecture
as user-provided synchronization web services.

3 Application Scenario

This section illustrates the scenario we intend to
demonstrate: the collaborative management of a real
estate agency workspace. The components of the
workspace are depicted in Figure 2. Three distinct
documents contain information regarding properties
for sale, clients seeking to buy a property, and a sta-
tus summary for all properties currently managed by
the agency. Calls to Web services embedded in the
documents are represented by special <sc> elements.
For lack of space, we use here a somewhat simplified
syntax. The full syntax uses a particular namespace
to differentiate service calls from the rest of data, and
provides all the necessary parameters to invoke the
services using SOAP [1]. In Figure 2, we grouped

<properties>
<property proplD="344" type="studio” >
<status><sc>getStatus(344) < /sc>< /status>
<proplD> 344 < /proplD>
<assignedTo>Alice< /assigned To>
<location>Paris< /location>
<picture>344.gif< /picture>
<descr>Magnificent view on Montmartre</descr>
<ownerMail >tr678@myhome.com < /ownerMail >
<maybeClients><client><name>T.Jones< /name>
<addedBy>Bob< /addedBy></client>...
< /maybeClients>
</property>...
< /properties>

Services accessing the <properties> document:
getProperties(assignedTo, Type, Location, Price);
getPicture(proplD); addClient(proplD, clientDescr, by)

<requests>
<request>
<type>Villa</type> <maxPrice>300,000< /price>
<handledBy>Jimmy< /handledBy>
<clientMail>you45@myhome.com< /clientMail >
<offers>

< [offers>
< /request>
< /requests>

<sc>getProperties(ANY,Villa,Paris,300,000) < /sc>

Services accessing the <requests> document:

getRequests(reqDescr); putRequest(reqDescr, handledBy)

<allStatus>...
<propStatus prop|D="344" updated="3/2/03"
status="open” />...
</allStatus>

Services accessing the <status> document:
getStatus(proplD); updStatus(propID)

Figure 2: Workspace for the real estate agency

the workspace Web services under the documents they
read /write. Each service in Figure 2 is easily defined
as an XQuery query (omitted for brevity). Clearly, the
workspace documents may contain calls to other use-
ful services, e.g., an estimateValue(propertyDescr) pro-
vided by a French government site, a map service, etc.
We demostrate the distribution of the workspace
described in Figure 2 into many focused workspaces.
In our scenario, on a daily basis, every real estate
agent creates on his mobile device (laptop, PDA, or
mobile phone) the focused workspace he/she is going
to use that day. Let us track the lifecycle of the fo-
cused workspace belonging to real estate agent Alice,
according to the steps defined in Section 2.
Focused workspace creation. Alice’s focused
workspace should reflect the tasks she intends to per-
form at the given day - namely the services she will use
to accomplish the tasks and the needed data. Starting
from a menu listing the available services and docu-
ments, Alice marks the ones she intends to use, re-
stricting them to the relevant scope. Assume that Al-
ice intends to work mainly on Parisian properties for
sale assigned to her. She marks the getProperty ser-

vice, restricting its parameters to getProperty(“Alice”,
-"Paris”, _), thus indicating that her further calls will
have varing price and type parameters, but will re-
gard only her assigned Parisian properties. Alice also
checks addClient(_, _,"Alice”) as she intends to at-
tach new potential clients to Parisian properties, ge-
tRequest(“Paris”,) indicating she will use the service to
look for requests matching the properties assigned to
her, and finally getStatus(_) and updStatus(_) to check
property status, resp. to register a done deal.

Configuration. Alice specifies here if she is to work
on-line or disconnected, whether she prefers to always
use data from the central agency repository (consid-
ered up-to-date) or when possible from her own ma-
chine (possible less up-to-date but cheaper and faster
to obtain), whether during the day her device will work
on battery etc. AXMLP® converts this information
into local cost parameters. In general, a peer assigns
his own set of weights to costs incurred by query pro-
cessing on different peers; Alice may assign, e.g., a
weight of 1 to costs incurred at the central agency peer
and on her device, and 0 to all other weights.

Automatic replication. The algorithm running on
Alice’s peer analyzes the costs incurred by the Web ser-
vice calls and queries Alice wants to make, and makes
recommendations as follows. First, all Paris proper-
ties assigned to her are replicated on her peer. The
addClient and getProperty services can now be run on
Alice’s partial replica of <properties>, therefore they
are copied on her peer, and adapted to the copy. In our
case, this consists of erasing the “Alice” and “Paris”
selection predicates, since they have already been ap-
plied when taking the replica. Such adaptation is a
limited form of view-based query rewriting. The data
needed by getRequest is found too large to be repli-
cated; Alice will have to query it remotely, from the
real estate agency peer. Finally, assuming Alice wishes
to use only the master copy of the status data, she
will access this data only through the services getSta-
tus and updStatus, provided by the central agency peer
(not replicated on Alice’s).

The demonstration displays the resulting configu-
ration, and show how the replication decisions are af-
fected when the cost weights, or the agent needs vary.

Usage. Alice can now use her focused workspace by
running the services described above. While the de-
tails of peer-to-peer negociation and query execution
are not interesting for Alice, we plan to show them in
our demonstration, involving, for the sake of illustra-
tion, a few more peers. For example, assume Alice’s
colleague Bob takes in his focused workspace the mas-
ter version of all status information for flats in Paris:
status-related services invoked by Alice will now have
to traverse Bob’s focused workspace, too.

Check-in. Finally, Alice concludes her work and
checks-in the data; we show the resulting workspace.

We also plan to show other roles in the real estate

Alice’s mobile

Real estate g AXML peer
agency - Proxy for Alice’s

-

AXML peer mobile peer

Bob’s
AXML peer

Figure 3: Outline of the demonstration configuration.
process, e.g., agency’s owner or client workspaces.
4 Implementation

The AXMLP® platform is built on top of the exist-
ing AXML one, described in [1]. The novel AXMLPE
components are: an extension to our XML query pro-
cessor enabling it to optimize and evaluate distributed
queries; a module implementing the automatic replica-
tion algorithm; and a set of A XML-specific Web ser-
vices for replicating data and services, intra-peer com-
munication during query optimization and evaluation,
and synchronization. Furthermore, we are adding to
an AXML peer a monitoring capability, which proves
useful for visualising the interactions among peers.
We plan to demonstrate the collaborative
workspace on three physical devices: two lap-
tops, for the AXML peers belonging to the real
estate agency and to Bob, and a third small device
for Alice’s peer (Figure 3). The implementation
of a “light” AXML peer for devices of the CLDC
category (Connected Limited Device Configuration,
e.g., mobile phones or PDAs) is ongoing. The
limited storage, communication, and computation
capabilities of such devices led us to introduce in
the architecture an AXML proxy (either standalone
or within an AXML peer), communicating with the
phone via kXML-RPC, and with the other AXML
peers via SOAP. On the CLDC device: (i) We store
(simplified) AXML documents in the provided Record
Management Store. (ii) We developed our own XPath
small-footprint, simplified path processor, available at
http://sourceforge.net/projects/minixpath.

References

[1] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and
R. Weber. Active XML: Peer-to-peer data and web services
integration (demo). In Proc. of the Int’l VLDB Conf., 2002.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and
T. Milo. Dynamic XML Documents with Distribution and
Replication. In Proc. of ACM SIGMOD Conf., 2003.

[3] Active XML. www-rocq.inria.fr/verso/Gemo/Projects/axml/.

[4] L. Chen and E. A. Rudensteiner. ACE-XQ: A CachE-aware
XQuery Answering System. In WebDB, 2002.

[5] O. Kapitskaia, R. Ng, and D. Srivastava. Evolution and
revolutions in LDAP directory caches. In EDBT, 2000.

[6] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich.
XMiddle: A data-sharing middleware for mobile computing.
Journal on Personal and Wireless Communications, 2002.

[7] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and
F. Dang Ngoc. Exchanging intensional XML documents.
In Proc. of ACM SIGMOD Conf., 2003.

[8] The W3C Web serv. working group: www.w3.org/2002/ws.

