
QUIET : Continuous Query-driven Index Tuning∗

Kai-Uwe Sattler Ingolf Geist Eike Schallehn

Department of Computer Science
University of Magdeburg

P.O. Box 4120, 39016 Magdeburg, Germany
{kus|geist|eike }@iti.cs.uni-magdeburg.de

Abstract

Index tuning as part of database tuning is the task
of selecting and creating indexes with the goal of
reducing query processing times. However, in dy-
namic environments with various ad-hoc queries
it is difficult to identify potential useful indexes in
advance. In this demonstration, we present our
tool QUIET addressing this problem. This tool
“intercepts” queries and – based on a cost model
as well as runtime statistics about profits of index
configurations – decides about index creation au-
tomatically at runtime. In this way, index tuning
is driven by queries without explicit actions of the
database users.

1 Introduction

Today’s enterprise database applications are often charac-
terized by a large volume of data and high demands with
regard to query response time and transaction throughput.
Beside investing in new powerful hardware, database tun-
ing plays an important role for fulfilling the requirements.
However, database tuning requires a thorough knowledge
about system internals, data characteristics, the application
and the query workload. Among others index tuning is
a main tuning task. Here, the problem is to decide how
queries can be supported by creating indexes on certain
columns. This requires to choose between the benefit of
an index and the loss caused by space consumption and
maintenaince costs.

Though index design is not very complicated for small
or medium-sized schemas and rather static query work-
loads, it can be quite difficult in scenarios with explorative

∗This research was partially supported by the DFG (FOR 345/1).

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

analysis and many ad-hoc queries where the required in-
dexes cannot be foreseen. An example of such a scenario
is information fusion – the integration and interpretation
of data from heterogeneous sources, where integrated data,
intermediate results (e.g. cleaned or aggregated data, min-
ing models etc.) are transparently materialized in order to
speed up explorative/interactive analysis tasks.

A first step in providing support for such scenarios is
already done with the most current releases of the major
commercial DBMS such as Oracle9i, IBM DB2 Version 8,
and SQL Server 2000. These systems include so-called in-
dex wizards which are able to analyze a workload (in terms
of costs of previously performed queries) and – based on
some heuristics – to derive recommondations for index cre-
ation, as described in [CN97, VZZ+00]. This is mostly im-
plemented using “virtual” indexes that are not physically
created but only considered during query optimization in
a “what if” manner. Though these tools utilize workload
information collected at runtime they work still in design
mode. That means, the DBA has to decide about index
selection and index creation is completely separated from
query processing.

In [Gra00] Graefe raised the question if one can exploit
table scans in queries for building indexes on the fly which
can be utilized by following operations in the same query
or even by other queries. This approach would extend the
idea of index wizards in two directions:

1. The database system automatically decides about in-
dex creation without user interaction.

2. Indexes can be built during query processing, i.e. full
table scans are used to create indexes which are ex-
ploited for remaining parts of the query plan.

Both ideas are in principal orthogonal, i.e., if changes of the
index configuration are performed automatically, the sys-
tem may do this between queries, or schedule these changes
to be performed during times of low system load. Build-
ing indexes during query processing would require more
profound changes to currently existing systems, especially
because index creation is considered to be done once dur-
ing physical implementation of the database, and therefore
up to now was not a major focus for applying optimization

techniques. Nevertheless, a database system implementing
these both strategies would support queries that are able to
build indexes on demand and can better meet the require-
ments of dynamic explorative scenarios.

In this demonstration we present a middleware-based
approach supporting such query-driven index tuning. This
approach comprises

• a cost model taking into account costs for index cre-
ation and maintenance as well as benefits for the same
and/or potentially future queries and

• decision strategies for choosing indexes which are to
be created during query processing in a space-limited
environment.

We have implemented this in a middleware called QUIET

sitting between the query client(s) and the DBMS and act-
ing as a DBMS proxy. Each query from the client is first
sent to the QUIET system. This module analyzes the query
and – based on statistics about profits of both existing
(i.e., already materialized) and non-existing (i.e., virtual)
indexes – decides about creating new indexes before exe-
cuting the actual query. Thus, eventually chosen indexes
are built and the query is forwarded to the DBMS which
now can use these new indexes for processing the query.
For the purpose of evaluating the benefit of virtual indexes
we exploit features of the DBMS optimizer (in our case
IBM DB2 Version 8.1), which is able to create query plans
with virtual indexes and to derive index recommendations.
In this way, we extend the static design-time approach of
index wizards (for example available in DB2 as index ad-
visor db2advis) towards a dynamic, contiously running
tuning facility.

2 Cost-based Index Selection
The main objective of our approach is to improve the re-
sponse time for a sequence of queries by dynamically cre-
ating additional indexes without explicit intervention of a
user or DBA. Because creating indexes without limits could
exhaust the available database space, we assume an index
pool – an index space of limited size acting as persistent in-
dex cache. The size of this pool is configured by the DBA
as a system parameter. Based on this assumption a query is
processed as follows:

1. A given queryQ is optimized assuming all potentially
useful indexes are available. In addition to the query
plan, this step returns a set of recommended indexes.

2. The index recommendation is used to update a global
index configuration where cumulative profits of both
materialized and virtual indexes are maintained.

3. Next, we have to decide about

(a) creating indexes from the virtual index set

(b) replacing other indexes from the index pool if
there is not enough space for the newly created
index.

For dealing with costs and benefits of indexes as part of
automatic index creation we have to distinguish between
materialized and virtual (i.e. currently not materialized)
indexes. Note, that we do not consider explicitly created
indexes such as primary indexes defined by the schema de-
signer. Furthermore, we assume statistics for both kind of
indexes (virtual/materialized), possibly computed on de-
mand: if a certain index is considered the first time, sta-
tistical information are obtained.

A set of indexesI1, . . . In which are used for processing
a queryQ is called index setand denoted byI. The set
of all virtual indexes ofI is virt(I), the set of all materi-
alized indexes ismat(I). Let becost(Q) the cost for exe-
cuting queryQ using only existing indexes, andcost(Q, I)
the cost of processingQ using in addition indexes fromI.
Then, theprofit of I for processing queryQ is

profit(Q, I) = cost(Q)− cost(Q, I)

In order to evaluate the benefit of creating certain indexes
for other queries or to choose among several possible in-
dexes for materialization we have to maintain information
about them. Thus, we collect the set of all materialized
and virtual indexes considered so far in theindex catalog
D = {I1, . . . Ik}. Here, for each indexIi the following
information is kept:

• profit(Ii) is the (cumulative) profit of the index,

• type(Ii) ∈ {0, 1} denotes the type of index, with
type(Ii) = 1 if Ii is materialized and0 otherwise,

• size(Ii) is the size of the index.

The costs for maintaining indexes (updates, inserts, deletes)
are considered in the form of negative profits.

The profit of an index set according to a query can be
calculated in different ways. One way is the modification
of the optimizer and the collection of additional statistics
about “virtual indexes”. The modification concerns about
holding of different plans during the optimization algo-
rithm, which helps to compare different index configura-
tions and their corresponding query costs. Here, techniques
from the area of the adaptive query processing can be ap-
plied. The described functionality is included in some com-
mercial systems, including DB2 and Oracle, though the
availability of according interfaces varies.

The subset ofD comprising all materialized indexes is
called index configurationC = mat(D). For such a con-
figuration it holds∑

I∈C
size(I) ≤ MAX SIZE

i.e., the size of the configuration is less or equal the maxi-
mum size of the index pool.

By maintaining cumulative profit and cost information
about all possible indexes we are able to determine an index
configuration optimal for a given (historical) query work-
load. Assuming this workload is also representative for the

near future, the problem of index creation is basically the
problem of maximizing the overall profit of an index con-
figuration:

max
∑
I∈C

profit(I)

This can be achieved by materializing virtual indexes (i.e.
add them to the current configuration) and/or replace exist-
ing indexes. In order to avoid thrashing, a replacement is
performed only if the difference between the profit of the
new configurationCnew and the profit of the current config-
urationCcurr is above a given threshold:

profit(Cnew)− profit(Ccurr) > MIN DIFF

Considering the cumulative profit of an index as a cri-
terion for decisions about a globally optimal index config-
uration raises an issue related to the historic aspects of the
gathered statistics. Assuming that future queries are most
similar to the most recent workload, because database us-
age changes in a medium or long term, the statistics have
to represent the current workload as exactly as possible.
Less recently gathered statistics should have less impact on
building indexes for future use. Therefore, we applied an
aging strategy for cumulative profit statistics based on an
idea presented by O’Neil et al. in [OOW93] and refined by
Scheuermann et al. in [SSV96]. If for one indexImax the
cumulative profit exceeds a certain watermark

profit(Imax) ≥ MAX PROFIT

the statistics for all indexesIi ∈ I are reset to

profit(Ii) := s · profit(Ii), 0 < s < 1

In order to globally decide about an index configuration
optimal for future queries, statistics about possible profits
has to be gathered, condensed and maintained to best repre-
sent the current workload of the system, and finally based
on these information a decision has to be made if an in-
dex configuration can be changed at a certain point in time.
During processing a queryQ the statistics must be updated
by adding profits of an index setI returned by the virtual
optimization to the single indexesIi ∈ I. Because index
profits are not independent, but on the other hand can not
be quantified per index by currently existing optimizer, we
used the approximation to add the average profitprofit(Q,I)

|I|
to the cumulative profit.

If a locally optimal index setI can replace a subset
Irep ⊆ mat(D) of the currently materialized index con-
figuration, such that

profit(mat(D) ∪ I \ Irep)−
profit(mat(D)) > MIN DIFF ∧

size(mat(D) ∪ I \ Irep) < MAX SIZE

an index configuration change can be triggered. These con-
ditions allow only improvements of the index configura-
tions according to the current workload and conforming

to our requirements regarding index space, and the crite-
rion to avoid thrashing. The replacement index setIrep

can be computed from the currently materialized index set
mat(D) applying a greedy approach. To do this, we sort
mat(D) ascending to cumulative profit and choose the least
beneficial indexes, until our space requirements are ful-
filled. Now, if the found replacement candidate is signif-
icantly less benefitial than the index set we investigate for
a possible materialization, the index configuration can ei-
ther be changed before, during, or after query execution or
scheduled to be changed later on.

3 Tool Demonstration
To illustrate the ideas presented in the previous sections we
implemented the QUIET system and tools to simulate and
visualize workloads and their impact on the index configu-
ration. The focus of interest for the visualization is on

• how changing workloads influence the statistics for in-
dex candidates,

• how the system adjusts to these changes by changing
the currently materialized index configuration, and

• how the parameters of the self-tuning influence the
overall process.

As such, the demonstration tools are also used as a basis for
an ongoing thorough evaluation of the introduced concepts.

Configuration
Manager

Statistic
GathererInterface

JDBC

DB2
Optimizer

Index
Creation
and
Removal

DB2

QUIET

Monitor
Index Configuration

QGEN
TPC−HQuery

Generator

Explain
Tables

Index
Statistics

Index
Pool

Operational
Database
TPC−H

Figure 1: Architecture of the QUIET Demo

The QUIET Demonstration architecture shown in Fig-
ure 1 conists of the described functionality implemented
as middleware on top of the DB2 system, a query gener-
ator, and a monitor for index configuration statistics and
changes. Offering aJDBC interface, the QUIET system
on the one hand just passes through queries to and results
from the database. On the other hand queries are passed on
to theStatistic Gatherer, which uses virtual optimization
and the index advisor facility of DB2 to compute benefits
of possible index usage for a single query. Furthermore, it

Figure 2: Screenshot of the QUIET Demo

updates the cumulativeIndex Statisticsand applies aging if
required. The index statistics are evaluated by theConfigu-
ration Manager, which checks if a promising index set can
replace a subset of the currently materialized indexes in the
index pool as described in the previous section. If this is
the case, the current index configuration is changed auto-
matically. The index statistics and the work of the config-
uration manager are visualized by theIndex Configuration
Monitor. Finally, the whole demonstration uses data and
queries from the TPC-H benchmark. OurQuery Genera-
tor incorporates the TPC-H query generator, but provides
additional queries and ways to influence the current query
mix.

A screenshot of the demo is given in Figure 2. The cur-
rently generated workload can be controlled and monitored
using the query generator part of the tool. For this pur-
pose the user can specify and change the query mix gener-
ated by the TPC-H query generator. As the default queries
provided by the benchmark are focused on analytical pro-
cessing, we provide an additional set of query templates
that presents a typical business workload, and these queries
in general involve less relations, less grouping, and have
smaller result sets. For the current query indexes proposed
by the DB2 index advisor facility and the related benefit
are monitored. The query generator also controls the ex-
ecution and possible log creation. The generator can run
indefinitly until it is stopped for demonstration purposes,
in which case the user can interactively change parameters
and the query mix. In another execution mode, the genera-
tor runs for a fixed length of time or number of queries for
gathering test results.

The current index configuration and the statistics for
index candidates are monitored in a seperate application
window. The statistics hold information on the usage fre-
quency, cumulative profit, and the index size. One column
is a graphical representation of the cumulative profit rel-
ative to the global watermarkMAX PROFIT, so by sort-
ing the statistics according to the profit, the aging mech-
anism can be observed. The currently materialized index

configuration can be monitored by sorting the table on the
Materializedcolumn. As the decision about the inclusion
of an index in the materialized configuration is a a trade-
off between its cumulative profit and its space requirement,
toggling between sorting by profit and sorting by size il-
lustrates the index replacement strategy. The overall size
of the currently used index configuration and its required
space in the index pool are monitored below the table rep-
resentation of the index statistics.

References
[CN97] S. Chaudhuri and V.R. Narasayya. An Effi-

cient Cost-Driven Index Selection Tool for Mi-
crosoft SQL Server. InProc. of Int. Conf. on
VLDB 1997, pages 146–155, 1997.

[Gra00] G. Graefe. Dynamic Query Evaluation Plans:
Some Course Corrections? Bulletin of the
Technical Committee on Data Engineering,
23(2), June 2000.

[OOW93] E.J. O’Neil, P.E. O’Neil, and G. Weikum.
The LRU-K Page Replacement Algorithm For
Database Disk Buffering. InProc. of ACM
SIGMOD 1993, pages 297–306, 1993.

[SSV96] P. Scheuermann, J. Shim, and R. Vingralek.
WATCHMAN : A Data Warehouse Intelligent
Cache Manager. InProc. of Int. Conf. on VLDB
1996, pages 51–62, 1996.

[VZZ+00] G. Valentin, M. Zuliani, D. Zilio, G. Lohman,
and A. Skelley. DB2 Advisor: An Optimizer
Smart Enough to Recommend Its Own In-
dexes. InProc. of ICDE 2000, pages 101–110,
2000.

