

Chip-Secured Data Access:
Reconciling Access Rights with Data Encryption

Luc Bouganim* François Dang Ngoc** Philippe Pucheral*,** Lilan Wu**

* INRIA Rocquencourt
France

<Firstname.Lastname>@inria.fr

 ** PRISM Laboratory
78035 Versailles – France

<Firstname.Lastname>@prism.uvsq.fr

1. Introduction
The democratization of ubiquitous computing (access data
anywhere, anytime, anyhow), the increasing connection of
corporate databases to the Internet and the today’s natural
resort to Web hosting companies and Database Service
Providers strongly emphasize the need for data
confidentiality. Users have no other choice than trusting
Web companies arguing that their systems are fully
secured and their employees are beyond any suspicion
[AKS02]. However, database attacks are more and more
frequent (their cost is estimated to more than $100 billion
per year) and 45% of the attacks are conducted by insiders
[FBI02]. Therefore, no one can be fully confident on an
invisible DataBase Administrator (DBA) administering
confidential data.

Traditional database security policies, like user
authentication, communication encryption and server-
enforced access controls [BPS96] are inoperative against
insider attacks. Several attempts have been made to
strengthen server-based security approaches thanks to
database encryption [Ora02, Mat00, HeW01]. However, as
Oracle confesses, server encryption is not the expected
“armor plating” because the DBA (or an intruder usurping
her identity) has enough privilege to tamper the
encryption mechanism and get the clear-text data.

Client-based security approaches have been recently
investigated. They still rely on database encryption, but
encryption and decryption occur only on the client side to
prevent any disclosure of clear-text data on the server.
Storage Service Providers proposing encrypted backups
for personal data [Sky02] are crude representative of the
client-based security approach. The management of SQL
queries over encrypted data complements well this
approach [HIL02]. These solutions provide a convincing
way to store and query safely personal data on untrusted
servers. However, sharing data among several users is not
addressed. Actually, users willing to share data have to
share the same encryption keys and then inherit from the
same access rights on the data.

In a recent paper [BoP02], we precisely addressed this
sharing issue. We proposed a solution called C-SDA
(Chip-Secured Data Access), which allows querying
encrypted data while controlling personal privileges. C-
SDA is a client-based security component acting as an
incorruptible mediator between a client and an encrypted
database. This component is embedded into a smartcard to
prevent any tampering to occur on the client side. This

cooperation of hardware and software security
components constitutes a strong guarantee against attacks
and allows to reestablish the orthogonality between access
right management and data encryption.

A full-fledged prototype of C-SDA has been developed
with the support of the French ANVAR agency (Agence
Nationale pour la VAlorisation de la Recherche). This
prototype runs on an advanced JavaCard platform
provided by Schlumberger. The objective of the C-SDA
prototype demonstration is twofold:
• Validate the design of C-SDA by building a real-case

application and showing the benefits of the approach.

• Validate the techniques C-SDA relies on by showing
that they match the smartcard’s hardware constraints
and the user’s response time expectation.
This paper is organized as follows. Section 2 introduces

the hosted corporate database application which we will
use for the demonstration. Section 3 presents the C-SDA
design and implementation choices needed to understand
the value of the demonstration. Section 4 presents the
demonstration platform and the way we plan to validate
our techniques.

2. The Corporate Database Demonstrator
The demonstrator selected to illustrate the properties of C-
SDA relates to a corporate database hosted by a Database
Service Provider (DSP). This demonstrator is
representative of a growing range of real-case applications.
Indeed, small businesses are today prompted to delegate
part of their information system to Web-hosting
companies or DSP that guarantee data resiliency,
consistency and high availability [eCr02,Qck02].
Undoubtedly, the resort to a DSP is today the most cost-
effective solution to make the corporate database of a
small business available to its traveling salesmen and to its
potential partners.

Most DSP provide wizards to create in minutes
predesigned or customized business-oriented shared
databases. In the same spirit, we use for our demonstrator
the well-known TPC-H database schema [TPC02]. To
illustrate the effectiveness of our approach, we consider
different classes of users sharing the corporate database
with distinct privileges. Each traveling salesman has access
to all information’s regarding her own clients (e.g.,
identity, address, orders), in a way similar to a virtual
private database [Ora00]. Each supplier of the small business

is granted the right to consult only the total amount of
orders related to the products she supplies (so that she can
forecast future delivery). All sensitive data (e.g.,
customers’ information, orders, traded prices) is
encrypted to prevent them from any disclosure on the
server. The privileges of each user is recorded on her own
smartcard and refreshed by a transparent and safe
mechanism.

3. C-SDA Design and Implementation
This section recalls from [BoP02] the foundation of C-SDA
as well as important technical considerations that are
required to weight up the value of the demonstration.

3.1. The Data Confidentiality Problem
An in-depth analysis of the respective limitations of both
server-based and client-based security approaches led us
to characterize the data confidentiality problem we are
addressing by the following dimensions [BoP02].
• Confidentiality enforcement: data confidentiality must be

guaranteed against attacks conducted by intruders and
DBA (or System Administrator). This precludes server-
based solutions since they are inoperative against
administrator attacks [Ora00].

• Sharing capacity: data may be shared among multiple
users having different privileges. This precludes client-
based solutions where data sharing is not supported or
is implemented by means of encryption keys sharing
[HIL02].

• Storage capacity: the system must not limit the volume
nor the cardinality of the database. This precludes
solutions where the whole database is hosted in a
secured device (e.g., secured personal folders on
smartcards [PBV01]).

• Query capacity: any data, whatever its granularity, may
be queried through a predicate-based language
(typically SQL). This precludes solutions restricted to
encrypted backups [Sky02].
Before discussing the technical details of C-SDA, let us

outline the way C-SDA tackles the data confidentiality
problem. Roughly speaking, C-SDA is a smartcard
oriented client-based security approach. The benefit
provided by smartcards in the approach is essential.
Indeed, smartcards are extremely difficult to tamper
[ScS99] and they are now powerful enough to execute
complex applications developed in high-level languages
like JavaCard [Sun99]. Thus, the principle of C-SDA
consists in coupling a DBMS engine embedded in a
smartcard with a server hosting an encrypted database. By
this way, C-SDA builds a sphere of confidentiality
encompassing the smartcard DBMS, the server and the
communication channel linking them. This principle is
illustrated in Figure 1.

The smartcard DBMS manages access rights and views
(i.e., access rights are defined on SQL views), query
evaluation and encryption/decryption. When the user
issues a query, the smartcard DBMS first checks the user’s
access rights and, in the positive case, gets the data from

the server, decrypts it, executes the query and delivers the
result to the terminal. Thus, decryption and access right
management are confined in the smartcard and cannot be
tampered by the DBA nor by the client.

However, one may wonder whether the smartcard
DBMS can conciliate complex queries, large volumes of
data and performance, considering the inherent hardware
constraints of a smartcard. The next sections recall the
smartcard constraints of interest and then investigate the
query processing issue.

3.2. Smartcard constraints
Advanced smartcards include in a monolithic chip, a 32
bits RISC CPU, memory modules (of about 96 KB of ROM,
4 KB of RAM and 128 KB of EEPROM), a serial I/O channel
(current bandwidth is around 9.6Kbps but the ISO
standard allows up to 100Kbps) and security components
preventing tampering [ISO98]. With respect to our study,
the main constraints of smartcards are: (i) the extremely
reduced size of the RAM (actually, less than 1KB of RAM
is left to the application), (ii) the very slow write time in
EEPROM (from 1 to 5 ms/word), and (iii) the limited
communication bandwidth. On the other hand, smartcards
benefit from a very high security level and from a very
powerful CPU with respect to the other resources.
According to the chip manufacturers the current trends in
hardware advances are on augmenting the CPU power to
increase the speed of cipher algorithms and on
augmenting the communication bandwidth [Tua99]. These
trends are partly explained by market perspectives on
delivering protected multimedia flows [Sma02].

3.3. Query evaluation principle
A naive interpretation of the C-SDA architecture

depicted in Figure 1 would be to consider the server as a
simple encrypted repository for the smartcard DBMS.
Obviously, such architecture would suffer from disastrous
performance in terms of communication, I/O and local
computation on the smartcard. Thus, new query
evaluation strategies must be devised that better exploit
the computational resources available on the server, and
on the terminal, without sacrificing confidentiality. This
leads to split a query Q into a composition of the form
Qt°Qc°Qs, as follows1:

1 for the sake of simplicity, let assume Q be an unnested SQL query.

Server

Encrypted
Data

SmartCard

Encryption

Secured
communications

Decryption

Figure 1: C-SDA sphere of confidentiality

Keys

Access
rights

DBMS

Client

Admin.

Intruder

Insider

• Server subquery (Qs): to gain performance, any predicate
that can be evaluated on the encrypted form of the data
must be pushed down to the server. Therefore, the
scope of Qs is determined by the data encryption
policy. Let us consider below that the encryption
algorithm E preserves the following property: ∀di,dj,
E(di) = E(dj) ⇔ di = dj. From this assumption, we infer
that equi-selection, equi-join and group by predicates
are part of Qs.

• Smartcard subquery (Qc): Qc filters the result of Qs to
evaluate all predicates that cannot be pushed down to
Qs and that cannot be delegated to the terminal (the
data flow resulting from Qs may go beyond the user’s
access rights). Under the preceding assumption,
inequi-selections, inequi-joins and aggregation have all
to be evaluated on the smartcard.

• Terminal subquery (Qt): Qt is restricted to the part of the
query for which the evaluation cannot hurt
confidentiality, namely the result presentation (Order
by clause).
Obviously, other encryption policies, like the one

proposed in [HIL02], will lead to different query
decompositions. The more opaque the encryption policy,
the less work in Qs and then the less performance. The
challenge is that Qc must accommodate the smartcard’s
hardware constraints, whatever its complexity. To this
end, the evaluation of Qc must preclude the generation of
any intermediate results since: (i) the RAM capacity cannot
accommodate them, (ii) RAM cannot overflow into
EEPROM due to the dramatic cost of EEPROM writes and

(iii) intermediate results cannot be externalized to the
terminal without hurting confidentiality. In [BoP02], we
proposed an algorithm that evaluates Qc in a pure pipeline
fashion, consuming one tuple at a time from Qs and
requiring a single buffer to cache the tuple of Qc under
construction. We shown that the computation of Qc is not
CPU bound (powerful processor, low algorithm
complexity) nor memory bound (one tuple at a time) but
communication bandwidth bound. This led us to devise
new optimization techniques to tackle the situations where
the ratio Qc/Qs is low, where Q denotes the
cardinality of Q’s result.

To illustrate this situation, let us consider a query
retrieving the Customers having placed an Order with a
TotalPrice greater than a given value and let assume that
only 1% of Order tuples satisfy this selection criteria. This
means that 99% of the tuples resulting from Qs
(Customers Order) and sent to the smartcard are
irrelevant, generating a bottleneck on the smartcard
communication channel. The solution proposed relies on a
multi-stage cooperation between the smartcard and the
server. For each inequality predicate, the smartcard does
the following pre-processing. As pictured in Figure 2, the
smartcard gets from the server the collection of encrypted
values on which the inequality predicate applies, decrypts
them, evaluates the predicate and sends back the matching
values in their encrypted form to the server. On the server
side, this result is integrated in the initial query thanks to a
semi-join operator.

TotalPrice

TotalPrice

TotalPrice>1000

DECRYPT

 σ

SMARTCARD PRE-PROCESSING QEP

SELECT distinct Name, Address,
 Phone
FROM Orders O, Customer C,
 Tmp T
WHERE O.TotalPrice= T.TotalPrice
AND C.CustKey = O.CustKey
AND O.Clerk =2

SERVER QUERY

SELECT DISTINCT TotalPrice
FROM Orders
WHERE Clerk = 2

SERVER PRE-PROCESSING QUERY

Name Address Phone
Dupont Paris 0145659423
Smith New York 921 021 354
Dang Versailles 0139254085
Wu Lyon 0476021546

USER QUERY RESULTS

SELECT DISTINCT MC.*
FROM MyCust MC, Orders O
WHERE MC.CustKey=O.CustKey
AND TotalPrice>1000

USER QUERY

σ

 π

=

Orders

TotalPrice

Clerk 2
Customer

CustKey

Name

Phone
Address

SERVER QEP

 σ

 π

=

TotalPrice

Orders

Clerk 2

SERVER PRE-PROCESSING QEP

kzeidjsk♦edkzelmk♦fisodifo♦

SELECT DISTINCT tgrfdtsq, pogvrtfz,
 vfcprdds
FROM oIjfjsie O,tbgfea12 C,
 pp8f6e1J T
WHERE O.kzeidjsk = T.kzeidjsk
AND C.asqs3eze = O.asqs3eze
AND O.tgdijzzq = ”trfeeske” ♦
INTEGRITY DATA : lfdv8uin34fggee4

CLIENT Î SERVER COMMUNICATION

kzeidjsk ♦edkzelmk♦uierziuk ♦
fisodifo ♦ooiopfze ♦J9jgsdfz ♦
INTEGRITY DATA : lpajjsdk55g9jSl

SERVERÎ CLIENT COMMUNICATION

SELECT DISTINCT kzeidjsk
FROM oIjfjsie
WHERE tgdijzzq = ”trfeeske”♦
INTEGRITY DATA : whxsoo99yz”jjssj

CLIENT Î SERVER COMMUNICATION

tgrfdtsq ♦pogvrtfz ♦vfcprdds ♦
mil45k3s ♦ljside7s ♦udyez7sg ♦
idjsqkjd ♦uedeh7qd ♦qksjdkqo ♦
giJ7kjfi ♦ogik56kj ♦fki8nkds ♦
INTEGRITY DATA : gvfl56j9t6D3edsf

SERVER ÎCLIENT COMMUNICATION

Tmp

Name, Address,
Phone DECRYPT

ENCRYPT

SMARTCARD QEP

Figure 2: Demonstration graphical interface

4. C-SDA Demonstration
In this section, we present our demonstration platform and
describe how we will demonstrate the principles of C-SDA
and its performance, through a scenario illustrating a
corporate database hosted by a DSP. To make the
demonstration user-friendly and easy to follow, we use
graphical tools that help understand the behavior of C-SDA.

4.1. Demonstration platform
The demonstration platform includes the C-SDA
prototype, a JDBC driver, a traditional database server
materializing the services provided by the DSP, and two
graphical interfaces devoted to the client and the server
(see Figure 2). Our C-SDA prototype is written in JavaCard
2.1 and runs on a smartcard platform provided by
Schlumberger (4KB of RAM, 32 KB of EEPROM).

The client graphical interface is divided in two
windows. The first window is used to issue SQL queries
and visualize the resulting tuples. The second window
shows the run time query decomposition performed by the
smartcard DBMS. On the server side, the graphical
interface displays the query executed on the encrypted
data, both in its SQL and operator tree representation. To
ease the understanding, names and literals appear in clear-
text in the operator tree while they are actually encrypted.
The encoding of the communication flow is also pictured,
highlighting integrity data required to secure the
communication.

4.2. Demonstrating the corporate DB application
Our demonstration consists in various scenarios based on
a TPC-H like corporate database assumed to be hosted by
a DSP. After explaining how data are encrypted in the
database, we will demonstrate the ability of C-SDA to
manage powerful and flexible access rights on encrypted
data. To this end, we will exercise the application with
different smartcards representing different users having
their own privileges on the database (e.g., salesmen,
suppliers). Among others, we will grant a Select privilege
to a user on an aggregate value without granting her the
right to see the elementary data participating in this
aggregation. We will also show that two different
salesmen can have a restricted access to their own
customers while some customers are shared by both
salesmen. While these situations are quite common in
traditional databases, they are precluded in other client-
based security approaches.

Then, we will explain how the persistent metadata
hosted by a smartcard are automatically refreshed when
the cardholder’s privileges are updated. To this end, we
will successively add and remove a right to a user,
running a query after each modification to illustrate the
effectiveness of the update mechanism.

Finally, attacks on the communication channel between
the smartcard and the DSP server will be simulated to
demonstrate that data cannot be modified nor disclosed by
a third-party.

4.3. Demonstrating the C-SDA performance
The critical part of the C-SDA query execution model is on
evaluating subquery Qc. As discussed in Section 3.3, the
computation of Qc is not CPU bound nor memory bound
but communication bandwidth bound. First, this statement
will be illustrated by executing different types of SQL
queries involving equality and inequality predicates both
on encrypted and clear-text attributes (only the sensitive
data are encrypted in the database).

Then, the benefit of the pre-processing optimization
sketched in Section 3.3 will be assessed. To this end, a
query involving a selective inequality predicate will be
processed with and without pre-processing optimizations,
demonstrating the dramatic performance improvement
allowed by pre-processing.

References
[AKS02] A. Agrawal, J. Kiernan, R. Srikant, Y. Xu, “Hippocratic

Databases”, Int. Conf. on Very Large Data Bases, 2002.
[BoP02] L. Bouganim, P. Pucheral, “Chip-Secured Data Access:

Confidential Data on Untrusted Servers”, Int. Conf. on
Very Large Data Bases, 2002.

[BPS96] A. Baraani, J. Pieprzyk, R. Safavi-Naini "Security In
Databases: A Survey Study", 1996.

[eCr02] The eCriteria Database Service Provider
 http://www.ecriteria.net/
[FBI02] Computer Security Institute, "CSI/FBI Computer Crime

and Security Survey"
 http://www.gocsi.com/forms/fbi/pdf.html
[HeW01] J. He, M. Wang, “Cryptography and Relational

Database Management Systems”, Int. Database and
Engineering and Application Symposium, 2001.

[HIL02] H. Hacigumus, B. Iyer, C. Li, S. Mehrotra, “Executing
SQL over encrypted data in the database-service-
provider model”, ACM SIGMOD, 2002.

[ISO98] International Standardization Organization (ISO),
Integrated Circuit(s) Cards with Contacts – Part 1: Physical
Characteristics, ISO/IEC 7816-1, 1998.

[Mat00] U. Mattsson, Secure.Data Functional Overview, Protegrity
Technical Paper TWP-0011, 2000.

 http://www.protegrity.com
[Ora02] Oracle Corp., Advanced Security Administrator Guide,

Release 9.2, 2002.
[PBV01] P. Pucheral, L. Bouganim, P. Valduriez, C. Bobineau,

"PicoDBMS: Scaling down Database Techniques for the
Smartcard", VLDB Journal (VLDBJ), 10(2-3), 2001.

[Qck02] The Quickbase Database Service Provider
 https://www.quickbase.com/
[ScS99] B. Schneier, A. Shostack, “Breaking up is hard to do:

Modeling Security Threats for Smart Cards”, USENIX
Symposium on Smart Cards, 1999.

[Sky02] SkyDesk : @Backup (Storage Service Provider)
 http://www.backup.com/index.htm
[Sma02] SmartRight: protecting content in the digital age

http://www.smartright.org/
[Sun99] Sun Microsystems, JavaCard 2.1 API Specification,

JavaSoft documentation, 1999.
[TPC02] Transaction Processing Performance Council,

http://www.tpc.org/
[Tua99] J.-P. Tual, “MASSC: A Generic Architecture for

Multiapplication Smart Cards”, IEEE Micro Journal, N°
0272-1739/99, 1999.

