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ABSTRACT 
For the last decade, the research community and the industry have 
used TPC-D and its successor TPC-H to evaluate performance of 
decision support technology.  Recognizing a paradigm shift in the 
industry the Transaction Processing Performance Council has de-
veloped a new Decision Support benchmark, TPC-DS, expected to 
be released this year. From an ease of benchmarking perspective it 
is similar to past benchmarks.  However, it adjusts for new tech-
nology and new approaches the industry has embarked on in recent 
years.  This paper describes the main characteristics of TPC-DS, 
explains why some of the key decisions were made and which per-
formance aspects of decision support system it measures. 

1. INTRODUCTION 
The origins of Decision Support Systems (DSS) reach as far back 
as the 1960s when model-oriented DSS systems were developed.  
At that time, emphasis was on building Management Information 
Systems as “integrated, man/ machine system for providing in-
formation to support the operations, management, and decision-
making functions in an organization”  [2]. In 1981 Bonczek, 
Holsapple, and Whinston created a theoretical framework for un-
derstanding the issue associated with designing knowledge-
oriented Decision Support Systems  [1].  Advocated by Bill Im-
mon and Ralph Kimball, Relational Database systems have been 
increasingly used to build DSS systems starting in 1990  [6] [7]. 

Recognizing the need for a standard benchmark to measure 
the performance of DSS systems, the Transaction Processing Per-
formance Council (TPC) released its first data warehouse bench-
mark, TPC-D, in April 1994.  For the technology available at that 
time, TPC-D imposed many challenges both on hardware and on 
DBMS systems.  It implemented a data warehouse using a 3rd 
Normal Form (3NF) schema consisting of 8 tables.  Anticipating 
the data explosion of data warehouses in the industry, TPC-D was 
developed to scale from 1 gigabyte to 3 terabytes (TB) of raw data 

pushing IO subsystems to their limit.  Benchmarks used pre-
determined sizes, namely, scale factors.  Each scale factor corre-
sponded to the raw data size of the data warehouse.  17 complex 
and long running queries combined with 2 data maintenance func-
tions (insert and delete) confronted most query optimizers with 
hefty problems.  6 of the 8 tables grew linearly with the scale fac-
tor and were populated with data that was uniformly distributed.  
The development of aggregate/summary structures (e.g. join indi-
ces, summary tables, materialized views, etc.) that are automati-
cally maintained and transparently used by the query optimizer 
via query rewrite was spurred by TPC-D because this technology 
decreased query elapsed times resulting in an over proportional 
increase in the main performance metric.  As a result the TPC de-
cided that TPC-D was effectively broken and spun off two modi-
fied versions of TPC-D, namely TPC-H and TPC-R in April 1999. 

Using the same schema, the same data generator with an ad-
ditional scale factor of 10 TB, the same data distributions and 6 
more queries, TPC-H - an ad-hoc decision support benchmark, 
and TPC-R - a business reporting decision support benchmark are 
nearly identical to TPC-D.  The difference between TPC-H and 
TPC-R is the prior knowledge of the workload that they assume.  
TPC-H represents an environment where database administrators 
do not know which queries will be executed against a database 
system; hence, knowledge about its queries and data may not be 
used to optimize the DBMS system.  In TPC-R, pre-knowledge of 
the queries is assumed and may be used for defining aggre-
gate/summary structures.  Since TPC-R never attracted any nota-
ble attention, it was decommissioned in January 2006. 

It is without doubt that the family of decision support bench-
marks, the TPC has released over the last decade, satisfied the 
need for data warehouse benchmarking.  It spurred competition, 
improved system performance and motivated manufacturers to 
push technology to the limits.  Numerous research papers using 
the TPC-H data generator and its query set  [9] and the large body 
of published TPC-H results vouch for it. Last December the com-
bined number of results has surpassed 200.  In contrast, one has to 
admit that the requirements and implementations of today’s deci-
sion support systems differ quite significantly from the original 
benchmark ideas that were developed for TPC-D and that were 
carried over into TPC-H and TPC-R.  In an effort to extend the 
lifetime of TPC-H, the TPC increased its publishable data vol-
umes by two scale factors, 30,000 and 100,000, equivalent of 
30TB and 100TB of raw data. 

The differences between today’s decision support systems 
and the TPC-H benchmark specification are manifold.  The TPC-
H schema, although sufficiently complex to test the early systems, 
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it is not representative of today’s more complex DSS implementa-
tions.  Today’s schemas are typically composed of a larger num-
ber of tables and columns.  Furthermore, the industry’s choice of 
schema implementation has shifted from pure 3NF schemas to 
variations of the star schema, such as snowflake schemas.  The 
purity of TPC-H’s 3NF and the low number of tables and columns 
does not fully reveal the differences in indexing techniques and 
query optimizers.  Since the main tables scale linearly with the da-
tabase size (scale factor), the cardinalities of some tables reach 
unrealistic proportions at large scale factors.  For instance, at scale 
factor 100,000 the database models a retailer selling 20 billion 
distinct parts to 15 billion customers at a transaction rate of 150 
billion per year - the dream of every CEO, but quite unrealistic.  
The database population, consisting of mostly un-skewed and syn-
thetic data imposes little challenges on statistic collection and op-
timal plan generation by the query optimizer.  The TPC-H data 
maintenance functions (rf1, rf2) merely constrain a potential ex-
cessive use of indexes rather than testing the DBMS’ capability of 
performing realistic data maintenance operations, common during 
Extraction Transformation and Load (ETL).  Data maintenance 
functions insert and delete orders randomly rather than ordered by 
time.  The inserted data is assumed to be clean so that no data 
transformations are necessary.  Data are loaded and deleted from 
2 out of 8 tables.  There are relatively few distinct queries in TPC-
H, and since they are known before benchmark execution, engi-
neers can tune optimizers and execution paths to artificially in-
crease performance of the system under test. Also, actual data 
warehouses are not subject to the TPC-H benchmark constraints 
and will define indexes on non-date and non-key columns as well 
as contain summary tables. 

Having realized these deficiencies, the TPC has developed its 
next generation decision support benchmark, TPC-DS.  This paper 
serves two purposes.  Firstly, it describes the main characteristics 
of TPC-DS and explains rationale of the key decisions.  Secondly, 
it abstracts from the development of TPC-DS to a general ap-
proach on how decision support benchmarks can be developed ef-
ficiently.  The first paper about TPC-DS, published in 2002  [8], 
outlined the ideas for a new decision support benchmark.  It was 
followed by several publications about detailed areas of TPC-DS 
such as the data and query generators  [10] [11].  This paper pre-
sents the current state of the specification as it will be presented 
for TPC member company review1. 

TPC-DS takes the marvels of TPC-H and TPC-R and fuses 
them into a modern DSS benchmark. The main focus areas: 
• Multiple snowflake schemas with shared dimensions 
• 24 tables with an average of 18 columns 
• 99 distinct SQL 99 queries with random substitutions  
• More representative skewed database content 
• Sub-linear scaling of non-fact tables 
• Ad-hoc, reporting, iterative and extraction queries  
• ETL-like data maintenance 

While TPC-DS may be applied to any industry that must 
transform operational and external data into business intelligence, 
the workload has been granted a realistic context.  It models the 
decision support tasks of a typical retail product supplier.  The 
goal of selecting a retail business model is to assist the reader in 
relating intuitively to the components of the benchmark, without 
tracking that industry segment so tightly as to minimize the rele-
                                                           
1 TPC member company review is the final step before voting.  During 
this phase, the specification will be made available to all TPC Members 
and the public for formal review.   
 

vance of the benchmark.  The schema, an aggregate of multiple 
star schemas, contains essential business information, such as de-
tailed customer, order, and product data for the classic sales chan-
nels: store, catalog and Internet.  Wherever possible, real world 
data are used to populate each table with common data skews, 
such as seasonal sales and frequent names.  In order to realisti-
cally scale the benchmark from small to large datasets, fact tables 
scale linearly while dimensions scale sub linearly.  The bench-
mark abstracts the diversity of operations found in an information 
analysis application, while retaining essential performance charac-
teristics.  As it is necessary to execute a great number of queries 
and data transformations to completely manage any business 
analysis environment, TPC-DS defines 99 distinct SQL-99 (with 
OILAP amendment) queries and 12 data maintenance operations 
covering typical DSS like query types such as ad-hoc, reporting, 
iterative (drill down/up) and extraction queries and periodic re-
fresh of the database. 

Due to strict implementation rules it is possible to amalga-
mate ad-hoc and reporting queries into the same benchmark, i.e., 
it is possible to use sophisticated auxiliary data structures for re-
porting queries while prohibiting them for ad-hoc queries.  Al-
though the emphasis is on information analysis, the benchmark 
recognizes the need to periodically refresh the database (ETL). 
The database is not a one-time snapshot of a business operations 
database, nor is it a database where OLTP applications are run-
ning concurrently. The database must be able to support queries 
and data maintenance operations against all tables.  Some TPC 
benchmarks (e.g., TPC-C and TPC-APP) model the operational 
aspect of the business environment where transactions are exe-
cuted on a real time basis, other benchmarks (i.e. TPC-H) address 
the simpler, more static model of decision support. The TPC-DS 
benchmark, however, models the challenges of business intelli-
gence systems where operational data is used both to support 
sound business decisions in near real time and to direct long-range 
planning and exploration. The TPC-DS operations address com-
plex business problems using a variety of access patterns, query 
phrasings, operators, and answer set constraints. 

The following sections detail the cornerstones of TPC-DS.  
The first two sections describe the database schema and the data 
set that populates it.  The following section is about the workload, 
both query and data maintenance.  While the Execution Rules and 
Metric section describes how the queries and data maintenance 
operations are run against the schema and how the execution 
times form the final metric, which can be used to compare system 
performances. 

2. LOGICAL SCHEMA CREATION 
DSS systems have evolved over time from model oriented, pro-
prietary implementations to systems based on commercial data-
base implementations.  TPC-D and its successors, TPC-H and 
TPC-R assumed a 3rd Normal Form (3NF) schema.  However, 
over the years the industry has expanded towards star schema ap-
proaches.  Accommodating this development TPC-DS imple-
ments a hybrid schema between a 3NF and a pure star schema, 
namely multiple snowflake schemas.  

2.1. Snowstorm Schema 
A star schema includes a large fact table and several small dimen-
sion (lookup) tables. The fact table stores frequently added trans-
action data such as sales, returns and inventory changes.  Each 
dimension table stores less frequently changed or added data sup-
plying additional information for fact table transactions, such as 
customers who made purchases.  An extension to the pure star 
schema, the snowflake schema separates static data in the outlying 
dimension tables from the more dynamic data in the inner dimen-
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sion tables and the fact tables.  That is, in addition to their relation 
to the fact table, dimensions can have relations to other dimen-
sions.  

Conversely, 3NF modeling, being the classical relational-
database modeling technique, minimizes data redundancy through 
normalization.  When compared to a star schema, a 3NF schema 
typically has a larger number of tables due to its normalization 
process. 

A smart schema design lays the foundation for a good query 
set.  If the schema does not allow for the designing of queries that 
test the performance of all aspects of a DSS, the benchmark has 
failed one of its main goals.  Choosing a multiple-snowflake 
schema allows the TPC-DS to exercise all aspects of commercial 
DSS, built with today’s DBMS. 

The multiple snowflake-schema approach challenges query 
execution of both star schema and 3NF execution paths.  Typical 
executions in a star schema involve bitmap accesses, bitmap 
merges, bitmap joins and conventional index driven join opera-
tions.  The access paths in a 3NF DSS system are dominated by 
large hash-joins, and conventional index driven joins are also 
common.  In both systems large aggregations and sort operations 
(group by) are widespread.  As will be shown in Section Error! 
Reference source not found. the query workload uses the charac-
teristics of the snowflake schema to test both star schema and the 
3NF executions.  This diversity imposes challenges both on hard-
ware and software systems.  High sequential I/O-throughput is 
very critical to excel in large hash-join operations.  At the same 
time, index driven queries stress the I/O subsystems ability to per-
form small random I/Os.  Additionally, this diversity also chal-
lenges the query optimizer in its decision to either use a star 
schema approach, such as star transformation, or a more tradi-
tional approach, such as nested loops, hash-joins etc.  This seems 
to be an area in which today’s query optimizers have huge defi-
cits. 

The size of the schema and its three sales channels allow for 
amalgamating both ad-hoc and reporting queries into the same 
benchmark.  An ad-hoc querying workload simulates an environ-
ment in which users connected to the database system send indi-
vidual queries that are not known in advance.  The system's data-
base administrator (DBA) cannot optimize the database system 
specifically for this set of queries.  Consequently, execution time 
for those queries can be very long.  In contrast, queries in a report-
ing workload are very well known in advance.  As a result, the 
DBA can optimize the database system specifically for these que-
ries to execute them very rapidly by using clever data placement 
methods (e.g. partitioning and clustering) and auxiliary data struc-
tures (e.g. materialized views and indexes).  Amalgamating both 
types of queries has been traditionally difficult in benchmark en-
vironments since per the definition of a benchmark all queries, 
apart from bind variables, are known in advance.  TPC-DS ac-
complishes this fusion by dividing the schema into reporting and 
ad-hoc parts.  For the reporting part of the schema complex auxil-
iary data structures are allowed, while for the ad-hoc part only ba-
sic auxiliary data structures are allowed.  The idea behind this ap-
proach is that the queries accessing the ad-hoc part constitute the 
ad-hoc query set while the queries accessing the reporting part are 
considered the reporting queries.  

Systems (database, OS and hardware) which can perform the 
entire spectrum of today’s DSS algorithms, such as bitmap look-
ups, bitmap merges, complex query rewrites, index driven joins, 
hash driven joins and large sort operations, will excel in TPC-DS. 
2.2. Snowstorm Schema 
As mentioned earlier, TPC-DS models the decision support func-
tions of a retail product supplier.  The supporting schema contains 

vital business information such as customer, order, and product 
data.  The imaginary retail company sells goods through the three 
distribution channels, store, catalog and Internet (web).  An inven-
tory fact table is shared between the catalog and the Web channel.  
For simplicity and space reasons, Figure 1 shows only an excerpt 
of the entire schema.  It focuses on the store sales channel.  For 
the entire schema, please refer to the public release of a prelimi-
nary draft [3]. 

 
Figure 1: Store Sales Snow Flake Schema 

The store sales channel consists of two fact tables, modeling 
sales and return transactions.  Each fact table is organized as a 
snowflake schema with the traditional dimensions, such as 
date_dim, time_dim2, store etc.  Customer information is normal-
ized into Customer, Customer Address, Household Demograph-
ics, and Customer Demographics which is further normalized into 
Income Band.  The same constellation exists for store returns.  
Most dimensions are shared between the two fact tables, while the 
reason dimension is added only to the Store Return fact table. 

This allows for writing challenging queries.  For instance, 
Customer Address is both referenced from the Store Sales fact ta-
ble and the Customer dimension.  Having two relationships allows 
expressing both the current address and the address at the time of 
the sales transaction.  This circular relationship makes it challeng-
ing to identify the optimal star transformation, especially, if a 
query references and defines predicates on a Customer Address 
table joined to Customer and on a second Customer Address table 
joined to Store Sales tables. 

The two fact tables, Store Sales and Store Returns are related 
through the foreign key combination Ticket Number and Item_sk.  
Through this relationship large fact-to-fact table joins are possi-
ble.  In the traditional single table star schema this would have 
been possible only through a self- join.  Other large fact-to-fact 
table joins are possible by joining two fact tables from different 
sales channels such as store and web sales.  Although there is no 
primary/foreign key defined between different sales channels, 
joins can be performed on mutual dimensions such as Item and 
Customer. 

Two of the three sales channels, Store and Web constitute the 
ad-hoc part, while the Catalog channel constitutes the reporting 
                                                           
2 _dim was added to the date and time dimensions to avoid con-

flicts with vendor specific reserved table names. 
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part of the schema.  Hence, queries referencing3  the Catalog 
channel are ad-hoc queries while all other queries are reporting 
queries. 

Another distinctive characteristic of the TPC-DS schema is 
the number of columns in each table.  The average number of col-
umns is 18, allowing for a rich query set with predicates on many 
columns.  Table 1 presents some statistics about the schema, e.g. 
number of tables and columns. 

Number of fact tables 7 
Number of dimension tables 17 

min 3 
max 34 Number of columns 
avg 18 

Number of foreign keys 104 
min 16 
max 317 Row length [bytes]4 
avg 136 

Table 1: Schema Statistics 

3. DATA SET 
The design of the data set is not only driven by the needs to chal-
lenge the statistic gathering algorithms and the query optimizer, 
but also by the need to challenge data placement algorithms, such 
as clustering, vertical or horizontal partitioning.  A good data set 
design includes proper data set scaling, both domain and tuple 
scaling.  In TPC-DS we use a hybrid approach of domain and data 
scaling (see Section  3.1).  The data domain is also of very high 
importance.  While pure synthetic data generators have great ad-
vantages, TPC-DS follows a hybrid approach of both synthetic 
and real world based data domains.  Synthetic data sets are well 
understood, easy to define and implement.  However, following 
the TPC’s paradigm to create benchmarks that businesses can re-
late to, a hybrid approach to data set design scores many advan-
tages over both pure synthetic and pure real world data (see Sec-
tion  3.2).  Additionally, as will be explained in Section Error! 
Reference source not found., it is pertinent for a good workload 
design to cover the entire data set.  This imposes great challenges 
on both the workload generator and the data generator, which re-
sulted in a closely coupling of the two tools. 

Similarly to previous decision support benchmarks the data 
set for TPC-DS scales in terms of discrete scale factors.  These are 
100, 300, 1000, 3000, 10000, 3000 and 100000.  Benchmark pub-
lications using other scale factors are not valid.  Each scale factor 
corresponds to the data size in Gigabyte of the data that needs to 
be loaded.  It is also called the raw-data size.  Depending on the 
techniques used in the data management software, e.g. compres-
sion, the size of the internal representation of the raw-data can be 
different than the raw-data itself. 

The following sections introduce and rationalize the deci-
sions of TPC-DS’ approach to data scaling.  It further discusses its 
impact to decision support system benchmarking.  For a detailed 
description of the data generator, please refer to  [10]. 

3.1. Data Set Scaling 
Scaling within a data set can take on two different characteristics.  
In one case, the number of tuples in the dataset is expanded, but 
the underlying value sets (the domains) remain static.  The busi-
ness analogy here would be a system where the number of items 
                                                           
3 Referencing is well defined in the TPC-DS specification  [3]. 
4 Raw size of flat files as created by the data generator. 

remains static, but the volume of transactions per year increases.  
In the other case, the number of tuples remains fixed, but the do-
mains used to generate them are expanded. For example, there 
could be a new type of store introduced in a retail data set, or it 
could cover a longer historical period.  Clearly there are valid rea-
sons for both types of scaling within a dataset, just as there are 
valid reasons to stress a hardware system to highlight particular 
features or concerns, and often a test will employ both approaches 
to expanding the dataset. 

In the case of TPC-DS, the choice was made to use a hybrid 
approach.  Most table columns employ dataset scaling instead of 
domain scaling, especially fact table columns.  Some columns in 
small tables employ domain scaling.  The domains have to be 
scaled down to adjust for the lower table cardinality.  For instance 
the domain for county is approximately 1800. At scale factor 100 
there exist only about 200 stores.  Hence the county domain had 
to be scaled down for stores. 

Fact tables scale linearly with the scale factor while dimen-
sions scale sub-linearly.  Consequently, the unrealistic scaling is-
sues that TPC-H is encountering are avoided.  Even at larger scale 
factors the TPC-DS number of customers, items, etc. remain real-
istic.  The following table shows the scaling of some of the fact 
tables and dimensions.  At scale factor 100, the database contains 
approximately 100GB of raw data. That is, 58 Million items5 are 
sold per year by 2 Million customers in 200 stores.  On average 
each shopping card contains 10.5 items.  For detailed scaling in-
formation of all tables refer to the public release of the prelimi-
nary draft [3]. 

 

Rowcounts 
Table 

100GB 1TB 10TB 100TB 

store_ sales 288M 2.9B 30B 297B 
store_ returns 14M 147M 1.5B 15B 
store 200 500 750 1,500 
customer 2M 8M 20M 100M 
Items 200K 300K 400K 500K 

Table 2: Table Cardinalities (K=103, M=106) 

3.2. Synthetic vs. Real Data Set 
Synthetic data sets that are built using well studied distributions 
such as the Normal or the Poisson distributions have many advan-
tages.  They certainly challenge the optimizer and data placement 
algorithms.  They are mathematically very well defined and easy 
to implement in a data generator.  One could even find parameters 
for distributions that simulate quite closely real world distribu-
tions, such as sales by season.  However, they have one inherent 
problem.  They do not work very well for decision support bench-
marks that need to dynamically substitute bind variables.   

Bind variables are used to make a benchmark less predictable 
and to cover the entire dataset as opposed to a subset that is de-
fined by query predicates.  Refer to  [10] for a detailed explanation 
of the benefits of bind variables in a benchmark.  Contrary to this 
goal is the necessity that the workload be identical every time the 
benchmark is run.  Otherwise results are not comparable.  For 
SQL queries, this means that only those substitutions are permis-
sible that keep the following nearly identical: 
                                                           
5 Each row in the sales fact table represents the purchase of one  

item.   
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1. Number of qualifying rows in all tables, 

2. Distribution of all primary and foreign keys involved in 
joins, 

3. Distribution of group by columns and 

4. Distribution of order by columns. 

The number of qualifying rows must be nearly identical since 
it influences the number of rows that need to be fetched.  This is 
especially important if data is clustered or partitioned using selec-
tivity predicates.  The distribution of primary and foreign keys in-
fluences the performance of join algorithms.  For instance, the 
number of unique keys used for building the hash table determines 
the amount of storage (main memory and disk) and potentially the 
number of passes over the data.  Similarly, the distribution of 
group by and order by columns influences performance of sort al-
gorithms.  Unfortunately, some of the above goals are conflicting, 
if a column participates in more than one role.  For instance when 
a column participates as a selectivity predicate and as a group by 
predicate not both goals can be met.  In addition to the above rules 
the dataset must not have any correlations between columns.  Cor-
relations introduce side effects which make queries incomparable. 

Let’s assume the synthetic sales date distribution in Figure 3.  
This distribution shows how sales are distributed over time 
(weeks): Sales are very low in the first weeks and then ramp up 
gradually to peak in Week 28 before they slow down gradually 
towards the end of the year.  Ignoring the fact that sales tend to 
peak right before the holiday season, this distribution captures 
quite closely today’s sales behavior. 
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Figure 3: Synthetic Sales Distribution 

 

 

Now let’s consider the following SQL query: 

SELECT s_date, sum(s_sales) 
FROM sales  
WHERE s_date between D1 and D2  
GROUP BY s_date; 

Figure 4: Simple query Q1 with date predicates 

In this example the selectivity predicate and a group by 
predicates are both on the same column.  One can either determine 
(D1, D2) pairs such that the number of qualifying rows are identi-
cal or the key distribution. 

Following the above rules, TPC-DS for a majority of its data 
employs traditional synthetic distributions, yielding uniformly dis-
tributed integers, or word selections with a Gaussian distribution. 
For a number of crucial distributions, however, TPC-DS synthe-
sizes real world data to create so called comparability zones.  Data 
in comparability zones have a uniform distribution.  Substitutions 
for each of the selectivity, group by, and order by predicates in the 
TPC-DS query set, are such that they always pick values from the 
same comparability zone.   

As an example distribution Figure 2 shows the store sales 
distribution for each year as used in TPC-DS.  It mimics the cen-
sus sales distribution  [12] by defining three comparability zones; 
1) January to July; 2) August to October; 3) November to Decem-
ber.  The census distribution is indicated by the diamond graph 
while the TPC-DS distribution is indicated by the square graph.  
Domain values in the first zone occur with a low likelihood in the 

data set (low zone), domain values in the second zone occur with 
a medium likelihood, and domain values in the third zone occur 
with a high likelihood in the dataset.  The data generator guaran-
tees that all domain values in one domain have the same likeli-
hood.  The query generator is aware of this distribution.  For each 
query involving predicates on sales date a decision was made 
whether a query targets Zone 1, Zone 2 or Zone 3.  Based on these 
decisions the query generator generates queries such that each 
substitution guarantees query comparability. 
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3.3. Specific Multi Dimensional Issues in TPC-
DS’s Data Populations 

3.3.1. Hierarchies 
The hierarchies defined in the TPC-
DS schema all display simple, sin-
gle-inheritance. That is, there is al-
ways exactly one parent for any 
given level in the hierarchy.  With 
this assurance, and a set cardinality 
for each level of a given hierarchy, 
the data generation becomes 
straightforward.  Figure 5 shows the 
traditional item hierarchy.  In TPC-
DS each Brand belongs to exactly 
one Class and each class belongs 
exactly to one Category. 
3.3.2. Slowly Changing Dimensions 
In addition to the transaction-focused fact tables and attribute-
focused dimension tables described above, a typical multi-
dimensional system includes some dimensions whose data 
evolves over the life of the system. Referred to as slowly changing 
dimensions (SCD), they capture the historical evolution of a data 
set.  Each entity in a SCD can change attributes.  As an example, 
consider a system that tracks retail sales over a period of months 
or years. During that time, the underlying product line, pricing 
structure, sales region geography – virtually every part of a trans-
action’s context – is likely to change.  In order for meaningful 
analysis to be possible, it is often important that the user of the 
data set be able to recreate that context – comparing sales using 
the old pricing model with those using the new, for example.  
Though there are a number of ways to address this sort of data 
within the dimensional data warehouse  [6] [7], a common tech-
nique is to include versioning information, often in the form of 
begin and end dates, in the dimension tables.  A query can then 
qualify which revision of a dimension entry should be used to 
probe the fact tables.  In TPC-DS the initial data population, 
meaning before any data maintenance is performed, contains the 
effects of previous data maintenance operations.  That is, in SCD, 
there are up to 3 revisions of any dimension entry.  This is impor-
tant as the second performance run, as described in Section 
Error! Reference source not found., serves as a repetition of the 
first performance and, therefore, ought to have the same data 
characteristics. 

4. WORKLOAD 
TPC-DS benchmark models the two most important components 
of any mature decision support system: user queries and data 
maintenance.  The queries convert operational facts into business 
intelligence while the data maintenance operations synchronize 
the operational side of a business with the data warehouse.  Taken 
together, the combination of these two workloads constitutes the 
core competencies of any decision support system.  The TPC has 
carefully evaluated the TPC-DS workload to provide a robust, 
rigorous and complete means for the evaluation of systems meant 
to provide that competency. 

4.1. Query workload 
In order to address the enormous range of query types and user 
behaviors encountered by a decision support system, TPC-DS 
utilizes a generalized query model.  This model allows the 
benchmark to exercise important aspects of the interactive and it-
erative nature of on-line analytical processing (OLAP) queries, 
the longer-running, complex queries of data mining and knowl-

edge discovery, and the more planned behavior of well known re-
port queries.  The queries modeled by the benchmark cover:  
• Ad-hoc, reporting, iterative OLAP and data mining type 

workloads,  
• DSS relevant SQL99 functionality,  
• A variety of access patterns, query phrasings, operators, and 

answer set constraints, 
• Possibility of a wide variety to query optimizations, 
• The entire data set of all TPC-DS tables and 
• Complex DSS business problems. 

Amalgamating ad-hoc, reporting, iterative OLAP and data 
mining queries into the same benchmark is a difficult task.  Ad-
hoc queries per se cannot exist in a benchmark environment be-
cause, for a benchmark to be fair and repeatable, it has to run the 
same queries on the same dataset every time it is executed.  Con-
sequently, a database administrator (DBA) with the prior knowl-
edge about a benchmark’s queries and dataset can tune the system 
to increase performance of the benchmark.  In real life, prior 
knowledge of a dataset is limited to a certain point in time while 
knowledge of a query set is limited to special types of queries.  A 
DBA can investigate the dataset, but as businesses change, the 
dataset, especially distributions are likely to change.  Reporting 
and data mining queries might be known in advance, while ad-hoc 
and iterative OLAP queries can be issued at any time against the 
database by online users and, hence, their tuning is limited to gen-
eral assumption of the workload. 

TPC’s previous DSS benchmark, TPC-H, prohibits con-
structs and mechanisms that would only realistically be beneficial 
in a reporting environment.  It does that by prohibiting the exploi-
tation of data and query set characteristics beyond a certain limit.  
For instance, no pre-join and pre-aggregation of tables can be 
executed and only single column indexes can be defined.  Al-
though artificial this method has proven to be very robust.  For de-
tailed wording, refer to the TPC-H specification  [4], Chapter 1.5 
“Implementation Rules”. 

TPC-DS applies this technique to a portion of the schema, 
dividing it into two parts, an ad-hoc part and a reporting part.  
Queries against the ad-hoc part are, per definition, pure ad-hoc 
queries, while queries against the reporting part are pure reporting 
queries.  Queries which reference both parts are considered hybrid 
queries.  For the specific wording refer to Clause 2.6 “Implemen-
tation Requirements” of the preliminary draft [3].  Iterative OLAP 
queries are implemented as a sequence of syntactically independ-
ent, but logically affiliated queries.  Data Mining queries are char-
acterized as returning a large output.  This output, although not in 
the scope of TPC-DS, is intended for feeding data mining tools.  
Both Iterative OLAP and Data Mining queries can be classified as 
either ad-hoc or reporting. 

The TPC-DS query set has been developed to cover most of 
the syntax of SQL99 including its OLAP amendment.  This in-
cludes: 

SQL states the problem rather than defining the exact execu-
tion path of a program.  This gives the query optimizer great op-
portunities to find the best possible execution plan, that is, the best 
possible execution path, which may vary between hardware plat-
forms.  Since a SQL query cannot mandate a certain execution 
path, the queries have to be numerous and diverse enough to cover 
the entire spectrum of execution paths in today’s DSS.  It is out of 
the scope of this paper to describe all execution paths.  However, 
the most important ones are index driven operations (e.g. Bitmap 
operations), table scan driven operations (e.g. hash-joins), Sort 
and Group By operations.  As described in Section  2 the schema 
supports both star schema queries as well as the more traditional 
3NF operations.  The following SQL statements are examples, 

Figure 5: Tra-
ditional Item 

Hierarchy 

Category

Class

Brand
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taken from TPC-DS, to demonstrate ad-hoc and reporting queries. 
Figure 6 shows Query 52, an Ad-Hoc query computing the sum of 
the extended sales price for all items sold in a year, grouped by 
brand.  It references store_sales, item and date_dim.  Figure 7 
shows Query 20, a reporting query computing for each item in a 
list of given subcategories, during a specific time period, in the 
catalog sales channel, the ratio of sales of that item to the sum of 
all of the sales in that item's class.  It references the catalog_sales, 
item and date_dim tables.  For a detailed description of the re-
maining queries refer to Appendix A of the preliminary draft [3]. 

SELECT dt.d_year ,item.i_brand_id brand_id 
      ,item.i_brand brand 
      ,SUM(ss_ext_sales_price) ext_price 
FROM date_dim dt ,store_sales ,item 
WHERE dt.d_date_sk = store_sales.ss_sold_date_sk 
  AND store_sales.ss_item_sk = item.i_item_sk 
  AND item.i_manager_id = 1 
  AND dt.d_moy=11 
  AND dt.d_year=2000 
GROUP BY dt.d_year,item.i_brand,item.i_brand_id 
ORDER BY dt.d_year,ext_price desc,brand_id; 

Figure 6: Query 52, Ad-Hoc Query Example 

SELECT i_item_desc,i_category, 
       i_class,i_current_price 
      ,SUM(cs_ext_sales_price) AS itemrevenue 
      ,SUM(cs_ext_sales_price)*100/ 
           SUM(SUM(cs_ext_sales_price)) OVER 
           (PARTITION BY i_class)AS revenueratio 
FROM catalog_sales,item,date_dim 
WHERE s_item_sk = i_item_sk 
  AND i_category in ('Sports', 'Books', 'Home') 
  AND cs_sold_date_sk = d_date_sk 
  AND d_date BETWEEN '1999-02-21'AND'1999-03-21' 
GROUP BY i_item_id,i_item_desc,i_category 
        ,i_class,i_current_price 
ORDER BY i_category,i_class,i_item_id 

         ,i_item_desc,revenueratio; 

Figure 7: Query 20, Reporting Query Example 

The query set is designed to cover the entire dataset.  This is 
guaranteed by a sophisticated query template model.  Template-
based queries are defined as sets of one or more pseudo-random, 
valid SQL statements produced at the time of benchmark execu-
tion.  Template-based queries are intended to model common, 
well-understood queries.  It is assumed that the precise values or 
targets of a given instance of a template-based query is random, 
but that the general format and syntax for the query is tightly tied 
to a business process and the syntax is therefore largely predict-
able and well-known.  A template-based query relies on a query 
template by substituting SQL fragments and scalar constants into 
the query template to produce a set of one or more valid SQL 
statements that are then submitted to the SUT.  There are numer-
ous types of substitutions.  They include filter predicates, such as 
equality, in-list and between predicates.  More complex text sub-
stations are also possible, such as exchanging aggregations, such 
as max, min.  The query generator, responsible for choosing the 
substitutions and the data generator are tightly coupled to guaran-
tee query comparability across substitutions.  It is expected that 
there is some run-to-run variability on a per query basis.  How-
ever, since the main metric is an arithmetic mean, it has been 
proven that such variability does not result in any significant met-
ric variability.  Please refer to  [10] for a detailed description of 
how the query generator generates executable SQL queries from 
query templates. 

4.2. Data Maintenance workload 
TPC-DS highlights the ability of a system to absorb new database 
data as a decision support system grows. Whether the business in-
telligence is drawn from existing operational systems or enhanced 
through the integration of external data sources, such as geo-
graphical data, it must be able to respond to additions and modifi-
cations to its underlying data in a timely and cost effective man-
ner.  By focusing on the fundamental SQL-based transformations 
upon which all data manipulations rely, TPC-DS provides the first 
industry-standard evaluation of the ETL process (Extract, Trans-
formation and Load). 

A periodic data refresh process is an integral part of the data 
warehouse lifecycle inherent to most decision support environ-
ments.  In comparison to previous TPC benchmarks, which em-
phasize the data analysis component of decision support systems, 
TPC-DS offers a more balanced importance to a realistic refresh 
process as part of the benchmark.  Decision support database re-
fresh processes usually involve three distinct and important steps: 
data Extraction, data Transformation, and data Load (ETL). The 
data extract step accomplishes just that; the accurate extraction of 
pertinent data from production OLTP databases or other relevant 
data sources.  In the transformation step, the extracted data are 
typically cleansed and massaged into a common format suitable 
for assimilation by the decision support database.  Lastly, the data 
load step performs the actual insertion, modification and deletion 
of decision support database table data.  In a production system 
environment, the data extraction step may be comprised of nu-
merous separate extract operations, executed against multiple 
OLTP databases and ancillary data sources.  As it is unlikely that 
the full compliment of these OLTP data sources reside on the de-
cision support server(s), it is doubtful the measurement of OLTP 
data extraction performance would result in a metric appropriate 
or meaningful to the scope of the TPC-DS benchmark.  In light of 
this, the data extraction step of the ETL process (E) is assumed 
and represented in the benchmark in the form of generated flat 
files. 

In addition to a surrogate key, which is the primary key, each 
dimension contains a “business key”.  The business key resembles 
the primary key from the OLTP system.  The update data can be 
joined with the data warehouse dimensions using the business 
key.  History keeping dimensions contain two additional fields, a 
rec_begin_date and a rec_end_date indicating the date range for 
which a specific row is valid.  The row containing NULL in the 
rec_end_date for a specific business key is the most current row. 

The data maintenance workload contains the updating of di-
mension rows, the inserting and the deleting of fact table rows.  
Dimensions are categorized in static, non-history keeping and his-
tory keeping dimensions.  Static dimensions such as Date_dim, 
Time_dim, and Reason are loaded once at the beginning of the 
benchmark and are not updated during the data maintenance 
phase. 

The algorithms in Figure 8 and Figure 9 show how history 
and non-history keeping dimensions are maintained.  The inten-
tion is to cover the most widely used data maintenance operations.  
Requiring both types of history operations, enables the perform-
ance for both insert and update operations to be measured. 

for every row to be updated{ 
  find the row for the business key 
  update all changed fields 
} 

Figure 8: Update non-history keeping dimension 
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for every row to be updated{ 
  find the row for the business key and 
       with rec_end_date = NULL 
  insert current date into rec_end_date 
  insert new row with update date and 
       set rec_end_date to NULL 
} 

Figure 9: Update history keeping dimensions 

Fact table data are deleted and inserted in a logically clus-
tered fashion.  According to a randomly picked data range, fact 
table data are deleted and substituted with similar data during the 
insert phase.  The data are clustered on a date such that perform-
ance of drop partition and data insertion into partitions can be 
measured.  During the insert of fact table data the business keys 
from the input flat files need to be converted into surrogate keys.  
In order to find the most up to date surrogate key, the input data 
are joined with dimension data. Figure 10 shows the pseudo code 
for fact table insert operations.  For a detailed description on the 
data maintenance operations refer to Chapter 5 of the preliminary 
draft [3]. 

for every row to be inserted{ 
   for keys to a non-history keeping dimension{ 
      find the row for the business key 
      exchange business key with surrogate key 
   } 
   for keys to a history keeping dimension{ 
      find the row for the business key 
           and where rec_end_date is NULL 
      exchange business key with surrogate key 
   } 
   insert row into fact table. 
} 

Figure 10: Fact Table Insert 

5. EXECUTION RULES AND METRIC 
The execution rules and the metric are two fundamental compo-
nents of any benchmark definition and are probably the most con-
troversial when trying to reach an agreement between different 
companies.  The execution rules define the way a benchmark is 
executed, while the metric emphasizes the pieces that are meas-
ured.  We describe them in one section since they are intrinsically 
connected to each other and they are equally powerful in how they 
control performance measurements.  Both components can change 
the focus of a benchmark because only those parts of a system that 
are executed, as described in the execution rules, can be measured 
in the metric.  Conversely, even though a part is executed, if it is 
not part of the metric, it goes un-noticed.  For instance, TPC-H’s 
execution rules mandate the measurement of the initial database 
load.  However, the primary metric (QphH) does not take the load 
metric into account.  Consequently, little consideration is given to 
it when running the benchmark. 

5.1. General Metric Considerations 
TPC is best known for providing robust, simple and verifiable 
performance data.  The most visible part of the performance data 
is the performance metric and the rules that lead to it.  Producing 
benchmark results is expensive and time consuming.  Hence, the 
TPC’s goal is to provide a robust performance metric which al-
lows for system performance comparisons for an extended period 
and, thereby, preserving benchmark investments.  A performance 
metric needs to be simple such that easy system comparisons are 
possible.  If there are multiple performance metrics (e.g. A, B, C), 
system comparisons are difficult because vendors can claim they 
perform well on some of the metrics (e.g. A and C).  This might 
still be acceptable if all components are equally important, but 

without this determination, there would be much debate on this is-
sue.  In order to unambiguously rank results, the TPC benchmarks 
focus on a single primary performance metric, which encompass 
all aspects of a system’s performance weighting the individual 
components.  Taking the example from above the performance 
metric M is calculated as a function of the three components A,B 
and C (e.g. M=f(A,B,C)).  Consequently, TPC’s performance met-
rics measure system and overall workload performance rather than 
individual component performance.  In addition to the perform-
ance metric, the TPC also includes other metrics, such as price-
performance metrics. 

One of the key essentials to the success of a benchmark is a 
sound metric. In the process of benchmark development the 
measurable components (e.g. query elapsed time) and variables 
(e.g. scale factor) were analyzed in respect to their impact to the 
metric. 

5.2. Execution Rules 
The TPC-DS workload is expected to test the upward boundaries 
of hardware system performance in the areas of CPU, memory 
and I/O subsystem utilization.  At the same time it measures the 
database software and operating system’s ability to perform vari-
ous complex functions, important to DSS, such as examining 
large volumes of data, computing and executing the best execu-
tion plan for queries with a high degree of complexity, efficient 
scheduling of a large number of user sessions, and giving answers 
to critical business questions.  

 
Figure 11: Benchmark Execution Order 

The benchmark test is defined as the execution of a database 
load test followed by a performance test (see Figure 11).  The 
process of building the test database is denoted as database load.  
It is the elapsed time to create the tables, load data, create auxil-
iary data structures, define and validate constraints, gather statis-
tics for the test database and configure the system under test as it 
will be during the performance test.  It is also important to note 
that all requirements to assure ACID properties including syn-
chronizing loaded data on RAID devices and the taking of a 
backup of the database, if necessary, are part of the load test.  
Some portions of a database load are not timed, such as creating 
the database, preparing tablespaces and generating the data to be 
loaded.  However, the intent is to include all activity required to 
bring the system under test to the configuration that immediately 
precedes the beginning of the performance test. 

The performance test consists of two query runs and one data 
maintenance run.  The first query run (Query Run 1) measures the 
query execution power of the system immediately after it is 
loaded.  The data maintenance run measures the system’s ability 
to load, delete and update data and to maintain auxiliary data 
structures. The second query (Query Run 2) measures the query 
execution power after the system has been updated and auxiliary 
data structures have been maintained, thereby, revealing any 
query performance changes due to the maintenance of auxiliary 
data structures.  Without including a second query run it would be 
possible to avoid or defer maintenance of auxiliary data structures, 
thereby, not including their time in the measured interval. 

Each query run executes multiple concurrent query streams.  
Concurrent query streams simulate multiple users executing que-
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ries against the database concurrently.  Each stream simulates one 
user.  The query mix is designed to provide varying degrees of 
workload complexity and the concurrent execution of queries in 
query streams emulates typical workload characteristic of many 
decision support systems today.   The maximum number of 
streams is not limited.  However, each scale factor requires a 
minimum number of streams, denoted in Figure 12.  Linking the 
minimum number of streams to the scale factor requires that lar-
ger systems not only execute queries on more data, but also serve 
more concurrent user.  

Scale factor  Minimum Number of Streams 

100 3 
300 5 

1000 7 
3000 9 

10000 11 
30000 13 

100000 15 

Figure 12: Minimum Required Query Streams 

5.3. Primary Metrics 
TPC-DS defines three primary metrics: Performance Metric 
(QphDS@SF), Price-Performance metric, ($/QphDS@SF) and 
System availability date.  The Performance Metric reflects the ef-
fective query throughput of the benchmarked configuration, de-
fined as:  

( )TSTTT LoadQRDMQR
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• TQR1: total elapsed time of Query Run 1. 
• TQR2: total elapsed time of Query Run 2. 
• TDM: total elapsed time of the Data Maintenance run. 
• TLoad: total elapsed time of the database load test. 
• S: number of streams the benchmark executed. 
• SF: scale factor. 

The numerator represents the total number of queries exe-
cuted on the system “198 * S”, where 198 is the 99 individual 
queries times two query runs.  For instance, a 1000 scale factor 
benchmark test with minimum number of required query streams 
executes 1386 (198 * 7 streams) queries.  A 10,000 scale factor 
benchmark test with a minimum number of required query 
streams of 11 executes 2970 (198 *15) queries.  The TPC DS sub-
committee believes that workloads with such a large number of 
queries insure an adequate DSS workload for todays and future 
high performance systems. 

The denominator represents the total elapsed time as the sum 
of Query Run1, Data Maintenance Run, Query Run 2 and a frac-
tion of the Load Time.  By dividing the total number of queries by 
the total elapsed time, this metric represents queries executed per 
time period.  Unlike previous TPC decision support benchmarks, 
this metric does not include a power test.  A power test is also 
known as single user test.  The power metric in previous bench-
marks is defined as the geometric mean of the query response 
time of all queries including the time to complete the update func-
tions.  The queries and update functions are run sequentially.  For 
this kind of metric, it is crucial to tune each and every query to get 
the best results.  A reduction of elapsed time for a query from 6 
hours to 2 hours has the same effect on the metric as reducing a 
query from 6 seconds to 2 seconds – which is a major weakness of 

the metric.  We believe that in most real life situations the reduc-
tion of elapsed time of a query from 6 hours to 2 hours is much 
more important than from 6 seconds to 2 seconds.  In the absence 
of a power metric, engineers will concentrate their effort in tuning 
long running queries, which matches the business case, because 
that is where customers spend most of their tuning resources.  It is 
important to note that the minimum number of query streams pro-
vides a highly concurrent workload.  This ensures that tuning of 
just one query does not significantly impact the primary metric, 
but only improving the overall system performance will improve 
the metric significantly. 

The load time is part of the denominator to realistically limit 
the use of auxiliary structures without disallowing them.  As men-
tioned in earlier sections, the usage of auxiliary data structures is 
allowed for one of the sales channels, namely the catalog sales 
channel, which represents 25% of the data set.  This enables data-
base vendors to showcase their technologies in handling queries 
that are primarily reporting in nature.  But there is a cost associ-
ated to using these auxiliary data structures.  If unlimited auxiliary 
structures were allowed without penalty, as it was the case in 
TPC-D, the benchmark metric would not grow linearly with the 
resources used.  This behavior causes a benchmark less interesting 
to hardware vendors, who desire to show that higher performance 
systems will also have the highest benchmark performance metric.  
Consequently, the subcommittee decided to factor the database 
load and the data maintenance times into the primary performance 
metric.  The fraction of the load time is multiplied by the number 
of streams.  This is necessary to avoid diminishing the impact of 
the load time on the metric.  Without considering the scale factor 
one could decrease the impact of the load time by increasing the 
number of streams, thereby diminishing the overhead of creating 
auxiliary data structures.  A 1000 scale factor benchmark test with 
minimum number of required streams will have 10% (0.01*10) of 
the database load time added to the total elapsed time.  The au-
thors acknowledge that although 10% might sound arbitrary, the 
purpose of a benchmark metric is to provide impartial information 
that can be used to evaluate and compare the performance of DSS 
systems.  It is not the intention of a benchmark metric to consti-
tute a perfect simulation of a particular DSS environment. 

Finally, the metric is normalized to queries per hour by mul-
tiplying the results by 3600, and on scale factor by multiplying the 
metric by the scale factor.  Normalization to queries per hour is 
necessary since the workload represents both ad-hoc and reporting 
queries, which can include very long running queries.  A query 
per second metric might result in fractional values, which is not 
desirable.  Normalization by scale factor is done for two reasons; 
factoring in the complexity of running the benchmark workload 
on a larger data set and increasing the marketability of the bench-
mark.  The complexity of the workload in terms of the amount of 
data that needs to be scanned as well as the minimum required 
query streams increases as the scale factor increases.  Marketing 
teams would like to see larger benchmark results at larger scale 
factors.  For example, assuming ideal scalability; if a system per-
forms 100 queries per hour on a 100 scale factor database; the 
same setup will only run 10 queries per hour at a 1000 scale factor 
database.  This is not desired by marketing teams.  They would 
like to see the same number of queries per hour.  As a result, the 
metrics are normalized based on scale factors. 

The Price-Performance metric is defined as the ratio between 
the 3 year total cost of ownership (TCO) of the system and the 
primary metric (queries per hour).  The 3 year TCO includes 
hardware, software and 24 x 7 maintenance with a 4 hour re-
sponse time which customers would pay in a real sales situation 
for similarly sized configurations.  The price-performance metric 
for the benchmark is defined as: 
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P is the 3 year total cost of ownership of the configuration.  
Complete pricing guidelines for TPC benchmarks are available 
from the TPC web site [5]. This specification guides customers, 
vendors implementing a benchmark, and auditors on what is ac-
ceptable pricing for the purposes of publication.  These restric-
tions are intended to make publication both tractable and compa-
rable during the lifetime of the publication for the majority of cus-
tomers and vendors. 

The third primary metric, the system availability date, is the 
date when the system is generally available to any customer.  

6. CONCLUSION 
The new TPC-DS benchmark is intended to provide a fair and 
honest comparison of various vendor implementations to accom-
plish an identical, controlled and repeatable task in evaluating the 
performance of DSS systems.  The TPC-DS workload is expected 
to test the upward boundaries of hardware system performance in 
the areas of CPU utilization, memory utilization, I/O subsystem 
utilization and the ability of the operating system and database 
software to perform various complex functions important to DSS - 
examine large volumes of data, compute and execute the best exe-
cution plan for queries with a high degree of complexity, schedule 
efficiently a large number of user sessions, and give answers to 
critical business questions.  In this paper we have introduced the 
pivotal parts of the benchmark, such as schema, data set, work-
load, metric and execution rules.  We have also explained the rea-
sons behind key decisions made for TPC-DS.  For a more com-
prehensive description of the TPC-DS benchmark, the entire 
specification can be obtained from the TPC website [3].  

The TPC is expected to vote on this benchmark in 2006.  In 
order to protect investments made in TPC-H benchmarks the TPC 
is expected to allow TPC-H benchmark publications until a large 
body of TPC-DS results are established, which typically takes one 
to two years. 
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