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ABSTRACT

A schema mapping is a high-level declarative specification of how

data structured under one schema, called the source schema, is to bl
transformed into data structured under a possibly different schema,
called the target schema. We demonstrate SPIDER, a prototype
tool for debugging schema mappings, where the language for spec-
ifying schema mappings is based on a widely adopted formalism.

We have built SPIDER on top of a data exchange system, Clio,
from IBM Almaden Research Center. At the heart of SPIDER is
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tively easier to manipulate and understand in contrast with the com-
plex queries such as SQL, XSLT or XQuery, that are often used to
implement and execute the schema mappings in order to perform
the exchange. In fact, the data exchange system Clio [3] uses a
language based on tgds and egds for specifying schema mappings
and it compiles a schema mapping into an internal representation
from which executables such as SQL, XSLT or XQuery queries are
generated in order to perform the exchange. Clio takes as input a
source instance and applies the generated query to obtain a target

a data-driven facility for understanding a schema mapping through instance that satisfies the schema mapping. Valuable programming

the display ofroutes A route essentially describes the relationship
between source and target data with the schema mapping.
demonstration, we showcase aaute engingwhere we can dis-

play one or all routes starting from either source or target data, as

In thid

effort needed to implement the desired exchange could be saved
if the schema mapping is accurately specified to reflect the user’s
intention. We view the language of schema mappings as a (higher-
level) programming construct for specifying the exchange and it is

well as the intermediary data and schema elements involved. In ad-[0f the same motivation as building a debugger for a programming

dition, we demonstrate “standard” debugging features for schema
mappings that we have also built, such as computing and explor-

language that we build a debugger for schema mappings. Our tool
can be seen as an effort towards developmental support for pro-

ing routes step-by-step, stopping or pausing the computation with 9rmming with the language of schema mappings.

breakpoints, performing “guided” computation of routes by taking
human input into account, as well as tracking the state of the targe
instance during the process of computing routes.

1. INTRODUCTION

The data exchange problens to transform data structured ac-
cording to asourceschema into data that conforms totarget
schema [3, 4]. Usually, the target schema is created independentl

The need for such a debugging tool can be seen from several
tother factors. First, schema mappings in data exchange systems
(as well as data integration systems) are often generated by schema
matching tools [7]. While the generated mappings are often close
to a user’s intention, it is very likely that they need to be further re-
fined before they accurately reflect the user’s intention. Second, the
schema mappings, whether they are known or generated through
schema matching tools, can often be large and therefore difficult
Yto debug or understand. Finally, a debugging tool provides a fa-

of the source schema and may have constraints of its own. Thecility for users to understand their specification through “trial-and-
behavior of a data exchange system is largely governed by theerror”. Therefore, a facility that would allow a user to understand

specification ofschema mappingsA schema mapping is a high-

the schema mappings by browsing through and probing the data at

level declarative specification of how data structured under a sourcehand will be extremely useful for enhancing the user’s understand-

schemaS is to be transformed into data structured under a target
schemaT'. In research on relational-to-relational data exchange
as well as data integration [4, 5], the widely adopted language for
specifying schema mappings is based on the formalisitumpg
generating dependencies (tg@sjdequality generating dependen-

ing of the specification of the system.

We demonstrate SPIDER, a debugging tool for schema map-
pings that is currently built on top of Clio [3]. A debug button from
Clio activates SPIDER, which will inherit the schema mapping, as
well as the source and target instances from Clio. A primary feature

cies (egds) Schema mappings are desirable because they are relaof SPIDER is a facility for understanding and debugging schema
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mappings by visualizingoutesfor some data in the source or tar-
get. A route essentially illustrates the relationship between some
source and target data with the schema mapping. A route is infor-
mative in that it shows the source data, the source and target schema
elements, as well as the intermediate data in the target instance that
led to the target data. It has a logical semantics that is independent
of the underlying procedures used to implement the exchange. So
SPIDER is able to debug a schema mapping without referring to
Clio's underlying execution engine (whether it is based on SQL,
XSLT or XQuery).
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Fargo-Finance: Rcd

Summary of features We demonstrate four main functionalities Manhattan-Credit: Red _
Clients: SetOf Red

that we have implemented in our system. (a) A user can sel ~ Cads:SetOfRed  p

. ssn 1 ssn
some target data and SPIDER can display routes taken by st name P 2y e name
source data and intermediate data to arrive at the selected te location 3+ address
data. We also allow a user to select source data, instead of ta cardNo ~< AccOwned: SetOf Red

- ) limit ] «accN
da?a, and SP_ID_ER will display routes fo_r the selected source d: SuppCards: SetOf Red~ accNo
This feature is important for understanding how the selected tar ssn Accounts: SetOf Red Cy
data was created in the result, or the consequences of the sele name § saccNo «——————
source data under the specified exchange. (b) SPIDER has the adddfﬁss W2 * limit

caraNo .

ity of displaying one route fast and alternative routes as needec
can also displagll routes for selected target or source data. Tl
latter feature is important for understanding data exchanged fr
distinct but highly overlapping data sources, or data exchangec

Source-to-target dependencies:
D,: foreach x, in Manhattan-Credit.Cards
exists x, in Fargo-Finance.Clients, x, in x,.AccOwned,

multiple targets. In displaying all routes, a concise representat
of all routes is presented to the user by factoring common st¢
in the routes. Furthermore, this representation is complete in

X, in Fargo-Finance.Accounts
where x;.accNo=x,.accNo
with x,.ssn= x,.ssn and x,.name= x,.name and x,.location= x,.address
and x,.cardNo= x;.accNo and x,.limit= x,.limit

D,: foreach x, in SuppCards
exists x, in Fargo-Finance.Clients
with x,.ssn= x,.ssn and x,.name= x,.name and x,.address= x,.address

sense that every minimal route can essentially be found from

representation. (c) SPIDER is also equipped with “standard”
bugging features such as breakpoints, step-by-step computatio
routes and a “watch” window for visualizing how the target ir
stance is created, as well as the bindings for variables used

dependency at each step. In the process of computing routes ¢
by-step, the user has the option of applying a dependency that
thinks is most relevant at each step and she may also backtrac
explore alternative dependencies as desired. (d) The user may

lect a (source or target) schema element and request SPIDEKR 1qyeqer justify the need for a debugging tool for schema mappings.
display the schema-level “routes” of the selected element accord-

ing to the schema mapping. This feature enables one to understan® .1  Qur schema mapping example
the relationships between source and target schema elements, inde- We use the nested relational model and mapping language of [6]

pendent OT the instances. . . for describing our schema mapping (see Figure 1). The top of Fig-
Our main technical con_trlbutlor_1 IS an |mplementat_|on of a de- ure 1 shows a relational source schema Manhattan-Credit and a

bugger for schema mappings, with the'above.descnbed .features'nested target schema Fargo-Finance. The bottom of Figure 1 shows

To the best of our knowledge, SP.IDER IS the fws@ deb_u_ggmg t_OOI source-to-target dependencies (s-t dependendigsand D> and

for schema mappings that is equipped with fuqctlonal|t|es similar thetarget dependenay; . (The dependencies are also illustrated as

to that of a standard debugger for a programming language. EVenarrows). Clio generates the arrows in Figure 1 semi-automatically

though we use Clio as our underlying data exchange system, Our(based on user input), interprets the arrows into dependencies and

implementation is independent of Clio. Consequently, we believe compiles the schema mapping into executable SOL. XSLT or XOuer
that the techniques we have developed can be applied to future dat uerFi)es to execute the expc%agge QL. Query

exchange SySte”?S’ as well as da’ga ilntegra'.[ion SVS‘e”?S that make us In this example, the objective is to migrate every card holder and

of schema mappings based on similar logical formalisms. Further- supplementary card holder of Manhattan Credit as a client of Fargo
more, SPIDER works for any comb!natlon of relational and XML Finance. The specification of the exchange is described by the de-
source and target schemas. In addition, we ha\_/e shown in [1] thatpendencies in Figure 1. According 19,, for eachCardsrecord

the route algorithms of SPIDER have the following properties. (1) of Manhattan Credit (refer to foreachause ofD; ), there must ex-

Whether cqmpytlng all rouFes or one.route, the algorlthms EXECUte st Clientsand Accountsecords in Fargo Finance (existiuse of
in polynomial time in the size of the input. (2) Our algorithm for D1) with corresponding social security number, name, address, ac-
computing one route is comp_lete: It will find a route if there is one. count number and limit values (witause ofDl)’. Simillarly, the '
3) Qur algorithm for computing all routes returns a s_tructure that s-t dependency. specifies that for eacBuppCardsecord in the
concisely e_mbeds all rou_tes, .Whab means every minimal route source, there must beClientsrecord in the target with the same so-
can essentlglly be found in this structur'e. cial security number, name and address. In additiabt@nd D,

. Con_wme_rmgl systems sup_h_ as Altova's Mapforce and Stylus Stu- the schema mapping includes a target dependéhdpat the ex-
dio Sh'P with |ntegf’ated faC|I|t|es for data exchange, but debug only changed target instance must satisfy. This constraint specifies that
at the Iower-le_vel ; their debuggers are for the XSLT or XQUQW for every Clientsrecord, there must be afccountsrecord with
language that is used to specify the exchange. We refer the INteT-the same account number. We clarify that Clio’s implementation

ested reader to [1] for a discussion on related work. currently does not support egds (e.g., key constraints) in the target,
although the general framework [2, 8] and our debugger allow for
such specification.

Target dependency:
C,: foreach x, in Fargo-Finance.Clients, x, in x,.AccOwned
exists x, in Fargo-Finance.Accounts with x,.accNo=x;.accNo

Figure 1: An example relational-to-XML schema mapping

2. DEMONSTRATION OVERVIEW

In this section we use a simple schema mapping to illustrate the .
main features of SPIDER, as well as describe some of the tech-2-2 Some debuQQmQ features of SPIDER
niques implemented in the system. We emphasize that real life In the following, we illustrate some features of SPIDER that Al-
schema mappings are, in general, much more complex (thus hardeice, a banking specialist, may use to identify problems with the
to debug without the use of some tool) than our illustrative example, schema mapping in Figure 1.
which we keep simple, for ease of exposition. In our actual demon-  We assume Alice uses Clio to generate a target instance that
stration, however, we will use a more complex schema mapping, to satisfies the schema mapping in Figure 1 from a given source in-
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[ SPIDER Demo

and we explain how Alice makes use of such routes in order to un-

SCHEMAanning gInStances gROUIES derstand and debug the schema mapping in Figure 1. While brows-
-Source Instance ——————————————— f ing through the target instance, Alice discovers something unusual
[“Cards | b O Accounts = about the fact~: it has unknown account number and limit values.

ssn| name | location | cardNo | limit [ accho: 223456 In order to understand hoty was obtained, she probes the element
ot Dasninoanossrron Trmi | [, o2 of Accounts(highlighted in Figure 2.A) with the two unspecified

[ accha: M1 || values. SPIDER returns a route which, essentially, illustrates the
[“SuppCards | 0 timit: Lt 5 relationship between some source data and some target data which
ssn_|__mame | address | cardNo ¢ [ Accourts includes the fact that was probed.
224 Jiana Broor Ly AT % e T i A route can be visualized at two levels of detail. In High-level

view, a route is schematically displayed as a sequence of steps. Fig-
ure 2.B shows the high-level view of the route computed for the fact

; """"""""" 3 = t7, which contains two steps with; and respectively”;. From

Routes Exploration

— this view, Alice may probe any step in the route and SPIDER shows
""""""""""""""""" ' adetailed viewcontaining specific information about that step. Fig-
rCurrent Exchange Step E’* ure 2.C illustrates the detailed view of the first exchange step with
(‘Dependency [ Fact Bindings | Variable Bindings | D5 which shows théact bindingsfor the foreactand existxlauses
-FOREACH bindings —— -EXISTS bindings of Ds. Intuitively, the source fadts is a witness for the target fact
[ suppcards | ] FargaF nance: t,: Clientg234, Anna Brown, LA, {AccOwne@N)}). (An alter-
%{%{ﬂi{% ¢ ﬁgeg_ - native view, not shown in Figqre 2.C, illustrates .tﬁgdingS for the
[ name: &nna Brown variablesin the foreachand existxlauses o)., similar to what is
[ adoress: LA shown in Figure 3.B). The detailed view for the second step in the
¢ EECSIZEF'-M route (not shown in Figure 2) illustrates thatis a witness for the
: probed target fact; with the target dependency,. By analyzing

the steps of the route, Alice realizes that the dependénayisses
the association with the sour@ardsrelation (specified by the for-
Figure 2: Screenshot from SPIDER. (A) Source and target in- eign key on the cardNo attribute), and can modify accordingly.
stances; (B) high-level view of a route; (C) detailed view of the The algorithm for computing one route for a set of target facts
exchange step withD. is described in detail in [1]. Intuitively, each selected target fact
is first matched against the existiuse of the s-t and target de-
pendencies. If there exists a s-t dependency that can witess
stance. The debugging process is initiated from Clio through a “de- some source facts, the corresponding step is appended to the cur-
bug” button which triggers the display of SPIDER’s visual interface rent route which is initially empty. Otherwise titan be withessed
(Figure 2). SPIDER automatically imports the source and target in- with some target dependency and some other target factee
stances from Clio. Alice can also use an alternative source instancecomputation proceeds recursively to find a routeForwhich (if
for debugging purposes and a corresponding target instance is aufound) is appended to the current route. The process repeats until
tomatically computed using Clio’s engine and loaded in SPIDER. there are no “unwitnessed” selected target facts and in case some
Suppose Alice specifies a source instance consisting of the threeselected target fact cannot be witnessed with any dependency in the

tuples (or facts) shown below. schema mapping, the algorithm stops with output “no route”. Our
t1:Cardg234, Anna Brown, LA, 223-456, 2K) algorithm is sound and complete and we refer the reader to [1] for
to:Cardg111, Jeff Smith, San Jose, 777-789, 15K) more details. ,

t5:SuppCard€@34, Anna Brown, LA, 777-789) Similar to computing routes for target facts, SPIDER can also

) ) s compute routes for selected source facts. This feature is useful for
A target instance (generated by Clio) that satisfies the schemajgentifying consequences of the selected source facts in the target.
mapping in Figure 1 with the source instance is shown below (facts The algorithm for finding one route for a set of source facts is simi-

ta 10 t5). lar in spirit to our algorithm for finding one route for a set of target
t4:Clientg234, Anna Brown, LA{AccOwne223-456), facts, except that now we first match every selected source fact
AccOwne@N:)}) against the foreactiause of a s-t tdependency that together with
t5:Clientq111, Jeff Smith, San JosAccOwne@777-789}) (and possibly other source facts) can witness some targetfacts
te:Account§223-456, 2K) We then may repeat the process by trying to find a target depen-
t7:Account$N, L1) dency that together with some of the factgiwitness some other
ts:Account§777-789, 15K) target facts, and so on, until no more target facts can be witnessed.
TheAccOwnedacts are nested inside tidientsfactst, andts. In general, observe that there may be multiple routes for selected

The valuesV; andZ, are “unknown” omull valuescreated during source or target data. For example, there are two routes for the tar-

the exchange. The schema mapping allows for incomplete specifi- 96t factt: Clientg234, Anna Brown, LA). One route shows that
cation in general, hence it might not contain information concern- ¢ can be witnessed with the source faciand the s-t dependency
ing the creation of certain required elements in the target. As an P1» While the second route witnessiesith ¢; and D2. As a conse-

example, the accNo value AtcOwnedacts is left unspecified by~ dUENce, SPIDER is not limited to the computation of a single route
the s-t dependencip.. As a consequence, such values are auto- andalternativeroutes (omll routes) can be efficiently computed on

matically generated [6]. demand for a set of source or target facts. We have modified our
algorithm for computing one route to compute an alternative route
2.2.1 Computing routes by allowing it to continue searching for another route, as opposed

SPIDER can compute (multiple) routes for source or target facts to abandoning the computation as soon as one route is computed.
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or the end of the route. At each step, the user is also allowed to
choose a specific tgd to be applied, thus guiding the exploration of
the route as explained above. When examining a step in a route,
the user can “watch” the bindings for the facts or variables in the

dependency as described earlier (Figures 2.C and 3.B). If desired
SPIDER can also automatically highlight selected bindings on the
source or target instances. In addition, SPIDER is equipped with a
“watch” window where one can visualize the creation of the target

instance while exploring routes.

Routes Exploration

~Current Exchange Step

( Dependency rFacl Eindings r/ Variable Bindings |

~rFOREACH bindings ~EXISTS bindings

[C3 %1 - Manhattan-Credit Cards -3 %2 - Fargo-Finance. Clients
[ ssm 234 [ sen 234
D narme: Anna Brown D narme: Anna Browm
D location: LA D address: LA
[ cardia: 223456 —xtcardio = xd.aco | ¢ [x3 - AccOwned
> [ acehio: 223458

[ timit: 2K
\ [=3 x4 - Fargo-Finance. Accounts

[ acerio: 723-456
™[ lirvit: 24

2.2.4 Schema-level exploration of schema mappings

In addition to its data-driven debugging capabilities, SPIDER
also facilitates the understanding of schema mappings directly at
the level of the source and target schemas through the display of
schema-levetoutes. Given a schema elemefit, SPIDER can
schematically show the source or target schema elements that are
directly or indirectly responsible for creating values Tar, as well
as other target schema elements whose values are copiedfrom
This feature allows a user to focus on parts of the schema mapping
that are relevant for selected source or target schema elements.

Figure 3: (A) Guided exploration of an alternative route; (B)
"watch” window for the variables of D;.

3. SYSTEM ARCHITECTURE

SPIDER is currently implemented in Java 1.5, on top of Clio.
The architecture of the system consists of four modules sthema
mapping loaderand thedata loadermodules are responsible for
C o - ) loading schema mappings and respectively, relational and XML
next choice, if any. Similarly, all routes can be obtained by ex- jngiances. Functionalities for computing and exploring routes, as

haustively exploring all possible choices of dependencies and facts, o || a5 support for the standard debugging features are implemented
in each step, instead of abandoning the computation when the first, iha routes engine Finally, theschema-level tracemodule per-

route is output. When the user requests the computation of multiple s the exploration of schema-level routes for source and target
routes, we display these routes in a tree-like manner, with the COM- ¢ -hema elements

mon parts factored out. Our algorithm for computing all routes is
complete in the sense that it produces a structure which, essentially
embeds everyinimalroute [1].

If an alternative route is sought for some selected fagte sim-
ply “undo” the last choice of dependency and facts made by the
algorithm when computing one route forand proceed with the
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