
SPIDER: a Schema mapPIng DEbuggeR∗

Bogdan Alexe
UC Santa Cruz

abogdan@cs.ucsc.edu

Laura Chiticariu
UC Santa Cruz

laura@cs.ucsc.edu

Wang-Chiew Tan
UC Santa Cruz

wctan@cs.ucsc.edu

ABSTRACT
A schema mapping is a high-level declarative specification of how
data structured under one schema, called the source schema, is to be
transformed into data structured under a possibly different schema,
called the target schema. We demonstrate SPIDER, a prototype
tool for debugging schema mappings, where the language for spec-
ifying schema mappings is based on a widely adopted formalism.
We have built SPIDER on top of a data exchange system, Clio,
from IBM Almaden Research Center. At the heart of SPIDER is
a data-driven facility for understanding a schema mapping through
the display ofroutes. A route essentially describes the relationship
between source and target data with the schema mapping. In this
demonstration, we showcase ourroute engine, where we can dis-
play one or all routes starting from either source or target data, as
well as the intermediary data and schema elements involved. In ad-
dition, we demonstrate “standard” debugging features for schema
mappings that we have also built, such as computing and explor-
ing routes step-by-step, stopping or pausing the computation with
breakpoints, performing “guided” computation of routes by taking
human input into account, as well as tracking the state of the target
instance during the process of computing routes.

1. INTRODUCTION
The data exchange problemis to transform data structured ac-

cording to asourceschema into data that conforms to atarget
schema [3, 4]. Usually, the target schema is created independently
of the source schema and may have constraints of its own. The
behavior of a data exchange system is largely governed by the
specification ofschema mappings. A schema mapping is a high-
level declarative specification of how data structured under a source
schemaS is to be transformed into data structured under a target
schemaT. In research on relational-to-relational data exchange
as well as data integration [4, 5], the widely adopted language for
specifying schema mappings is based on the formalism oftuple
generating dependencies (tgds)andequality generating dependen-
cies (egds). Schema mappings are desirable because they are rela-
∗Supported in part by NSF CAREER Award IIS-0347065 and NSF
grant IIS-0430994.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

tively easier to manipulate and understand in contrast with the com-
plex queries such as SQL, XSLT or XQuery, that are often used to
implement and execute the schema mappings in order to perform
the exchange. In fact, the data exchange system Clio [3] uses a
language based on tgds and egds for specifying schema mappings
and it compiles a schema mapping into an internal representation
from which executables such as SQL, XSLT or XQuery queries are
generated in order to perform the exchange. Clio takes as input a
source instance and applies the generated query to obtain a target
instance that satisfies the schema mapping. Valuable programming
effort needed to implement the desired exchange could be saved
if the schema mapping is accurately specified to reflect the user’s
intention. We view the language of schema mappings as a (higher-
level) programming construct for specifying the exchange and it is
for the same motivation as building a debugger for a programming
language that we build a debugger for schema mappings. Our tool
can be seen as an effort towards developmental support for pro-
gramming with the language of schema mappings.

The need for such a debugging tool can be seen from several
other factors. First, schema mappings in data exchange systems
(as well as data integration systems) are often generated by schema
matching tools [7]. While the generated mappings are often close
to a user’s intention, it is very likely that they need to be further re-
fined before they accurately reflect the user’s intention. Second, the
schema mappings, whether they are known or generated through
schema matching tools, can often be large and therefore difficult
to debug or understand. Finally, a debugging tool provides a fa-
cility for users to understand their specification through “trial-and-
error”. Therefore, a facility that would allow a user to understand
the schema mappings by browsing through and probing the data at
hand will be extremely useful for enhancing the user’s understand-
ing of the specification of the system.

We demonstrate SPIDER, a debugging tool for schema map-
pings that is currently built on top of Clio [3]. A debug button from
Clio activates SPIDER, which will inherit the schema mapping, as
well as the source and target instances from Clio. A primary feature
of SPIDER is a facility for understanding and debugging schema
mappings by visualizingroutesfor some data in the source or tar-
get. A route essentially illustrates the relationship between some
source and target data with the schema mapping. A route is infor-
mative in that it shows the source data, the source and target schema
elements, as well as the intermediate data in the target instance that
led to the target data. It has a logical semantics that is independent
of the underlying procedures used to implement the exchange. So
SPIDER is able to debug a schema mapping without referring to
Clio’s underlying execution engine (whether it is based on SQL,
XSLT or XQuery).

1179



Summary of features We demonstrate four main functionalities
that we have implemented in our system. (a) A user can select
some target data and SPIDER can display routes taken by some
source data and intermediate data to arrive at the selected target
data. We also allow a user to select source data, instead of target
data, and SPIDER will display routes for the selected source data.
This feature is important for understanding how the selected target
data was created in the result, or the consequences of the selected
source data under the specified exchange. (b) SPIDER has the abil-
ity of displaying one route fast and alternative routes as needed. It
can also displayall routes for selected target or source data. The
latter feature is important for understanding data exchanged from
distinct but highly overlapping data sources, or data exchanged to
multiple targets. In displaying all routes, a concise representation
of all routes is presented to the user by factoring common steps
in the routes. Furthermore, this representation is complete in the
sense that every minimal route can essentially be found from the
representation. (c) SPIDER is also equipped with “standard” de-
bugging features such as breakpoints, step-by-step computation of
routes and a “watch” window for visualizing how the target in-
stance is created, as well as the bindings for variables used in a
dependency at each step. In the process of computing routes step-
by-step, the user has the option of applying a dependency that she
thinks is most relevant at each step and she may also backtrack to
explore alternative dependencies as desired. (d) The user may se-
lect a (source or target) schema element and request SPIDER to
display the schema-level “routes” of the selected element accord-
ing to the schema mapping. This feature enables one to understand
the relationships between source and target schema elements, inde-
pendent of the instances.

Our main technical contribution is an implementation of a de-
bugger for schema mappings, with the above described features.
To the best of our knowledge, SPIDER is the first debugging tool
for schema mappings that is equipped with functionalities similar
to that of a standard debugger for a programming language. Even
though we use Clio as our underlying data exchange system, our
implementation is independent of Clio. Consequently, we believe
that the techniques we have developed can be applied to future data
exchange systems, as well as data integration systems that make use
of schema mappings based on similar logical formalisms. Further-
more, SPIDER works for any combination of relational and XML
source and target schemas. In addition, we have shown in [1] that
the route algorithms of SPIDER have the following properties. (1)
Whether computing all routes or one route, the algorithms execute
in polynomial time in the size of the input. (2) Our algorithm for
computing one route is complete: It will find a route if there is one.
(3) Our algorithm for computing all routes returns a structure that
concisely embeds all routes, whereall means every minimal route
can essentially be found in this structure.

Commercial systems such as Altova’s Mapforce and Stylus Stu-
dio ship with integrated facilities for data exchange, but debug only
at the “lower-level”; their debuggers are for the XSLT or XQuery
language that is used to specify the exchange. We refer the inter-
ested reader to [1] for a discussion on related work.

2. DEMONSTRATION OVERVIEW
In this section we use a simple schema mapping to illustrate the

main features of SPIDER, as well as describe some of the tech-
niques implemented in the system. We emphasize that real life
schema mappings are, in general, much more complex (thus harder
to debug without the use of some tool) than our illustrative example,
which we keep simple, for ease of exposition. In our actual demon-
stration, however, we will use a more complex schema mapping, to

Cards: SetOf Rcd
ssn
name
location
cardNo
limit

SuppCards: SetOf Rcd
ssn
name
address
cardNo

Clients: SetOf Rcd

• accNo

• ssn
• name
• address
AccOwned: SetOf Rcd

Accounts: SetOf Rcd
• accNo
• limit

•
•
•
•
•

D1

D2

Source-to-target dependencies:
D1: foreach x1 in Manhattan-Credit.Cards

exists x2 in Fargo-Finance.Clients, x3 in x2.AccOwned, 
x4 in Fargo-Finance.Accounts
where x3.accNo=x4.accNo

with x1.ssn= x2.ssn and x1.name= x2.name and x1.location= x2.address 
and x1.cardNo= x3.accNo and x1.limit= x4.limit

D2: foreach x1 in SuppCards
exists x2 in Fargo-Finance.Clients
with x1.ssn= x2.ssn and x1.name= x2.name and x1.address= x2.address

Target dependency:
C1: foreach x1 in Fargo-Finance.Clients, x2 in x1.AccOwned

exists x3 in Fargo-Finance.Accounts with x2.accNo=x3.accNo

C1

Manhattan-Credit: Rcd Fargo-Finance: Rcd

•
•
•
•

Figure 1: An example relational-to-XML schema mapping

better justify the need for a debugging tool for schema mappings.

2.1 Our schema mapping example
We use the nested relational model and mapping language of [6]

for describing our schema mapping (see Figure 1). The top of Fig-
ure 1 shows a relational source schema Manhattan-Credit and a
nested target schema Fargo-Finance. The bottom of Figure 1 shows
source-to-target dependencies (s-t dependencies)D1 andD2 and
thetarget dependencyC1. (The dependencies are also illustrated as
arrows). Clio generates the arrows in Figure 1 semi-automatically
(based on user input), interprets the arrows into dependencies and
compiles the schema mapping into executable SQL, XSLT or XQuery
queries to execute the exchange.

In this example, the objective is to migrate every card holder and
supplementary card holder of Manhattan Credit as a client of Fargo
Finance. The specification of the exchange is described by the de-
pendencies in Figure 1. According toD1, for eachCards record
of Manhattan Credit (refer to foreachclause ofD1), there must ex-
ist ClientsandAccountsrecords in Fargo Finance (existsclause of
D1) with corresponding social security number, name, address, ac-
count number and limit values (withclause ofD1). Similarly, the
s-t dependencyD2 specifies that for eachSuppCardsrecord in the
source, there must be aClientsrecord in the target with the same so-
cial security number, name and address. In addition toD1 andD2,
the schema mapping includes a target dependencyC1 that the ex-
changed target instance must satisfy. This constraint specifies that
for every Clients record, there must be anAccountsrecord with
the same account number. We clarify that Clio’s implementation
currently does not support egds (e.g., key constraints) in the target,
although the general framework [2, 8] and our debugger allow for
such specification.

2.2 Some debugging features of SPIDER
In the following, we illustrate some features of SPIDER that Al-

ice, a banking specialist, may use to identify problems with the
schema mapping in Figure 1.

We assume Alice uses Clio to generate a target instance that
satisfies the schema mapping in Figure 1 from a given source in-

1180



Figure 2: Screenshot from SPIDER. (A) Source and target in-
stances; (B) high-level view of a route; (C) detailed view of the
exchange step withD2.

stance. The debugging process is initiated from Clio through a “de-
bug” button which triggers the display of SPIDER’s visual interface
(Figure 2). SPIDER automatically imports the source and target in-
stances from Clio. Alice can also use an alternative source instance
for debugging purposes and a corresponding target instance is au-
tomatically computed using Clio’s engine and loaded in SPIDER.

Suppose Alice specifies a source instance consisting of the three
tuples (or facts) shown below.

t1:Cards(234, Anna Brown, LA, 223-456, 2K)
t2:Cards(111, Jeff Smith, San Jose, 777-789, 15K)
t3:SuppCards(234, Anna Brown, LA, 777-789)

A target instance (generated by Clio) that satisfies the schema
mapping in Figure 1 with the source instance is shown below (facts
t4 to t8).

t4:Clients(234, Anna Brown, LA,{AccOwned(223-456),
AccOwned(N1)})

t5:Clients(111, Jeff Smith, San Jose,{AccOwned(777-789)})
t6:Accounts(223-456, 2K)
t7:Accounts(N1, L1)
t8:Accounts(777-789, 15K)

TheAccOwnedfacts are nested inside theClientsfactst4 andt5.
The valuesN1 andL1 are “unknown” ornull valuescreated during
the exchange. The schema mapping allows for incomplete specifi-
cation in general, hence it might not contain information concern-
ing the creation of certain required elements in the target. As an
example, the accNo value ofAccOwnedfacts is left unspecified by
the s-t dependencyD2. As a consequence, such values are auto-
matically generated [6].

2.2.1 Computing routes
SPIDER can compute (multiple) routes for source or target facts

and we explain how Alice makes use of such routes in order to un-
derstand and debug the schema mapping in Figure 1. While brows-
ing through the target instance, Alice discovers something unusual
about the factt7: it has unknown account number and limit values.
In order to understand howt7 was obtained, she probes the element
of Accounts(highlighted in Figure 2.A) with the two unspecified
values. SPIDER returns a route which, essentially, illustrates the
relationship between some source data and some target data which
includes the fact that was probed.

A route can be visualized at two levels of detail. In thehigh-level
view, a route is schematically displayed as a sequence of steps. Fig-
ure 2.B shows the high-level view of the route computed for the fact
t7, which contains two steps withD2 and respectively,C1. From
this view, Alice may probe any step in the route and SPIDER shows
adetailed viewcontaining specific information about that step. Fig-
ure 2.C illustrates the detailed view of the first exchange step with
D2 which shows thefact bindingsfor the foreachand existsclauses
of D2. Intuitively, the source factt3 is a witness for the target fact
t
′

4: Clients(234, Anna Brown, LA,{AccOwned(N1)}). (An alter-
native view, not shown in Figure 2.C, illustrates thebindings for the
variablesin the foreachand existsclauses ofD2, similar to what is
shown in Figure 3.B). The detailed view for the second step in the
route (not shown in Figure 2) illustrates thatt

′

4 is a witness for the
probed target factt7 with the target dependencyC1. By analyzing
the steps of the route, Alice realizes that the dependencyD2 misses
the association with the sourceCardsrelation (specified by the for-
eign key on the cardNo attribute), and can modifyD2 accordingly.

The algorithm for computing one route for a set of target facts
is described in detail in [1]. Intuitively, each selected target factt

is first matched against the existsclause of the s-t and target de-
pendencies. If there exists a s-t dependency that can witnesst with
some source facts, the corresponding step is appended to the cur-
rent route which is initially empty. Otherwise, ift can be witnessed
with some target dependency and some other target factsT , the
computation proceeds recursively to find a route forT , which (if
found) is appended to the current route. The process repeats until
there are no “unwitnessed” selected target facts and in case some
selected target fact cannot be witnessed with any dependency in the
schema mapping, the algorithm stops with output “no route”. Our
algorithm is sound and complete and we refer the reader to [1] for
more details.

Similar to computing routes for target facts, SPIDER can also
compute routes for selected source facts. This feature is useful for
identifying consequences of the selected source facts in the target.
The algorithm for finding one route for a set of source facts is simi-
lar in spirit to our algorithm for finding one route for a set of target
facts, except that now we first match every selected source factt

against the foreachclause of a s-t tdependency that together witht

(and possibly other source facts) can witness some target factsT .
We then may repeat the process by trying to find a target depen-
dency that together with some of the facts inT witness some other
target facts, and so on, until no more target facts can be witnessed.

In general, observe that there may be multiple routes for selected
source or target data. For example, there are two routes for the tar-
get factt: Clients(234, Anna Brown, LA). One route shows that
t can be witnessed with the source factt1 and the s-t dependency
D1, while the second route witnessest with t3 andD2. As a conse-
quence, SPIDER is not limited to the computation of a single route
andalternativeroutes (orall routes) can be efficiently computed on
demand for a set of source or target facts. We have modified our
algorithm for computing one route to compute an alternative route
by allowing it to continue searching for another route, as opposed
to abandoning the computation as soon as one route is computed.

1181



Figure 3: (A) Guided exploration of an alternative route; (B)
”watch” window for the variables of D1.

If an alternative route is sought for some selected factt, we sim-
ply “undo” the last choice of dependency and facts made by the
algorithm when computing one route fort and proceed with the
next choice, if any. Similarly, all routes can be obtained by ex-
haustively exploring all possible choices of dependencies and facts
in each step, instead of abandoning the computation when the first
route is output. When the user requests the computation of multiple
routes, we display these routes in a tree-like manner, with the com-
mon parts factored out. Our algorithm for computing all routes is
complete in the sense that it produces a structure which, essentially,
embeds everyminimalroute [1].

2.2.2 Guided routes exploration
At any step in a route, the system is able to suggest several de-

pendencies that can be applied, if any. The user may choose one
of these candidates and decide upon the direction of the route, thus
“guiding” the exploration of the route as desired. At a later mo-
ment, the user can reconsider her decision and explore some alter-
native segment of the route.

Suppose that in Figure 2.C Alice selects the factClients(234,
Anna Brown, LA) denoted ast. As illustrated in Figure 3.A, SPI-
DER shows that there is an alternative route for this fact with the
dependencyD1, in addition toD2. Figure 3.B presents the situa-
tion where Alice examines the effects of applying the dependency
D1. (This is an alternative view to the one presented in Figure 2.C.)
In this view, Alice examines thebindings for variablesx1,...,x4 in
the foreachand existsclauses ofD1, instead of fact bindings. (Note
that the exchange step withD1 witnesses the part oft′4 denoted as
t.) The arrows indicate the way values in the source are used to
generate values in the target, according toD1.

2.2.3 “Standard” debugging features
Similar to debuggers for programming languages, SPIDER is

equipped with standard features such as step-by-step route compu-
tation, breakpoints and “watch” windows. Routes can be computed
in one run, or step-by-step. In the latter mode, the user is allowed to
set breakpoints on specific dependencies that when reached, trigger
a stop in the computation of the route. The user can examine the
subsequent steps one at a time, or she can decide to demand the
continuation of the computation until reaching another breakpoint

or the end of the route. At each step, the user is also allowed to
choose a specific tgd to be applied, thus guiding the exploration of
the route as explained above. When examining a step in a route,
the user can “watch” the bindings for the facts or variables in the
dependency as described earlier (Figures 2.C and 3.B). If desired,
SPIDER can also automatically highlight selected bindings on the
source or target instances. In addition, SPIDER is equipped with a
“watch” window where one can visualize the creation of the target
instance while exploring routes.

2.2.4 Schema-level exploration of schema mappings
In addition to its data-driven debugging capabilities, SPIDER

also facilitates the understanding of schema mappings directly at
the level of the source and target schemas through the display of
schema-levelroutes. Given a schema elementTe, SPIDER can
schematically show the source or target schema elements that are
directly or indirectly responsible for creating values forTe, as well
as other target schema elements whose values are copied fromTe.
This feature allows a user to focus on parts of the schema mapping
that are relevant for selected source or target schema elements.

3. SYSTEM ARCHITECTURE
SPIDER is currently implemented in Java 1.5, on top of Clio.

The architecture of the system consists of four modules. Theschema
mapping loaderand thedata loadermodules are responsible for
loading schema mappings and respectively, relational and XML
instances. Functionalities for computing and exploring routes, as
well as support for the standard debugging features are implemented
in the routes engine. Finally, theschema-level tracermodule per-
mits the exploration of schema-level routes for source and target
schema elements.

4. REFERENCES
[1] L. Chiticariu and W. Tan. Debugging schema mappings with

routes. InProceedings of the International Conference on
Very Large Data Bases (VLDB) (To appear), 2006.

[2] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering.Theoretical
Computer Science, 336(1):89–124, 2005.

[3] L. M. Haas, M. A. Hernandez, H. Ho, L. Popa, and M. Roth.
Clio grows up: from research prototype to industrial tool. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 805–810, 2005.

[4] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. InACM Symposium on Principles of
Database Systems (PODS), pages 61–75, 2005.

[5] M. Lenzerini. Data Integration: A Theoretical Perspective. In
Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), pages 233–246, 2002.

[6] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and
R. Fagin. Translating Web Data. InProceedings of the
International Conference on Very Large Data Bases (VLDB),
pages 598–609, 2002.

[7] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching.The VLDB Journal,
10(4):334–350, 2001.

[8] C. Yu and L. Popa. Constraint-based xml query rewriting for
data integration. InProceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD), pages 371–382, 2004.

1182


