GMine: A System for Scalable, Interactive Graph
Visualization and Mining

José F. Rodrigues Jr.*, Hanghang Tong+ Agma J. M. Traina*, Christos Faloutsos+,

*Dept. de Computacao

Inst. de Ciéncias Mateméticas e de Computacao

Universidade de Sao Paulo
Av. Trabalhador Sdocarlense, 400
C. P. 668 - 13.566-590 Sao Carlos, SP - Brazil

*{junio,agma}@icmc.usp.br

ABSTRACT

Several graph visualization tools exist. However, they are not able
to handle large graphs, and/or they do not allow interaction. We are
interested on large graphs, with hundreds of thousands of nodes.
Such graphs bring two challenges: the first one isthat any straight-
forward interactive manipulation will be prohibitively slow. The
second one is sensory overload: even if we could plot and replot
the graph quickly, the user would be overwhelmed with the vast
volume of information because the screen would be too cluttered
as nodes and edges overlap each other.

Our GMine system addresses both these issues, by using summa-
rization and multi-resolution. GMine offers multi-resolution graph
exploration by partitioning a given graph into a hierarchy of com-
munities-within-communities and storing it into anovel R-tree-like
structure which we name G-Tree. GMine offers summarization
by implementing an innovative subgraph extraction algorithm and
then visualizing its output.

1. INTRODUCTION

An important support for graph exploration is interactive visual-
ization, which can help to quickly identify the main components
of agraph, its outliers, the most important edges and communities
of related nodes. Interaction-enabled visualization allows to pick
detailed and contextualized information on demand, interact with
nodes and edges and determine topology aware arrangements for
clearer inspection.

However, up-to-date applications have produced graphs on the or-
der of hundred thousand nodes and possibly million edges (refer-
enced from here on as large graphs). Large graphs can be found
in numerous real-life settings: web graphs (web pages, pointing to
others with hypertext links) [3], computer communication graphs
(IP addresses sending packets to other | P addresses), recommenda-
tion systems [4], who-trusts-whom networks [5], bipartite graphs
of web-logs of who visits what page; blogs and similar. At this
magnitude, efficient graph visualization becomes prohibitive be-

Permission to copy without feeall or part of thismaterial isgranted provided
that the copies are not made or distributed for direct commercial advantage,
theVLDB copyright notice and thetitle of the publication and itsdate appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or specia permission from the
publisher, ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.

Copyright 2006 VVLDB Endowment, ACM 1-59593-385-9/06/09

1195

Jure Leskovec+
+Carnegie Mellon University
5000 Forbes Avenue - 15213-3891
Pittsburgh, Pennsylvania
United States of America

+{htong,christos,jure}@cs.cmu.edu

cause of the excessive processing power requirements that prevent
interaction. Besides that, hundred-thousand-node drawings result
in unintelligible cluttered images that do not aid the users cogni-
tion. To facethese challengeswe present a system that explorestwo
new ideas to address scalability in large graph visualization. The
first idea establishes a hierarchical partitioned arrangement from a
graph in order to allow multi-resolution visualization. The second
idea utilizes an innovative algorithm to extract a subgraph of inter-
est based on an initial set of target nodes. Our system uses either or
both of these ideas to process |arge graphs bypassing the aforemen-
tioned limitations of massive graph drawing. The proposed inter-
face permits to navigate through the levels of agraph hierarchy and
also to mine subgraphs information for targeted graph exploration.

The remaining of this paper is structured as follows. Section 2 in-
troduces the DBLP dataset that will be used along this work. Sec-
tion 3 describes our multi-resolution visualization idea and section
4illustrates our subgraph extraction algorithm. Section 5 concludes
the work.

2. DBLP DATASET

Throughout this text we employ the DBLP dataset to illustrate the
functionalities of our system. This dataset originates from the Dig-
ital Bibliography & Library Project (or DBLP). DBLPisapublicly
available database of publication data that embraces authors (also
co-authors) from the Computer Science community and their pub-
lished works. Its content is periodically updated and detailed in-
formation from DBLP can be achieved at http://dblp.uni-trier.de/.
The version of DBLP dataset that we use defines a graph with
n = 315,688 nodes and e = 1,659, 853 edges, where each node
represents an author of a publication and each edge denotes a co-
authoring relationship between two authors.

3. GRAPH HIERARCHY CREATION,
STRUCTURING AND VISUALIZATION

Our first idea to deal with massive graphs is the use of a commu-
nities-within-communities structured visualization. In the next sec-
tions we overview the steps to come up with such proposal at the
same time that we describe its features for visualization and inter-
action.

3.1 TheG-Treestructure

For this work, initially we need to recursively and hierarchically
partition a given graph. We adopted the methodology named k-
way partitioning (however any partitioning methodology fits our

system). That is, given agraph G = (V,E) with |V| = n, we want
to have k subsets V1, Vo, ...,V of V, such that V NVj = O for i # |,
Vil = n/k and UjV; = V. Also, the partitioning must minimize the
number of edges of E whose incident vertices belong to different
subsets. This partitioning methodology isimplemented by METIS,
whose details are found in the work by Karypis and Kumar [2] and
in related works.

Hence, given agraph, we perform a sequence of recursive partition-
ings to achieve a hierarchy of communities-within-communities.
At each recursion, each partition is submitted to a new partitioning
cyclethat will create another set of partitions. This process repeats
until we get the desired granularity for the partitions (communi-
ties). For each new set of partitions, a new subtree is embedded
in an R-tree like structure. At each new level of the tree, the tree
nodes (communities) just created will have the formerly partitioned
tree node astheir parent. We call this structure G-Tree (named after
Graph-Tree), which is the data structure that supports our system,
illustrated in figure 1. The references for the graph nodes properly
said are at the bottom level of thetree. The entire structure is stored
in asingle file and the nodes are transferred to main memory only
when necessary.

Graph G={l/ £} and its p partitioned / hierarchy levels
e~ JICGE =G U.UG, =G

[Hm \/| -\--Gl_,l. L
A eSS

Figure 1. G-Tree structure, which we utilize for our visualiza-
tion system together with its graph recursive structuring.

G

-
G 1] p-1

To demonstrate our methodology, we recursively partition DBLP
dataset into 5 hierarchy levels each with 5 partitions. The dataset,
thus, is broken into 5%+ 1, or 626, communities with an average of
500 nodes per community. The communities reflect the connectiv-
ity (number of edges) among their members according to METIS
partitioning algorithm.

3.2 Visualization and Interaction

We propose an innovative interactive presentation for large graphs.
For this purpose, our system promotes the navigation across the
levels of the tree that represents the hierarchical partitioning of a
large graph. Asthe user interacts with the visualization, the system
keepstrack of the connectivity among communities of nodes at dif-
ferent levels of the partitioned graph. When the user changes the
focus position on the tree structure, the system works on demand
to calculate and present contextual information.

When we display a graph as communities-within-communities, we
have new representations for graph drawing, as illustrated in fig-
ure 2. Besides conventional nodes and edges that appear only at
the bottom level of the tree (leaf nodes), we aso have community

1196

nodes, that comprehend a number of sub communities and nodes,
and we have connectivity edges, that represent the number of edges
between community nodes. These connectivity edges represent the
number of edges between nodes from the original graph, but that
are in different communities. The storage and management of this
information is out of the scope of this demonstration paper.

Leaf community nodes, Non-leaf community nodes
their subgraphs their sub communities anc‘
and a connectivity edge. connectivity edges.

oo
Conventional
nodes and edge.

Figure 2: Conventional nodes and an edge to denote relation-
ship. Leaf community nodes, subgraphs and a connectivity
edge to denote how many nodes from the communities have an
edge to connect them. Non-leaf community nodes, sub commu-
nities and connectivity edges.

These features areillustrated in figure 3, which presents a sequence
of interactive actions taken by the user when navigating in DBLP
dataset. In figure 3(a), it is possible to see DBLP partitioned into
5 communities in its first hierarchy level, and other 5% 5, or 25
communities in its second hierarchy level. At this point, 3 com-
munities are highly connected to every other community and also
highly connected among their 5 sub communities. The other 2 first-
level communities are relatively isolated from the other 3 and to-
tally isolated among their sub communities. One can conclude that
the 3 highly connected communities hold long term active and col-
laborating authors, while the other 2 hold casual, less productive
authors who seldom interact with each other. In figure 3(b) we
focus on community s034 and verify that its sub communities are
isolated from each other. A deeper focusin community s034 in fig-
ure 3(c) shows that among its sub communities (highlighted), only
two of these sub communities present an edge. Our system allows
to inspect this specific outlier edge to reveal that authors “D. B.
Miller” and “R. G. Stockton” define this co-authoring relation for
their unique DBLP publication dated from 1989. It is aso possible
to execute alabel query to locate a specific author within the hierar-
chy, as for example author Jiawel Han in figure 3(d). In figure 3(e)
we go to its subgraph community and verify other important nodes
surrounding this author. In figure 3(f) we interact with the graph to
discover author Ke Wang, which is another very active author who
has worked for years with author Jiawei Han.

The exploration of communities of nodes instead of all the nodes
at atime, the way we are doing, allows the perception of the re-
lationships among communities of nodes. This way it is possible
to trace the distribution of edges among communities, their con-
nectivity degree and their scope of connectivity. It is also possible
to pick outlier edges for suspicious connections between commu-
nities. The user can focus at different communities of nodes ac-
cording to his/her interest and browse the levels of the hierarchy in
order to identify interesting connections or to inspect specific graph
nodes.

At the bottom level of the tree, the user can access a subgraph that
is part of the larger graph being analyzed. To do so, the system
brings the correspondent graph nodes from disk to memory and
draws them inside the region attributed to its parent community
(tree node). Then this area of the visualization scene becomes a

Figure 3: DBLP dataset navigation. (a) First 5 main communi-
tiesand its 25 sub communities. (b) Contextualization of com-
munity s034. (c) Closer look and complete expansion of com-
munity s034. (d) We locate author Jiawei Han. (e) Subgraph
community of author Jiawei Han. (f) Interaction with the sub-
graph reveals co-author Ke Wang as one of the main contribu-
torsto Jiawei Han.

regular areafor graph drawing. For this subgraph, besides basicin-
teraction (zoom, pan and details on demand) the user can also ask
for the calculation of metrical features corresponding to this sub-
graph only. Our system supports the following calculations: degree
distribution, number of hops, number of weak components, num-
ber of strong components and page rank calculation for the nodes.
GMine aso offers pop up node information, edge expansion and
edition of nodes and edges.

3.3 TheTomahawk Principle

The presentation of the node communities together with the edges
that connect them may cause sensory overload. Thisis due to the
fact that every community can potentially be connected to every
other community. Thisproblemisaggravated if the graph has many
hierarchy levels exhibited simultaneously when communities are
expanded to show their content. To cope with this aspect of our
multi-resolution graph visualization, we propose to display asmall,
but carefully chosen set of communities. We refer to this method

1197

as the “Tomahawk " principle, because the chosen nodes remind
of a tomahawk ax when shown on G-Tree method, illustrated in
figure 4. That is, in order to limit the number of items presented
at a time, we make use of G-Tree structure to determine a well-
established context every timein responseto user interaction. Thus,
as the user chooses a community node to focus on, we traverse the
tree in order to gather the desired node of interest, its sons and its
siblings. Then we plot only these items inside the minimum node
that bears this contextualization, see figure 3(b). We argue that the
Tomahawk principle can provide a minimum contextualization to
the user by presenting nodes above, beneath and by the side of a
node of interest.

Tomahawk principle

focus

Figure 4: The Tomahawk principle to help decide what to ex-
hibit according to user interaction.

4. CONNECTION SUBGRAPH
EXTRACTION

Our second ideato deal with massive graphsisthe use of anovel al-
gorithm for connection subgraph extraction. Our algorithm, which
is not to be detailed in this demonstration work, aims to maximize
what we call “goodness score” of the nodes within a subgraph. To
reach this goal, an independent random walk with restart is sim-
ulated for each source node, and the goodness score of a node is
computed by the steady-meeting probability that the random parti-
cleswill finally meet each other at the given node. Then, adynamic
programming is used to discover important paths iteratively. The
proposed agorithm can deal with multi-source queries, while the
existing one [1] isrestricted to pairwise source queries.

A typical scenario to apply connection subgraph extractionis“given
an initial set of interesting individuals, find a small number of in-
dividuals from a large social network that can best capture the
relationship among the individuals of the initial set”. For large
graphs, extracting a small (say, with tens of nodes) yet represen-
tative connection subgraph brings feasibility to large graph visual
exploration. Also, dueto the multi-faced nature of many real lifere-
lationships, connection subgraphs provide a better way to describe
such kind of relationships if compared to single path descriptions.

For (limited static) demonstration, a connection subgraph with 30
nodes extracted from the whole DBLP dataset isplotted in figure 5.
The initial query set in figure 5 is composed of three authors from
the database community: “Philip S. Yu”, “Flip Korn” and “Minos
N. Garofalakis’. In figure 5, instead of a thousand nodes graph,
one can concentrate on a subgraph of interest extracted from the
original graph. The magnitude of the subgraph is thousand fold
smaller than the original dataset and the subgraph being visualized

isdirectly related to the interconnection defined by our initial set of
target nodes.

On the visuaization, if the user moves the mouse over a node,
GMine pops up more information about that node - in the example,
one can see Prof. H. V. Jagadish data and his edges highlighted.
Prof. Jagadish has direct connection with Flip Korn, and 1-step-
away connections with Dr. Philip Yu and Dr. Minos Garofalakis.

iid =17
Label = H. V. Jagadish

Miﬁos N. Garofalaki

Figure5: Illustration for connection subgraph extraction.

In our system, subgraph extraction can be utilized alone or com-
bined to communities-within-communities visualization. Alone,
one can extract a subgraph of interest from a given large graph.
Combined, (see figure 6), it can be used to generate a subgraph
to be hierarchically partitioned for visualization or, aternatively, it
can be used to generate a subgraph from an existing graph partition.

Figure6 illustratesthe combination of subgraph extraction and com-
munities-within-communities visualization. Figure, 6(a) displaysa
200 nodes subgraph extracted from the DBLP dataset. In figure
6(b) it possible to see this subgraph partitioned into 3 main com-
munities. In figures 6(c) and 6(d) we go deeper into the hierarchy
to analyze the connectivity between communities and, finaly, the
very nodes of the graph.

5. CONCLUSIONS

We have demonstrated a system that supports the visualization of
large graphs in an interactive environment. In our tool the user can
navigate through the graph structure in a hierarchical fashion, hav-
ing different perspectives of the graph arrangement, varying from
multiple resolution levels to detailed inspection of specific graph
nodes. The system also supports an innovative subgraph extraction
algorithm that can speed up large graph exploration by concentrat-
ing on atargeted subset of the graph.

The benefits of our ideas come from its compartmented graph man-
agement that promotes scal ability while keeping visual comprehen-
sion. The scalability isdueto thefact that smaller parts of the graph
are processed one at atime instead of the whole graph at every cy-
cle. Visual comprehension derives from limited visual data presen-
tation in contrast to cluttered visualizations generated when large
graphs are entirely drawn.

Due to space limitations it is not possible to show all the GMine
functionalities. Therefore, for a better exposition, we have GMine
available onlinea http://wuw.cs.cmu.edu/” junio/GMine,

1198

Figure 6: (a) A 200 nodes subgraph extracted from DBLP
dataset. (b) The same graph presented as three partitions. (c)
Onelevel down the hierarchy and we have three other commu-
nitiesinside the community highlighted in (b). (d) Zoom in the
community highlighted in (c) and another level down the hier-
archy. Wereach the very nodes of the graph.

where the software, datasets and videos can be downloaded. For
VLDB demonstration session, we plan to let the interested VLDB
participants interact directly with the system, possibly checking for
their name, their connection-subgraphs with their colleagues, and
zooming in and out their corresponding communities.

6. ACKNOWLEDGEMENTS

This work has been supported by FAPESP (S&o Paulo State Re-
search Foundation), CNPq (Brazilian National Research Founda-
tion), CAPES (Brazilian Committee for Graduate Studies), Na-
tional Science Foundation, (PITA) Pennsylvanialnfrastructure Tech-
nology Alliance and donationsfrom Intel, NTT and Hewlett-Packard.
Any opinions, findings and conclusions or recommendations ex-
pressed here are those of the author(s) and do not necessarily reflect
the views of the funding parties.

7. REFERENCES
[1] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery
of connection subgraphs. In KDD, pages 118-127, 2004.

[2] George Karypisand Vipin Kumar. Multilevel graph
partitioning schemes. In IEEE/ACM International Conference
on Parallel Processing, pages 113-122, Oconomowaoc,
Wisconsin, USA, August 1995.

[3] S.R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
Trawling the web for emerging cyber-communities. Computer

Networks, 31(11-16):1481-1493, 1999.

[4] J. Leskovec, A. Singh, and J. Kleinberg. Patterns of influence
in arecommendation network. In PAKDD, volume 3918,

pages 380-389. Springer-Verlag, 2006.

[5] R. Matthew, R. Agrawal, and P. Domingos. Trust management

for the semantic web. In 2nd ISWC, pages 351-368, 2003.

