
Querying Business Processes∗

Catriel Beeri
The Hebrew University

cbeeri@cs.huji.ac.il

Anat Eyal
Tel Aviv University
anat@exanet.com

Simon Kamenkovich
Tel Aviv University

simonkm@cs.tau.ac.il

Tova Milo
Tel Aviv University
milo@cs.tau.ac.il

ABSTRACT
We present in this paper BP-QL , a novel query language for query-
ing business processes. The BP-QL language is based on an intu-
itive model of business processes, an abstraction of the emerging
BPEL (Business Process Execution Language) standard. It allows
users to query business processes visually, in a manner very anal-
ogous to how such processes are typically specified, and can be
employed in a distributed setting, where process components may
be provided by distinct providers(peers).

We describe here the query language as well as its underlying
formal model. We consider the properties of the various language
components and explain how they influenced the language design.
In particular we distinguish features that can be efficiently sup-
ported, and those that incur a prohibitively high cost, or cannot be
computed at all. We also present our implementation which com-
plies with real life standards for business process specifications,
XML, and Web services, and is used in the BP-QL system.

1. INTRODUCTION
A business process (BP for short) consists of a group of busi-

ness activities undertaken by one or more organizations in pursuit
of some particular goal. It usually depends upon various business
functions for support, e.g. personnel, accounting, inventory, and
interacts with other BPs/activities carried by the same or other or-
ganizations. Consequently, the software implementing such BPs
typically operates in a cross-organization, distributed environment.

It is common practice to use XML for data exchange between
BPs, and Web services for interaction with remote processes [34].
The recent BPEL standard (Business Process Execution Language
[7], also identified as BPELWS or BPEL4WS), developed jointly
by BEA Systems, IBM, and Microsoft, combines and replaces IBM’s
WebServices Flow Language (WSFL) [27] and Microsoft’s XLANG
[35]. It provides an XML-based language to describe not only the
interface between the participants in a process, but also the full op-
erational logic of the process and its execution flow.

Commercial vendors offer systems that allow to design BPEL
specification via a visual interface, using a conceptual, intuitive
∗The research has been supported by the Israel Science Foundation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ’06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

view of the process, as a graph of data and activity nodes, con-
nected by control and data flow edges. Designs are automatically
converted to BPEL specifications. These can be automatically com-
piled into executable code that implements the described BP [30].

Declarative BPEL specifications greatly simplify the task of soft-
ware development for BPs. More interestingly from an information
management perspective, they also provide an important new mine
of information. Consider for instance a user who tries to understand
how a particular travel agency operates. She may want to find an-
swers to questions such as: Can I get a price quote without giving
first my credit card details? What should one do to confirm a pur-
chase? What kind of credit services are used by the agency, directly
or indirectly, (i.e. by the other processes it interacts with)? Ob-
viously, such queries are of great interest to both individual users
and to organizations interested in using or analyzing BPs. Answer-
ing them is extremely hard (if not impossible) when the BP logic
is coded in a complex program. It is potentially much easier given
a declarative specification like BPEL. For an organization that has
access to its own BPEL specifications, as well to those of cooperat-
ing organizations, the ability to answer such queries, in a possibly
distributed environment, is of great practical potential.

To support such queries, one needs an adequate query language,
and an efficient execution engine for it. To address this need, we
present in this paper BP-QL , a new query language which allows
for an intuitive formulation of queries on BP specifications, and
query execution in a distributed cross-organization environment.

Before presenting our results, let us highlight briefly some of
the challenges in querying BP specifications in general, and BPEL
ones in particular.

Flexible granularity BP specifications may be abstractly viewed
as a set of nested graphs, possibly with recursion: The graphs
structure captures the execution flow of the process components;
The nesting comes from the fact that the operations/services used
in a process are not necessarily atomic and may have a complex
internal structure (which may itself be represented by a graph);
The recursion is due to the fact that a process may call itself in-
directly, through calls it makes to other processes. Users may wish
to ask coarse-grain queries that consider certain process compo-
nents as black boxes and allow for high level abstraction, as well as
fine-grained queries that “zoom-in” on all the process components,
possibly recursively. An adequate query language must thus allow
users to query the processes at different, flexible, granularity levels.

Distribution As mentioned above, BPs typically operates in a cross-
organization, distributed environment where each peer holds a set
of BPs and may provide (resp. use) services to (of) remote peers. If
a service’s internal flow has been defined in BPEL, and the service
providers make this specification available to their cooperating or-
ganizations (say via a web service), users may wish to zoom-in on

343



these remote components as well to query the service specification.

Paths extraction When querying BPs, users may be interested in
retrieving, as an answer, the qualifying flow paths (as for instance
in the query “What should I do to confirm my purchase?”). As the
number of relevant paths may be large (or even infinite in recursive
processes) a major challenge is to provides the users with a com-
pact finite representation of the (possible infinite) answer.

Ease of querying As mentioned above, the BPEL standard offers
an XML-based language for describing the operational logic of a
BP. Since a BPEL specification is essentially an XML document, a
natural question is why not query it directly, using XQuery? A key
observation is that the BPEL XML format is (1) very complex and
(2) was designed with ease of automatic code generation in mind;
however, it is extremely inconvenient for querying. To express even
a very simple inquiry about a process execution flow, one needs to
write a fairly complex XQuery query that performs an excessive
number of joins. Furthermore, even if a more query-friendly XML
representation for it had been chosen (as indeed is done internally in
our implementation), XQuery, as is, would still not be adequate for
the task: XQuery only returns document elements, but not paths,
it does not support querying at different levels of granularity, and
it does not offer tools for controlling distributed querying. Last
but not least, querying an XML representation is much more diffi-
cult than querying directly a conceptual model. Essentially, ease of
querying requires an an intuitive, conceptual, data model, coupled
with a matching, equally intuitive, query language.

The BP-QL query language presented in this paper addresses
these issues. It is based on an intuitive model of BPs, an abstrac-
tion of the BPEL specification, along with a graphical user interface
that allows for simple formulation of queries over this model. In a
sense, it follows the same design principles that guided commercial
vendors in the development of graphical editors for the specifica-
tion of BPEL processes: it hides from the users the tedious BPEL
XML details and allows for more natural query formulation. In-
deed, we will see that the tight analogy between how BPs are spec-
ified in such editors and how they are graphically queried in BP-
QL , facilitates intuitive querying. BP-QL also offers facilities for
controlling granularity and distribution in query formulation and
allows paths in query results.

At the core of the BP-QL language are BP patterns that allow
users to describe the pattern of activities/data flow that are of inter-
est. BP patterns are similar to the tree- and graph-patterns offered
by existing query languages for XML [36] and graph-shaped data
[15, 13, 31], but include two novel features designed to address the
issues mentioned above. First, BP-QL supports navigation along
two axis: (1) the standard path-based axis, that allows to navigate
through, and query, paths in process graphs, and (2) a novel zoom-
in axis, that allows to navigate (transitively) inside process compo-
nents (local as well as remote ones) and query them at any depth
of nesting. Second, paths are considered first class objects in BP-
QL and can be retrieved, and represented compactly, even when
involving activities performed on distinct peers.

Together, these features allow for simple formulation of queries
on BPs. However, they make the evaluation of queries much more
intricate than that of traditional XML/graph patterns. Indeed, some
queries that can easily be evaluated on flat graphs/trees may be-
come computationally expensive (or even undecidable) when nested
graphs are concerned. To keep the evaluation of queries tractable,
we had identified these problematic scenarios and carefully de-
signed the language so that they are avoided, and polynomial-time
query evaluation is guaranteed. Our analysis is based on modeling
systems of processes and queries as graph grammars[21].

Observe that, in general, several modes of querying business
processes are possible. One can query the specifications as data
(e.g. “does the specification include a path from activity A to ac-
tivity B”). One can also ask about patterns that may occur when
the processes are executed (e.g. “can there be a run of the system
where activity A is followed by activity B”). One can also monitor
runs as processes execute, or pose queries on logs of past runs.

BP-QL is a query language for process specifications,1 not about
their possible runs. This is for two main reasons. First, querying
the possible runs of a system is a verification problem [22] and is
typically of very high complexity (from NP-hard for very simple
specifications to undecidable in the general case [28]). Second, the
analysis of runs requires a specification to have a well defined se-
mantics. Unfortunately, BPEL is not based on a formal model [28].
To avoid these obstacles and guaranty complexity that is polyno-
mial in the size of the data, BP-QL ignores the run-time semantics
of certain BPEL constructs such as conditional execution and vari-
able values and focuses on the given specification flow. We believe
this approach offers a reasonable balance between expressibility
and complexity. Note that querying of specifications in fact “ap-
proximates” the querying of runs (e.g. only specifications that con-
tain two given activities may potentially have runs where both oc-
cur). Hence, even when full run verification is desired, BP-QL can
be used as an efficient means to narrow the search space for the
more costly, interpretation dependent, verification. It can also be
used to select the process parts to be monitored at run time[32].

Contributions We now state the contributions of this paper.
1. We present BP-QL , a new graphical query language that al-

lows for intuitive querying of process specifications, by of-
fering a data model and an interface similar to those used for
BPs specification. It allows to retrieve paths, and offers fa-
cilities for querying at different levels of granularity, and for
controlling distributed querying.

2. We present a formal model for systems of processes, and for
our query language on such systems, based on graph gram-
mars [21]. This model allows to distinguish between query
features that can be efficiently supported, and those that in-
cur a prohibitively high cost, or cannot be computed at all.
Using this model, we explain how to construct a finite and
intuitive representation of the (possibly infinite) answers of
queries in time polynomial in the size of the specifications.

3. Finally, we describe the system’s implementation, highlight-
ing the main challenges faced and the solutions taken.

A first prototype of BP-QL was demonstrated in [5], where only a
very high level view of the language was presented. The present
paper provides a comprehensive description of the language, of its
underlying formal formal and of its implementation. The paper is
organized as follows. Section 2 introduces BP-QL informally via
a running example. The underlying formal model is presented in
Section 3. The system implementation is described in Section 4.
We conclude in Section 5, considering related and future work.

2. SYSTEM OVERVIEW
We present here an informal overview of BP-QL via a running

example. To illustrate the features of BP-QL , we will consider
a set of business processes (BPs) used by a consortium offering
travel-related services. These include flight and hotel reservation,
car rental, credit and accounting services. The processes, and their
BPEL specifications, reside and operate on distinct peers. The
specifications include the interactions between the various processes.
1A variant for monitoring and querying of logs is planned future
research.

344



We first show how processes are specified, via the system’s graph-
ical user interface, and then illustrate how they can be interrogated
and queried with BP-QL . The graphical specification of BPs that
we use is fairly standard, and is similar to those offered by commer-
cial vendors (e.g. [30]). The novelty here is in the BP-QL graphical
query language, designed especially for querying such specifica-
tions. The ease of query formulation is illustrated by comparing
the query graphical interface to that used for the processes specifi-
cation; there is a tight analogy between how processes are specified
and how they are queried.
Running example Our running example is along the lines of W3C’s
travel agent scenario[1]. Alpha-Tours, a fictional travel agency, of-
fers to its potential clients the ability to book complete vacation
packages: plane tickets, hotels, car rentals, and so on. The main
steps of the reservation process are as follows: The user provides
a destination, some dates, possibly some constraints, to the travel
agency service. Next, the service obtains information about possi-
ble deals from airlines, hotels and car rental agencies and presents
them to the user, which selects the ones she is interested in. Those
are reserved by the agency. Finally, the user may cancel or con-
firm the reservation, passing her credit card details. The airline, car
rental and hotel services contact a credit card service for payment
authorization before they acknowledges the reservation.

We now demonstrate how the services are specified and queried.
All screenshots were taken with our BP-QL visual designer and
query tool.

2.1 Business Processes
A system consists of a set of BPs, possibly residing on distinct

peers. A BP specification includes:

1. Some general description of the process properties, including
its name, capabilities, the service provider, and so on.

2. The data used in the process, namely the process variables
and the input and output parameters for the participating ac-
tivities/services.

3. The activities of which the process is composed.

4. A description of the process operational and data flow.

Visually, the specification of a BP is represented as a directed
labeled graph, with three types of nodes: property nodes (for 1),
drawn as hexagons; data nodes (for 2), drawn as ellipses; and ac-
tivity nodes (for 3), drawn as rectangles. Edges that connect data
and activity nodes, called data flow edges, describe which data is
read or output by which activity. Edges between activity nodes,
called activity flow edges, describe the operational flow. To capture
certain particular aspects of the operational flow of BPs, activity
nodes may be identified as provided operations or requested oper-
ations. These describe the services offered by a process to other
processes, and the external services that it requests, resp. Activity
nodes may also be distinguished as atomic or compound. The latter
represent invocations of composite (possibly remote) processes and
are denoted by two little boxes at the top left corner of the activity
icon. The interpretation of compound nodes is based on the ideas
of statechart [23]: a zoom-in allows to replace a compound activity
by a detailed description of the process that it invokes.

For illustration, consider the BP depicted in Figure 1. It repre-
sents the travel agency from our running example. The label un-
der each node is its name. Each node carries some information on
the process property/data/activity that it represents, which can be
viewed by clicking on it. For instance, the property nodes at the
top of the figure describe the process, its provider, and its capa-
bilities. Most attributes of these nodes are references to external

Figure 1: Travel Agency.

Figure 2: Zooming into searchTrip.

taxonomies and ontologies that provide standard definitions of the
service domain.2

The process flow (on the left) and its data elements (on the right),
are displayed in separate boxes. The small rectangles at the top
and bottom of the activity flow are its entry and exit points. The
BP contains four compound activity nodes, namely searchTrip,
reserveTrip, confirmTrip and cancelTrip. A short thick
incoming arrow indicates a provided operation. A client may in-
voke each of the four provided operations (at the appropriate point
in the flow). Edges between data nodes and activity nodes depict
the data flow. For example, the client’s trip request is imported
when the searchTrip activity is entered. The results are stored
in a tripResult variable.

One can zoom into a compound activity node to see what is in-
side. Figure 2 shows the details of searchTrip. We can see
that the travel agency interacts with other services to fulfill client
requests. The short thick arrows outgoing of the searchCars,

2Implementation-wise they are stored in a UDDI repository.

345



Figure 3: Find provided operations.

searchFlights, and searchRooms icons indicate that those
are requested operations. Here, the node attributes (not displayed
in the figure) provide the parameters (URL, operation name, . . . )
that allow one to invoke the relevant Web service. If the service
providers make their BPEL specification available, one can zoom
in also into these nodes as well to see the service specification.

The figure also shows data flow edges (for clarity some of these
edges are omitted). For example, the set of airlines that the
agency works with is imported when searchFlights is en-
tered. The results of searching external airline services are stored
in possibleFlights.

Before moving on to querying, we highlight two types of cycles
that a specification may contain. First, the graph of a given BP may
contain cycles, indicating that certain activities may be repeated an
unbounded number of times. Second, in a system consisting of sev-
eral processes that call each other, a BP may call itself indirectly,
through calls it makes to other processes. This is another kind of
cyclic structure: here one could zoom into the corresponding com-
pound operation an unbounded number of times. Note that when
querying BPs, users are often interested to retrieve flow paths as
answers (as for instance in the query “What are the possible ways
to purchase a plane ticket?”). In the presence of cycles, the number
of qualifying paths may be infinite. One of the contributions of our
work is to provide an intuitive, finite (and compact) representation
for such possibly infinite answers.

2.2 The BP-QL Query Language
Given that BPs are defined declaratively, we can query the spec-

ifications to learn about the processes. In our running example, a
user may want to ask questions like: ’Which operations are pro-
vided by the travel agency service?’, ’Which services are called
directly or indirectly by the service?’, ’Does the service allow to
make a reservation without first giving credit card details? and if
so, what does one need to do for making a reservation?’. We pro-
ceed to explain how BP-QL can be used to express such queries.

BP-QL queries look much like the specifications. For querying
BPs, BP-QL offers BP patterns which, intuitively, play for BPs a
role analogous to that played for XML trees by tree pattern queries.
They describe the pattern of activity/data flow that is of interest to
the user and allow navigation along two axis: path-based and zoom-
in based. Following the use of / and // in XPath[36] for denoting
single and multiple step navigation, our PB patterns use edges with
single and double heads to denote single and multiple edge paths,
resp. Similarly, to allow a user to query about flows that are nested
at any depth in the zoom-in hierarchy, compound activity nodes
may have doubly bounded boxes, to denote an unbounded zoom in
into the activities’ internal specifications. The nodes and edges of
BP patterns can be associated with variables, and these can be used

Figure 4: Credit services invoked when searching for trips.

Figure 5: (a) Negation (b) Path constraints.

in selection conditions on their attributes and data and for joins. We
also support negation (denoted by dashed nodes and edges).

We demonstrate the use of BP-QL via some example queries.
Each query describes a process pattern that a user is looking for.
The check boxes next to nodes and edges mark selected nodes and
paths, resp., that the user wants to to retrieve as the query result.

EXAMPLE 2.1. The query in Figure 3 searches for operations
provided by the Alpha-Tours BP and the services it uses. The
double headed edges inside the behavior box indicate that activi-
ties at any distance from the start/end nodes may qualify; the shape
of the node restricts the search to provided operations. The dou-
ble bounding of the behavior box denotes unbounded zoom-in; we
look for operations provided by the BP and (transitively) the com-
pound activities/services that it invokes. The zoom-in is restricted
to activities/services whose specifications reside on the same peer,
since the deepSearch attribute is set to local. Setting it to global
will extend the search to remote services as well. �

EXAMPLE 2.2. Figure 4 illustrates a join operation. The query
checks which VISA credit card services are called (directly or indi-
rectly) by the Alpha Tour’s confirmTrip activity. We use vari-
ables to define the join conditions. The join is value based, i.e. the
nodes’ attributes are checked to have the same values. �

EXAMPLE 2.3. The query in Figure 5(a) illustrates the use of
negation. It tests whether the users of Alpha Tours are never
required to login when searching for flights. Formally, this is ex-
pressed by stating that a path to the searchFlights activity
that passes through a login activity does not exists (dashed edges
and nodes denote negation). The existing flow paths leading to
searchFlights are then retrieved (as indicated by the small
check box next to the double headed edge).

A more lenient query, that retrieves, the paths without a login
leading to searchFlights, can be expressed by attaching a
variable, say x, to the edge, along with the selection condition

346



Figure 6: Data flow.

x ∈ (Σ \ “login”)∗. See Fig. 5(b). Regular path expressions as
constraints on paths are discussed in Section 3.4. �

EXAMPLE 2.4. Finally, Figure 6 illustrates querying the data
flow. The query searches for data elements that are (transitively)
affected by the searchRequest, and serve as input for sending
the suggested trips back to the client. By default, a double headed
edge between two data (resp. activity) nodes denotes paths consist-
ing only of data (activity) flow edges. To override the default, (e.g.
consider paths with all sorts of edges) one can attach, as above, a
variable to the edge with an appropriate selection condition. �

2.3 Query Semantics (informally)
When a query is evaluated, its patterns are matched against the

system BPs. Its nodes and edges are assigned activity/data/property
nodes and execution/data flow paths, resp. These are then used to
construct the query result.

More precisely, the semantics of a query q on system S is de-
fined as follows. An embedding is a function from the nodes and
edges of q to nodes, edges and paths of S, that satisfies the ob-
vious constraints: Nodes are mapped to nodes of the same type,
single/double-head edges are mapped to edges/paths between the
corresponding end points. When a compound query node is doubly-
bounded, nodes and edges in it may be mapped to nodes and paths
in a process obtained by any number of zoom-ins into the activity’s
specification. For nodes and edges are associated with variables,
the query constraints on these variables must be satisfied as well.

Each embedding defines one result for the query. The number of
qualifying results may be large (possibly infinite in the presence of
cycles). However, BP-QL provides a concise, intuitive (and finite)
representation for the set. We illustrate this below with an example
and provide more details on the construction in Section 3.

EXAMPLE 2.5. Assume that the searchFlights service (in-
voked by searchTrip in Figure 2) has the structure depicted in
Figure 7(a). The user can either login and check for the availabil-
ity of various flights, or call, again, Alpha Tours’ searchTrip
service to start a new search. Now, reconsider the query in Figure
5(b), that retrieves the paths leading to searchFlights that do
not require a login. Because of the potential cyclic service invoca-
tion, searchTrip can in fact be reached by an infinite number
of paths, as depicted in Figure 7(b). Rather than listing all these
paths, the user is provided with a compact representation (see Fig-
ure 8) that highlights the recursive structure of the results. �

3. THE FORMAL MODEL
In this section we briefly present the formal model underlying

the BP-QL query language. We discuss the properties of the var-
ious language components and explain how these influenced our

Figure 7: (a) searchFlights. (b) Infinite set of results.

Figure 8: Finite result representation.

system’s design. In particular we distinguish features that can be
efficiently supported, and those that incur a prohibitively high cost,
or cannot be computed at all. To simplify the presentation we first
consider a basic data model and query language, then enrich them
to obtain the full fledged model.

3.1 Simple Business Processes and Systems
We assume the existence of of two domains N of nodes and L

of node labels. L is the disjoint union of several domains including
data values, attribute names, data element names, process property
names, and atomic and compound activity names. We assume some
distinguished property names. These are introduced below, in the
appropriate contexts.

Business graphs and processes. We model a (simple) BP
as a directed labeled graph with nodes of two types: concrete and
compound. Concrete nodes represent process properties, attributes,
data elements, and atomic activities. Compound nodes represent
compound activities, namely calls of (possibly remote) operations.
Two distinguished nodes of the BP graph represent its start and end
activities. Formally,

DEFINITION 3.1. A (simple) business graph is a pair g = (G, λ),
where G = (N, E) is a directed graph in which N ⊂ N is a fi-
nite set of nodes, and E is a set of edges with endpoints in N ; and
λ : N → L is a labeling function for the nodes. Depending on
their label type, we refer to the nodes in g as activity nodes, value
nodes, property nodes, etc. Nodes labeled by compound activity
names are called compound nodes; all other nodes in g are called
concrete.

A (simple) business process (BP) is a triple p = (g,start,end),

347



where: g is a business graph; start,end are two distinguished
activity nodes in g; and each activity node in g resides on some
path from start to end. �

Note that the start and end nodes need not be distinct. For example,
a process may consists of just one activity node, which is both its
start and its end. Also note that only activity nodes are restricted to
be between the start and end nodes. Recall from section 2 that activ-
ities can be classified as requested or provided. This is modeled by
assuming two particular property names provided and requested,
and attaching to activity nodes appropriate property nodes.

For example, Figure 9 shows several BPs (ignore the “bubbles”
for now). As before, we use squares for activity nodes and hexagons
for property nodes. The leftmost BP has a single compound activ-
ity node, which is both its start and end. The one in the center has
two distinct start and end nodes, and four provided operations.

As mentioned above, compound nodes represent calls to com-
posite operations. The internal structure of these operations is not
part of the business process graph and is given separately, as we
explain next.

Simple systems. A system is a collection of business processes
(or graphs), along with a mapping between compound nodes and
their implementations – the processes they invoke. In the general
case, a system may be distributed. This is ignored for now, for
simplicity, and is discussed in Section 3.4.

DEFINITION 3.2. A system S of business processes (resp. graphs)
is a pair (P, τ), where P is a finite set of business processes (graphs),
and τ is a (possibly partial) function, called the implementation
function, from the compound activity nodes in P to business processes
(graphs) in P .3 �

This definition can easily be extended to distinguish between root
processes, that are directly accessible, and implementation processes,
that are accessible only as implementations of other processes. To
simplify the presentation we omit this here.

The implementation function is partial when the internal struc-
ture of some compound activities is unknown (for instance when
their providers do not wish to expose their specification). Recall
from definition 3.1 that the only difference between business graphs
and business processes is that the latter have distinguished start and
end nodes. Systems of processes are used to model real life ap-
plications. Systems of graphs will prove useful to model query
answers. For brevity, since we will mostly be dealing with sys-
tems of processes, unless stated otherwise the term system should
be interpreted as system of processes.

Figure 9 shows a partial system. This is a partial description
of the Travel Agency system from Figures 1,2 (for simplicity, the
data and attribute nodes are omitted). The full system should also
contain, for example, the processes of the airline, car reservation,
and hotel companies.

System Refinement. Given a system S, some BP p in it, and
a compound activity node n in p, a more detailed description of p
(and hence of S) can be obtained by zooming-in and replacing the
node n by its implementation. We call this a refinement.

DEFINITION 3.3. Given a system S = (P, τ) and a BP p in P ,
we say that p → p′ (w.r.t. τ ) if p′ is obtained from p by replacing
some compound activity node n in p by its implementation τ(n).
[Namely, n is deleted from p, and a copy of the BP τ(n) is plugged

3In an actual system, τ(n) can be represented by attaching to n the
peer and process id (Web service URL, operation name, etc.) for
the implementation of n.

Figure 9: A system of BPs.

Figure 10: A refined system (after one step).

in its place, with the incoming/outgoing edges of n now being con-
nected to the start/end nodes of τ(n), resp. If n was the start/end
node of p, the start/end node of τ(n) now takes this role.]

If p → p1 → . . . → pk we say that pk is a refinement of p.
We say that S → S′ (w.r.t. τ ) if S′ is obtained from S by replac-

ing the implementation p of some compound activity node n in S
by a refinement p′ of p. [Namely, a copy of p′ is added to P , the
mapping τ for n is updated to point to it, and τ is extended to map
compound nodes in p′, to the same BPs as in P . Finally, if p is no
longer the implementation of any node, it is removed from P .]

If S → S1 → . . . → Sk we say that Sk is a refinement of S. �

Note that if S is a system, then each of its refinements is also
a system. Figure 10 shows a refinement of the system from Fig-
ure 9, after one refinement step, in which the implementation of
behavior was refined: the node labeled searchTrip has been
”zoomed into” and replaced by its implementing process.

3.2 Simple Queries
We now consider queries and their answers. For simplicity we

consider first simple positive queries without negation and joins.
These, and other extensions, are considered in Section 3.4.

Queries. Queries are modeled using BP patterns. These gener-
alize BPs similarly to the way tree patterns generalize XML trees.
The labels of nodes can be specified, or left open using ∗. Edges
in a graph can be either single-headed, in which case they are in-
terpreted over edges, or double-headed, in which case they are in-
terpreted over paths. Similarly, nodes have a single or a double
boundary, for searching only in the direct implementation of the
node or in all its refinements, resp. We call edges with double head

348



(resp. nodes with double boundary) transitive edges (nodes).

DEFINITION 3.4. A BP pattern is a tuple (p∗, T, R), where
1. p∗ is a BP where nodes are labeled by elements from L∪{∗},
2. T is a distinguished set of edges and compound nodes in p∗

called the transitive edges and nodes, resp.
3. R is a distinguished set of edges and nodes in p∗ called the

result edges and nodes, resp.

A simple query q is a system of BP patterns (Q, τ), where Q is a
set of BP patterns, and τ is an implementation function. �

To evaluate a query, its patterns are matched to those of (refine-
ments of) the system. A match is called an embedding.

DEFINITION 3.5. Let q = (Q, τ) be a simple query and let S
be a simple system. An embedding of q into S is a homomorphism
ρ from the nodes and edges in q to nodes edges and paths in some
refinement S′ = (P ′, τ ′) of S s.t.

1. (nodes) each start (resp. end) node in q is mapped to a start
(resp. end) node in S′; each concrete node in q is mapped
to a concrete node in S′ of the same kind; and a node with a
constant label is mapped to a node having the same label.

2. (edges) each (transitive) edge from node m to node n in q
is mapped to an edge (path) from ρ(m) to ρ(n) in S′.

3. (implementation) For each compound activity node n in
q, ρ maps the nodes and (transitive) edges in τ(n) to nodes
and edges (paths) in τ ′(ρ(n)). If n is not transitive then
τ ′(ρ(n)) must be an original BP of S (i.e. not a refinement).

The query result defined by ρ is the image under ρ of q, restricted
to its output nodes and edges. If the same node/edge occurs several
times in the image, distinct copies are used for each occurrence. �

The result associated with an embedding ρ is, in general, a sys-
tem of graphs. As the number of such qualifying results may be
large (possibly infinite) we provide a concise (and finite) represen-
tation for this set.

3.3 Compact representation of query results
To understand the construction of this concise representation, let

us first look at the two main factors that contribute to large or infi-
nite answers. We consider first flat graphs, i.e. BPs with no com-
pound activities, and then nested BPs.

Flat BPs When a BP contains cycles, the number of paths that may
match a given (transitive) query edge may be infinite. Observe that
even when a BP is acyclic, the number of matching paths may be
large. For example if the activity flow forks into several paths and
then joins back, forks and joins again, and so on, several times,
the number of possible paths is exponential in the number of forks.
The solution to this problem is easy: We can represent the set of
paths between two nodes by a copy of the sub-graph that connects
the nodes. One might actually say this is what the user intended:
to see the specification of the paths between the two nodes, rather
than the individual paths themselves.

Nested BPs Things become more complex in the presence of com-
pound activities. A system may contain recursive activity imple-
mentations, hence have an infinite set of refinements. Since the
results of a query are constructed from embeddings into all the re-
finements, there may be infinite number of such possible results as
well. The solution here is based on viewing systems and queries
as context free graph grammars[21], abbreviated CFGG. (Confus-
ingly, these are also called in the literature regular graph gram-
mars. We will use only context free in this paper.) A CFGG is a

finite set of graphs, where graphs may contain non-terminal sym-
bols, and where grammar rules allow to replace a non-terminal by
a graph from a given finite collection.

The intuition is that, for a system S, the implementation relation-
ships correspond to grammar rules; the system refinements corre-
spond to the graph language defined by the grammar. Similarly, a
query q can also be viewed as CFGG whose graph language consists
of all the graphs that satisfy the query constraints (i.e. contain the
patterns specified by the query). This intuition can be extended to
the query answer: Instead of constructing explicitly the potentially
infinite set of results, one may construct a CFGG that represents
it. Specifically, the query answer can be viewed as some kind of
“intersection” of the languages defined by the system and query
grammars (followed by a “projection” that omits the portions that
were not requested as output).

In general, the intersection of two CFGG languages may not be a
CFGG language [21]. (This generalizes the same property for string
CFGs.) In our particular case, however, the query specification is
sufficiently simple to guarantee the required closure: one can show
that it belongs to a restricted class of CFGGs called recognizable
sets [14], for which the intersection with another CFGG is known to
yield a CFGG. This implies that in principle one could employ the
intersection algorithm presented in [14] to construct a finite repre-
sentation for the query results. The problem, however, with this
direct solution is that the algorithm of [14] is of high complexity -
exponential in the size of the BPs 4 - hence impractical for query
evaluation. An important result of the present work was to detect
that BP-QL queries form a subclass of the recognizable sets for
which PTIME solution is possible, and to design such an algorithm.

Our algorithm is based on a modular construction of a CFGG that
describes the query results. It relies on the following two ideas.

1. The first idea is that each query result is a combination of
smaller results that describe how one query process, say pq ,
is mapped to one system process, say pS . The combination
must satisfy the condition (implementation).

2. The second idea is that many embeddings share the same un-
derlying node mapping, and differ only on the assignments
to the, possibly transitive, edges. Thus, many results for a
pair pq, pS , may be represented together by using this shared
node mapping (and, as we did above for flat BPs, repre-
senting the different possible path assignments for transitive
edges between the nodes by a copy of the sub-graph that con-
nects the nodes.) Of course, when a node mapping from pq

to pS is considered, one must ensure that it satisfies the con-
ditions (nodes) and (edges).

Thus, a CFGG representation for the query results is obtained
from a collection of node mappings between distinct pairs of query
and system processes, that satisfy the conditions above.

We next sketch the main lines of this construction. Give a query
q and a system S, consider some BP pattern pq in q and a BP pS

in S. The important observation is that an embedding from pq to a
refinement of the system process pS consists of several parts. The
first part maps some of the query nodes and edges of pq into pS

itself. Subsequent parts map additional nodes and edges of pq into
implementations of compound activity nodes of pS , and so on. The
nodes and edges in the query pattern pq that are not mapped to pS

itself, but into implementations of its compound nodes, must have
a structure that fits such implementations. In particular, they should
form a set J of disjoint sub-graphs of pq , each with a single entry
and exit nodes.

4Furthermore, to our knowledge, no PTIME algorithms for this in-
tersection problem are known.

349



Thus, the construction is recursive. For each such set J it modi-
fies the query pattern pq , by replacing each sub-graph G in J by a
distinct new node labeled ∗ (denoted in the sequel ∗G), obtaining
a modified query graph pq/J . Then it constructs representations
for all results obtained from embeddings from the modified query
pq/J to the BP pS (grouping together, as explained above, embed-
dings that agree on their node mappings). Assume the ∗G node was
mapped to a compound activity node, say A. In the representation,
this node is noted as AG, and it serves as a non-terminal of the
grammar. Then, for each G and AG, it recursively constructs rep-
resentations, say RG, for results obtained from embeddings from
G to the implementation of A. The grammar rule then allows to
replace AG by RG.

Special care must be paid in the construction above to transi-
tive edges. These may be mapped to arbitrarily long paths, that
may start in one system BP pS , continue in an implementation of
a compound activity node of pS , and so on, possibly through a cy-
cle of implementations. Such paths are broken into components by
introducing special dummy nodes into the query pattern pq , then
employing the construction as described above.

For lack of space, we omit here the presentation of the full al-
gorithm and its correctness proof. (These are available in the full
version of the paper[6]). Note that almost all graphs for which rep-
resentations are constructed are sub-graphs of the query patterns
pq . (The introduction of dummy nodes complicates this argument
a bit.) The construction terminates when each mapping from each
such graph to each system process has been considered (or before
that, if embeddings for some sub-graph are never required).

The important point to observe is the following.

THEOREM 3.6. The size of the representation for the query re-
sults, constructed by the above algorithm, as well as the construc-
tion time, are polynomial in the size of the system S (with the expo-
nent determined by the size of q).

The intuition is that, in the worst case, each sub-graph of each query
pattern needs to be mapped into each system BP. The number of
query sub-graphs of the appropriate form is a function of the query
size alone. Since embeddings that agree on their node mappings
are represented together, it suffices to count the distinct node map-
pings. For each query sub-graph and each system BP, this number
is polynomial in the size of the BP (with the exponent determined
by the size of the query sub-graph.)

3.4 A Richer model
So far, for the sake of simplicity, we used a very simple data

model and query language. We now present some useful extensions
that enhance the expressive power, and facilitate the querying of
real life business processes.

Negation. In a query with negation, the patterns have some nodes
and edges that are distinguished as negative. The intuitive interpre-
tation is that the query searches for occurrences of the positive por-
tions of the patterns, for which none of the negative parts co-occur.

More formally, to define the semantics of queries with negation
we extend the notion of embedding: Given a query q with negation,
the positive part of q, denoted positive(q), is the query obtained
from q by deleting all the negative edges and nodes, and all the
edges incident on these nodes. The embeddings of q into S are
those embeddings of positive(q) which cannot be extended to an
embedding of any query q′ obtained from positive(q) by adding
all the negative nodes and edges of some of its BP patterns. The
answer of q is defined as before, based on the above embeddings.

A finite representation for the query answer can be constructed
essentially as above. The only difference is that only embeddings

for the positive portions of the query graphs, which cannot be ex-
tended to include the negative portions, are considered.

Label predicates and regular path expressions. The sim-
ple queries considered so far only allow nodes with a particular
label or ∗. But sometimes one may be interested in system nodes
that conform to certain conditions. For instance, rather than search-
ing for the searchFlighs activity, we may want to retrieve all
the activities whose name contains the string “search”. This can be
achieved by using label predicates. In an embedding, a query node
labeled by a label predicate must be mapped to system node whose
label satisfies the predicate.

Another useful feature are regular path expressions. Transitive
edges in the query may be annotated by regular expressions. In
an embedding, such edges must be mapped to paths such that their
label sequence forms a word in the corresponding regular language.

The construction of a finite representation for the query answer
extends naturally to support these two extensions.

Variables and joins. Together with label predicates and reg-
ular path expressions, one may also want to use label and path
variables and test for (in)equality of the assigned labels and paths.
The interpretation is that query nodes labeled by (un)equal label
variables are mapped to system nodes with (distinct)identical la-
bels; query edges labeled by (un)equal path variables are mapped to
paths whose sequences of labels are (different)equal words. While
the use of label variables poses no particular problem, for queries
with joins on path variables, our construction may fail; the answer
to such queries may no longer be representable as a finite system.

To understand why, recall that our systems may be viewed as
CFGGs. A query that tests for equality of path variables may have
for an answer sets of graphs that are not a CFGG language and are
inherently harder to compute, as illustrated by the following theo-
rem. The theorem also highlights the difference in computational
complexity between the querying of flat and nested graphs.

THEOREM 3.7. For queries with equality conditions on path
variables, the problem of testing whether the query answer is empty
on a system is undecidable.

The problem can be solved in exponential time if the system
to which the query is applied has no recursive activities. It is
PSPACE-hard w.r.t the system size, even if the system BPs also have
no cycles.

Finally, for flat BPs, it can be solved in time polynomial in the
size of the system (with the exponent determined by the size of q).

Proof:(sketch) The undecidability and hardness proofs are by re-
duction to the problem of testing whether the intersection of the
languages of two string context free grammars (CFGs) is empty.
Given two CFGs G1,G2, we build a system S with a BP that has
two branches. The first contains a compound activity node g1 and
the second a compound activity g2. The implementation of gi,
i = 1, 2, (which resembles in spirit the grammar rules of Gi), is
defined such that each of its possible refinements has line-shaped
structure, representing a word in the context free language of Gi.
The implementations are defined such that g1 and g2 can be refined
to an activity sequence with the same shape iff this sequence rep-
resents a word that belongs to both G1 and G2. Next, we define
query q with two transitive edges e1,e2 that match (the refinements
of) g1 and g2 resp., and have an equality condition on their attached
path variables. It is easy to see that the query has a non empty re-
sult iff the languages intersection is not empty. This is known to
be undecidable in the general case, and was recently proved to be
PSPACE-complete for non-recursive context free languages [29].

The polynomial and exponential algorithms work as follows. For

350



flat BPs, the algorithm considers all possible mappings of query
nodes to the BP. Testing join conditions here amounts to testing if
the intersection of the regular languages defined by the sub-graph
that connects the nodes is empty, which can be done in PTIME.
For nested, non-recursive, BPs, the algorithm enumerates all the
system refinements (possibly an exponential number) and tests for
the existence of a legal embedding in a similar way. �

We have consequently decided to restrict the use of path vari-
ables in BP-QL and allow joins only on label variables.

Distributed systems and queries. So far, we have ignored
distribution. In a distributed setting, each peer holds a set BPs and
may provides (resp. use) activities to (of) remote peers. If the
service providers make their specification available to their coop-
erating organizations (say via a web service), users may wish to
zoom-in on these remote components as well to query the service
specification.

The data model extends naturally to this setting, associating a
peer id with each process and each activity node. Queries may then
annotate graph patterns and activity nodes by peer ids, restricting
the search to the specified peers. In particular, when a (transitive)
activity node in a query is annotated by a peer id, the search is
restricted to implementations supplied by the specified peer (resp.
refinements consisting only of invocations of activities of the spec-
ified peer). More generally, queries may use predicates on peer ids
to restrict the search to a specific family of peers.
Remark: While the extension of the formal model to a distrib-
uted setting is rather immediate, implementation-wise, distribution
poses significant challenges in terms of query evaluation. Specifi-
cally, we would like to evaluate a query in a “lazy” manner, so that
only those peers whose processes and activities are indeed relevant
to the query are consulted. Furthermore, it is desirable to “push”
parts of the query, when possible, to the peers holding the relevant
process information. Our implementation, described in the next
section, addresses these issues.

Summary. The design of BP-QL was directed by the special re-
quirement of querying specifications with a zoom-in feature at dif-
ferent levels of granularity and the retrieval of qualifying execution
paths. As explained above, this required a careful design of the
language to avoid features that might seem to be worthy of inclu-
sion in the language, such as joins on path variables, but incur a
prohibitively high computational cost.

The characterization of the exact expressive power of BP-QL is
an on-going research. Our initial results indicate that BP-QL can be
characterized as a particular subclass of FO(TC)5. In particular, for
flat BPs BP-QL captures power similar to that of the conjunctive
part of XPath and core XQuery, including negation, when consid-
ered in the context of graphs. Due to space limitations this is not
presented here.

4. IMPLEMENTATION
The query language presented above has been fully implemented

and tested in the BP-QL peer-to-peer system. The system provides
persistent storage for BPEL specifications, allows users to design
new processes, and to query existing specifications.

The visual interface of the system is implemented as an Eclipse
[20] plug-in. It allows to: design new business processes and store
their specifications in the repository; import existing BPEL docu-
ments to the repository; formulate queries, run them and view the
results. The rest of the section is devoted to the main component
— the query engine.
5First Order Logic augmented with Transitive Closure.

Figure 11: BPEL XML.

4.1 Design Considerations
BP-QL is based on an intuitive, conceptual model of BPs, an

abstraction of the BPEL specification, allowing for simple formu-
lation of queries. over this model. When we considered the im-
plementation, the following problem had to be addressed: As men-
tioned in Section 1, the BPEL XML format was designed with ease
of automatic code generation, rather than querying, in mind. Activ-
ities and edges are defined separately, as distinct activity and link
elements. The process flow is only recorded by associating with
each activity element the ids of its incoming and outgoing edges,
represented resp. by target and source children of the node. This is
illustrated in Figure 11, which shows the BPEL XML representa-
tion6 of the Travel Agency business process from Figure 1. Conse-
quently, to check whether flow paths of a given process satisfy the
conditions detailed in a BP-QL query, a large, possibly unbounded,
number of join operations involving edge ids between activity and
edge elements needs to be performed. While this is expressible in,
say, XQuery, e.g. with the use of recursive functions, the excessive
number of joins becomes a performance bottleneck.

To drastically reduce the number of joins, we decided to store a
process specification in a structure more similar to its graph view.
In XML terms, the parent child relationships in the XML repre-
sentation of a process should reflect the “followed by” relationship
of nodes in the process graph. This would allow the use of XPath’s
”/” and ”//” operators for querying flow paths, avoiding many joins.
But, since a typical BP is a graph, rather than a tree, we also use
XML idrefs to capture the graph structure.

Another fundamental decision to be made was which of the fol-
lowing two options to choose: (1) to implement a whole new query
engine for our model from scratch, or (2) to rely on some existing
query engine to perform as much as possible from the computation,
and complete the processing of the missing features by an adequate
pre and post processing of queries and query results. We opted
for the second option. The issues to be considered in selecting an
engine were the following:

• Our query language allows to retrieve paths, whereas typical
existing XML/graph query languages only retrieve nodes.

• Our query language offers a zoom-in facility.
• Business processes typically operate in a cross-organization,

distributed environment. The specifications of the services
participating in process may reside on distinct peers. Dis-
tributed query processing thus becomes essential.

A natural candidate was to use a standard XQuery engine, en-
joying the benefits of indexing and optimization offered by such
engines.7 However, XQuery does not support the retrieval of paths,
distribution, or zoom-in queries; nor does it “traverse” idrefs. Nec-
essarily, all of these would have to be implemented by pre and post
6For simplicity, the figure provides an abstraction of the actual
BPEL XML file structure, with many details omitted.
7An alternative viable solution to the graph shape of BPs could be
to use a native graph query engine.

351



processing. Consequently, we decided to base our solution on an
extension of XML, called Active XML (AXML for short). AXML
is essentially a middleware system that includes an XQuery-like
query language, but offers additional facilities which provide better
support for addressing some of the above issues. Additional ben-
efits include certain optimization techniques that are implemented
in the AXML system, as explained below.

A brief overview of Active XML. Active XML (AXML, for
short) is a declarative framework that harnesses Web services for
data integration, and works in a peer-to-peer architecture[3]. An
AXML document is an XML document where some data is given
extensionally, as regular XML elements, while other data is given
intensionally, by means of calls to Web services[3], and can be ma-
terialized by invoking the services. AXML employs the query lan-
guage XOQL, an XQuery-like query language as its query engine.
When a query is evaluated on an AXML document, the service calls
whose answer may be relevant for the query are identified; only
these calls are invoked. Additionally, (sub-)queries are pushed,
when possible, to the service providers, thus reducing the costs of
data materialization and transfer. Recursive calls are tracked, and
only the relevant data is materialized (see [2] for details).

In summary, BP-QL uses the AXML system [3] as an implemen-
tation platform. The facilities offered by AXML are used to address
our needs, as follows: Intentional data, implemented by service
calls, are used in our implementation to (1) retrieve, when needed,
the specifications of remote processes, thus supporting distributed
processing, and (2) account for the graph structure of the speci-
fication (service calls play here role similar to XML idrefs, with
the advantage that they are traversed automatically in query evalu-
ation). BPEL documents are wrapped and represented as AXML
documents; BP-QL queries are pre-processed and compiled into a
set of XQuery-like queries over such documents. Post processing
is employed to complete the computation, e.g. to validate zoom-in
relationships, to extract paths and to construct a compact represen-
tation for the result.

From BP-QL to AXML. Here is a brief description of the
AXML representation of a BP-QL business process. The repre-
sentation consists of three parts: Process properties (such as the
service provider, the service type and capabilities) are maintained
as UDDI entries in a (standard) XML document. The other two,
namely the process activities and execution flow, and the data ele-
ments and the data flow, are maintained in two AXML documents.
The use of two AXML trees, rather than one, allows for efficient
evaluation of BP-QL queries with double headed edges: it allows
a doubly headed activity (resp. data) flow edge to be mapped to a
“//” operator on the corresponding AXML document.

For example, Figure 12 describes (part of) the AXML tree for the
Alpha-Tours activities and flow. (Here again, for simplicity, only an
abstraction of the actual AXML tree is provided, with many details
omitted.) Each activity is represented by an XML element node in
the tree. The parent child relationships reflect the flow. Each node
representing a compound activity is the root (labeled by zoom-in) of
a subtree that describes the internal structure of the activity. Nodes
with bold labels are special elements that represent calls to Web
services. Two types of such calls are embedded in the document:

• A getActivity service call plays a role similar to that of an
XML idref, “pointing” to a certain node in the tree. When
a query is evaluated, the relevant calls are detected and in-
voked. (Cycles are detected and cut by AXML). For each
call, the returned data (a copy of the sub-tree “pointed to”)
is inserted in place of the service call, ready to be accessed.

Figure 12: AXML tree.

Thus query evaluation can access the returned subtree as if it
actually traversed the “pointer”.

• A getOperation service call retrieves the specification
of a remote compound activity and converts it, when needed,
from BPEL format to an AXML representation. A zoom-out
element is attached to its final state, so that it points to the
following activity in the flow.

To illustrate the first type of call, the getActivity("join")
nodes below the searchFlights and searchRooms, in the
middle of Figure 12, point to the join node below searchCars.
They represent the fact that the three searches are followed by that
same join operation. 8

The getOperation("searchRooms,"join") in the fig-
ure illustrates the second type of call. It retrieves the specification
of the searchRooms process, and set its zoom-out to the following
“join” operation. Here again, AXML invokes getOperation
calls for the remote activities whose specification is judged to be
relevant for query evaluation. As mentioned above, it may also
“push” (sub-)queries to capable service providers, such as BP-QL
peers that “understand” BP-QL queries.

Data elements and data flow are represented in AXML tree in a
similar manner: The tree contains both data and activity element
nodes. getData and getActivity service calls are used as
“references” between tree data and activity nodes, resp.

To generate the AXML representation, the BP-QL graph is tra-
versed in a depth-first order, building AXML trees as deep as possi-
ble. Local compound activities are then zoomed-in and their graphs
are similarly detailed, recursively. Requests to remote operations
are represented by getOperation service calls. Web services
are generated for provided operations, exposing their specification
to the requesting peers.

With this representation, both the path-based and the zoom-in
axis conditions can be evaluated using XOQL queries on the AXML
documents. Some post processing is nevertheless required to match
up the components, extract the requested paths (XOQL, like most
XQuery engines, returns only document elements not paths), and
construct a compact representation of the result. We omit the de-
tails for space constraints.

4.2 Trade-offs
As explained above, we have decided to store BPs in a structure

close to the BP graph shape, rather than in the BPEL format. Obvi-
ously, this reduces the number of join operations required in query
8In the implementation, the input to the getActivity is a
unique identifier for the pointed activity, consisting of BP and ac-
tivity ids. It is abstracted here, for brevity, by the activity name.

352



Figure 13: Varying depth and width.

Figure 14: Distribution effect.

evaluation. With this representation, it is still necessary to account
for the graph structure of BPs. This can be taken care of by per-
forming joins. Instead, the use of AXML allows to represent “cross
edges” by service calls. The price payed for this, performance-
wise, is the invocation of service calls: For example, getActivity
calls are invoked when “pointers” need to be traversed.

To understand the trade-offs, we performed the following exper-
iment. We considered BPs with varying depth and width, where
depth is the maximal length of (simple) paths from the start node to
the end node of a BP; and width is the maximal in-degree of nodes
in its graph. They reflect, resp., the number of joins saved by mov-
ing from a “flat” BPEL format to the hierarchical representation,
and the number of service calls that may be invoked when “travers-
ing pointers” to a given node. We selected as a representative class
of path-oriented queries those that search for the occurrence of a
given activity, followed (at an arbitrary distance) by another given
activity. All the tests were performed on IBM Laptop T43, 1.86
Ghz, 1Gb of RAM with Windows XP, sp2. A representative sam-
ple of results is shown in Figures 13. The BP graphs here include a
fork activity that splits the flow into 5,7,10,12 and 15 different paths
that are joined later, and followed by a tail of length 1,3,5 and 7 (on
the x-scale). We measured the respective evaluation time of the
(translated) BP-QL queries on the AXML and BPEL representa-
tions of the BPs. The AXML result columns are presented in front
of the BPEL columns. For clarity, the figure shows only the net
query running time; the time of Web service calls is excluded from
AXML columns. By our measures, an average getActivity
service call takes about 100msec. AXML performs most calls in
parallel, so the typical overall delay due to the materialization of
data is also around this number.

As we can seen, the running time of queries (for both BPEL
and AXML) grows linearly with the BP width. (For BPEL, this
is because more nodes participate in the joins. For AXML, this is
because the “//” has more paths to traverse.) For narrow graphs,
although the use of our representation reduces the number of joins,
the relative overhead of service calls is substantial. The relative
benefit of using our representation and AXML over using the BPEL
representation for wider graphs grows with the BP depth. For depth
greater than 7 (values larger than 7 are omitted from the figure), the
gain from the saving of joins outweighs the additional cost of data
materialization via service calls.

While the use of Web services brings some (moderate) overhead
to query processing, it allows for greater flexibility in distributed
data processing. To see if (and how) the distribution of data effects
query processing we performed the following experiment. We con-
sidered business processes consisting of several compound activi-
ties, and varied the number of peers that hold the specifications of
activities. At one extreme, the full specification resides on a sin-
gle peer. At the other extreme, each process activity is provided
by a distinct peer. We compared the execution time of queries on
these varying configurations, considering both global queries (that
consult the specifications on all peers) and local queries (where the
search is restricted to only local specifications.) Figure 14 illus-
trates a representative sample of the results. It considers the Travel
Agency from our running example, and the query from Figure 3
(with the search scope set to local and global, resp.). We varied
the number of local compound activities (operations whose speci-
fications reside on the local machine) from one to all (5), moving
the remaining specifications to remote peers. We see that the cost
of the global queries is practically independent of the distribution
level. Not surprisingly, the execution time of the local query in-
creases linearly as more portions of the BP are local, since more
data is available for querying.

5. RELATED WORK AND CONCLUSION
We presented BP-QL, a novel graphical Query Language for

querying Business Processes. BP-QL allows users to query busi-
ness processes visually, in a manner very close to how such processes
are typically specified, and can be employed in a distributed P2P
setting. We described the formal model underlying the BP-QL query
language, studied the properties of the language components, and
explained how they influenced the language design. We have also
described the system implementation, highlighting the main chal-
lenges faced and the solutions taken.

The BP-QL language is based on an intuitive model of business
processes, an abstraction of the emerging BPEL (Business Process
Execution Language) standard [7]. Other previously proposed
standards like [18, 9, 16] can similarly be supported, exploiting
the abstraction level of our formal model.

There has been a vast amount of previous work in the general
area of program analysis and verification (see e.g. [22, 26] for a
sample), and more specifically in the analysis of interactions of
composite web services and BPEL processes [19, 22, 17]. These
works mostly consider logic-based query languages where queries,
formulated as logic formulas, test if the runs of the application or
program satisfies a certain property; a witness counter example is
provided if not. In contrast, we advocate here an intuitive, visual
query formulation, where queries are written in essentially the same
way as process specifications. BP-QL allows not only to test if a
certain pattern occurs, but also displays to the user all the relevant
paths. Indeed a major contribution of the present work is the con-
struction of a concise finite representation of the (possibly infinite)
set of results.

As mentioned in Section 1, program verification is typically of
very high complexity (from NP-hard for very simple specifications
to undecidable in the general case [28, 22].) To guaranty complex-
ity that is polynomial in the size of the data, BP-QL queries process
specifications, rather than possible runs, ignoring the run-time se-
mantics of certain BPEL constructs such as ‘choice’, parallel ex-
ecution, and variable values. Identifying semantic constructs that
can nevertheless be incorporated without increasing complexity is
a challenging future research. It is also interesting to study whether
certain data structures (e.g. BDD [26]) that are used to speed up
program verification tasks can also be employed in our context to

353



further accelerate query evaluation.
The design of BP-QL was inspired by previous works on visual

query languages for XML, such as XML-GL [12] and XQBE [10].
These languages are descendants of a long line of research on graph
based query languages such as G [15], Graphlog [13] and G-Log [31].
The main innovation of BP-QL is in introducing process patterns
that enrich the standard path-based navigation with (1) a (tran-
sitive) zoom-in, that allows to query process components at any
depth of nesting, and (2) the retrieval of paths of interest. Together,
these features allow for simple formulation of queries on BPs, but
also make the evaluation of queries more intricate than that of flat
graphs. To keep the evaluation of queries tractable, we had identi-
fied the problematic scenarios and carefully designed the language
so that they are avoided, and polynomial-time query evaluation is
guaranteed. We are currently extending the language to allow also
for the construction of new processes based on the retrieved data.

The importance of query languages for business processes has
been recognized by BPMI (the Business Process Management Ini-
tiative) who started a BPQL (Business Processes Query Language)
initiative in 2002 [8]. However, no draft standard was published
since. We hope that BP-QL will contribute to such a standard.
Complementary to our work is the research performed in the area
of Business Process Management (BPM) and Business Process In-
telligence (BPI). Both academic (e.g., [32, 11, 33] and commercial
tools (e.g., [4, 24, 25]) have been developed to support the def-
inition, execution, and monitoring of BPs, including systems for
extracting knowledge from event logs (process mining). We are
currently extending BP-QL to serve as a basis for a general query
platform, that allows queries that involve process specifications as
well as execution data.

6. REFERENCES
[1] W3C Working Group Note 11. Web services architecture

usage scenarios, Feb. 2004. http://www.w3.org/.
[2] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,

T. Milo, and N. Preda. Lazy Evaluation of Active XML
Queries. In Proc. of ACM SIGMOD, 2004.

[3] Active XML. http://activexml.net/.
[4] BEA. Weblogic application server. http://www.bea.com.
[5] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying

Business Processes with BP-QL (demo). In Proc. of VLDB,
2005.

[6] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying
Business Processes. Tech. Report, Tel Aviv University, 2006.

[7] Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel/.

[8] BPMI. Business process management initiative: Business
process: Business process query language (bpql).
http://www.service-architecture.com/web-
services/articles/business process query language bpql.html.

[9] BPMN. Business process modeling notation.
http://www.bpmn.org/.

[10] D. Braga, A. Campi, and S. Ceri. XQBE (xquery by
example): A visual interface to the standard xml query
language. ACM Trans. Database Syst., 30(2):398–443, 2005.

[11] M. Castellanos, F. Casati, M. Shan, and U. Dayal. ibom: A
platform for intelligent business operation management. In
ICDE, pages 1084–1095, 2005.

[12] S. Comai, E. Damiani, and P. Fraternali. Computing
graphical queries over xml data. ACM Trans. Inf. Syst.,
19(4):371–430, 2001.

[13] M. Consens and A. Mendelzon. The g+/graphlog visual
query system. In Proc. of ACM SIGMOD, page 388, 1990.

[14] B. Courcelle. The monadic second-order logic of graphs i:
Recognizable sets of finite graphs. Information and
Computation, 85:12–75, 1990.

[15] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical
query language supporting recursion. In Proc. of ACM
SIGMOD, pages 323–330, 1987.

[16] Daml services (daml-s/ owl-s).
http://www.daml.org/services/owl-s/.

[17] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and D. Zhou. A
verifier for interactive, data-driven web applications. In Proc.
of ACM SIGMOD, 2005.

[18] The ebxml bpss (ebbp). http://www.oasis-
open.org/committees/tc home.php?wg abbrev=ebxml-bp.

[19] E.Clarke, O. Grumberg, and D. Long. Verification Tools for
Finite State Concurrent Systems. In A Decade of
Concurrency-Reflections and Perspectives, volume 803,
pages 124–175. Springer-Verlag, 1993.

[20] Eclipse foundation. http://www.eclipse.org.
[21] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg.

Handbook of Graph Grammars and Computing by Graph
Transformation, volume 2: Applications, Languages and
Tools. World Scientific, 1999.

[22] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL
Web Services. In Proc. of the Int. WWW Conf., 2004.

[23] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Comp. Programming, 8:231–274, 1987.

[24] HP. Openview bpi. http://www.hp.com.
[25] Ilog jviews. http://www.ilog.com/products/jviews/.
[26] M. Lam, J., V. B. Livshits, M. Martin, D. Avots, M. Carbin,

and C. Unkel. Context-sensitive program analysis as
database queries. In PODS, pages 1–12, 2005.

[27] F. Leymann. Web Services Flow Language (WSFL) 1.1, May
2001. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

[28] S. Narayanan and S. McIlraith. Analysis and simulation of
web services. Compute Networks, 42:675–693, 2003.

[29] Mark-Jan Nederhof and Giorgio Satta. The language
intersection problem for non-recursive context-free
grammars. Inf. Comput., 192(2):172–184, 2004.

[30] Oracle BPEL Process Manager 2.0 Quick Start Tutorial.
http://www.oracle.com/technology/products/ias/bpel/index.html.

[31] J. Paredaens, P. Peelman, and L. Tanca. G-log: A
graph-based query language. IEEE Trans. Knowl. Data Eng.,
7(3):436–453, 1995.

[32] D. M. Sayal, F. Casati, U. Dayal, and M. Shan. Business
Process Cockpit. In Proc. of VLDB, 2002.

[33] B. van Dongen, A. de Medeiros, H. Verbeek, A. Weijters, and
W. van der Aalst. The prom framework: A new era in process
mining tool support. In ICATPN, pages 444–454, 2005.

[34] The World Wide Web Consortium.
http://www.w3.org/.

[35] XLANG: Web Services for Business Process Design.
http://www.gotdotnet.com/team/xml wsspecs/xlang-
c/default.htm.

[36] XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath.

354


