
Self-Organizing Schema Mappings in the
GridVine Peer Data Management System

[Demonstration]

Philippe Cudré-Mauroux Suchit Agarwal Adriana Budura

Parisa Haghani Karl Aberer

School of Computer and Communication Sciences
EPFL – Switzerland

{firstname.lastname}@epfl.ch

ABSTRACT
GridVine is a Peer Data Management System based on a de-
centralized access structure. Built following the principle of
data independence, it separates a logical layer – where data,
schemas and mappings are managed – from a physical layer
consisting of a structured Peer-to-Peer network supporting
efficient routing of messages and index load-balancing. Our
system is totally decentralized, yet it fosters semantic inter-
operability through pairwise schema mappings and query
reformulation. In this demonstration, we present a set of
algorithms to automatically organize the network of schema
mappings. We concentrate on three key functionalities: (1)
the sharing of data, schemas and schema mappings in the
network, (2) the dynamic creation and deprecation of map-
pings to foster global interoperability, and (3) the propa-
gation of queries using the mappings. We illustrate these
functionalities using bioinformatic schemas and data in a
network running on several hundreds of peers simultane-
ously.

1. INTRODUCTION
Peer-to-Peer (P2P) systems have become a compelling al-

ternative to standard client-server infrastructures for large-
scale settings. They rely on machine-to-machine ad-hoc
communications to offer services to a community by elimi-
nating all central components. Research on P2P networks
initially focused on building structured overlays, such as Dis-
tributed Hash Tables (DHTs), to offer efficient hash table-
like functionalities in large-scale settings. Recently, the P2P
paradigm inspired several research efforts related to data
management. PIER [5] is a scalable system based on a struc-
tured overlay network, which brings structured query pro-
cessing to widely distributed environments. While PIER fo-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

cuses on scalability, other efforts focus on interoperability by
extending traditional integration systems to decentralized
environments. Peer Data Management Systems (PDMSs)
emerged as an attempt to decentralize the mediator archi-
tecture and allow the systems to scale gracefully with the
number of heterogeneous sources. PDMSs do not require
the definition of a global schema, but consider instead un-
structured networks of mappings between pairs of schemas
to iteratively disseminate a query from one database to all
the other related databases. Piazza [9] and Hyperion [7] are
two well-known systems following that paradigm.

Our three-tiered PDMS system, called GridVine [1], tack-
les both scalability – through the use of a structured DHT
to support all distributed operations – and global interop-
erability – through automated mechanisms to organize the
network of mappings in a dynamic way. Both scalability
and global interoperability are critical issues that have to
be tackled in PDMSs, which were from the start designed to
integrate data in very large-scale and decentralized settings.
We give in the following an overview of the general archi-
tecture of our system, before focusing on its self-organizing
principles and giving an outline of our demonstration.

2. SYSTEM ARCHITECTURE
Our approach revisits the principle of data indepen-

dence [4] by separating a logical from a physical layer.
In the present case, we generalize Codd’s notion of
data independence to networked environments beyond
storage systems by separating a logical mediation layer –
responsible for structured data storage, data integration,
and query resolution – from a decentralized P2P overlay
layer – liable for index load-balancing and efficient routing
of messages.

Figure 1 gives a conceptual overview of our architecture.
The base layer, called Internet Layer in the figure, repre-
sents the various machines connected to the Internet and
sharing structured information through our infrastructure.
These machines self-organize into a structured P2P overlay
layer. We use P-Grid (see the following section) to arrange
the peers into a virtual binary search tree at the overlay
layer. Finally, the semantic mediation layer sits on top of
this architecture and takes advantage of the overlay layer to
efficiently share heterogeneous and structured information

1334

IP Network

subnet
Internet
Layer

Structured
Overlay
Layer

Semantic
Mediation

Layer

127.143

127.144

127.145

34.109 35.142 38.143
45.123

109.144

112.144
117.122

125.98

0001

0100

0011
0010

0101

0101

0110

0111

Schema A Schema C

Schema D

Schema H

Schema Z

mapping

Update(key,value)
Retrieve(key)

Update(data)
SearchFor(query)

Update(schema)
Update(mapping)
Update(connectivity)

Figure 1: The GridVine PDMS: in our architecture,
the semantic mediation layer shares structured data
taking advantage of a structured overlay network,
which is built on top of a physical network.

across the network. We describe both the overlay and the
semantic mediation layer in more detail in the following.

2.1 Organizing Peers at the Overlay Layer
GridVine uses the P-Grid P2P access structure1 at the

intermediate overlay layer. P-Grid is a self-organizing and
distributed access structure, which associates logical peers
representing the machines in the network with data keys
from a binary key space. Each peer is responsible for some
part of the overall key space and maintains additional rout-
ing information to forward queries to neighboring peers.

Each peer p ∈ P is associated with a leaf of the binary
tree. Each leaf corresponds to a binary string π ∈ Π. Thus,
each peer p is associated with a path π(p). For each level of
the tree, each peer has references to some other peers that do
not pertain to the peer’s subtree at that level, which enables
the implementation of prefix routing for efficient search. In
addition, peers also maintain references σ(p) to peers having
the same path, i.e., their replicas that duplicate their content
to ensure fault-tolerance and resilience to network churn.

P-Grid supports two basic operations: Retrieve(key) for
searching for a certain key and retrieving the associated
value and Update(key, value) for inserting, updating
or deleting values. Since P-Grid uses a binary tree,
Retrieve(key) is intuitively efficient, i.e., O(log(|Π|)),
measured in terms of the number of messages required
for resolving a search request, for both balanced and
unbalanced trees. The Retrieve and the Update operations
provide probabilistic guarantees for data consistency
and are efficient even in highly unreliable, dynamic
environments.

2.2 Sharing Data at the Mediation Layer
GridVine takes advantage of the efficient, load-balanced

and distributed index structure maintained at the overlay

1http://www.p-grid.org/

layer to share structured information at the semantic me-
diation layer. At the mediation layer, we support various
operations to enable structured data storage and query pro-
cessing. GridVine stores data as ternary relations called
triples. Triples are a natural way to encode RDF informa-
tion, but can also be used to encode arbitrary relational
structures in distributed environments [6].

Triples t always take the following form:

t = {tsubject, tpredicate, tobject}

where tsubject(the subject) is the resource about which the
statement is made, tpredicate (the predicate) represents a spe-
cific property in the statement and tobject (the object) is
the value (resource or literal) of the predicate in the state-
ment. Each shared triple at the mediation layer is mapped
to routable keys at the overlay layer in order to enable effi-
cient sharing of information and query resolution. To sup-
port constraint searches on the triples’ subject, predicate or
object, we index each triple three times at the overlay layer,
generating separate keys based on their subject, predicate
and object values. The binary keys are generated using an
order-preserving hash function Hash() on the data. Thus,
the insertion of a triple t is performed as follows:

Update(t) ≡ Update(Hash(tsubject), t),

Update(Hash(tpredicate), t), Update(Hash(tobject), t).

In that way, a triple insertion at the mediation layer trig-
gers three Update() operations at the overlay layer. Up-
date and deletion operations can be implemented using the
same mechanism, which explains the generic name (Update)
we gave to that primitive. Each peer p maintains a local
database DBp to store the triples it is responsible for, i.e.,
the triples t for which Hash(tsubject), Hash(tpredicate), or
Hash(tobject) ∈ π(p). Thus, the physical schemas of the
local databases can all be identical and consist of three at-
tributes SDB = (subject, predicate, object). The local
databases support three standard relational algebra oper-
ators: projection π, selection σ and (self) join ./.

GridVine supports the sharing of user-defined schemas to
structure the data shared at the mediation layer. For the
sake of this demonstration, schemas are composed of sets of
attributes that are used as predicates in the triples. Each
schema is associated with a unique key at the overlay layer
and inserted into the network at the corresponding location:

Update(Schema) ≡
Update(Hash(Schema Name), Schema Definition).

Whenever necessary, globally unique identifiers are created
for local resources and schemas by concatenating the logical
address π(p) of the peer p posting the item with a hash of
the local identifier or schema name.

2.3 Resolving Queries in GridVine
Mapping each triple at the semantic layer onto series

of keys at the overlay layer enables us to resolve complex
queries in GridVine. A triple pattern [8] is an expression
of the form (s, p, o) where s and p are URIs or variables,
and o is a URI, a literal or a variable. The simplest queries
supported by GridVine retrieve information based on a
single triple pattern:

SearchFor(x? : (s, p, o)),

1335

where x?, the distinguished variable the query has to return,
also appears in the triple pattern (s, p, o). For instance,
the following triple pattern query

SearchFor(x? : (x?, EMBL#Organism, %Aspergillus%))

is constrained on the value of the Organism predicate de-
fined in the EMBL bioinformatic schema. It retrieves all
nucleotide sequences whose organisms contain the string As-
pergillus. In GridVine, triple pattern queries can be resolved
by taking advantage of the Retrieve(key) primitive at the
overlay layer. A peer issuing a triple pattern query q first
has to determine the address space key where it can find the
answers. This can be determined by taking a hash of one of
the constant terms const in the triple pattern:

key = Hash(const).

When two constant terms appear in the triple pattern,
the most specific one should be used. In our example, we
choose the predicate: key = Hash(EMBL#Organism).
Once the address space is discovered, the peer forwards
the query to the peer(s) responsible for that space using a
Retrieve(key, q) operation. As all triples are indexed on
their subject, predicate and object in GridVine, the query
can directly be answered by the peer(s) responsible for
the corresponding address space. Thus, resolving a triple
pattern query boils down to an overlay look-up generating
O(log(|Π|)) messages. At its final destination(s) key, the
query is resolved with a local relational query on the local
database DBdest. Defining pos(term) as the position of
a term (variable or constant) in a triple pattern, i.e.,
pos(term) either takes subject, predicate or object as
value, the set of results Results is obtained as follows:

Results = πpos(x) σpos(const)=const (DBdest).

In our example, the query is forwarded to the
peer(s) responsible for Hash(EMBL#Organism),
which then retrieves the results by issuing a query
πsubject σpredicate=EMBL#Organism∧object=%Aspergillus% on
its local database. Once retrieved by the destination
peer(s), the results are sent back to the original issuer
of the query. Conjunctive queries can be resolved in a
similar manner, by iteratively resolving each triple pattern
contained in the query and aggregating the sets of results
retrieved.

The access structure used at the overlay layer allows to
resolve queries in an efficient manner even in large-scale
environments. A recent deployment of GridVine on 340
machines scattered around the world sharing 17000 triples
showed that 40% of the 23000 triple pattern queries we
submitted were answered within one second only, and 75%
within five seconds.

3. SELF-ORGANIZING MAPPINGS
GridVine’s mediation layer allows the peers to share struc-

tured data in a scalable manner. Sharing information syn-
tactically aligned as triples does not however ensure global
interoperability. On the contrary, GridVine being a totally
decentralized system, any peer in the network is free to come
up with new schemas to structure its own data.

To integrate all semantically related but syntactically het-
erogeneous information shared by the peers, GridVine sup-
ports the definition of pairwise schema mappings. Mappings

SearchFor(x1? : (x1?, EMBL#Organism, %Aspergillus%))
1) Search For Schema Mapping

EMBL#Organism ≡ EMP#SystematicName
2) Reformulate Query

SearchFor(x2? : (x2?, EMP#SystematicName, %Aspergillus%))
3) Aggregate results

x1 = {EMBL:A78712, EMBL:A78767}
x2 = NEN94295-05

Figure 2: A simple example of query reformulation
using a schema mapping.

allow the reformulation of a query posed against a given
schema into a new query posed against a semantically simi-
lar schema. By iterating this process over several mappings,
a query can traverse a sequence of schemas at the medi-
ation layer and retrieve all relevant results, irrespective of
their schemas. Given the provision of a sufficient number
of mappings, GridVine fosters in that way global semantic
interoperability in a totally decentralized fashion.

GridVine allows for the definition of both equivalence
and inclusion (subsumption) GAV mappings. For the
sake of this demonstration, mappings relate semantically
similar predicates defined in different schemas. Queries
are then reformulated by replacing the predicates with the
definition of their equivalent or subsumed predicates (view
unfolding). Schema mappings are inserted at the key space
corresponding to the source schema at the overlay layer –
or at the key spaces corresponding to both schemas if the
mapping is bidirectional:

Update(Schema Mapping) ≡
Update(Source Schema Key, Schema Mapping).

Figure 2 shows a simple example of query reformulation.
GridVine offers several functionalities to organize the net-

work of mappings at the mediation layer in an automated
way. The system ensures that the network of schemas and
mappings at the mediation layer is connected in order to en-
force global interoperability. It creates additional mappings
whenever necessary, tries to assess the quality of the map-
pings and discards the mappings that are detected as being
erroneous.

3.1 Connectivity at the Mediation Layer
GridVine maintains information about the graph of

schemas and mappings. Upon inserting a new schema,
GridVine asks for the manual definition of schema
mappings between the new schema and some already
inserted schemas. The system then periodically ensures
that the network of schemas and mappings forms a strongly
connected graph, such that a query posed locally using any
schema can be disseminated globally to all related schemas
using the network of mappings.

Repeatedly crawling a decentralized and potentially large
graph of schemas connected by mappings would be costly
in our setting. In GridVine, the peers determine the de-
gree of connectivity of the mediation layer from the degree
distribution of its schemas. Each peer storing a schema def-
inition is responsible for updating the number of incoming

1336

and outgoing mappings attached to its schema:

Update(Domain Connectivity) ≡
Update(Hash(Domain), {Schema, InDegree, OutDegree})

where Domain is the name of the application domain re-
lated to the mediation layer (e.g., protein sequences, see be-
low Section 4). The peer p responsible for Hash(Domain)
at the overlay layer can then locally derive the degree distri-
bution of the graph of schemas by aggregating these num-
bers. It evaluates the connectivity of the mediation layer by
computing a connectivity indicator cidomain:

cidomain =
X
j,k

(jk − k) pjk

where pjk stands for the probability of a schema to have
in-degree j and out-degree k. cidomain ≥ 0 indicates the
emergence of a giant connected component in the graph of
schemas and mappings [2]. Thus, the mediation layer is not
strongly connected as long as cidomain < 0.

3.2 Creation & Deprecation of Mappings
Peers responsible for a schema periodically inquire about

the connectivity of the mediation layer by issuing a query to
the corresponding key space. ci < 0 indicates that some of
the schemas shared at the mediation layer cannot always be
accessed by following series of mappings. In that case, more
mappings are needed to ensure global interoperability. This
triggers the automatic creation of additional schema map-
pings to reinforce the existing network. The exact method
used to choose the pair of schemas and to create the map-
ping depends on the application domain (see below).

The quality of the mappings created in this way is period-
ically assessed as the networks of peers, schemas, and map-
pings evolve. GridVine uses a Bayesian analysis comparing
transitive closures of mappings to assess the quality of the
mappings [3]. The mappings manually created by the users
are always considered as correct in this analysis, while prob-
abilistic correctness values are inferred for mappings that
were created automatically. A mapping detected as incor-
rect is marked as deprecated in the system, and is from then
on ignored, both for the reformulation of the queries and for
the connectivity analysis. The deprecation of mappings fos-
ters the creation of a new topology of mappings, which will
ensure the global interoperability of the system eventually.

4. DEMONSTRATION
We demonstrate the applicability of our ideas using real

bioinformatic data shared in a network of several hundreds
of peers. We export structured data from a public reposi-
tory of the European Bioinformatics Institute2. We consider
50 distinct schemas, all related to protein and nucleotide se-
quences. We insert data, schemas and a set of manually
created mappings in a network of several hundreds of peers.

As more and more schemas and mappings get inserted, we
monitor the connectivity at the mediation layer and the au-
tomatic creation of mappings to integrate the heterogeneous
data sources. We take advantage of shared references to the
same protein sequence to select pairs of candidate schemas,
and create the automatic mappings using a combination of
lexicographical measures and set distance measures between

2the data is publicly available at http://srs.ebi.ac.uk/

the predicates defined in both schemas. Removing some of
the existing mappings fosters the creation of additional map-
pings, some of which get deprecated by the Bayesian analysis
and are gradually replaced by other mapping paths.

At any point of time, we can issue a query locally and ob-
serve its reformulation. In reformulating queries, we support
two approaches: iterative, where a peer iteratively looks for
paths of mappings and reformulates the query by itself, and
recursive, where the successive reformulations are delegated
to intermediate peers. Finally, we monitor the list of results
received for each query. In a sparse network of mappings,
few results get returned initially (low recall), while more and
more results are retrieved as mappings get created automat-
ically to ensure the global interoperability of the system.

5. ACKNOWLEDGMENTS
The work presented in this paper was supported by the

Swiss National Competence Center in Research on Mobile
Information and Communication Systems (NCCR MICS,
grant number 5005-67322) and by the EPFL Center for
Global Computing as part of the European project NEPO-
MUK No FP6-027705.

6. REFERENCES
[1] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and

T. van Pelt. GridVine: Building Internet-Scale
Semantic Overlay Networks. In International Semantic
Web Conference (ISWC), 2004.

[2] P. Cudré-Mauroux and K. Aberer. A Necessary
Condition For Semantic Interoperability in the Large.
In Ontologies, DataBases, and Applications of
Semantics for Large Scale Information Systems
(ODBASE), 2004.

[3] P. Cudré-Mauroux, K. Aberer, and A. Feher.
Probabilistic Message Passing in Peer Data
Management Systems. In International Conference on
Data Engineering (ICDE), 2006.

[4] J. M. Hellerstein. Toward Network Data Independence.
ACM SIGMOD Record, 32(3), 2003.

[5] R. Huebsch, B. Chun, J. M. Hellerstein, B. T. Loo,
P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and A. R.
Yumerefendi. The Architecture of PIER: an
Internet-Scale Query Processor. In In Conference on
Innovative Data Systems Research (CIDR), 2005.

[6] M. Karnstedt, K.-U. Sattler, M. Richtarsky, J. Mueller,
M. Hauswirth, R. Schmidt, and R. John. UniStore:
Querying a DHT-based Universal Storage. In
International Conference on Data Engineering (ICDE),
2007.

[7] P. Rodŕıguez-Gianolli, M. Garzetti, L. Jiang,
A. Kementsietsidis, I. Kiringa, M. Masud, R.J. Miller,
and J. Mylopoulos. Data Sharing in the Hyperion Peer
Database System. In International Conference on Very
Large Databases (VLDB), 2005.

[8] A. Seaborne. RDQL - A Query Language for RDF.
W3C Member Submission, 2004.
http://www.w3.org/Submission/RDQL/.

[9] I. Tatarinov, Z. Ives, J. Madhavan amd A. Halevy,
D. Suciu, N. Dalvi, X. Dong, Y. Kadiyaska, G. Miklau,
and P. Mork. The Piazza Peer Data Management
Project. ACM SIGMOD Record, 32(3), 2003.

1337

