
Query language support for incomplete information in the
MayBMS system

Lyublena Antova, Christoph Koch, and Dan Olteanu

Saarland University Database Group
Saarbrücken, Germany

{lublena, koch, olteanu}@infosys.uni-sb.de

1. INTRODUCTION
MayBMS [4, 1, 3, 2] is a data management system for in-

complete information developed at Saarland University. Its
main features are a simple and compact representation sys-
tem for incomplete information and a language called I-SQL
with explicit operations for handling uncertainty. MayBMS
is currently an extension of PostgreSQL and manages both
complete and incomplete data and evaluates I-SQL queries.

The focus of the demonstration is I-SQL. I-SQL is a nat-
ural extension of SQL to the context of incomplete infor-
mation. Like SQL, I-SQL is a generic language in that it
preserves the independence of the data from its representa-
tion. Thus the answers to I-SQL queries do not depend on
details of how the data is stored. I-SQL proves expressive
enough for a variety of application scenarios, where incom-
pleteness is ubiquitous: planning, design, business decision-
making, data cleaning [2], and, as exemplified in Section 3,
monitoring moving objects when only partial information
is available, like satellite tracking of whales. Differently
from SQL, I-SQL has explicit operations for dealing with
uncertainty. Extensions of SQL with limited operations like
certain, which closes the possible worlds semantics and com-
putes the certain answers, are not expressive enough, as they
do not allow for the convenient construction of new worlds
or for a uniform transformation of both complete and incom-
plete databases. The present demonstration reconfirms that
explicit language constructs that deal with uncertainty are
definitely useful and even mandatory in many application
scenarios where incompleteness is commonplace.

2. I-SQL BY EXAMPLES
We next exemplify the I-SQL operations using the com-

plete database of Figure 1 and the world-set of Figure 2.
The evaluation of an I-SQL query follows the possible

worlds semantics by which the query is evaluated in each
world independently, and the world is extended with the re-
sult of the query in it. This also applies to SQL queries
and updates. For example, a tuple insertion statement will

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

insert the tuple in each world of the world-set. In case the
tuple insertion violates a constraint in some worlds, then the
update is discarded in all worlds.

Example 2.1. Given the world-set of Figure 2, the query

select * from I where A = ’a3’;

selects in each input world the I-tuples with an A-value of 3.
The answer is not materialized and thus the input world-set
not changed. 2

The operation create table is used to materialize the set
of worlds created by I-SQL queries.

Example 2.2. The query

create table D as select * from I where A = ’a3’;

adds to each world from the input world-set a new relation
D consisting of all the tuples of I where the A-value is a3.

2

The repair-by-key operation is motivated by data cleaning
scenarios. When applied to a relation that violates a unique-
ness constraint, a repair-by-key query generates a world-set
representing all possible repairs of that relation.

Example 2.3. Figure 2 shows a relation I , whose four
instances represent the four possible repairs of R on the key
attribute A:

create table I as

select A, B, C from R repair by key A;

Although not shown here, each world also contains all
relations of the world from which it originated. In our case,
the relations R and S are contained in each created world.2

The repair operation has an optional weight construct
that can be used to assign probabilities to the created worlds.

Example 2.4. We rephrase the query of Example 2.3 so
as to compute the probabilities of each repair based on the
weight of the positive numbers representing the D-values
occurring in that repair:

create table I as

select A, B, C from R repair by key A weight D;

The probability of a world, say A, is computed based on the
choice of its tuples. For each different A-value ai, we weight
the D-value, which occurs in the same tuple with ai, with

1422



R A B C D
a1 10 c1 2
a1 15 c2 6
a2 14 c3 4
a2 20 c4 5
a3 20 c5 6

S C E
c2 e1

c4 e1

c4 e2

Figure 1: Complete database of two relations R and S.

IA A B C
a1 10 c1

a2 14 c3

a3 20 c5

IB A B C
a1 15 c2

a2 14 c3

a3 20 c5

IC A B C
a1 10 c1

a2 20 c4

a3 20 c5

ID A B C
a1 15 c2

a2 20 c4

a3 20 c5

P (A)=0.11 P (B)=0.33 P (C)=0.14 P (D)=0.42

Figure 2: Each world represents one repairing of the key attribute A of R.

respect to the sum of all D-values for the same A-value in
R (this makes sense, of course, if all D-values are numbers
greater than zero). The probability of A is then the product
of the weights for its choice of tuples:

2

2 + 6
·

4

4 + 5
·
6

6
= 0.11.

The probabilities of the other worlds are given in Figure 2.2

The assert operation is used to keep only those input
worlds that satisfy the assert condition. The worlds that
do not satisfy this condition are dropped.

Example 2.5. Consider the four worlds of Figure 2. To
keep only those worlds (repairs) that do not have c1 as a
C-value, we use assert:

create table J as select * from I

assert not exists(select * from I where C = ’c1’);

The result of this query is a relation J that equals I in
the worlds B and D, respectively. The remaining two worlds
A and C are dropped, as they contain instances of I with
tuples having c1 as C-value. 2

In the probabilistic case, the probabilities of the remaining
worlds are uniformly normalized such that they sum up to
one. In the previous example, after normalization we obtain
P (B) = 0.44 and P (D) = 0.56.

The operation choice-of creates new worlds based on ex-
isting attribute values. Given a set U of attributes of a
relation RA in a world A, choice-of creates one world Ai

for each different U -value ui. Each world Ai contains all
relations of A and also the relation consisting of all tuples
in RA with the same U -value ui.

Example 2.6. For the database of Figure 1, the query

select * from S choice of E;

creates a set of two worlds corresponding to disjoint parti-
tions of S: a world contains the relation made out of those
S-tuples with an E-value of e1 and e2, respectively. Both
worlds also contain the relations R and S. 2

Like in the case of repair-by-key, choice-of can weight the
probabilities of the created worlds by values of an attribute.

Example 2.7. The following choice-of query creates three
worlds, whose probabilities are weighted by the column D:

select * from R choice of A weight D;

There is a world for each distinct A-value of R. The proba-
bility of a world is given by the sum of the D-values of the
tuples in that world over the sum of all D-values in R. Thus,
the worlds for values a1, a2, and a3 have probabilities 0.35,
0.39, and 0.26 respectively. 2

I-SQL has two constructs possible and certain that go
across world borders to collect information that appears in
other worlds as well. The result of such operations is then
added to each world of the input world-set.

Example 2.8. Consider a query that sums up the B-
values in each world of Figure 2:

select sum(B) from I;

The answer is {(44)} for world A, {(49)} for B, {(50)} for
C, and {(55)} for D. In order to compute the set of possible

sums of the B-values, we modify the query as follows:

select possible sum(B) from I;

In contrast to the query variant without possible, the answer
to this query is the relation {(44), (49), (50), (55)}. 2

Example 2.9. The following query computes the set of
E-values that occur with each different C-value in S:

select certain E from S choice of C;

For each different C-value of S, this query creates a new
world. Relation S of Figure 1 has two different C-values (c2

and c4), and e1 is the only E-value that occurs with both.
The answer relation is thus {(e1)}. 2

The operation conf is used to compute the confidence of
tuples. The confidence of a tuple t of a relation I is the sum
of probabilities of all worlds, in which I contains t. The op-
erations possible and certain can be expressed as straightfor-
ward conditions on conf: a tuple is possible if its confidence
is greater than zero and certain if its confidence is one.

Example 2.10. We would like to know the confidence
that the sum of the B-values is under 50:

1423



3

a

2

1

c

?

?

2

1

b

IA Id Species Gender Pos
1 sperm calf b
2 sperm cow c
3 orca cow a

IB Id Species Gender Pos
1 sperm calf b
2 sperm cow c
3 orca bull a

IC Id Species Gender Pos
1 sperm calf b
2 sperm bull c
3 orca cow a

ID Id Species Gender Pos
1 sperm calf b
2 sperm bull c
3 orca bull a

IE Id Species Gender Pos
1 sperm calf c
2 sperm cow b
3 orca cow a

IF Id Species Gender Pos
1 sperm calf c
2 sperm bull b
3 orca cow a

Figure 3: Whale tracking information on top of a satellite photograph of the coast of Vancouver Island.

select conf from I

where 50 > (select sum(Time) from I);

The answer is {(0.53)}. The value 0.53 is computed as
0.11+0.42 and represents the sum of probabilities of the
worlds A and D that satisfy the where-condition. 2

The possible and certain operations can be used in com-
bination with a grouping construct. The group-worlds-by

operation allows to only look at worlds that are similar to
the current world in some predefined sense. For example,
a group is formed by those worlds in which a given query
has the same answer. Then, possible or certain are computed
within each of the created groups.

3. DEMONSTRATION SCENARIOS
We next describe two application scenarios for I-SQL:

whale tracking and cleaning of inconsistent data.

3.1 Tracking whales
We consider an application for tracking whales using pho-

tographs taken from satellites1 . Figure 3 shows a photo-
graph from visibleearth.nasa.gov with added whale tracking
information. Our photograph reports schematically on the
movement of three whales, cataloged by dimensions as two
sperm whales (with ids 1 and 2) and an orca whale (with
id 3). As depicted, the orca moves towards the two sperm
whales (position a), which move towards each other (posi-
tions b and c). The information gathered from our observa-
tions is represented in Figure 3 by a relation I in six worlds.
(Gender encodes whether a whale is a cow, bull, or calf.)

We would like to know if there is a possibility that the
adult orca whale attacks the calf sperm whale. This would
happen if, for example, the calf moves to position b, which
is near position a. This possibility for an attack is encoded
as the following query Q:

select possible ’yes’ from I where Id=1 and Pos=’b’;

1Ocean Alliance (www.oceanalliance.org), among many other
organizations, uses whale tracking to study the feeding and
social behavior of orcas and sperm whales.

The answer is ’yes’ because in the worlds A through D the
calf sperm whale moves to position b.

While inspecting the photograph, we gained additional ex-
pert knowledge that sperm cows tend to protect their calves
against orca predators by positioning themselves between
their calves and the enemy. Also, it would have taken longer
for the calf than for the cow to reach position b. We would
like to reconsider our question using this additional knowl-
edge. To express our question, we first define, for reasons of
simplicity, a view that represents those worlds that do not
contradict the additional knowledge:

create view Valid as

select * from I assert exists

(select * from I

where Gender=’cow’ and Pos=’b’);

The view Valid represents the copy of relation I in the world
E . The other worlds contradict the additional knowledge
and are thus dropped. We are now left with one world.

Clearly, our query Q asking for the possibility that the
calf moves to position b returns an empty answer on Valid:

select possible ’yes’ from Valid

where Id=1 and Pos=’b’;

A different approach is to define a new relation that equals
I in those worlds that have a cow sperm whale moving to
position b and empty otherwise:

create view Valid’ as

select * from I where exists

(select * from I

where Gender=’cow’ and Pos=’b’);

In contrast to Valid, Valid’ defines a relation for all of the
input six worlds: it equals I for world E and is empty for
the remaining worlds. The two views represent thus different
world-sets. This plays no difference, however, for our query
Q: its answer is the same on Valid and on Valid’. If we are
interested in the certain tuples in the two views

select certain * from Valid;

select certain * from Valid’;

we obtain different answers: the answer is IE for Valid and
empty for Valid’.

1424



GroupsA−D G2 G3

cow cow
cow bull
bull cow
bull bull

GroupsE,F G2 G3

cow cow
bull cow

Figure 4: Possible combinations of genders of the
two adult whales.

R SSN TEL
123 456
789 123

S SSN TEL SSN’ TEL’
123 456 123 456
123 456 456 123
789 123 789 123
789 123 123 789

Figure 5: Social security numbers and phone num-
bers (R) and their possible permutations (S).

A further question we would like to ask is whether the
adult sperm whale moves to positions b or c independently

of his gender of whether the orca is a cow or an aggresive
bull. (That is, we look for signs that the adult sperm whale
may abandon the calf in a dangerous situation in order to
save itself.) To answer this question, we first define groups of
worlds corresponding to the different cases where the adult
sperm whale moves to position b or to position c.

create table Groups as

select possible i2.G as G2, i3.G as G3

from I i2, I i3

where i2.Id = 2 and i3.Id = 3

group worlds by (select Pos from I where Id = 2);

The answer to the nested SQL query is {(c)} in the worlds
A through D and {(b)} in the remaining worlds E and F .
For each different answer we create a group consisting of
the worlds in which the answer is the same. Within each
such group, we evaluate the possible-query and obtain the
possible combinations of genders of the adult sperm and
orca whales. Within each group, the corresponding relation
Groups is then added to each of the worlds in that group.
The instances of Groups are shown in Figure 4.

We can check that the genders of the two adult sperm
whales are indeed independent in both instances of relation
Groups. Thus there is no particular correlation between the
genders of the adult whales that would point to an abandon
of the calf. This check can be expressed in standard SQL
(thus in each world) by testing whether

Groups = πG2
(Groups) × πG3

(Groups).

3.2 Data cleaning by constraints and queries
I-SQL offers support for cleaning dirty (complete or in-

complete) databases via an interplay of integrity constraint-
based and query-based cleaning. The former cleaning is sup-
ported by operators like choice-of, repair-by-key, and assert

that can be naturally used to enforce constraints on incon-
sistent databases and create a set of possible consistent (re-
paired) databases.

Consider the complete relation R of Figure 5 containing
information on social security numbers and phone numbers
that have possibly been confused (swapped). We would like
to clean R by considering all possible pairs of social secu-
rity numbers and phone numbers that satisfy the uniqueness

TA SSN’ TEL’
123 456
789 123

TB SSN’ TEL’
123 456
123 789

T C SSN’ TEL’
456 123
789 123

TD SSN’ TEL’
456 123
123 789

Figure 6: The four possible readings of social secu-
rity numbers and phone numbers.

UA SSN’ TEL’
123 456
789 123

UC SSN’ TEL’
456 123
789 123

UD SSN’ TEL’
456 123
123 789

Figure 7: Worlds that satisfy the functional depen-
dency SSN’ → TEL’.

constraint for the social security number (SSN).
We proceed as follows. We first express our assumption

that any pair of numbers in R can potentially be confused:

create table S as

select SSN, TEL, SSN as SSN’, TEL as TEL’ from R

union

select SSN, TEL, TEL as SSN’, SSN as TEL’ from R;

The relation S is given in Figure 5. Now, we consider all
possible readings of the two records by repairing the key
SSN,TEL of S:

create table T as

select SSN’, TEL’ from S repair by key SSN, TEL;

Figure 6 shows the four possible worlds of T . Among the
four worlds, the world B does not satisfy the uniqueness
constraint for the social security numbers. This world can
be dropped by enforcing the functional dependency SSN’ →
TEL’ in T using an assert condition:

create table U as

select * from T assert not exists

(select ’yes’ from T t1, T t2

where t1.SSN’ = t2.SSN’ and t1.TEL’ <> t2.TEL’);

Figure 7 shows the remaining three worlds resulted after
enforcing the functional dependency.

4. REFERENCES
[1] L. Antova, C. Koch, and D. Olteanu. “1010

6

Worlds
and Beyond: Efficient Representation and Processing of
Incomplete Information”. In Proc. ICDE, 2007.

[2] L. Antova, C. Koch, and D. Olteanu. “From Complete
to Incomplete Information and Back”. In Proc.

SIGMOD, 2007.

[3] L. Antova, C. Koch, and D. Olteanu. “MayBMS:
Managing Incomplete Information with Probabilistic
World-Set Decompositions”. In Proc. ICDE, 2007.
Demonstration Paper.

[4] L. Antova, C. Koch, and D. Olteanu. “World-set
Decompositions: Expressiveness and Efficient
Algorithms”. In Proc. ICDT, 2007.

1425


