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ABSTRACT

Many applications need to solve the following problem of
approximate string matching: from a collection of strings,
how to find those similar to a given string, or the strings
in another (possibly the same) collection of strings? Many
algorithms are developed using fixed-length grams, which
are substrings of a string used as signatures to identify sim-
ilar strings. In this paper we develop a novel technique,
called VGRAM;, to improve the performance of these algo-
rithms. Its main idea is to judiciously choose high-quality
grams of variable lengths from a collection of strings to sup-
port queries on the collection. We give a full specification of
this technique, including how to select high-quality grams
from the collection, how to generate variable-length grams
for a string based on the preselected grams, and what is the
relationship between the similarity of the gram sets of two
strings and their edit distance. A primary advantage of the
technique is that it can be adopted by a plethora of approx-
imate string algorithms without the need to modify them
substantially. We present our extensive experiments on real
data sets to evaluate the technique, and show the significant
performance improvements on three existing algorithms.

1. INTRODUCTION

Motivation: As textual information is prevalent in infor-
mation systems, many applications have an increasing need
to support approximate string queries on data collections.
Such queries ask for, from a given collection of strings, those
strings that are similar to a given string, or those from an-
other (possibly the same) collection of strings. This collec-
tion could be the values from a column in a table, a set of
words in a dictionary, or a set of predefined entity names
such as company names and addresses. The following are
several examples.

Data Cleaning: Information from multiple data sources
can have various inconsistencies. The same real-world entity
can be represented in slightly different formats, such as “P0
Box 23, Main St.” and “P.0. Box 23, Main St”. There
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could be even errors in the data due to the process it was
collected. For these reasons, data cleaning often needs to
find from a collection of entities those similar to a given
entity, or all similar pairs of entities from two collections.

Query Relazation: When a user issues an SQL query to a
DBMS, her input values might not match those interesting
entries exactly, due to possible errors in the query, inconsis-
tencies in the data, or her limited knowledge about the data.
By supporting query relaxation, we can return the entries
in the database (e.g., “Steven Spielburg)” that are similar
to a value in the query (e.g., “Steve Spielberg”), so that
the user can find records that could be of interests to her.

Spellchecking: Given an input document, a spellchecker
finds potential candidates for a possibly mistyped word by
searching in its dictionary those words similar to the word.

There is a large amount of work on supporting such queries
efficiently, such as [1, 2, 3, 10, 23, 24, 25]. These techniques
assume a given similarity function to quantify the closeness
between two strings. Different string-similarity functions
have been proposed [21], such as edit distance [18], Jaro
metric [13], and token-based cosine metric [2, 6]. Among
them, edit distance is a commonly used function due to its
applicability in many applications. Many algorithms have
focused on approximate string queries using this function.
The idea of grams has been widely used in these algorithms.
A gram is a substring of a string that can be used as a signa-
ture of the string. These algorithms rely on index structures
based on grams and the corresponding searching algorithms
to find those strings similar to a string.

Dilemma of Choosing Gram Length: The gram length
can greatly affect the performance of these algorithms. As
an example, Fig. 1 shows the distributions of the gram fre-
quencies for different gram lengths for a DBLP data set of
276,699 article titles. (Details of the data are explained in
Section 7.) The z-axis is the rank of a gram based on its
frequency, and the y-axis is the frequency of the gram. The
distributions show that there are some grams that are very
popular in the data set. For instance, the 5-gram ation
appeared 113,931 times! Other popular 5-grams include
tions, ystem, ting, and catio. As a consequence, a string
can have a high chance to have a popular gram. Similar
distributions were observed in other data sets as well.
Algorithms based on fixed-length grams have a dilemma
in deciding the length of grams. As an illustrative example,
consider algorithms (e.g., [23, 24, 25]) that are based on an
inverted-list index structure to find similar strings. These
algorithms use various filtering techniques to prune strings.



Frequency (x1000)

Gram rank (x1000)

Figure 1: Gram frequencies in DBLP titles (not all
grams are shown).

(More details are given in Section 6.) One important filter is
called “count filter,” which is using the following fact. If the
edit distance between two strings is within a threshold, then
they should share enough common grams. A lower bound of
the number of common grams depends on the length of the
grams and the edit distance threshold. If we increase the
gram length, there could be fewer strings sharing a gram,
causing the inverted lists to be shorter. Thus it may decrease
the time to merge the inverted lists. On the other hand,
we will have a lower threshold on the number of common
grams shared by similar strings, causing a less selective count
filter to eliminate dissimilar string pairs. The number of
false positives after merging the lists will increase, causing
more time to compute their real edit distances (a costly
computation) in order to verify if they are in the answer
to the query. The dilemma also exists in spirit in other
algorithms as well. See Section 6.3 for another example.

Our Contributions: The dilemma is due to the “one-for-
all” principle used in these algorithms. Based on this ob-
servation, in this paper we develop a novel technique, called
VGRAM, to improve the performance of these algorithms.
Its main idea is to judiciously choose high-quality grams
of variable lengths from a collection of strings to support
queries on the collection. At a high level, VGRAM can be
viewed as an index structure associated with a collection of
strings, on which we want to support approximate queries.
An overview of the technique is the following.

e We analyze the frequencies of variable-length grams in

the strings, and select a set of grams, called gram dictio-

nary, such that each selected gram in the dictionary is

not too frequent in the strings.

For a string, we generate a set of grams of variable lengths

using the gram dictionary.

We can show that if two strings are within edit distance

k, then their sets of grams also have enough similarity,

which is related to k. This set similarity can be used to

improve the performance of existing algorithms.
We study several challenges that arise naturally when us-
ing this simple but powerful idea. (1) How to generate
variable-length grams for a string? For the case of using
fixed-length grams, it is straightforward to generate grams
for strings, but the answer becomes not obvious in our case.
In Section 3 we show how to generate such grams using a
precomputed gram dictionary. (2) How to construct a high-
quality gram dictionary? The selected grams can greatly
affect the performance of queries. In Section 4 we develop
an efficient algorithm for generating such a gram dictionary
based on an analysis of gram frequencies.

(3) What is the relationship between the similarity of the

gram sets of two strings and their string similarity? The
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relationship is no longer obvious as compared to the fixed-
length-gram case, since the strings can generate grams with
different lengths. In Section 5 we show that such a relation-
ship still exists, and the analysis is technically very nontriv-
ial. (4) How to adopt VGRAM in existing algorithms? A pri-
mary advantage of the technique is that it can be used by a
plethora of approximate string algorithms without substan-
tially modifying the algorithms. In Section 6 we use three
existing algorithms in the literature to show how to adopt
the technique. It is worth mentioning that when adopting
VGRAM in these algorithms, it guarantees that it does not
miss true answers, i.e., there are no false negatives.

We have conducted extensive experiments to evaluate the
technique. The results, as reported in Section 7, show that
the technique can be adopted easily by these algorithms
and achieve a significant improvement on their performance.
The technique can also greatly reduce the index size of those
algorithms based on inverted lists, even after considering the
small index overhead introduced by the technique. In addi-
tion, the index structure used by the technique can be easily
maintained dynamically, and be utilized for algorithms in-
side relational DBMS, as discussed in Section 8. The tech-
nique is extendable to variants of the edit distance function.

1.1 Related Work

In the literature “approximate string matching” also refers
to the problem of finding a pattern string approximately
in a text. There have been many studies on this problem.
See [19] for an excellent survey. The problem studied in this
paper is different: searching in a collection of strings those
similar to a single query string (“selection”) or those similar
to another collection of strings (“join”). In this paper we
use “approximate string matching” to refer to our problem.

Many algorithms (e.g., [23, 24, 25]) for supporting ap-
proximate string queries use an inverted-list index structure
of the grams in strings, especially in the context of record
linkage [16]. Various filtering techniques are proposed to im-
prove their performance. These techniques can be adopted
with modifications inside a relational DBMS to support ap-
proximate string queries using SQL [3, 10]. Motivated by
the need to do fuzzy queries, several algorithms have been
proposed to support set-similarity joins [5, 22]. These al-
gorithms find, given two collections of sets, those pairs of
sets that share enough common elements. These algorithms
can be used to answer approximate queries due to the rela-
tionship between string similarity and the similarity of their
gram sets. We will give a detailed description of some of
these algorithms in Section 6. Our VGRAM technique can
be used by these algorithms to improve their performance.

The idea of using grams of variable lengths has been used
in other applications such as speech recognition [20], infor-
mation retrieval [7, 9], and artificial intelligence [11]. The
same idea has also been considered in the database litera-
ture for the problem of substring selectivity estimation for
the SQL LIKE operator [4, 12, 17]. For instance, [4] pro-
posed the concept of “shortest identifying substring,” whose
selectivity is very similar to that of its original string. [12,
17] studied how to choose, in a suffix tree, a set of strings
whose frequency (or “count”) is above a predefined thresh-
old due to storage constraint. It is based on the assumption
that low-frequency substrings are relatively less important
for substring selectivity estimation. Compared to these ear-
lier studies, ours is the first one using this idea to answer



approximate string queries on string collections. Since our
addressed problem is different, our approach to selecting
variable-length grams is also different from previous ones.
In addition, our results on analyzing similarity between the
gram sets of two similar strings and adopting VGRAM in
existing algorithms are also novel.

Kim et al. [14] proposed a technique called “n-Gram/2L”
to improve space and time efficiency for inverted index struc-
tures. Fogla and Lee [8] studied approximate substring
matching and proposed a method of storing grams as a
trie without losing any information. Compared to these
two studies, our work focuses on approximate string queries
on string collections and the corresponding filtering effect
of variable-length grams. Another related work is a recent
study in [2] on approximate string joins using functions such
as cosine similarity.

2. PRELIMINARIES

Let ¥ be an alphabet. For a string s of the characters in
3, we use “|s|” to denote the length of s, “s[i]” to denote the
i-th character of s (starting from 1), and “s[i, j]” to denote
the substring from its i-th character to its j-th character.

Q-Grams: Given a string s and a positive integer ¢, a po-
sitional g-gram of s is a pair (i,g), where g is the g-gram
of s starting at the i-th character, i.e., g = s[i,i + ¢ — 1].
The set of positional g-grams of s, denoted by G(s,q), is
obtained by sliding a window of length ¢ over the charac-
ters of string s. There are |s| — ¢ + 1 positional ¢-grams in
G(s,q). For instance, suppose ¢ = 3, and s = university,
then G(s,q) = {(1,uni), (2,niv), (3, ive), (4, ver), (5, ers),
(6,rsi), (7,sit), (8,ity)}. A slightly different definition of
positional gram set was introduced in [10]. According to this
definition, we introduce two characters o and 3 that do not
belong to ¥, and extend a string by prefixing ¢ — 1 copies of
« and suffixing ¢ — 1 copies of 5. We use a sliding window
of size ¢ on the new string to generate positional g-grams.
All the results in this paper carry over to this definition as
well, with necessary minor modifications.

Approximate String Queries: The edit distance (a.k.a.
Levenshtein distance) between two strings s; and sz is the
minimum number of edit operations of single characters that
are needed to transform s; to s2. Edit operations include
insertion, deletion, and substitution. We denote the edit
distance between s; and sz as ed(s1,s2). For example,
ed(“Steven Spielburg”, “Steve Spielberg”) = 2. We con-
sider two types of approximate string queries on a given col-

lection of strings S (possibly with duplicates). (1) Approzimate-

string selections: for a query string @, find all the strings
s in S such that ed(Q,s) < k, where k is a given distance
threshold. (2) Approzimate-string joins: given a collection
S’ (possibly the same as S), find string pairs in S x S” whose
edit distance is not greater than a threshold k.

3. VARIABLE-LENGTH GRAMS

Let S be a collection of strings, on which we want to use
VGRAM. The technique uses two integer parameters, ¢min
and ¢maz, such that ¢min < Q¢maz, and we consider grams
of lengths between gmin and g¢maz. In this section we study
how to convert a string to a set of variable-length grams, by
using a predefined set of grams, called a “gram dictionary,”

305

which is obtained from S. In Section 4 we will study how
to construct such a gram dictionary from S.

3.1 Gram Dictionary

If a gram ¢, is a proper prefix of a gram g2, we call g1
a prefic gram of g2, and g2 an extended gram of ¢g1. For
instance, the gram uni is a prefix gram of univ, while the
latter is an extended gram of the former.

A gram dictionary is a set of grams D of lengths between
Qgmin and @maez. Notice that the gram dictionary could be
constructed independently of a collection of strings S, even
though for performance reasons we tend to compute a gram
dictionary by analyzing gram frequencies of the string col-
lection. A gram dictionary D can be stored as a trie. The
trie is a tree, and each edge is labeled with a character. To
distinguish a gram from its extended grams, we preprocess
the grams in D by adding to the end of each gram a special
endmarker symbol [15] that does not belong to the alpha-
bet ¥, e.g., #. A path from the root node to a leaf node
corresponds to a gram in D. (The endmarker symbol is not
part of the gram.) We call this gram the corresponding gram
of this leaf node. In addition, for each gram in D, there is
a corresponding root-to-leaf path on the trie. For example,
Fig. 2(b) shows a trie for a gram dictionary of the four strings
in Fig. 2(a), where gmin = 2 and gmaee = 3. (Figs. 2(b)-(d)
show a VGRAM index for the strings. The rest of the index
will be explained in Section 5.) The dictionary includes the
following grams: {ch, ck, ic, sti, st, su, tu, uc}. The path
n1 — N4 — Nip — N17 — N2z corresponds to the gram sti.

3.2 Generating Variable-Length Grams

For the case of using a fixed gram length ¢, we can easily
generate the set of g-grams for a string by sliding a window of
size q over the string from left to right. When using a gram
dictionary D to generate a set of variable-length grams for
a string s, we still use a window to slide over s, but the
window size varies, depending on the string s and the grams
in D. Intuitively, at each step, we generate a gram for the
longest substring (starting from the current position) that
matches a gram in the dictionary. If no such gram exists in
D, we will generate a gram of length gmn. In addition, for a
positional gram (a, g) whose corresponding substring s[a, b]
has been subsumed by the substring s[a’,b’] of an earlier
positional gram (a’,g’), i.e., a’ < a < b < b, we ignore the
positional gram (a, g).

Formally, we decompose string s to its set of positional
grams using the algorithm in Fig. 3. We start by setting
the current position to the first character of s. In each step,
from the current position, we search for the longest sub-
string of s that appears in the gram dictionary D using the
trie. If we cannot find such a substring, we consider the
substring of length ¢min starting from this position. In ei-
ther case, we check if this substring is a proper substring
of one of the already-produced substrings (considering their
positional information in s). If so, we do not produce a
positional gram for this new substring, since it has already
been subsumed by an earlier positional gram. Otherwise, we
produce a positional gram for this substring. We move the
current position to the right by one character. We repeat the
step above until the position is greater than |s| — ¢gmin + 1.
The generated set of positional grams for a string s is de-
noted by VG(s, D, ¢min, ¢maz), or simply VG(s) if the other
parameters are clear in the context.



id | string
0 | stick
1 | stich
2 | such
3 | stuck

(a) strings

(b) Gram dictionary as a trie
Figure 2: A VGRAM index for strings.

Algorithm: VGEN
Input: Gram dictionary D, string s, bounds ¢min, ¢maz
Output: a set of positional grams for s
(1) position p = 1; VG = empty set;
(2) WHILE (p < |5‘ = qmin + 1) {
Find a longest gram in D using the trie to match a
substring ¢ of s starting at position p;
IF (¢ is not found) ¢ = s[p,p + gmin — 1J;
IF (positional gram (p,t) is not subsumed by any
positional gram in VG)
Insert (p,t) to VG;
p=p+1;

}
(8) RETURN VG;

Figure 3: Decomposing a string to positional grams
of variable lengths using a gram dictionary.

For example, consider a string s=universal and a gram
dictionary D = {ni, ivr, sal, uni, vers}. Let gmin be 2
and ¢maz be 4. By setting p = 1 and G = {}, the algo-
rithm starts at the first character u. The longest substring
starting at u that appears in D is uni. Thus the algorithm
produces a positional gram (1,uni) and inserts it to VG.
Then the algorithm moves to the next character n. Start-
ing from this character, the longest substring that appears
in D is ni. However, since this candidate positional gram
(2, ni) is subsumed by the previous one, the algorithm does
not insert it into VG. The algorithm moves to the next
character i. There is no substring starting at this charac-
ter that matches a gram in D, so the algorithm produces
a positional gram (3, iv) of length g¢min = 2. Since it is
not subsumed by any positional gram in VG, the algorithm
inserts it to VG. The algorithm repeats until the position is
at the (|s| — gmin + 2)-nd character, which is the character
1. The generated positional gram set is VG = {(1,uni),
(3,iv), (4, vers), (7,sal)}.

4. CONSTRUCTING GRAM DICTIONARY

In this section we study, for a given collection S of strings,
how to decide a high-quality gram dictionary. We assume
the two length bounds gmin and gmaz are given, and later
we will discuss how to choose these two parameters. We
develop an efficient two-step algorithm to achieve the goal.
In the first step, we analyze the frequencies of g-grams for
the strings, where ¢ is within ¢min and ¢maz. In the second
step, we select grams with a small frequency.

4.1 Step 1: Collecting Gram Frequencies
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id | NAG vector
0 2,3
1 2,3
2 2,3
3 3,4
(c) Reversed-gram trie (d) NAG vectors

One naive way to collect the frequencies is the following.
For each string s in S, for each ¢ between ¢nin and gmax,
we generate all its g-grams of s. For each ¢g-gram, we count
its frequency. This approach is computationally expensive,
since it generates too many grams with their frequencies.
To solve this problem, our algorithm uses a trie (called “fre-
quency trie”) to collect gram frequencies.® The algorithm
avoids generating all the grams for the strings based on the
following observation. Given a string s, for each integer ¢
in [gmin, ¢maz — 1], for each positional ¢-gram (p, g), there is
a positional gram (p, g') for its extended gmqz-gram g’. For
example, consider a string university, and its positional
gram (2, niv). Let gmin = 2 and ¢maes = 4. There is also
a positional 4-gram (2, nive) starting at the same position.
Therefore, we can generate ¢maz-grams for the strings to
do the counting on the trie without generating the shorter
grams, except for those grams at the end of a string.

Based on this observation, the algorithm collects gram
frequencies as follows. Each node n in the frequency trie
has a frequency value n.freq. We initialize the frequency
trie to be empty. For each string s, we first generate all
its positional gmaz-grams. For each of them, we locate the
corresponding leaf node, or insert it to the trie if the gram
does not exist (the frequency for this leaf node is initialized
to 0). For each node on the path from the root to this leaf
node, including this leaf node, we increment its frequency
by 1. At each ¢g-th node (gmin < ¢ < @maz) on the path,
we create a leaf node by appending an edge with the special
endmarker symbol #, if this new leaf node does not exist.
This new leaf node represents the fact that the gmqez-gram
has a prefix gram of length ¢ that ends at this new leaf node.
Notice that for the leaf node n’ of each such prefix gram, we
do not increment the frequency of n’ by 1, since its parent
node already did the counting.

We deal with those characters at the end of the string
separately, since they do not produce positional gmaqz-grams.
In particular, for each position p = |$| — gmaz + 2, ..., |s| —
gmin + 1 of the string, we generate a positional gram of
length |s| —p+ 1, and repeat the same procedure on the trie
as described above. For instance, if gmin = 2 and @¢mas = 4,
for the string s university, we need to generate the
following positional grams (8, ity) and (9, ty) of length
between 2 and 3, and do the counting on the trie.

After step 1, we have constructed a trie with a frequency in
each node. For example, Fig. 4 shows the frequency trie for
the strings in Fig. 2(a). For instance, the frequency number

!The data structure of a trie with string frequencies is also
used in earlier studies [12, 17].



“2” at node n43 means that the gram stic occurred 2 times
in the strings. The frequency number “3” at node n1p means
that the gram st appears 3 times.

Figure 4: A gram-frequency trie.

4.2 Step 2: Selecting High-Quality Grams

In this step, we judiciously prune the frequency trie and
use the remaining grams to form a gram dictionary. The
intuition of the pruning process is the following. (1) Keep
short grams if possible: If a gram g has a low frequency, we
eliminate from the trie all the extended grams of g. (2) If
a gram is very frequent, keep some of its extended grams.
As a simple example, consider a gram ab. If its frequency
is low, then we will keep it in the gram dictionary. If its
frequency is very high, we will consider keeping this gram
and its extended grams, such as aba, abb, abc, etc. The goal
is that, by keeping these extended grams in the dictionary,
the number of strings that generate an ab gram by the VGEN
algorithm could become smaller, since they may generate the
extended grams instead of ab.

FUNCTION Prune(Node n, Threshold T)

1. IF (each child of n is not a leaf node) {
// the root— n path is shorter than g¢min
2. FOR (each child ¢ of n);
3. CALL Prune(c, T); // recursive call
4. RETURN;
5.
// a gram corresponds to the leaf-node child of n
6. L = the (only) leaf-node child of n;
7. IF (n.freg<T){
8. Keep L, and remove other children of n;
9. L.freq = n.freg;
10.
11. ELSE {
12. Select a maximal subset of children of n (excluding L),
so that the summation of their freq values and
L.freq is still not greater than T’
13. Add the freq values of these children to
that of L, and remove these children from n;
14. FOR (each remaining child ¢ of n excluding L)
15. CALL Prune(c, T); // recursive call
16. }

Figure 5: Pruning a subtrie to select grams.

Formally, we choose a frequency threshold, denoted by T
We prune the trie by calling the function Prune shown in
Fig. 5, by passing as the parameters the root of the frequency
trie and the threshold T. At each step, we check if the
current node n has a leaf-node child. (A leaf node has, from
its parent, an edge labeled by the endmarker symbol #.) If
it does not have any leaf-node child, then the path from the
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root to this node corresponds to a gram shorter than ¢min,
so we recursively call the function for each of its children.

If this node has a leaf-node child L, then there is a gram
g corresponding to L. We consider the frequency of node n,
i.e., n.freq. If it is already not greater than 7', then we keep
this gram. In addition, we remove the children of n except
L, and assign the frequency of n to L. After this pruning
step, node n has a single leaf-node child L.

If n.freq > T, we want to keep some of its extended
grams of g, hoping the new frequency at node L could be
not greater than 7. The algorithm selects a maximal sub-
set of n’s children (excluding L), so that the summation of
the frequencies of these nodes and L. freq is still not greater
than T. (Intuitively, the node L is “absorbing” the frequen-
cies of the selected children.) For the remaining children
(excluding L), we recursively call the function on each of
them to prune the subtree. The following are three possible
pruning policies to be used to select a maximal subset of
children to remove (line 12).

e SmallFirst: Choose children with the smallest frequen-
cies.

e |argeFirst: Choose children with the largest frequencies.

e Random: Randomly select children so that the new L. freq
after absorbing the frequencies of the selected children is
not greater than 7'.

For instance, in the frequency trie in Fig. 4, assume thresh-
old T = 2. As the algorithm traverses the trie top down,
it reaches m10, whose frequency 3 is greater than T'. The
node has a single leaf child node, n22, whose frequency is
0, meaning there is no substring of st in the data set with-
out an extended gram of st. The node nio has two other
children, neo with a frequency 2 and n21 with a frequency
1. By using the SmallFirst policy, the algorithm chooses na:
to prune, and updates the frequency of ns2 to 1. By using
LargeFirst, the algorithm chooses nz to prune, and updates
the frequency of n22 to 2. By using Random, the algorithm
randomly chooses one of these two children to prune, and
adds the corresponding frequency to that of na2. Fig. 2(b)
shows the final trie using the Random policy.

Remarks: (1) Notice that it is still possible for this algo-
rithm to select grams with a frequency greater than T'. This
threshold is mainly used to decide what grams to prune. The
frequencies of the selected grams also depend on the data
set itself. For instance, consider the case where we had a
collection of N identical strings of abc. No matter what the
threshold T is, each selected gram must have the same fre-
quency, N. When we adopt VGRAM in existing algorithms,
our technique does guarantee no false negatives.

(2) Deciding gmin and gmas: We assumed parameters ¢min
and gmas are given before constructing the trie to decide a
gram dictionary. If these values are not given, we can ini-
tially choose a relatively small ¢p,in and large ¢maz, and run
the algorithm above to decide a gram dictionary. After that,
we can change ¢min and ¢maz to the length of the shortest
and the longest grams in the dictionary, respectively.

5. SIMILARITY OF GRAM SETS

We now study the relationship between the similarity of
two strings and the similarity of their gram sets generated
using the same gram dictionary.

5.1 Fixed-Length Grams



We first revisit the relationship between the similarity of
the sets of fized-length grams of two strings and their edit
distance. From a string’s perspective, k edit operations can
in worst case “touch” k - q grams of the string. As a con-
sequence, if two strings s; and s2 have an edit distance not
greater than k, then their sets of positional grams G(s1,q)
and G(s2,q) should share at least the following number of
common grams (ignoring positional information):2

(1)

Arasu et al. [1] showed the following. For each string, we
represent its set of grams of length ¢ as a bit vector (ignor-
ing positional information). For two strings within an edit
distance k, the hamming distance of their corresponding bit
vectors is not greater than the following string-independent
hamming-distance bound.

BC(817527q7 k) = maw{\sﬂ, |52|} - q+ 1-k- q.

Br(s1,s2,q,k) =2-k-q.
5.2 Effect of Edit Operations on Grams

(2)

Affected positional grams

%

Preserved positional grams

Otarel T [ T TTI T[T W]
T TSI TS0
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Figure 6: Preserved positional grams versus affected
positional grams.

Now let us consider variable-length grams. For two strings
sand s, let VG(s) and VG(s') be their positional gram sets
generated based on a gram dictionary D with two gram-
length parameters ¢min and @maez. Fig. 6 shows the effect
of edit operations on the string s. For each character s[i]
in s that is aligned with a character s'[j] in s, if there is
positional gram (i,g) in VG(s), and there is a positional
gram (j,g) in VG(s'), such that |i — j| < ed(s,s’), we call
(i,9) a preserved positional gram. Other positional grams
in VG(s) are called affected positional grams. Our goal is to
compute the number of preserved positional grams in VG(s)
after k edit operations, even if we do not know exactly what
the transformed string s’ is. The affected positional grams
due to an edit operation depend on the position of the gram
and the edit operation. Next we will analyze the effect of
an edit operation on the positional grams.

Consider a deletion operation on the i-th character of s,
and its effect on each positional gram (p, g) that belongs to
one of the following four categories, as illustrated in Fig. 7.
Category 308t6g§3ry : Category 4 Category 1
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Figure 7: Four categories of positional grams based
on whether they can be affected due a deletion op-

eration on the i-th character.

2This formula assumes we do not extend a string by pre-
fixing and suffixing special characters. A slightly different
formula can be used when we do the string extension [10].
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Category 1: Consider the following window [a, b] including
the character s[i], where a = maz{l,i — gmaz + 1}, and
b = min{|s|,? + gmaz — 1}. If the positional gram (p,g)
is not contained in this window, i.e., p < i — @maz + 1 Or
p+ 19| — 1 > i+ gmas — 1, this deletion does not affect the
positional gram.

Category 2: If the positional gram overlaps with this char-
acter, i.e., p < i < p+|g| — 1, then it could be affected by
this deletion.

Category 3: Consider a positional gram (p, g) on the left
of the 4-th character, and contained in the window [a, i — 1],
i, i —gmaz+1 <p<p+|g|—1<i—1. These positional
grams could be potentially affected due to this deletion. To
find out which positional grams could be affected, we do the
following. Consider the position j = a, and the substring
slj,i — 1]. If this substring is a prefiz of a gram ¢’ in the
dictionary D, then all the positional grams contained in the
interval [j,7 — 1] could be potentially affected due to the
deletion. The reason is that these positional grams could
be subsumed by a longer substring (see Line 5 in Fig. 3).
We mark these positional grams “potentially affected.” If
no extended gram ¢’ exists in the dictionary, this deletion
does not affect this positional gram (p, g). We increment the
position j by one, and repeat the checking above, until we
find such a gram g’ in D, or when j =i — ¢min + 1.

Category 4: Symmetrically, consider a positional gram
(p, g) on the right of the i-th character, and contained in the
window [i +1,b],1i.e.,i+1<p<p+]g—1<i+ ¢nas — 1.
These positional grams could be potentially affected due to
this deletion. To find out which grams could be affected, we
do the following. Consider the position j = b, and the sub-
string s[i + 1, j]. If there is a gram ¢’ in the dictionary such
that ¢ is a suffiz of ¢g’, then all the positional grams con-
tained in the interval [i 4 1, j] could be potentially affected
due to the deletion, for the same reason described above.
We mark these positional grams “potentially affected.” If
no extended gram ¢’ exists in the dictionary, this deletion
does not affect this positional gram (p,g). We decrement
the position j by one, and repeat the checking above, until
we find such a gram ¢’ in D, or when j = i + gmin — L.

For instance, consider the example in Section 3.2, where
we have a string s=universal, a gram dictionary D = {ni,
ivr, sal, uni, vers}, ¢min = 2, and ¢mee = 4. The gen-
erated positional gram set is VG(s) = {(1,uni), (3,iv),
(4,vers), (7,sal)}. Consider a deletion on the 5-th char-
acter e in the string s. In the analysis of the four categories,
we have ¢ = 5, ¢ — @maz + 1 = 2, s0 a = 2. In addition,
T+ @maz — 1 = 8, so b = 8. The positional gram (1,uni)
belongs to category 1, since its starting position is before
a = 2. Thus it will not be affected due to this deletion.
(7,sal) also belongs to category 1, since its end position is
after 8, and it will not be affected due to this deletion. Cat-
egory 2 includes a positional gram, (4, vers), which could be
affected by this deletion. Category 3 includes a single posi-
tional gram, (3,iv). Since there is a gram ivr in D that has
the substring s[3,4] (which is iv) as a prefix, (3,1iv) could
be affected due to this deletion. In particular, after deleting
the letter e, we could generate a new gram ivr, causing the
gram iv to disappear. In conclusion, the positional grams
(3,iv) and (4,vers) can be affected due to this deletion.
In fact, the set of positional grams for the new string s’ is:
VG(s") = {(1,uni), (3,ivr), (5,rs), (6,sal)}. Similarly, we
can show that for a deletion on the 6-th character (r) on



the original string s, it can only affect the positional gram
(4, vers). In particular, (3,iv) cannot be affected since there
is no gram in D that has the substring ive as a prefix.

The analysis for a substitution operation is identical to
the analysis above. The analysis for an insertion operation
is almost the same, except that an insertion happens in a
“gap,” i.e., the place between two consecutive characters,
before the first character, or after the last character. The
analysis is valid with small modifications on the conditions
to check which positional grams belong to which category.

Reversed-Gram Trie: For each character (for deletion
and substitution) or gap (for insertion), we can easily decide
the category of a positional gram using its starting position
and gram length. To decide what positional grams in cat-
egory 3 could be affected due to an operation, we need to
check if the gram dictionary has a gram that has a given sub-
string as a prefix. This test can be done efficiently using the
trie for the dictionary. However, to decide what positional
grams in category 4 could be affected, we need to check, for
a given substring, whether the dictionary contains a gram
that has this substring as a suffix. To support this test, we
reverse each gram in D, and build a trie using these reversed
grams. This trie is called a reserved-gram trie, and is also
part of the VGRAM index. Fig. 2(c) shows the reversed-gram
trie for the dictionary stored in Fig. 2(b).

5.3 NAG Vectors

For each string s in the collection S, we want to know how
many grams in VG(s) can be affected by k edit operations.
We precompute an upper bound of this number for each
possible k value, and store the values (for different k values)
in a vector for s, called the vector of number of affected grams
(“NAG vector” for short) of string s, denoted by NAG(s).
The k-th number in the vector is denoted by NAG(s, k). As
we will see in Section 6, such upper bounds can be used to
improve the performance of existing algorithms.

Ideally we want the values in NAG(s) to be as tight as
possible. For an integer k£ > 0, we can compute an upper
bound based on the analysis in Section 5.2 as follows. For
each of its |s| characters and |s| + 1 gaps, we calculate the
set of positional grams that could be affected due to an
edit operation at this position (character or gap). For each
character and gap, we calculate its number of potentially
affected positional grams. For these 2|s| + 1 numbers, we
take the k largest numbers, and use their summation as
NAG(s, k). Fig. 2(d) shows the NAG vectors for the strings.

LEMMA 1. For a string s;, let VG(s;) and NAG(s;) be
the corresponding set of variable-length positional grams and
NAG vector of si, respectively. Suppose two strings si and
s2 have ed(s1,s2) < k.

e The following is a lower bound on the number of common
grams (ignoring positional information) between VG(s1)
and VG(s2) (using the same gram dictionary).

Bue(s1,s2,k) = maz (| VG(s1)| — NAG(s1, k),

|VG(s2)| — NAG(s, k). (3)

The following is an upper bound on the hamming dis-
tance between the bit vectors (ignoring positional infor-
mation) corresponding to VG(s1) and VG(s2) (using the
same gram dictionary):

th(51,527k‘) = NAG(S1,]€) + NAG(827I€). (4)
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This lemma shows that we can easily use NAG vectors
to compute the similarity of the variable-gram sets of two
similar strings.

6. ADOPTING VGRAM TECHNIQUE

In this section, we use three existing algorithms in the
literature to show how to adopt VGRAM to improve their
performance. Let S be a collection of strings. We have
built a VGRAM index structure for .S, which includes a gram
dictionary D stored as a gram-dictionary trie, a reverse-gram
trie, and a precomputed NAG vector NAG(s) for each string
sin S.

6.1 Algorithms Based on Inverted Lists

Algorithms such that those in [22, 23, 25, 26] could be
implemented based on inverted lists of grams. For a string s
in S, we generate its set of positional g-grams, for a constant
q. For each of them, we insert the string id, together with the
position of the gram in the string, to the inverted list of the
gram. For an approximate selection query that has a string
Q@ and an edit-distance threshold k, we want to find strings
s in S such that ed(s,Q) < k. To answer the query, we use
the g-grams of @) to search in their corresponding inverted
lists, and merge these lists to find candidate strings. Several
filtering techniques can be used: (1) Length filtering: |s| and
|Q| differ by at most k. (2) Position filtering: the positions
of each pair of common grams should differ by at most k. (3)
Count filtering: the strings should share enough grams, and
Equation 1 gives a lower bound of the number of common
grams between the two strings.> For those strings that share
enough pairs, we remove false positives by checking if their
edit distance to @ is not greater than k. This algorithm
is called MergeCount in [22]. An approximate string join
of two string collections R and S can be implemented by
calling MergeCount for each string in R on the inverted-list
index of S. This implementation of approximate-string joins
is called ProbeCount in [22].

To adopt VGRAM in these algorithms, we only need to
make minor changes. (1) Instead of generating fixed-length
g-grams, we call the VGEN algorithm to convert a string s to
a set of positional variable-length grams VG(s). (2) For two
strings s1 and s2, instead of using the value in Equation 1
as a lower bound on the number of common grams, we use
the new bound in Equation 3. In the equation, if s; is in S,
then | VG(s;)| and NAG(s;) are precomputed in the VGRAM
index. If s; is a string in a query, then | VG(s;)| and NAG(s;)
are precomputed efficiently using the VGRAM index struc-
ture on the fly. The rest of these algorithms remains the
same as before. As we will see in the experiments, adopting
VGRAM can improve the performance of the algorithms and
reduce their inverted-list size as well.

6.2 Algorithm: ProbeCluster

Sarawagi and Kirpai [22] proposed an algorithm called
ProbeCluster to support efficient set-similarity joins [5]. Given
a collection S of sets, this algorithm can find all pairs of sets
from S whose number of common elements is at least a pre-
defined threshold. This algorithm can be used to do a self
approximate-string join of edit distance k on a collection of
strings, after converting each string to a set of fixed-length

3String pairs with a zero or negative count bound need to
be processed separately [10].



grams, and treating two string-position pairs as the same
element if they use the same gram, and their positions differ
by at most k. We use the bound B.(s1, s2,q,k) in Equa-
tion 1 as the set-similarity threshold. (The algorithm still
works even if different set pairs have different set-similarity
thresholds.) When performing a self-join on the same col-
lection of strings, the ProbeCluster algorithm improves the
ProbeCount algorithm by using several optimizations. One
optimization is that it scans the data only once, and con-
ducts the join while building the inverted lists at the same
time. Another optimization is to reduce the size of each in-
verted list by clustering sets (strings) with many common
grams, and storing pointers to these clusters of strings in-
stead of those individual strings. The algorithm constructs
the clusters on-the-fly during the scan. For each record, it
uses inverted lists of clusters to prune irrelevant clusters,
before doing a finer-granularity search of string pairs.

To adopt VGRAM in ProbeCluster, we just need to make
the same two minor modifications described above: (1) We
call VGEN to convert a string to a set of variable-length
grams; (2) We use Equation 3 instead of Equation 1 as a
set-similarity threshold for the sets of two similar strings.

6.3 Algorithm: PartEnum

Arasu et al. [1] developed a novel algorithm, called PartEnum,

to do set-similarity joins. The main idea of the algorithm
is the following. Assume there are N elements correspond-
ing to all possible grams. We view a subset of these N
elements as a bit vector. If the hamming distance between
two bit vectors is not greater than n, then after partition-
ing each vector to n — 1 equi-size partitions, the two vectors
should agree on at least one partition. The same observa-
tion can be extended by considering combinations of these
partitions. Based on this idea, for the vector of each set,
the algorithm first divides the vector into some partitions.
For each partition, the algorithm further generates a set of
signatures by using combinations of finer partitions. Using
these signatures we can find pairs of bit vectors whose ham-
ming distance is not greater than a given threshold. We
can use this algorithm to do approximate-string joins with
an edit distance threshold k, since the hamming distance
of the bit vectors of the g-gram sets of two strings within
edit distance k must be not greater than the upper bound
in Equation 2. The dilemma of choosing gram length (see
Section 1) also exists for this algorithm. As noticed by the
authors, increasing the value of ¢ can result in a larger (thus
weaker) threshold in Equation 2. On the other hand, a
smaller value of ¢ means that the elements of the algorithm
input are drawn from a smaller domain.

To adopt VGRAM in this algorithm, we notice from Equa-
tion 4 that different string pairs could have different upper
bounds on their gram-based hamming distances. Suppose
we want to do an approximate string join between two string
collections, R and S, with an edit-distance threshold k. As-
sume we have a VGRAM index on R. For each string s in S,
we compute its VG(s) and NAG(s, k) using the VGRAM in-
dex of R. (Such a step can be avoided when we do a self join
of R.) Let By (S) be the maximal value of these NAG(s, k)’s
for different s strings. Similarly, let B, (R) be the maximal
value of the NAG(r, k)’s for different r strings in R, and
this value can be easily precalculated when constructing the
VGRAM index structure. We can use By, (R) + B (S) as a
new (constant) upper bound on the gram-based hamming
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distance between a string in R and a string in S.

Optimization can be done by utilizing the different hamming-

distance bounds for different string pairs. We illustrate an
optimization using an example. Assume the NAG(r, k) val-
ues of strings r in R are in the range of [1,12], while the
maximal upper bound for S, i.e., B (S), is 10. We parti-
tion the strings in R into three groups: R with NAG(r, k)
values in [1,4], Ry with NAG(r, k) values in [5,8], and Rs
with NAG(r, k) values in [9,12]. (Other partition schemes
are also possible.) For R strings, we generate a set of signa-
tures using the hamming-distance bound 4 + B,,(S) = 14,
while we also generate a set of signatures for S using the
same bound 14. We use these signatures to join R; with S
to find similar pairs. Similarly, we join Ry with S by us-
ing their signatures based on the hamming-distance bound
8+ B (S) = 18; we join Rz with S by using their signatures
based on the hamming-distance bound 12 + B,,(S) = 22.
Notice that each of the joins is very efficient since (1) there
are fewer R strings; (2) each hamming-distance bound is
customized and tighter than the constant bound for the en-
tire collection R, giving the algorithm a better chance to
choose better signatures. We could further improve the per-
formance by partitioning S into different groups, and gen-
erating different sets of signatures for different groups using
different hamming-distance bounds.

7. EXPERIMENTS

In this section, we present our experimental results of the
VGRAM technique. We evaluated the effect of the differ-
ent factors on the performance of VGRAM. We also adopted
VGRAM in the three existing algorithms to show the perfor-
mance improvements. We used the following three data sets
in the experiments.

e Data set I: person names. It was downloaded from the
Web site of the Texas Real Estate Commission.* The
file included a list of records of person names, companies,
and addresses. We used about 151K person names, with
an average length of 33.
Data set 2: English dictionary. We used the English
dictionary from the Aspell spellchecker for Cygwin. It
included 149, 165 words, with an average length of 8.
Data set 3: paper titles. It was from the DBLP Bibliog-
raphy.® It included about 277K titles, with an average
string length of 62.
Whenever larger datasets were needed, we randomly se-
lected records from a data set, made minor modifications,
and inserted the new records into the data set. For approx-
imate selection queries, we generated a query by randomly
selecting a string from a data set, and making minor changes
to the string to form a query string. For each string we ex-
tended it with multiple copies of a prefix character and mul-
tiple copies of a suffix character, and both characters were
not part of the alphabet of the dataset. We got consistent
results for these data sets. Due to space limitation, for some
experiments we report the results on some of the data sets.

All the algorithms were implemented using Microsoft Vi-
sual C++. The experiments were run on a Dell GX620 PC
with an Intel Pentium 3.40GHz Dual Core CPU and 2GB
memory, running a Windows XP operating system.

“www.trec.state.tx.us/LicenseeDataDownloads/trecfile.txt
Swww.informatik.uni-trier.de/~ley/db/



7.1 VGRAM Overhead

Index Size: We evaluated the overhead of VGRAM. We
chose the DBLP data due to its larger size and longer strings.
We varied the string number and collected the index size.
We used the following setting: ¢min=D5, ¢maez=7, frequency
threshold T' = 500, and the LargeFirst pruning policy. Fig. 8(a)
shows the index size of VGRAM for different data sizes, in-
cluding its dictionary trie, reversed-gram trie, and the NAG
vectors (each value in the vectors was stored as a byte). The
vector size is too small to be seen. When there were 20K
strings, the index was only 9.75MB. When the record num-
ber increased to 100K, the index size was still just 10.27MB.
The slow growth is because the number of grams in the in-
dex does not increase much as the data size increases. The
experiments on the other two data sets showed similar re-
sults: the index size was even smaller, and grew slowly as
the data size increased. For example, for the person name
data set, we used ¢min=4, ¢maz=06, frequency threshold T’
= 1000, and the LargeFirst policy. When there were 10K
strings, the index was only 1.6MB. When the number of
records increased to 500K, the index was still just 4.41MB.
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(a) Index size. (b) Construction time.
Figure 8: VGRAM index and construction time
(DBLP titles).

Fig. 8(b) shows the construction time of VGRAM, includ-
ing the time to construct its gram dictionary, and the time
to calculate the NAG vectors. It shows that a large portion
of the time was spent on calculating the NAG vectors. The
construction time grew linearly as the data size increased.
When there were 20K strings, it took about 30 seconds, and
the time grew to 160 seconds for 100K strings.

7.2 Benefits of Using Variable-Length Grams

We compared the performance of algorithms using fixed-
length grams and that of using variable-length grams. For
the data set of 150K person names, for fixed-length grams,
we varied the ¢ value between 4 and 6. For each ¢, we built
an inverted-list index structure using the grams. We gener-
ated a set of approximate selection queries with an edit dis-
tance threshold kK = 1. We increased the number of selection
queries, and measured the total running time. In addition,
we also used VGRAM to build an index structure. We used
the MergeCount algorithm as described in Section 6.1, since
it is a classic algorithm representing those based on merg-
ing inverted lists of grams. We measured the running times
for both the original algorithm and the one adopting the
VGRAM technique based on the following setting: gmin = 4,
Gmaz = 6, frequency threshold T' = 1000, and LargeFirst
pruning policy.

Fig. 9(a) shows the construction time and index size for
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Figure 9: Performance of fixed-length grams and
variable-length grams.

different gram-length settings. For fixed-length grams, as ¢
increased, the index-building time increased from 3.6 sec-
onds (¢ = 4) to 5.2 seconds (¢ = 6). VGRAM took 2.1 sec-
onds to build its own index structure, and 23.6 seconds to
build the corresponding inverted lists. So the construction-
time overhead was small. In addition, by paying the cost of
the VGRAM index, we can significantly reduce the inverted-
list index size. The VGRAM index was about 4.0MB, while
its inverted-list size was 14.4MB, which was about 46% of
the inverted-list index size for ¢ = 4 (31.1MB), and 43% of
the index size of ¢ = 6 (33.8MB). Since the VGRAM index
increased very slowly (shown in Fig. 8(a)), the reduction
on the total index size will become more significant as the
data size increases. In addition to saving the index storage,
VGRAM also improved the query performance, as shown in
Fig. 9(b). For different g values, the best performance for the
fixed-length approach was achieved when ¢ = 6. When there
were 50K selection queries, this approach took about 385
seconds, while by adopting VGRAM it took only 89 seconds,
which improved the performance by more than 3 times!

7.3 Effect of ¢....

We next evaluated the effect of the gma. value. We used
the same data set with the same setting for VGRAM. We set
Qgmin t0 4, and varied gmqs from 6 to 13. We set frequency
threshold T" to be 1000. Fig. 10(a) shows the time of building
the index (including the VGRAM index and inverted lists)
and the total running time for 5K selection queries with an
edit distance 1. It shows that as gmas increased, the time
of building the index always increased. The main reason is
that the frequency trie became larger, which took more time
to prune subtries to decide the grams. In addition, it also
took more time to compute the NAG vectors for the strings.

An interesting observation is that, as gmas increased, the
total selection-query time first decreased, reached a minimal
value at ¢maz = 10, then started increasing. The main rea-
son is that when ¢mqez was small, increasing this value gave
VGRAM a good chance to find high-quality grams. However,
when gmqs became too big, there could be many relatively
long grams, causing the count bounds for strings to be loose.
Thus it could reduce the effect of the count filtering tech-
nique, resulting in more false positives to be verified.

Fig. 10(b) shows the total times of answering different
numbers of selection queries for different gq. values. Over-
all, the technique achieved the best performance when ¢mqez =
8. These results suggest that gmaez should not be too big.



200 T T T T T T T 1 350 T T T T T T T T %
Building index ==—= 300 | [4.6]-grams —o— -~
—~150 | Query m— — [4,8]-grams ---8--- .-
3 8250 [14,10]-grams 7
2] N 200 H4,12]-grams - E
5100 e
E
— 50
0

567 8 910111213
Omax Value

5 10 1520 25 30 35 40 45350
# of selection queries (x107)

(a) Construction time and
dictionary quality (mea-
sured as query time).

(b) Query performance.

Figure 10: Effect of different ¢n.. values.

7.4 Effect of Frequency Threshold

We evaluated the effect of the frequency threshold 7' on
the time of building the index structure and the query per-
formance (see Section 4.2). We ran the MergeCount algo-
rithm on the person-name data set with the following set-
ting: 150K person names, ¢min = 4, @maz = 12, edit dis-
tance threshold & = 1, and Random pruning policy. Fig. 11(a)
shows the time of building the index structure for different T'
values. It included the times of different steps: building the
initial frequency trie, pruning the trie to decide grams, cal-
culating the NAG vectors, and building inverted lists. The
time for building the reversed-gram trie was negligible. We
can see that most of the time was spent on building the ini-
tial frequency trie and computing the NAG vectors. As T
increased, most times did not change much, while the time of
calculating the vectors increased slightly. Fig. 11(b) shows
how the total index size changed for different thresholds.
Fig. 11(c) shows how the query time changed as T increased.
The running time first decreased, then increased. The best
performance was achieved when T was around 1500.

7.5 Effect of Different Pruning Policies

We evaluated the policies, Random, SmallFirst, and Large-
First, to select children of a node in the frequency trie to de-
cide what grams to keep in the final dictionary (Section 4.2).
Since there was little difference in their times to build the in-
dex structure, we only report the results on the performance
of queries using the corresponding gram dictionary.

Table 1: Effect of three pruning policies to construct
a gram dictionary.

Policy Total Avg. # Total length | Avg. # of
time of grams of inverted | candidate
(sec) | per query | lists per query strings
Random 51.03 18.3 20.4K 137
SmallFirst | 59.69 20.3 33.7K 124
LargeFirst | 48.02 17.7 16.9K 137

Table 7.5 shows the results over the data set of person
names with the following setting: 100K person names, gmin =
4, Gmaz = 6, frequency threshold 7" = 500, and 10K se-
lection queries with an edit-distance threshold £ = 2. The
three policies had different effects on the query performance.
LargeFirst had the best performance, while SmallFirst had
the worst one. From the table we can see that, using the
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dictionary produced by SmallFirst, a string can generate rel-
atively more grams, resulting in more inverted lists to merge.
The relatively more inverted lists resulted in more time to
merge them. On the other hand, the average number of can-
didates for each query (last column) was similar for these
policies, so they had the similar amount of time to postpro-
cess the candidates. On the contrary, the gram dictionary
produced by LargeFirst converted a string to fewer grams,
resulting in fewer lists to merge. These factors make Large-
First produce the best gram dictionary.

7.6 Improving ProbeCount

We have implemented the ProbeCount algorithm for ap-
proximate string joins. We used the algorithm to do a self
join of a subset of the records in the person-name data set.
We varied ¢ from 4 to 6, and evaluated the performance of
the algorithm adopting the VGRAM technique with the fol-
lowing setting: ¢min = 4, ¢maz = 6, and T = 200. We used
different edit-distance thresholds k = 1,2, 3, and varied the
number of records in the join. Fig. 12(a) shows the time
of the basic ProbeCount algorithm on 50K records and the
improved one called ProbeCount+VGRAM. The results show
that adopting VGRAM increased the performance of the al-
gorithm. For instance, when k = 1 and ¢ = 6, the basic
algorithm took 104 seconds, while the ProbeCount+VGRAM
algorithm took 90 seconds.
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Figure 12: Improving ProbeCount (for VGRAM,
Gmin =4 and ¢mas = 6).

Fig. 12(b) shows the results of ProbeCount and Probe-
Count+VGRAM for different data sizes (number of records)
for k = 3. We used 5-grams for ProbeCount, since it gave the
algorithm the best performance. When adopting VGRAM,
we chose gmin = 4 and gmaez = 6, and let T = 1000. As
the data size increased, both algorithms took more time.
Adopting VGRAM reduced the query time by about 19.5%
for 20K person names, and 30.8% for 100K person names.

7.7 Improving ProbeCluster

We implemented the ProbeCluster join algorithm and the
corresponding algorithm adopting VGRAM, called ProbeClus-
ter+VGRAM. We did a self join of the person name data
set, by using ¢ = 5 for ProbeCluster. For VGRAM, we used
Gmin = Dy Qmaz = 7, and T = 1000. The index structure
was assumed to have been constructed. Fig. 13(a) shows
the performance improvements for different k£ values. For
instance, when k = 2, the basic algorithm took 352 seconds,
while the improved algorithm used only 183 seconds.
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Figure 11: Effect of frequency threshold.
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Figure 13: Improving ProbeCluster.

Fig. 13(b) shows the total running time of the two algo-
rithms for different data sizes (number of records), when
k=2. The results show the performance improvement. For
instance, when there were 200K records, the basic algorithm
took about 1,827 seconds, while the improved algorithm
used 786 seconds only.

7.8 Improving PartEnum

We implemented the PartEnum join algorithm and the cor-
responding algorithm adopting VGRAM. We did a self join
of the person name data set, by using ¢ = 4 for PartEnum.
For VGRAM, we used ¢min = 4, ¢maz = 6, and T" = 1000.
We assumed the index structure was already constructed.
Fig. 14(a) shows the performance improvements for differ-
ent k values. For instance, when k£ = 2 and the data size
= 150K, the basic algorithm took 73 seconds, while the im-
proved algorithm used only 26 seconds. Fig. 14(b) shows
how the total running time changed as the data size (number
of records) changed, when k=2. For instance, where doing
a self-join of 1 million records, VGRAM reduced the time of
PartEnum from about 950 seconds to 220 seconds. The re-
duction was consistent for different data sizes. We also did
the experiments for the DBLP title data set. We chose 20K
titles for a self-join and the results for different k values are
shown in Figs. 14(c). In addition, Fig. 14(d) shows the im-
provement for different data sizes. Our results on the aspell
dictionary data set were similar; adopting VGRAM reduced
the running time of PartEnum by around 30%.

8. DISCUSSIONS AND CONCLUSIONS
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Figure 14: Improving PartEnum.

Dynamic Maintenance: The VGRAM index structure can
be easily maintained for string insertions and deletions. When
a new string is inserted, we calculate its NAG vector using
the index and store it in the index. Deletion can be pro-
cessed similarly. If there are a lot of updates on the string
collection, and the quality of grams changes too much, we
can rebuild the index structure efficiently.

Other Edit Distance Variants: The VGRAM technique
can be extended slightly to support approximate queries us-
ing variants of edit distance. (1) Approximate substring
queries [10]: A query asks for strings from a collection that
have a substring similar to a given string or a collection of
strings. VGRAM can be used to answer such queries based
on the observation that if string s; is similar to a substring
of string sz, then s; and s2 should share enough common
grams. (2) Edit distance allowing block moves [10]: A vari-



ant of edit distance allows a move of a block of contiguous
characters with a constant cost. The extended edit distance
between two strings is the minimum cost of operations (in-
sertion, deletion, substitution, all with a unit cost, and block
move with a constant cost) needed to transform one string
to the other string. VGRAM can be used to answer such
queries by analyzing the effect of each move operation on
the grams close to the three “gaps” generated by the move.
Using VGRAM in DBMS: Several recent studies [1, 3,
10] have developed techniques to support approximate string
queries inside a relational DBMS using SQL queries. We
can adopt the VGRAM technique in these algorithms inside
a DBMS as follows. The trie and the reversed-gram trie
can be stored and implemented in an application level on
top of the DBMS. For instance, we could implement the
VGEN algorithm in Fig. 3 as a user-defined function (UDF)
to generate a set of positional grams for a string. The NAG
vectors for the strings can be stored as a table inside the
DBMS. Utilizing these tables, with a small amount of code
at the application level, we can adopt the VGRAM technique
inside a DBMS to support approximate queries.

Conclusions: In this paper we have developed a novel tech-
nique, called VGRAM;, to improve performance of approxi-
mate string queries. It is based on the idea of choosing
variable-length, high-quality grams, which can be used to
identify similar strings based on their common grams. We
gave a full specification of the technique, including its index
structure, how to generate grams for a string using the index
structure, and the relationship between the similarity of two
strings and the similarity of their grams. We showed how to
adopt this technique in a variety of existing algorithms. Our
extensive experiments on real data sets have shown that the
technique can be easily used to improve these algorithms,
without substantial modifications of these algorithms.
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