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ABSTRACT will always be a better choice when compared to B, C, D and B wit

F being an alternative if he/she wants to tradeoff qualitypidce.
Answering such preference queries [14] is one reason whijngky
computation has emerged as a hot research topic.

Recent research on skyline queries has attracted muckshiethe
database and data mining community. Given a database, actobj
belongs to the skyline if it cannot be dominated with respethe
given attributes by any other database object. Currentadsthave

only considered so-called min/max attributes like pricd gnality 6
which a user wants to minimize or maximize. However, objears
also have spatial attributes like x, y coordinates which lmamsed 51 *E

to represent relevant constraints on the query results hitnpa-
per, we introduce novel skyline query types taking into actmot
only min/max attributes but also spatial attributes andrétation-

> L

ships between these different attribute types. Such caistigport a ? )
micro-economic approach to decision making, consideratgnly 2 A =B D
the quality but also the cost of solutions. We investigate i
ternative approaches for efficient query processing, a stmcal 11 A c
one based on off-the-shelf index structures, and an asyrioalet
one based on index structures with special purpose extens@ur © o > 4 6 s 10
experimental evaluation using a real dataset and variouthetic x
datasets demonstrates that the new query types are indegihgre
ful and the proposed algorithms are efficient and scalable. (a) Location of the 6 hotels in spatial dimensions x and y
1. INTRODUCTION 350

Recent research on skyline computation has attracted nmich i | _ | o

terest in the database community [1, 2, 4, 14, 20]. Given afset
attributes, and a databask an objecty is said to be in the skyline
of D if there is no objecp in D such thafp is as good or better in
all dimensions and better in at least one dimension. If tegists
such ap, then we say thaj is dominated by or p dominates;.

ExampPLE 1. Consider the six hotels listed in Table 1. If we com- ION non-profitable region

pare the quality of these hotels based on the price and guatit 50 1 .

tributes as shown in Figure 1(b), then we can see that hotelsdA o

F are the only two skyline points among the six hotels. Thireis 1 2 auity a 5

cause hotels B, C, D and E are all dominated by hotel A in terims o - I - . .
quality and price. g)n)de?riCcaeuon of the 6 hotels in min/max dimensions quality

From a customer’s perspective, the skyline of a set of hasels

useful when selecting a hotel to stay since it is obvious gl A Figure 1: Spatial and Min/Max Attributes of Hotels
*Supported by NSFC(60673138, 60603046, 60473069, 60496325
Hotel X y | quality | price
A 2581 1 80.2
. . . . . B 3 2 2 150
Permission to copy without fee all or part of this materigranted provided c 4 1 > 250
that the copies are not made or distributed for direct comialeaidvantage, D 8 2 3 300
the VLDB copyright notice and the title of the publicatiortdts date appear, E 5 5 1 200
and notice is given that copying is by permission of the Veayde Data = 611 3 4 33
Base Endowment. To copy otherwise, or to republish, to postesvers -
to redistribute to lists, i fi d/ iaingssion fi th . . . . . . .
ng?iSrﬁe'rsﬂcl;f 0 1ISts, requiires a fee andior spect oN oM M€ Table 1: Six hotels with their spatial locations, quality ard price
VLDB ‘07, September 23-28, 2007, Vienna, Austria. . . . . L .
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/1/ Besides quality and price, however, spatial location ie afsim-
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portant aspect that affects customer decision. Going baakut Inspired by the above motivating applications, we call thesv
running example, if the customer is attending a conferemde-a family of query types considering the relationship betwesm/max
cation (8,2) on Figure 1(a), then he/she might considerirggayn  and spatial attributesjeighborhood dominant querigdlHDQs).
hotel D although it is not in the skyline in term of quality apdce.  In order to process these NHDQs efficiently, this paper erglo
Note that unlike the quality and price attributes in whicb¢g” and  two alternative approaches. The symmetrical approachstiezh
“better” are defined right from the start, the preferred ealéor at- min/max and spatial attributes as equal and indexes theatheg
tributesz andy can be determined only with respect to some giverin one R-tree. This approach is essentially the same as fieagh
reference point. To distinguish these two types of attebuive will  taken by [11] which shows that their method is flexible enotmgh
call attributes such aguality and price min/max attributes and deal with many variants of the skyline problems. However,INH
attributes such as andy spatial attributes. queries have a non-symmetrical nature. While the spatiakdi
While previous research on skyline queries has investigtite  sions are used for capturing neighborhood informationptimémax
perspective of a customer who wants to find a good trade-off belimensions are used to compute the dominant relationstipreF
tween hotel price and quality, minimizing the price for aggivqual-  fore, we also propose an asymmetrical approach in which ariedR-
ity, our research is motivated by the hotel management pufint index is built only on the min/max dimensions, and the spatfar-
view. The objective of a hotel manager is to maximize theericmation is captured as bitmaps which are associated with #treeR
(and consequently, the profit) for a given quality withinteér con-  nodes.
straints given by the price and quality of competing hotels their The contributions of this paper are as follows:
proximity. Thus, a hotel manager may want to answer theviolig

types of queries: e We introduce three novel types of skyline queries, which we

call neighborhood dominant querieshat exploit not only

1. For my hotelg at location {,y), what is the nearest hotel min/max attributes but also spatial attributes. Theseigser
that dominateg in the min/max dimensions? We callthe support a micro-economic approach to decision making, con-
nearest dominator of @nd the distance between them the sidering not only the quality but also the cost of solutions.
nearest dominator distanatenoted asudd(q). e To efficiently process the proposed neighborhood dominant

2. Let us assume that, to run a hotel profitably, the managemen queries, we present symmetrical as well as asymmetrichmet
must charge prices of at least $250, $210, $180, $140 and ods, based on standard or extended index structures.

s nd grd h h R H . . .
$100 for1*, 2"%,3™, 4" and5" class quality, respectively. ¢ Our experimental evaluation on a real dataset and on ayariet
Which hotelq is profitable according to that constraint while of synthetic datasets demonstrates that the new query types
having the largestdd(q), i.e. has the largest spatial distance produce meaningful results and the proposed algorithms are
from all hotels who dominate it in the min/max dimensions? efficient and scalable.

3. Given the above profitability constraint and a distancest The rest of the paper is organized as follows. Section 2 yarve

old 4, find a hotelg such thatudd(q) > ¢ and the difference e re|ated work and Section 3 gives the problem statemer@ec-
between the price charged and the minimal profitable price iS5 4 and Section 5, symmetry, asymmetry approaches ofineig
the smallest. borhood dominant queries are presented respectively. Videogir
experimental results in section 6. We conclude the papér avih

ExAMPLE 2. In Figure 1(a), the nearest dominator of hotel B is section 7.

hotel A while the nearest dominator of hotel D is hotel C. Wesee
that ndd(D) > ndd(B) althoughB dominatesD in the min/max
attributes. The above profitability constraint is represhas a 2. RELATED WORK
plane in Figure 1(b). Hotels above this plane are profitalohers .
are not, i.e. only hotels C and D are profitable. Sine&i(D) >  2-1 Skyline
ndd(C), hotel D is the answer for the second example query. As- The skyline computation originates from the maximal veptab-
sumingd = 4.5, hotel E will be returned for the third query, since lem in computational geometry, proposed by Kung et al. [3je T
its nearest dominator is A with a distance of 4.6 and E’s distato ~ algorithms developed [9, 15] usually suits for a small dettagith
the profitability plane is the smallest among all hotels whoearest  computation done in main memory. One variant of maximalarect
dominator distance is not smaller than problem, which is related to but different from the notiontioick
skyline, is themaximal layersproblem[10, 16] which aims at iden-
To illustrate that the above query types are important inoadbr tifying different layers of maximal objects.
class of applications, let us discuss a second motivatiegesm. A Borzsonyi et al. first introduce the skyline operator ovegéa
survey of a group of consumers is done with their age, salary p databases [14] and also propose a divide-and-conquer chethe
the weight and price of the notebook they owned being recbrdemethod based on [3, 12] partitions the database into meffitqygr-
In this case, the age and salary are the spatial attributéde thle  titions. The partial skyline objects in each partition isnputed
weight and price of the notebook are the min/max attributds. using a main-memory-based algorithm [15, 9], and the fing sk
consumerg with a largendd(q) own a notebook which is compa- line is obtained by merging the partial results. In [4], thehars
rable to many other consumers with similar age and salaryi-Ob proposed two progressive skyline computing methods. Tlsé fir
ously, a notebook manufacturer will be interested to fingthobk employs a bitmap to map each object and then identifies skylin
in the market which can cater to the biggest age-salary gsaup through bitmap operations. Though the bit-wise operatfofast,
that he/she can build a similar or a slightly better one tgeathe the huge length of the bitmap is a major performance condéra.
same group as well. However, this have to be done within tbfitpr second method introduces a specialized B-tree which ig faril
constraint which correspond to the second query in the lesah-  each combination list of dimensions that a user might beested
ple. Alternatively, he/she might choose to incur some mipgd in. Datain each listis divided into batches. The algorithocpsses
loss so that the notebook manufactured can cater to the rieeed ceach batch with the ascending index value to find skylines.
sufficiently large salary-age group to extend his/her custobase. Kossmann et al. present an online algorithm, NN, based on the
This correspond to the third query in the earlier example. nearest neighbor search. It gives a big picture of the skyligry
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quickly in all situations. However, it has raw performancken

dimensions of the dataséf. Given an objechh € H and a hy-

large amount of skyline needs to be computed. The current mgserplane P in the space ofD, we sayP dominatesh, P > h if

efficient method iBBS (branch and bound skyline), proposed
by Papadias et al., which is a progressive algorithm to firytirsk
with optimal times of node accesses [2, 11]. Balke et al. [dfheir
paper show how to efficiently perform distributed skylineetjas
and thus essentially extend the expressiveness of quecyimgnt

there exists a poinp in the planeP, such thatp > h in min/max
attributes. O

In the above definition, hyperplare is calledprofitability con-
straint, which works as the input of a microeconomic query for eval-

Web information systems. They also propose a sampling sehemating the degree of profits.

that allows to get an early impression of the skyline for sgjoent
query refinement.

2.2 Microeconomic Data Mining

Problem 2: Least Dominated, Profitable Points Query (LDPQ)
Let S be a set of spatial dimensions aflbe a set of min/max
dimensions of the dataséf. Given a hyperplaneP ? in the space

The microeconomic approach to data mining has been inteztluc of D, find the pointg € H,

by Kleinberg et al [7] formalizing the optimization problewfi en-
terprises based on data allowing the enterprise to preutkattility

1. P>t

of a customer w.r.t. a chosen decision. [7] focuses on a apeci

class of such optimization problems, so-called segmemtatiob-
lems, and shows that all discussed segmentation problesrsRyr
complete. [6] also shows how sensitivity analysis of therogco-
nomic optimization problem can distinguish interestingnfrunin-
teresting changes of the decision of the enterprise. Irtfié]same
authors investigate segmentation problems in more detAgsan
approximate algorithm for the catalog segmentation prabkhey
outline a sampling-based algorithm (enumerating and nmizagall

possible partitions of the customers in the sample) andeppowb-
abilistic bounds for its result quality and runtime.

2. There does not exist any other poipts H — {t} such that
p satisfies (i), andndd(p)|® > |ndd(t)|

m]
Problem 2 aims to find those objects which are profitable based
on aprofitability constraint and meanwhile locate in the area with
most competitive advantage i.e. cover the biggest arealé\iftost
companies will like to ensure profitability, there are alsspanies
which like to take some minimized loss in order to build a &rg
customer base. This corresponds to the following query.

The existing methods on microeconomic data mining mainly fo

cus on the efficiency issues of extracting interesting pagtérom

Problem 3: Minimal L oss and_Least Dominated Points Query

raw data. As far as we know, the only attempt to link microeco{ML2DQ)

nomic data mining with dominant relationship is in [8]. Howee,
only min/max attributes are being considered. As shownimph-
per, spatial dimensions add a new level of complexity andguda
the analysis of dominant relationship.

3. PROBLEM STATEMENTS

Let S be a set of spatial dimensions afdbe a set of min/max
dimensions of the datasét.

DerFINITION 1. Dominating Relationship

Let D be a set of min/max dimensiohof the datasetf, p =
(p1,...,pa) € H dominatesanother objecty = (q1,...,q94) €
H, denoted ap > ¢, if p; < ¢:(1 < i < d) and at least for one
attribute say thejth attribute(t < 5 < d), p; < ¢;. On the other
hand,q is a dominated objecp is a dominator of;. a

DEFINITION 2. ND(q), ndd(q)

Letp, ¢ be two points inH such that 1) dominateg, 2)among all
points that dominate, p is nearest ta; in the space of. We callp
the nearest dominator @f, N D(q). We will usendd(q) to refer to
the distance betweenand ND(q). O

We can now formally define the queries that we will look at inance of g, fdd(

this paper.

Problem 1. Nearest Dominators Query (NDQ)

Given any arbitrary objectin H, find its nearest dominatd¥ D(q).
O

DEFINITION 3. Hyperplane Dominating Relationship
Let S be a set of spatial dimensions add be a set of min/max

1The original definition of dominating relationship [14] iased on
the minimum or maximum condition, that is, for correspoiddti-
mension, the smaller/larger the value, the better the dinjethis
dimension. Here without loss of generality, we adapt to tlie-m
mum condition.

Let S be a set of spatial dimensions afdbe a set of min/max
dimensions of the datas&t. Given a threshold and a profitability
constraint in the form of a hyperplan®, find the pointt, t € H
such that

1. ndd(t) > 6

2. There does NOT exist any other poipts H —{t} such that
p satisfy (i) and distance qf to the planeP in the min/max
dimensional space is less than the distancetofP.

a

Note that LDPQ and ML2DQ are in fact constrained optimiza-
tion problem and are the dual problem of each other. LDPQ hope
to maximizendd(q) while satisfying the constraint that the solu-
tion must come from the profitable region. ML2DQ on the other
hand aims to minimize loss (i.e. the distance going into thie-n
profit region) while satisfying the constraint enld(q). In addi-
tion, it should also be easy to define a topersion of LDPQ and
ML2DQ which can easily handle by our algorithms with some-tri
ial changes.

As a side note, it is also possible to define LDPQ and ML2DQ
using an analogous conceptridd(q) call further dominating dis-
q). The distancefdd(q) represents the largest
distance such that any point within a distancefdti(q) is domi-
nated byg. This concept is a more aggressive measure compared to
ndd(q) which only guarantee that all points withitdd(gq) cannot

2Although we use a linear hyperplane as the constraint héner o
non-linear constraints can easily be adopted as long as weda
way to estimate the nearest/furthest distance betweerotigtraint
and a point or a minimum bounding box. Non-linear constraant
also be approximated by piecewise linear splines.

3While we use only the nearest dominator in our definition here
the proposed techniques in this paper is still valid evenefad

low the user the flexibility of using the distance to the nearé”
dominators. We have however avoid doing so in order not to add
unnecessary complexity to the description.
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dominateg. The two concepts ofidd(q) and fdd(q) are however LEMMA 4.3. Case 3
very similar and all algorithms that applied fatld(q) will be ap-  Given a pointp = {p1, ..., p~} and an MBR,R, all points in R
plicable tofdd(q). As such, our studies will only focus ondd(q)  will dominatep if R, < p; for all min/max dimensions

for this paper. . . . . . .
pap PROOF The point with worst dominant power in this case is

at{R2,...RL;,....R N} which still dominatep. Furthermore, all
4. SYMMETRICAL METHODS other points in the MBR will dominat¢R.,,....RD,...R n}. By

In thi.s section, we will first Iookl at a symmetrical approaph t transitivity, all points inR will definitely dominatep. [
answering the three types of queries that we have definechidn t
approach, we treat both types of dimensions to be the equl an Figyre 2 Jists the three cases corresponding to Lemma &1, 4.
build an R-tree that index the points based on all the dineessiAs 54 4.3 respectively. Note that Case 1, Case 2 and Case 3-are in

mentioned in [11], this approach is applicable for manya#ons  creasing restricted version of the previous case and asisuair
of the skyline problems. We will briefly touch on R-tree hete t igorithm, they will be handled in reverse order.

set the context for discussion. Interested readers cantcefg] for
more details on this popular indexing structure. DEFINITION 4. MinDist(R,p)

An R-tree is a height balanced tree in which each node is a mifthe minimum distance between an MBRand a pointp in the
imum bounding box(MBR) that most tightly bounds the MBRs ofgpatial dimensions is defined as:

its children nodes. This property applies recursively fibnades N

in the tree until the leaf nodes where MBRs most tightly bound MinDist(R,p)= Z Ip: — n|2

a set of spatial objects. In & dimensional space, an MBRR, i=|Dl+1

can thus be represented by two poifits = {R, .., Rin} and where

R, = {Ru1, .., Run} whereR;; and R,; is the lower bound and ri = RS if pi < RS,

upper bound value for the MBR along dimensimespectively. We ri = RS, ifp; > R>; and

usesymmetrical R-treeto refer to an R-tree which is built on both r; = p; otherwise. 0O
spatial and min/max attributes. The MBRs in a R-tree satiséy

following property as proven in [13] which will be useful four The algorithm first starts from the root MBR of the R-tree and
algorithm derivation later on. places its children MBRs into the heap by removing those dbat

not correspond to any of the three cases. Within the heapBies

PROPERTY 4.1. MBR Face Propert o
perty are ordered based on two criteria:

Every face of an MBR in an R-tree contain at least one point

Since we need to distinguish the spatial attributes andmar/ 1. All MBRs corresponding to Case 3 are ordered before all
attributes of the symmetrical R-tree in the context of oudgt we MBRs corresponding to Case 2 while all MBRs from Case
will assume for ease of discussion that the fif3} attributes are the 1 are ranked last.
min/max attributes and the remainifg| attributes are the spatial
attributes. To further ensure clarity, we will ugd;, R, to rep- 2. With each group, MBRs with smaller MinDist tocomputed
resent the lower bound and upper bound of dimensidrit is a using spatial attributes are ordered before MBRs with large
spatial attribute and?/;, RZ, to do so if it is a min/max attribute. MinDist.

As and when needed, we will ug®’, RS to represent the whole

set of lower bound and upper bound values for the spatidbatés This is then repeated recursively beginning from the MBRhat t

of RandRP, RP for the min/max attributes. top of the heap again by taking its children MBRs and insgrtin
. . those that potentially or definitely dominggeinto the heap. The

4.1 NDQ with Symmetrical R-tree algorithm maintains a variablBest which is initially set toco and

Given a pointp in the databaséf, our algorithm for finding its are updated based on the following two rules:
nearest dominator is based obest first traversal of the nodes in
the symmetrical R-tree. In this approach, a heap is maiatafar
storing every MBR,R that could potentially or definitely contain a DEFINITION 5. MaxDist(R,p)

point that dominateg in the min/max dimensions. The maximum distance between an MBRand a pointp in the
spatial dimensions is defined as:
LEMMA 4.1. Case 1 N
Given a p(_)ingo = {p1D, PN} angl an MBRJR, somepc_)ints jnR MaxDist(R,p)= Z pi — 74|
could dominatey if R;; < p; < Ry; for all min/max attribute. =D+t
PROOF We take the extreme case where there is a pointat  where
{RE,..., R} and sinceRf; < p; for all min/max attribute, the ri = Ry ifpi > (Rj, + RY,)/2,
point at that position will dominate. [ r; = R; otherwise. o

LEMMA 4.2. Case 2

Given a poinp = {p1, ..., p~ } and an MBR R, somepoints inR
would definitely dominatep if RY < p; for all min/max attribute
¢+ and there exist exactlyp| — 1 min/max dimensiong such that

D
Ruj <pj- . MaxDist(R,p) here corresponds to the furthest distancevdst
PrROOF. Based on Property 4.1 stated .egrh%r, therg mus}tgbe];aand any point inR. The rationale for this is that although there
point on the face containing the diagonal joinip@;1......R;; .....Rin} exists one point irk that dominateg, we do not know its distance
to {R{7,....R.;....Rix}. Since the point with the worst dominant to p. Thus we can only assume that the point is furthest away from
power is at{Rg,...,R%,...,RﬁV} which still dominatep based on p in the MBR and seBest to such a value only if it is still smaller
our condition, there must be at least one poinfirthat dominate thanBest.

p. O

Rule 1: If current MBR, R, being processed corresponds to Case 2
with respect tgp then we assigBest to be the minimum oBest
and MaxDist(R,p).
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(a) Case 1:Somepoints fromR could (b) Case 2Somepoints fromR definitely (c) Case 3: All points from R1 defi-
dominatep dominatep nitely dominatep

Figure 2: Three different cases for the dominant relationslip betweenR and p

DEFINITION 6. MinMaxDist(R,p)

The MinMax distance between an MBRand a pointp in the spa-  ALGORITHM 1. A Symmetrical NDQ Method.

Input: An R-treeR of H, query pointp

tial dimensions is defined as: Output: NDQ answer inH
MinMaxDist(R,p)= Method:
min_ (|px — rmg|® + Z Ipi — rM;|)
|D|+1<k<N ) 1: Best :=o0; E={};
‘D‘ﬁlfk’LSN 2: Insert the root MBR of R-tree in the heap;
where i: WHIIELE exist Mﬁgs}i{n hﬁaDO
_ DS s s : xtract an in heap;
Time = Rlslﬁ' if pr < (Rij + Ruy) /2, 5: IF MinDist(R, p) > Best OR R notin all 3 cases
rmi = Ry, otherwise. 6: Exit; % Handle next R on heap
and 7: ELSE IF R is Case 3 MBR and/inMaxDist(R,p) < Best
rM; = Rﬁ, if p; > (Ri + Rfi)/Q, 8: Best = MinMaxDist(R, p);
rM; = R>. otherwise. o 9 ELSE IF Ris Case 2 MBR and/axzDist(R, p) < Best
“ 10: Best = MaxzDist(R, p);
Rule 2: If current MBR, R being processed corresponds to Case 311: IF R is not a leaf MBR
with respect tg, then we assigiBest to be the minimum ofBest 12 FOR each childc of R DO
and MinMaxDist(R,p). 13: IF cin one of 3 cases, addto heap;

14: ELSE FOR each pointz of R DO

. . L 15: IF z is dominated by, addx to £
MinMazDist(R,p) here corresponds to a minimized upperyg: Compute nearest dominatgramong points in:

bound on the distance between a poinRiandp. If MinMazDist  17: Outputg:
is smaller thanBest, then it is guarantee tha® contains at least
one dominator op which have a distance shorter th®st. Note
that MinM ax Dist can only be applied for MBR corresponding to
Lemma 4.3 because it makes use of the property that each face o
the R contains at least a point and this is only true if all pointgin
dominatep.

Intuitively, the variableBest thus stores the minimum upper boun
on the distance between a point that dominataadp itself. Thus
any MBR, R that hasMinDist(p, R) greater tharBest will never
contain the nearest dominatorénd can be removed without fur-
ther processing. Also, iR is not within any of the three cases we
shown in Figure 2, then it can be removed as well since no @int 1. Potentially Dominated MBRs (PdMBR)
R will ever dominatep. '

The algorithm terminates when there is no more MBRs in the
heap. Note that iBest remains ato at the end of the algorithm,

To simplify discussion, we will assume that skyline pointishw
respect to the min/max attributes had been detected and #hsoagh
uch a list had been done to find those points that are in the val
egion. If any of these point are in the skyline, then the tofuis
found and no search need to be done.
Handling LDPQ is more complex than handling NDQ as two
types of MBRs must be monitored during the search.

These are the MBRs that are potentially dominated by some
points and are candidates for the output answers.

this means there is no nearest dominatorifare. p is a skyline 2. Potentially Nearest Dominator (PnrMBR)

point in the min/max dimensional space. These are the MBRs that potentially contain the nearest dom-
The pseudo-code a¥ DQ algorithm is listed as Algorithm 1. inators for those points in PAMBR.

4.2 I—DPQ with Symmemcal R-tree Note that the set of PAMBRs and the set of PnrMBRs might not

Unlike NDQ in which a specified poinp is given, LDPQ does be mutually exclusive since the points in PnrMBR are notriesd
not focus its search on any particular portion of the spawedd by  to only points in the valid region. For an MBR2, we denote
the spatial attributes. Instead a profitability constresmfiven inthe  all its potential dominating MBRs aBnr M BR(R2) and for each
form of a planeP in the space formed by the min/max attributesMBR R1 we denote all the MBRs that it can potentially dominate
Since we assume all attributes are min attributes, it ismasdithat as PAMBR(R1). We determine that the dominant relationskip b
P is anti-correlated with respect to all the min attributeseele will  tween MBRs from PdMBR and PnrMBR can be separate into 3
be able to always choose the minimum value otherwise. GRen cases based on the following lemmas.
the min/max dimensional space is divided into two regiomsf-p
itable and non-profitable. LEMMA 4.4, Case 1
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Figure 3: Three different cases for the dominant relationslip between two MBRs

Given two MBRsR1 and R», somepoints inR1 could dominate eachR2 in PAMBR, we keep track of two variables as threshold

somepoints inRs if R1E < R2P, for all min/max attributei. values for pruning and comparing with other MBRs from PdMBR.
PROOF Assuming this is not the case, thé1/; > R2D; for 1. Minimum Lower Bound, ndd.;(R2)

somei. All points in R. will always be better (i.e. lower) thaR1 Let ND,.;»(R2) denoteR1 € PnrM BR(R2) which have

in the i*" dimension making it impossible for any point i@l to theminimum value among théower bound distanceof the

dominate them. [] MBRs in PnrM BR(R2) to R2. The variabledd,,, (R2)

LEMMA 4.5. Case 2 represent the lower bound distancefdff to R»

Given two MBRsR1 and Rg, somepomts inR1 definitely domi- 2. Minimum Upper Bound, ndd,.,(R2)
nateall p0|nts |nR2 if R12. < R2E for |D| — 1 min/max attribute Let ND,,.(R2) denoteR1 € PnrM BR(R2) which have
iandR1j; < R2j; for the remalnlng min/max attributg theminimum value among thepper bound distanceof the

MBRs in PnrM BR(R2) to R2. The variablewdd, ., (R2)

PROOF From Property 4.1, we know that each face of R1 will represent the upper bound distanceiafto R

consist of at least 1 point. We will prove our lemma by identif
ing a face fromz1 which definitely consists of a point that dom-  we will now explain how these two variables are update accord

inates all points inRs. Let dimension 1,2,.4,..4-1,j+1,..]D| be  ing to the three cases and how pruning will be done accorglingl
the set of dimensions in whicR1}; < R2;] for |D| — 1 min/max.

Let dimensionsj be the dimension in whicl®1}; < R2{;. Con- DEFINITION 7. MinMinDist(R1,R2) <

sider the face of21 which contain the pointg1, ..., 1} ) and Lest C}:%RNERR%:{ p: 1? = {P\D\fﬂ, < PN}, Pi : Ry orpi =
Ry, enote the set of corners for an MBR, The MinMinDist

(R131, ., R1{},..., R1] ). Let us call this face ofz1, X. We i T, [NE 4 ,

claim that any pomt onX will definitely dominates all pomt in between two MBRsR1 and R2 based on their spatial attributes is

R2. This is because the weakest dominant pointXoris (Rlul, defined as:

LR1P, .. R1 hIe the strongest dominant point R. is o
iy “‘D‘) wht 9 inant point f; | MinMinDistRL,R2)=  min _ MinDist(Rl,p) O
(R2u1, . R2uj, . [( p)) and based on the conditions we set, peCORNER(R2)
e can see that the ea est dominant poinKowill still dominate .
w W ! poi st ! DEFINITION 8. MaxMaxDist(R1,R2)

the strongest dominant pointiR.. [
g P Let CORNERR)={ p : p = {p|p| 1, pn} pi = RS OF p; =
LEMMA 4.6. Case 3 RS, } denote the set of corners for an MBR, The MaxMaxDist
Given two MBRsR1 and R», all points inR1 will definitely dom-  between two MBRs?1 and R2 based on their spatial attributes is
inate all points in Ry if R12, < R2P for all min/max attribute  defined as:
7.
PROOF Since the upper bounds &1 are all smaller than the MaxMaxDist(R1, RZ)_ CORJ\%R(M MazDist(R1,p) H

corresponding lower bounds @t., this means that all points in S ) )
R> will be dominated by any point ifR1 even if it is located at ~ Here, MinMinDist(R1,R2) and MaxMaxDist(R1,R2) are easily
(R2D,,...R2D ). O understandable corresponding to the minimum and maximsm di

tance between any pair of points from the two different MBBs r
Figure 3(a), 3(b) and 3(c) depicts three examples to illtistthe  spectively.
three cases that are stated in Lemma 4.4, 4.5 and 4.6 resbgcti
Again, it is easy to see that the conditions for Case 1, 2 ane 3 aRule 1: Update for Case 3
increasingly restrictive. Any pair of MBRR1 and R2 that belong If R1 and R2 follow Case 3, thendd...;»(R2) will be updated
to any of the 3 cases will be monitored. with MinMinDist(R1,R2) if the current value ofidd..i»(R2) is
The above three cases provide different pruning types wdifng higher. This is becauseid...;; (R2) is suppose to contain the lower
ferent spatial measurements computed on the spatialigéisbFor  bound value ohdd(p) for anyp in R2. For the upper bound value

“Note that although we are processing MBRs consisting of bo ﬁddm”b (122), we will use a different function, MaxMinMaxDist(R1,
spatial and min/max dimensions while dominant relatiomghonly 2)and updataddmub(R2) with the value of MaxMinMaxDist(R1,

based on min/max dimensions, this property is still true asave ~R2) if MaxMinMaxDist(R1,R2) is smaller than the currentwalof
projecting the points into a lower dimensional MBR consigtdf ~ nddmus(R2)
only the min/max dimensions when we do the dominant reagonin
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DEFINITION 9. MaxMinMaxDist(R1,R2)

= R . _ pS . _  ALGORITHM 2. A Symmetrical LDPQ Method.
Lest CORNERE)={p : p = {Pip|11, P}, pi = Fi; OF i . Input: An R-tree offf, a hyperplaneP
Ry; } denote the set of corners for an MBR, The MaxMin-  oytput; LDPQ answer inf

MaxDist between two MBRs21 and R2 based on their spatial Method:

attributes is defined as:
1. heap = 0; Best = 0;
%heap ordered by decreasingid,,,;; (R)
Retrieve the first level of MBRs in R-tree;
FOR each MBRR in the first level
Initialize(R), put R into theemplist;

. . . IF R intersect profitable region
Intuitively, MaxMinMaxDist(R1, R2) computes an upper bdun Insert R into heap:

on the distance between any pojnin R2 to a nearest point ifk1 WHILE heap not emptyDO
that definitely dominatesgp. Note that we can use such a measure@: RetrieveR from top ofheap;
because we know thall points in R1 definitely dominate R2 and 9:  Best = max(Best,ndd 1, (R));

thus each face of R1 definitely contains a point that doménate 10: FOR each MBRR'in thetemplist, heap DO )
point in each face of R2. 11: RemoveR, ND,,,;» (R) from all PAMBRER'), PnrMBRR');

MaxMinMaxDist(R1,R2)=

max MinMazxDist(R1,p) m]
pECORNER(R2)

Nogakwd

12: IF R equals to ND,,; (R')
13: Select a new NJ;;, for R’ from the children of R;
Rule 2: Update for Case 2 14- IF NDj1s (R) equals to NDys (R')
If R1 and R2 follow Case 2 (but not Case 3), the update of ofs: Select a new NR);;, for R’ from the children of ND,;;, (R);
nddmip(R2) is similar as in Rule 1 above. Fawdd,,..,(R2) how- 16 FOR each childr of R, NDmIb(RPO
ever, since we are only sure that there are some poinflithat 17 Initialize(r), putr into thetemplist;

dominate all points inkz, we can only use MaxMaxDist(R1,R2) ig Eg%BBRF:—Cgm;ergr?g ﬁ&dh?i?ggﬁﬁﬁgé)@-
. = b )

as the minimum upper bound and updatél..,(R2) with Max- 55 FOR eachR2 € PAMBRDO

MaxDist(R1,R2) if MaxMaxDist(R1,R2) is smaller than thent  51: FOR eachR1 € PnrMBRDO
value ofnddmus (R2). 22 IF R1 and R2 DOES NOT follow all 3 casesOR
MinMinDist(R1, R2)> ndd b (R2)

Rule 3: Update for Case 1 23: Exit; % Handle next R1

If R1 and R2 follow Case 1 (but not Case 2 and 3), we will not bé%: ELSE IF Rl andR2 follow Case3 )
heth h d R2. A 5: ndd,1p (R2)=min(ndd.i» (R2),MinMinDist(R1,R2));

sure whether the point in R1 dominates any point in S such; nddpes (R2)=min(ndd.my (R2),MaxMinMaxDist(R1,R2));

both ndd.;»(R2) andndd,,.»(R2) cannot be updated. However 57- ELSE IF R1 and R2 follow Case 2

being in Case 1 mean that R1 cannot be removed as a potential d@s: ndd,p (R2)=min(ndd,,;, (R2),MinMinDist(R1,R2));

inator of R2 and could be further expanded unless Rule 4eppli  29: ndd b (R2)=mMin(ndd ., (R2),MaxMaxDist(R1,R2));

30: AddR1 into PnrM BR(R2);

31: AddR2 into PdM BR(R1);
Maintain ND,,;, (R2),NDyy, 5 (R2);
IF R2 intersect profitable region

Rule 4: Local Pruning :
Given R1 and R2, R1 can be removed from PnrMBR(R2) if Min- 33;

MinDist(R1,R2)> nddm.»(R2). The reason is thatl could never 34 AddR2 into heap;
contain the nearest dominator for any pointdifsince its nearest 35: Performglobal pruning on heap;
point to R, is already at a greater distance thaiil, ., (R2). 36: OutputBest and best poinp;

Rule 4 is a local pruning in the sense that we are just pruning
off the potential nearest dominators of R2. We next desdribbe
a global pruning can be done for PAMBR. We maintain a var&ableare expanded by retrieving their children nodes. This idoniwo
Best which is always updated as the highesld..;»(R2) for all  phases.
R2 € PAMBR that had been processed. Our pruning go as follows: First, we need update the variables of some MBRs in the temp
list and the heap (line 10-15). Since R and NBR) are ex-
Rule 5: Global Pruning panded to their children, they can not be potential nearesti-d
An MBR R2 will be removed fromPdM BR as a potential answer nator or dominated MBRs any more. For each MBRin the temp
if nddmus(R2) < Best. This is because all points iR2 can never list, we need remove R and NR,(R) from all PdM BR(R') and
have a nearest dominator that is further away tBant. O PnrMBR(R'). If R happened to be the NR,(R’), we need
select a new NB,;, for R’ from the children of R. If ND,;, (R)
The pseudo-code of LDPQ algorithm is listed as Algorithm 2happened to be the NR,(R’), we need select a new N, for
To perform best first search, the algorithm maintain a heajgtwh R’ from the children of NDQ,;;(R). Once the ND,;;, is changed,
store allR in PAMBR sorted irdecreasingvalue ofndd..;»(R).  the value of the variabledd,,.,(R) need to be changed at the same
Initially, MBRs at the first level of the R-tree are retrievétbr each time. Obviously, all MBRs in the heap need to be updated also.
MBR, R, the function Initialize() is called to compute the followg  simplify the implementation and keep one copy for the sixalzdes
six variables: PdMBR(R), PnrMBR(R), NR»(R), ndd...»(R),  of each MBR, we can associate a unique ID with each MBR, and
NDpnub (R) andnddm.s (R). This is done by comparing against  just keep the IDs in the heap. In this case, only the tempdistirto
the rest of the MBRs. The algorithm maintains atemp list&pkall  be updated.
MBRs with their six variables. IR intersect the profitable region,  Next, we must compute the potential dominating and doméhate
it is then inserted intdeap. MBRs for the children nodes @t and ND,.;, (R) respectively.Line
Once all the first level MBRs are processed. The algorithm thel6-17 is used to initialize the children & and ND,,;» (R). After
access the top MBRR, from the heap and updafeest if this give  this, the dominating relationship inside ttieor ND,,.;»(R) was
a better result i.e. the nearest dominator is guaranteee torther  captured. For the children of NR,(R), the MBRs that are poten-
away thanBest for some point inR. Next, R and ND,,;5(R) ® tially dominated by them are the children Bfand all those MBRs

5This is the node that potentially dominate all pointsHrwith at  least distancedd,.i, (R)) as define earlier
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which are potentially dominated by NB»(R). These MBRs are

added into PAMBR at Line 18. Line 19 update PnrMBR, the set ({I:]LﬁSRATan'_tri'eé;ygrge;”cagrwl';ﬁgg Method.
MBRs that potentially dominate the children &f using the same oStp(Jt: ML2DQ answer W}'p P

reasoning. Line 20-34 then take each pair of MBRs from PAMBRyethod:

and PnrMBR and compute the values of the six variables by con-
sidering the three cases of dominating relationship thatliseuss 1-
earlier. Line 35 then perform a global pruning removingfalh the 2
heap withndd,,.;(R2) < Best. 3

The next item on the heap is then retrieved and the above proce
dure is repeated until there is no more items in the heap. Bjgeb 5:

that last update the variabRest will then be output. 6:

4.3 ML2DQ with Symmetrical R-tree 8:

We next look at the handling of ML2DQ using the symmetricaIQ: )
R-tree. The query consists of a distance bodirehd a profitability 7.
constraintP. The aim of this type of query is to find a poiptn the  12:
unprofitable region bounded hy and the min/max attribute axes 13:
such that the distance #® is minimized while satisfying the con- 14:
straints all thatudd(q) < §. Note that the use of ML2DQ is neces- 12
This can be trivially_ che_cked b_y issuing a LDPQ query riglnmr i;;
the start. As such in this section, we will only handle theecis 19:
which the top answer come from the non-profitable region. 20:

To answer ML2DQ, we adopt the same best first search approagh:
as LDPQ. The pruning comes in three forms. First, only MBRs in22:

23:

sary only if no points; in the profitable region satisfydd(q) < 4.

tersecting the non-profitable region are considered faaranen-
tioned earlier. Second, MBRs with nearest dominators theatess

than a distance of are removed. Third, MBRs which are too far o5
away fromP to be the result are also removed. 26:

Performing the first form of pruning involves trivial geomet 27:
computation which we will not describe here. For the secamthf 28
of pruning, we again separate the MBRs into PAMBR and PnrMB g;
and compute various bounds on the spatial distance between §;.
MBRs based on the three possible cases of dominant relhipns 3-
we described for LDPQ. 33:

heap = (; Best = oo;

% heap ordered by increasing MinDist(R,P)
Retrieve the first level of MBRs in R-tree;
FOR each MBRR in the first leveDO

Initialize(R), put R into theéemplist;
IF R intersect non-profitable region
Insert R into heap;

7: WHILE heap not emptyDO

RetrieveR from top ofheap;
Best = max(Best,M axzDist(R, P));
FOR each MBRR' in thetemplist, heap DO
RemoveR, ND,,;,(R) from all PAMBRE'), PnrMBRE®');
IF R equals to ND,,; (R')
Select a new NJ;;, for R’ from the children of R;
IF ND,,,;5 (R) equals to ND,,;, (R')
Select a new NR;;, for R’ from the children of N, ;5 (R);
FOR each childr of R, NDmIb(RDO
Initialize(r), putr into thetemplist;
PdMBR= Children ofR U PAMBR(ND,,;, (R));
PnrMBR = Children of NQ,,; (R) U PnrMBR(R);
FOR eachR2 € PAMBRDO
FOR eachR1 € PnrMBRDO
IF R1 and R2 DOES NOT follow all 3 caseOR
MinMinDist(R1, R2)> ndd b (R2)
Exit; % Process nexik1
ELSE IF R1 and R2 follow Case 3

ndd b (R2)=min(ndd,, ., (R2),MaxMinMaxDist(R1,R2));

ELSE IF R1 and R2 follow Case 2

ndd b (R2)=min(ndd,, ., (R2),MaxMaxDist(R1,R2));

AddR1 into PnrMBR(R2);
AddR2 into PdM BR(R1);
Maintain ND,,..5(R2);
IF ndd b (R2) > 6 % Pruning by Constraint
AddR2 into heap;
Performglobal pruning on heap;

34: OutputBest and best poinp;
Pruning by Constraint
An MBR R2, can be removed from PdMBR ifdd,,,,., (R2) < 9.
Obviously, all points inR2 will never satisfy the constraint that the
nearest dominator must be a distancé afvay.

Global Pruning

To perform pruning, we monitor MaxDist(R,P) for all MBRs in
The third type of pruning is to remove MBRs that are too falrPdMBR and maintain the smallest MaxDist among thenBast.

away fromP in the min/max dimensional space and thus can nevef/e then remove an MBR away from PdMBR if MinDist(R,P)

be among the best result. To achieve this goal, we again meed Best. Note thatBest are initially set tacc.

define the MinDist and MinMaxDist for an MBR, R2 to the plane

P, in time in the min/max dimensional space.

DEeFINITION 10. MinDist(R2,P)

The minimum distance between R2 and the piarie the min/max
dimensional space is the distance of the pom2f},....R27 ) to
the planeP if P does not intersecP else MinDist(R2,P)=0. O

DEFINITION 11. MaxDist(R2,P)

The minimum distance between R2 and the piare the min/max
dimensional space is the distance of the poiR2f,....R2/7,) to
the planeP. m|

The pseudo-code of ML2DQ algorithm is listed as Algorithm 3.
The overall structure of the algorithm is generally similarthe
LDPQ algorithm except for the ordering of the heap and theofise
the two pruning methods i.e. the constraint and global mgtni

5. ASYMMETRICAL METHODS

While a symmetrical approach is attractive because it cagere
a genericR-tree for supporting other forms of spatial and skyline
queries, it might not always be the best solution since therigs
that we are trying to handle are asymmetrical by nature; plae s
As mentioned earlier, since we assume that all attributésame  tial attributes and min/max attributes play different sond have
min attributes, the plan® will be anti-correlated compared against different characteristics in all the three types of queries
all the axes of the min/max attributes. Given this fact, the-m In NDQ, it is important to determine dominant relationship f
imum distance between the and an MBR, R2 will be the dis- the query point before finding the nearest neighbors among the
tance from{RQfl,...,RQﬁD‘} to P unlessP intersect R2 in which dominant points. In LDPQ and ML2DQ, the profitability corastit
case the MinDist is obviously 0. For the same reason, we ctenpuP is only defined in terms of min/max attributes and the dominan
MaxDist(R2,P) to be the distance betwe{e‘mﬁ,...RﬁD‘} which  relationship must be determined before neighborhoodioelsttip
is the maximum distance for a point B2 to move into the unprof- is evaluated.
itable region away fron#. On the other hand, there is also a difference in charadtehbist
tween dominant relationship and spatial closeness of twttg0A
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point p that dominates another poigtmight not be spatially close DEeFINITION 18. MaxDist(R,p)
even in the multi-dimensional space formed by the min/max at
tributes. For the spatial attributes however, neighbatdhtdoseness MaxDist(R,p)=

is rather important and much more pruning can in fact be esfbr maz{MaxDist(p, MCr;), MCri; € MCin(R)} o
in the early stage of the query answering if higher resotusioatial ) )
information is provided. DEFINITION 19. MInMaXDISt(R,p)

In view of this, we will next propose our solution by makingeus ) )
of anasymmetrical R-tree. Before construction of the tree, a clus- MinMaxDist(R,p)=
tering of the points are first employed in the spatial dimemsiby min{MazDist(p, MCri), MCri € MCin(R)} 0
grouping the points int& microclusters [18]M Ch,...,.M Cy. This
step can be finished by a typical pre-processing algorithRiCB
[17]. For each microclusted)/C;, we assign a cluster id, and
keep track of its mean valuéy/ C;.m and radius,MC;.r which

is the distance betweel C;.m and the furthest point in the clus- 5§ 2 LDPQ and |\/|L2DQ with Asymmetrical R-

By plugging these three new definitions into Algorithm 1, we
will have an algorithm that answer NDQ based on asymmetrical
approach.

ter. Given any two microclusterd/C; and M C;, we pre-compute tree
their maximum and minimum distance and store them in a lookup . L .
table. As can be seen from the previous section, it is relatively ¢as

convert a NDQ algorithm on a symmetrical R-tree to a NDQ algo-
DEFINITION 12. MinDist(MC;, MC) rithm on a asymmetrical R-tree. This is because for an asymme
The minimum distance\linDist(MC;, MC;), between two mi- rical R-tree, the MBR coordinates are maintained for the/miéx
croclustersM C; and M Cj is dist(MCi.m, MCj.m) — MCj.r — attributes and as such all dominant inference on the MBRhen t
MC;.r if this is greater than 0, els@/inDist(MC;, MC;) = 0 previous section can be applied. The only difference isgpatial
o inferences on the spatial attributes need different psiogsstrat-
egy. In an asymmetrical R-tree, the microclusters captighkehn
DEFINITION 13. MaxzDist(MC;, MCj) resolution spatial information in a bid to prune off seargace
The maximum distancé{ ax Dist(MC;, M Cj), between two mi- as early as possible. To adapt Algorithm 2 and 3 in the previou
croclustersM C; and M Cj is dist(MCi.m, MCj.m)+MCi.r+  section for computing LDPQ and ML2DQ on a asymmetrical R-
MCj.r. U tree, we need to redefine the function MinMinDist, MaxMaxDis

During the construction of the asymmetrical R-tree, the l\;SBRand MaxMinMaxDist for two MBRs R1 and R2.

are formed by the min/max attributes while spatial inforimaire  periniTion 20. MinMinDist(R1,R2)

captured in a bitmap of sizk with bit : representing the absence

and presence a¥/C; in the MBR. MinMinDist(R1,R2)=min{MinDist(M Cr1:,M C'r2;)
DEFINITION 14. MCIn(R) MCri; € MCin(R1), MCgra;i € MCin(R2)} O

Given an MBR, R, in an asymmetrical R-tree, we use MCIn{R)= gsqentially, given the two set of microclusters that aresgme
MCRra,...MCrjncin(r) } to denote the set of microclusters thati, \gR R1 and R2, we pick a pair of microclusters froRi and
are mark as present in R. U R2 with the smallest pairwise minimum distance and take guch

Now let us look at how to answer NDQs with an asymmetricaflistance to be MinMinDist.

R-tree. DEFINITION 21. MaxMaxDist(R1,R2)

5.1 NDQ with Asymmetrical R-tree _ :
. . ' . - . MaxMaxDist(R1,R2)anax{MaxDist(M Cr1:,M CRra;)

Given the query poinp, we first define its minimum and maxi- MChru; € MCin(R1), MCraj € MCin(R2)} O
mum distance with respect to any microclustér’;. fe PR

MaxMaxDist on the other hand, computes the exact opposite of
MinMinDist. Given the two set of microclusters, it picks aipa
which maximize the maximum distance between them.

Given a microclusteV/ Cr2; from MCin(R2), let us denote
the microcluster inM Cin(R1) which has the smallest MaxDist
to M Cr2; as NNMAX(M Cr2:,MCin(R1)) i.e. we are compar-
ing one single microcluster from/Cin( R2) against the whole set
of microcluster inR1 to find the nearest one from R1. We define
MaxMinMaxDist of two MBRs from the asymmetrical R-tree as

DEFINITION 16. MaxDist(p, MC;) follow:
Th i dist bet d MC; is defi : : .
& maximum distance hetweennd MC is define as DEFINITION 22. MaxMinMaxDist(R1,R2)

DEFINITION 15. MinDist(p, MC5)
The maximum distance betweeand M C; is define as:

MinDist(p, MC;) = dist(p, MC;.m) — MCj.r
if dist(p, MCs.m) > MCj.r

0 otherwise. O

MaxDist(p, MC;) = dist(p, MC;. MC;.r. . .
awDist(p, MCy) = dist(p, MCi:m) + MCi.r MaxMinMaxDist(R1,R2)=
Based on this, we can redefine the MinDist, MinMaxDist and ~ maxMaxDist(M Cr2:, NNMAX@M Cra:,M Cin(R1)))

MaxDist of an MBR R in the asymmetrical R-tree with respeci to whereM Cr2; € MCin(R2)} O
oint p.
P p In other word, MaxMinMax estimates the distance betweeh eac
DEFINITION 17. MinDist(R,p) microclusterM Crz; € M Cin(R2) to its nearest dominator in R1
based on pairwise MaxDist and then take the maximum one among
MinDist(R,p)= all these pairs to estimate an upper bound on pidid{ all pointsp

min{MinDist(p, MCr:), MCrs € MCin(R)} O inthe MBR R2.
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Once MinMinDist, MaxMaxDist and MaxMinMaxDist are de-

fined for MBRs in a asymmetrical R-tree, Algorithm 2 in theyire

spatial pruning is done at finer granularity in the earlient pathe
R-tree search.

ous section can then be used for answer LDPQ query while Algo- Figure 4(c) shows the run time of the three algorithms as tine-n

rithm 3 can be used for computing answers to ML2DQ queries.

6. EXPERIMENTAL EVALUATION

To evaluate the efficiency and scalability of our query pssasy
algorithms, we conducted extensive experiments. We impited
all algorithms using Microsoft Visual C++ V6.0, and concedtthe

ber of points increases from 20,000 to 100,000. From thdtsgsie
can see that both the symmetrical and the asymmetricalitdgor
are scalable with respect to the size of data sets. Howéneasym-
metrical method is more efficient than the symmetrical meitho

6.1.2 LDPQ
In this experiment, we evaluated the performance of theethre

experiments on a PC with Intel Pentium 4 2.4GHz CPU, 3G maigithms Naive, SYM-LDPQ and ASYM-LDPQ for answering a
memory and 80G hard disk, running Microsoft Windows XP PrOLDPQ query. The default data size is 10,000. In this case\ttiee

fessional Edition. We conducted experiments on both syicthad
real life data sets.

6.1 Results on Synthetic Data Sets

We generate a set of synthetic data. For the min/max dimesisio
we use the data generator that is used in [14] to generatesétsta

with three different distributions:Uniform(Uni), Coregkd(Cor) and
Anti-correlated(Ant). For spatial dimensions, we gernesta sets
with two different distributions: uniform(Uni) and clusesl(Clu).

The clustered distribution consist of 8 Gaussian distedudiusters

which are randomly placed. By combining the three types sf di

tribution for min/max dimensions and the two types of disition
for spatial dimensions, we obtain 6 different types of data:sUni-
Uni, Uni-Clu, Cor-Uni, Cor-Clu, Ant-Uni, Ant-Clu. As an eraple,
Uni-Clu refer to a dataset in which the data is uniformly listted
in the min/max dimensions and clustered in the spatial daiogrs.
We generate 5 different data sets for each of the 6 types &adte
running time to be average over the 5 different data sets.

The default values of dimensionality is 8, data size is 108k a

the default number of microclusters is $®or simplicity, we used
the same number of min/max attributes and spatial attrsbufes

algorithm perform a ASYN-NDQ search for all points in the faro
itable region and select the point with the highest neamastidator
distance among them. To test the efficiency and the scaiadilihe
three algorithms, we choose a profitability hyperplane tbaghly
splitting the data set into two parts of similar size.

Figure 5(a) shows the run time of the three algorithms fonans
ing a LDPQ query on six types of data sets. We can find that ASYM-
LDPQ is always the fastest one among the three algorithmsangm
the six distributions, we can see that the computation oAteCIu
data set gives the most improvement from symmetrical metbod
asymmetrical method while that of the Cor-Uni data set istiost
modest. This is because: 1) the domination relationshippcas
tion on the anti-correlated min/max dimensions is the fasience
in this case the number of skyline objects is the largest, lassl
dominating/dominated relationship needs to be maintaieddeen
MBRs (points). 2) the distance computation on the clustepadial
dimensions is the fastest since in this case spatial proyxicain be
explored and more pruning can be done in the early stage oy que
processing.

Figure 5(b) shows the run time of each algorithm with inciregs
dimensionality. Here we only show the results on the daswsith

an example, for 12 dimensions, we chose 6 dimensions as @n/Man.Cly distribution for the same reason mentioned earearly,

and the other 6 dimensions as spatial attributes.

6.1.1 NDQ

we can find that with increasing number of dimension, theinumt
of Naive and symmetrical method increases more signifigainén
that of asymmetrical method. The difference between theine

In this experiment, we evaluated the efficiency of our synimet of SyM-LDPQ and ASYM-LDPQ increases with dimensionality.

cal algorithm (SYM-NDQ) and the asymmetrical algorithm (8-

This is again due to the fact that the R-tree is more effedtitbe

NDQ) for answering a NDQ query. We compare our algorithmgsymmetrical approach because of the smaller number ofrdime

with a Naive method which returns the nearest dominator @fiatp
by perform all pair comparison between the points.

sions being indexed and because of the fine granularity ofrihe
croclusters which support effective spatial pruning evéh higher

Figure 4(a) shows the run time of the three algorithms for angimensionality.
swering a NDQ query on six types of data sets. Obviously, from gigyre 5(c) shows how the run time of each algorithm scales up
the results, we can see that SYM-NDQ outperforms Naive on alfs the number of points increase. We can find that although bot

data sets. This is because pruning can reduce computatitroe
MBRs whose MinDist to the query point is greater than theemnitrr
value of the variableBest. Among the algorithms, ASYM-NDQ

performs best as expected due to the separate index foretiffe

types of attributes. In addition, R-Trees only achieve hpgffor-
mance for low dimensionality (usualkf 5), and the R-tree in the
asymmetrical approach has smaller dimensionality.

the symmetrical and the asymmetrical algorithms scalatigethe
run time of the asymmetrical algorithm scales better tha ¢fi
the symmetrical algorithm. As the number of points increatiee
asymmetrical approach only slightly worsens since smallenber
of dimensions means that the height of the R-tree increasees|
than the symmetrical approach when more points are added.

Next, we look at the run time of the three algorithms as thenum6.1.3 ML2DQ

ber of dimension increases.Since the trends are the sam# §ix

We performed similar experiments for ML2DQ queries. We set

data sets, we only show the results on the data sets with Ant-Gy e jnput distance threshold as the average distance dpoitheir

distribution as it is the most efficient. We increase the neindf
dimension from 4 to 12. Figure 4(b) shows the run time of at¢h

nearest dominator.
Figure 6(a) shows the run time of the three algorithms (Naive

algorithms. We observe that with increasing number of disian SYM-ML2DQ, ASYM-ML2DQ) for answering a ML2DQ query
the runtime of Naive and symmetrical method increases migre s o, six types of data sets. Figure 6(b) and 6(c) shows the ma of

nificantly than that of asymmetrical method. This is agaie ti.the
fact that the R-tree is more effective in the asymmetricgragch

the three algorithms as the dimensionality and the numbpoioits
increases respectively. As expected, the asymmetricabapip per-

because of the smaller number of dimensions indexed andi§eca forms the best in both the figures for similar reasons as LDPQ.

81n our full paper, varying number of microcluster size froft
100 does not bring about significant changes in performaorcalif
datasets

6.2 Results on NBA Data Set

We downloaded from the NBA official website (www.nba.com)
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Figure 6: Query Performance for ML2DQ

the Great NBA Players’ technical statistics from 2004 to20fhd salary can be estimated by a regression of different teahsiatis-
downloaded NBA players’ salary information from website: tics. This theory can be represented by our profitabilitydmpfane,
http://asp.usatoday.com/sports/basketball/nbaiealar which can be thought of as a measure for deciding a NBA baaletb
The NBA data set has more than 20 attributes, from which wplayer's payment. Any player under or on this profitabilitypler-
chose the following foumin/max attributesthe number of games plane receives a salary that is well-deserved accordingstakent.
played(GP), points per game(PPG), rebounds per game(RRIG) a In our experiments, the profitability hyperplane was chosen
assists per game(APG). For these attributes, the largevallnes cording to a simplified version of this superstar theory dlovis:
are, the better. This mean that playedominates playeB if A's  0.03*GP + 0.20*PPG + 0.32*RPG + 0.45*APG. We found the top-
attribute values are not less th&'s, and A has at least one attribute 3 LDPQ players as shown in Table 2. While these players arthaot
better thanB. We selected weight, height and positionspatial  absolute top players, they meet the profitability constraind out-
attributessince these attributes are not performance measures to perform other players with similar values for thpatial attributes
minimized or maximized but can be used to identify playeet th height, weight and position. These players can only be “daied”
are comparable in terms of their attributes and are expaotedve by those players with significantly differegpatial attributevalues,
similar performance. Weight and height are numerical laitds i.e. by those players with much better physical conditionplay-
with canonical distance definitions, while the distance @dippons ing different positions. For example, D. Wade, a guard inrivlia
is defined to be 1 if two players are in different positions @ndth-  Heat, is best among all the guards with similar height andjhtei
erwise. Finally, we used the salary attribute to define atafafity  but he has a “dominator” L. James (6.4 feet, 212 pounds) ineCle
constraint. land Cavaliers, who has the advantage of a height of 6.8 fakt a
There are some very interesting results for the neighbatdom-  a weight of 240 pounds. So from the point of performancergala
inant queries. For example, let us consider Yao Ming, a 7e6, fe trade-off, it is desirable for a team to hire these players.
310 pounds all-star center in Houston Rockets, who had 8Q(GP
18.3(PPG), 8.4(RPG) and 0.8(APG) for the NBA 2004-2005 sea-Name GPF PPG RPG APG| Salary| Heighfl Weight| position
son. His nearest dominator is neither the best center in 8&,N [DWade | 77| 24.1 5.2 | 6.8 | 2.8m | 6.4t | 212b | guard
Shaquille O’Neal, and or the NBA MVP, Kevin Garnett, a for-| S.Marion | 81| 19.4 11.3| 1.9 | 12m | 6.7f 228b | forward
ward from Minnesota Timberwolves with 6.11 feet height a@@ 2 | E.Brand | 81] 20.00 9.5 | 2.6 | 12m [ 6.8f | 254b | forward
pounds weight, and a statistics of 82(GP), 22.2(PPG), RR&(

and 5.7(APG). Instead, he is a young center in Phoenix Sunaré Table 2: Top-3 LPDQ NBA players
Stoudemire. Amare is 6.10 feet high and weighs 245 poundsawit
record of 80(GP), 26.0(PPG), 8.9(RPG) and 1.6(APG). If we sets = 5, and keep the same hyperplane as before, the

Based on the Rosen-MacDonald’s superstar thiedng players’ 1op.3 ML2DQ players are shown in Table 3. We can observe that
the results are quite interesting too. For example, R. D@videet
"http://www.westga.edu/ bquest/2005/nba/NBA1.htm 195pounds) is a guard in Minnesota Timberwolves whose seare
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Name GH PPG RPG APG| Salary|] Heightf Weight] position
C.Maggette 66| 22.20 6.0 | 3.4 | 7Tm 6.6f 225b | forward
R.Hamilton 76] 18.7 3.9 | 49 | 7.8m | 6.7f 193b | guard
R.Davis 82 16.0 3.0 | 3.0 | 5.4m | 6.7f 195b | guard

Table 3: Top-3 ML2DPQ players
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[7] C.H. Papadimitriou J. Kleinberg and P. Raghavan. A

microeconomic view of data mining. Data Min. Knowl.
Discov, 2(4): 311-322, 1998.

Cuiping Li, Beng Chin Ooi, Anthony K. H. Tung, and Shan
Wang. Dada: a data cube for dominant relationship analysis.
In SIGMOD Conferengepages 659—670, 2006.

[9] J. Matousek. Computing dominanceseih In Inf. Process.

dominator is Kevin Garnett (6.11 feet,220 pounds). Theadist of

height and weight between these two players is large enaugdh),( [10]

which means Davis is a strong player among players with amil

physical condition and position. Only C.Maggette and R.it@m  [11]

have similarly small difference between their actual satard the
profitability constraint.

Lett, 1991.

F. Nielsen. Output-sensitive peeling of convex and imeak
layers. InThesis 1996.

Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhardggee
Progressive skyline computation in database systagsl
Trans. Database Sys80(1):41-82, 2005.

To conclude, our experiments on synthetic datasets dem®st [12] F. P. Preparata and M. I. Shamos. Computational gegmetr

the efficiency and scalability of our methods for processiioP,

An introduction. InSpringer-Verlag 1985.

LDPQ and ML2DQ queries. In addition, we show that the asymr13] Nick Roussopoulos, Stephen Kelley, and Frédéic ¥inic

metrical algorithms consistently and significantly oufpen their
symmetrical counterparts.

Nearest neighbor queries. 8iGMOD Conferencgages
71-79, 1995.

[14] D. Kossmann S. Borzsonyi and K. Stocker. The skyline

7. CONCLUSION

operator. INCDE, 2001.

Skyline queries have recently emerged as a promising garadi [15] |. Stojmenovic and M. Miyakawa. An optimal parallel

for decision support. These queries find objects that aretand-
ing, i.e. cannot be dominated, in terms of a set of attribtadse

algorithm for solving the maximal elements problem in the
plane. InParallel Computing 1988.

minimized or maximized. In this paper, we have introduceeé¢h [16] R. L. Rivest T. Cormen, C. E. Leiserson and C. Stein.

novel types of skyline queries, so-called neighborhood idant
queries, that exploit not only min/max attributes but algatil at-
tributes. Such queries support a micro-economic appraadedi-
sion making, considering not only the quality but also thet of so-
lutions. To efficiently process the proposed neighborhandidant
queries, we presented symmetrical as well as asymmetnidaki
based methods. While the symmetrical approach has the tadean
of using off-the-shelf index structures, our experimeetalluation
shows that the asymmetrical approach clearly performeibfet a

Introduction to algorithms, second edition.The MIT Press
2001.

[17] R. Ramakrishnan T. Zhang and M. Livny. Birch:an efficien

data clustering method for very large databaseSIGMOD,
1996.

[18] Anthony K. H. Tung W. Jin and J. Han. Mining top-n local

outliers in very large databases.HbD, 2001.

[19] J. X. Zheng W.-T. Balke, U. Guntzer. Efficient distribdt

skylining for web information systems. EBDT, 2004.

wide range of synthetic datasets. Our evaluation on the NBaG [20] Wei Wang Xuemin Lin, Yidong Yuan and Hongjun Lu.

Players dataset demonstrates that the proposed new gpesyxo-
duce meaningful and interesting results.

This paper suggests several promising directions for éuter
search. From a practical point of view, the integration @ fno-
posed query types into SQL and their treatment by the quetiy op
mizer of a DBMS deserve further investigation. A more thdoss
question is what other query types may be defined in our frarew
taking into account min/max and spatial attributes. Cqoesling
efficient query processing algorithms will have to be depeth Fi-
nally, in the spirit of the micro-economic framework, metsdor
ranking the usefulness of query results would be desirabprtic-
ular in the case of large databases with long result listsh@&n ap-
proach could bridge the gap between the two alternativedjares
of skyline queries and rank-aware query processing.
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