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ABSTRACT
This paper addresses the efficient processing of similarity
queries in metric spaces, where data is horizontally dis-
tributed across a P2P network. The proposed approach
does not rely on arbitrary data movement, hence each peer
joining the network autonomously stores its own data. We
present SIMPEER, a novel framework that dynamically clus-
ters peer data, in order to build distributed routing informa-
tion at super-peer level. SIMPEER allows the evaluation of
range and nearest neighbor queries in a distributed manner
that reduces communication cost, network latency, band-
width consumption and computational overhead at each in-
dividual peer. SIMPEER utilizes a set of distributed statis-
tics and guarantees that all similar objects to the query are
retrieved, without necessarily flooding the network during
query processing. The statistics are employed for estimat-
ing an adequate query radius for k-nearest neighbor queries,
and transform the query to a range query. Our experimen-
tal evaluation employs both real-world and synthetic data
collections, and our results show that SIMPEER performs
efficiently, even in the case of high degree of distribution.

1. INTRODUCTION
Similarity search in metric spaces has received consider-

able attention in the database research community [6, 14,
20]. The objective is to find all objects that are similar to
a given query object, such as a digital image, a text docu-
ment or a DNA sequence. Usually objects are represented
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in a high dimensional feature space and a distance func-
tion, usually more complex than the L2 norm (Euclidean
distance), defines the similarity of two objects [14], such as
the Levenshtein distance [21] for text retrieval or quadratic-
form distances for multimedia data [28]. The computational
complexity of similarity search indicates that distributed
processing can share this load over a set of machines, aiming
to achieve unlimited scalability, a fact also recognized in [23].
The P2P paradigm emerges as a powerful model for organiz-
ing and searching large data repositories distributed over in-
dependent sources. However, most algorithms for similarity
search in metric spaces still focus on centralized settings [6,
14, 16, 33] or – lately – on structured P2P networks [23, 26]
that do not necessarily preserve peer autonomy.

Super-peer infrastructures [31, 32] harness the merits of
both centralized and distributed architectures. Super-peer
networks tackle the scaling and ”single-point-of-failure” prob-
lems of centralized approaches, while exploiting the advan-
tages of the completely distributed approach, where each
peer builds an index over its own files and queries flood
the P2P network. Super-peers accept a limited number of
connections from peers and become responsible for building
and maintaining a summary index over their peers’ data.
In addition, each super-peer maintains information about
neighboring super-peers in the network (for example follow-
ing the notion of routing indices [9]) for routing queries to
remote peers.

Numerous interesting applications can be deployed over
such a super-peer infrastructure that supports similarity
search in metric spaces. The overall objective is for a set
of cooperative computers to collectively provide enhanced
searching facilities, aiming to overcome the limitations of
centralized settings, for example extremely high computa-
tional load. In particular, distributed image retrieval, docu-
ment retrieval in digital libraries, distributed search engines
(e.g. for multimedia content), file sharing, as well as dis-
tributed scientific databases, are all examples of applications
that can be realized over the proposed framework.

In this paper, we focus on the challenging problem of effi-
cient similarity query processing for metric spaces in highly
distributed P2P systems. Our approach relies on a super-
peer infrastructure and users who wish to participate, reg-
ister their machines to the P2P system. Each peer au-
tonomously stores its own data, which is a very impor-
tant feature for the aforementioned applications. Inspired
by iDistance [16, 33] we use a one-dimensional mapping to
index the data on each peer. We use the generated clusters
by the iDistance method to further summarize peer data at
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super-peer level.
Users (at any peer) can submit queries which are propa-

gated to an initiator super-peer, which then in turn routes
the query selectively to those super-peers that can provide
data, which belong to the query result set. Finally, the ini-
tiator gathers the objects and returns the result set to the
querying peer. A major focus of this paper is how to exclude
super-peers that can not contribute any results during query
processing, exploiting the routing indices. We propose SIM-
PEER, a framework that supports similarity queries and
provides guarantees that all similar objects to the query are
retrieved, without necessarily flooding the network during
query processing. We present algorithms for range and k-
nearest neighbor query processing. k-NN queries are trans-
formed into range queries, employing a radius estimation
technique, using distributed statistics in the form of his-
tograms maintained with each cluster description.

The key contributions of our work are:

• We present similarity search algorithms for metric spaces,
suitable for unstructured P2P settings. Our techniques
handle both range and k-NN queries.

• Our framework is based on a novel three-level cluster-
ing scheme (peer, super-peer and routing clusters) uti-
lizing distributed statistics, in the form of histograms.
These statistics are maintained by super-peers, in or-
der to avoid processing on peers can not contribute to
the result set.

• We extend a state-of-the-art centralized approach (iDis-
tance) for similarity search in metric spaces, in order
to facilitate indexing of clusters. We introduce sev-
eral pruning techniques that can speed up evaluation
of range queries.

• We demonstrate that, using the statistics maintained
by the super-peers, k-NN queries can be transformed
to simple range queries that can be, in most cases,
computed efficiently in a single pass by the peers.

Section 2 provides an overview of related work and in Sec-
tion 3 we describe the preliminaries. In Section 4, we present
an overview of SIMPEER. In Section 5, we describe query
processing, while routing indices are described in Section 6.
Thereafter, k-NN search is examined in detail in Section 7.
The experimental results are presented in Section 8, and
finally we conclude in Section 9.

2. RELATED WORK
Similarity search in P2P systems has attracted a lot of

attention recently, however most approaches focus mainly on
structured P2P systems or on building a network topology
that groups together peers with similar content.

Recently, MCAN [11] and M-Chord [23] were proposed
to handle the metric similarity search problem in structured
P2P networks. Both approaches focus on parallelism for
query execution, motivated by the fact that in real-life ap-
plications, a complex distance function is typically expen-
sive to compute. MCAN uses a pivot-based technique that
maps data objects to an N -dimensional vector space, while
M-Chord uses the principle of iDistance [16] to map objects
into one-dimensional values. Afterwards, both approaches
distribute the mapped objects over an underlying structured

P2P system, namely CAN [25] and Chord [30] respectively.
It is worth noticing that data preprocessing (clustering and
mapping) is done in a centralized fashion, and only then
data is assigned to peers. This constitutes an important
difference to our framework.

Recent work aims to process similarity search in P2P sys-
tems by building a suitable network topology. A general
solution for P2P similarity search for vector data is pro-
posed in [2], named SWAM. Unlike structured P2P systems,
peers autonomously store their data, and efficient search-
ing is based on building an overlay topology that brings
nodes with similar content together. However, SWAM is
not designed for metric spaces. A P2P framework for multi-
dimensional indexing based on a tree structured overlay is
proposed in [18]. LSH forest [3] stores documents in the
overlay network using a locality-sensitive hashing function
to index high-dimensional data for answering approximate
similarity queries.

Most approaches that address range query processing in
P2P systems rely on space partitioning and assignment of
specific space regions to certain peers. A load-balancing
system for range queries that extends Skip Graphs is pre-
sented in [29]. The use of Skip Graphs for range query pro-
cessing has also been proposed in [12]. Several P2P range
index structures have been proposed, such as Mercury [4],
P-tree [8], BATON [17]. A variant of structured P2P for
range queries that aims at exploiting peer heterogeneity is
presented in [24]. In [22], the authors propose NR-tree, a
P2P adaptation of the R*-tree, for querying spatial data.
Recently, in [19], routing indices stored at each peer are
used for P2P similarity search. Their approach relies on a
freezing technique, i.e. some queries are paused and can be
answered by streaming results of other queries.

While there exists some work on P2P similarity search
that focuses on caching [13, 27] or replication [5], our work’s
primary focus is query processing. Obviously, SIMPEER
can be enhanced with caching mechanisms such as the above
or by exploiting overlay topologies that cluster peers with
similar contents [10].

3. PRELIMINARIES
In this section we present a brief introduction of similarity

searching in metric spaces and we describe the query types
that should be supported. Further, an efficient approach for
centralized systems, namely iDistance [16, 33] is presented,
since SIMPEER extends its basic concepts.

3.1 Metric Space and Query Types
Similarity search in metric spaces focuses on supporting

queries, whose purpose is to retrieve objects which are sim-
ilar to a query point, when a metric distance function dist
measures the objects (dis)similarity.

More formally, a metric space is a pair M = (D, dist),
where D is a domain of feature values and dist is a dis-
tance function with the following properties: 1) dist(p, q) =
dist(q, p) (symmetry), 2) dist(p, q) > 0, q 6= p and dist(p, p) =
0 (non negativity), 3) dist(p, q) ≤ dist(p, o) + dist(o, q) (tri-
angle inequality).

In this paper instead of referring to the feature values of
an object, we refer to the object itself. There are two types
of similarity queries:

range query R(q, r) Retrieve all elements that are within
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distance r to q. This is {u ∈ U : dist(q, u) ≤ r}.

k-nearest neighbor query NNk(q) Retrieve the k clos-
est elements to q in U . This is, retrieve a set A ⊆ D
such that |A| = k and ∀u ∈ A, v ∈ D −A, dist(q, u) ≤
dist(q, v).

3.2 iDistance
iDistance [16, 33] is an index method for similarity search.

It partitions the data space into n clusters and selects a
reference point Ki for each cluster Ci. Each data object is
assigned a one-dimensional iDistance value according to the
distance to its cluster’s reference object. Having a constant
c to separate individual clusters, the iDistance value for an
object x ∈ Ci is

iDist(x) = i ∗ c + dist(Ki, x)

Expecting that c is large enough, all objects in cluster i are
mapped to the interval [i ∗ c, (i + 1) ∗ c], as shown in Fig. 1.
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Figure 1: iDistance mapping to 1-dimensional values.

The actual data objects are stored in a B+-tree using the
iDistance values as keys. Additionally, the cluster centers
Ki and the cluster radius ri are kept in a main memory list.
In this way, the problem of similarity search is transformed
to an interval search problem. For a range query R(q, r), for
each cluster Ci that satisfies the inequality dist(Ki, q)− r ≤
ri

1, the data elements that are assigned to the cluster Ci

and their iDistance values belonging to the interval [i ∗ c +
dist(Ki, q)− r, i∗ c+dist(Ki, q)+ r] are retrieved. For these
points pi the actual distance to the query point is evaluated
and thereafter, if the inequality dist(pi, q) ≤ r holds, pi is
added to the result set. The algorithm proposed in [33] for
nearest neighbor search is based on repetitive range queries
with growing radius.

4. SYSTEM OVERVIEW
The overall aim is to provide an infrastructure for answer-

ing similarity queries in metric spaces in super-peer net-
works. More formally, we assume a P2P network of Np

peers. Some peers have special roles, due to their enhanced
features, such as availability, stability, storage capability and
bandwidth capacity. These peers are called super-peers SPi

(i = 1..Nsp), and they constitute only a small fraction of the
peers in the network, i.e. Nsp << Np. Peers that join the
network directly connect to one of the super-peers. Each

1Henceforth mentioned as intersection of the range query
R(q, r) and the cluster Ci.

Symbols Description

d Data dimensionality
n Dataset cardinality
Np Number of peers
Nsp Number of super-peers
DEGp Degree of peer
DEGsp Degree of super-peer
kp Peer clusters
ksp Super-peer clusters
c iDistance constant
dist() Distance function
LCp={Ci : (Ki, ri)} List of peer clusters
LHC={HCi : (Oi, r

′
i)} List of hyper-clusters

LRC={RCi : (Ri, r
′′
i )} List of routing clusters

R(q, r) Range query
NNk(q) k-nearest neighbor query

Table 1: Overview of symbols.

super-peer maintains links to peers, based on the value of
its degree parameter DEGp, which is the number of peers
that it is connected to. In addition, a super-peer is con-
nected to a limited set of at most DEGsp other super-peers
(DEGsp < DEGp). An overview of the symbols used can
be found in Table 1. In this paper, we propose an approach
that enables similarity search in metric spaces over data dis-
tributed in a super-peer network, utilizing routing indices
based on cluster information.

In SIMPEER each peer maintains its own data objects,
such as images or documents, which refer to a high dimen-
sional metric space and a distance function provides a mea-
sure of (dis)similarity. In order to make its data searchable
by other peers, each peer first clusters its data using a stan-
dard clustering algorithm (like K-Means), and then sends
the cluster descriptions Ci, namely the cluster centroid and
radius (Ki,ri), to its super-peer. Only the cluster descrip-
tions Ci as a summarization of the peers’ data is published
to the super-peer, while the original data is stored by the
peer. The iDistance method is employed by the peer to in-
dex and provide access to its data, in order to efficiently
answer similarity queries during local query processing.

Each super-peer SPA maintains the cluster descriptions
of its associated peers. In order to keep the information in a
manageable size, SPA applies a clustering algorithm on the
cluster descriptions of its peers, which results in a new set of
cluster descriptions, also referred to as hyper-clusters, which
summarize the data objects of all peers connected to the
super-peer. The super-peer keeps a list of the hyper-clusters
in main memory and stores in a B+-tree the peers’ clusters
using an extension of the iDistance technique that is capable
to handle cluster descriptions instead of data points. This
extension, introduced in the next section, enables efficient
similarity searching over the cluster descriptions, so that the
query is posed only to peers having data that may appear
in the result set.

The remaining challenge is to answer such queries over
the entire super-peer network. Instead of flooding queries
at super-peer level, we build routing indices based on the
hyper-cluster descriptions that enable selective query rout-
ing only to super-peers that may actually be responsible of
peers with relevant results. The routing index construction
is based on communicating the hyper-cluster descriptions
and it is described in detail in Section 6. The number of
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collected hyper-clusters can be potentially large, therefore
the super-peer applies a clustering algorithm that results in
a set of routing clusters, that constitute a summary of the
hyper-cluster information. In a completely analogous way to
the indexing technique of the peers’ clusters, the super-peer
uses the proposed extension of iDistance to store the hyper-
cluster information, this time maintaining in main memory
only the routing clusters.

To summarize, SIMPEER utilizes a three-level clustering
scheme:

• Each peer clusters its own data. The resulting clusters
are used to index local points using iDistance.

• A super-peer receives cluster descriptions from its peers
and computes the hyper-clusters using our extension
of iDistance. Hyper-clusters are used by a super-peer
to decide which of its peers should process a query.

• Hyper-clusters are communicated among super-peers
and are further summarized, in order to build a set of
routing clusters. These are maintained at super-peer
level and they are used for routing a query across the
super-peer network.

Our routing indices based on cluster summarization sup-
port efficient query processing, in terms of local computa-
tion costs, communication costs and overall response time,
of both range and k-NN queries. More detailed, a query
may be posed at any peer and is propagated to the asso-
ciated super-peer, which becomes responsible for the query
processing and finally returns the result set to the querying
peer.

Given a range query R(q, r), each super-peer SPA that
receives the query uses its routing clusters to forward the
query to the neighboring super-peers which have either lo-
cally or in their routing indices clusters that intersect with
the query (Section 6.1). Thereafter, SPA forwards the range
query only to its own peers that have clusters intersecting
with the query based on the hyper-clusters (Section 5), or in
other words to peers that hold data that may appear in the
result set and should therefore be examined. Finally, SPA

collects the results of its associated peers and the queried
neighboring super-peers and sends the result set back to the
super-peer (or peer in the case of the initiator) from which
SPA received the query.

To process nearest neighbor queries, the initiator super-
peer is responsible to map this query to a range query and
then propagate it to the neighboring super-peers based on
its routing index. One of the arising challenges is the trans-
formation of a nearest neighbor query to a range query. A
k-NN query NNk(q) is equivalent to a range query R(q, rk)
where rk is the distance of the k-th nearest neighbor from
the point q. The main problem is that the distance rk is not
known a priori. Therefore, a heuristic is required to estimate
the distance of the k-th nearest neighbor. In this paper we
propose two alternatives (Section 7) to estimate an appro-
priate range over the distributed data, based on histograms
that capture distance distributions within clusters.

5. DISTRIBUTED QUERY PROCESSING
In this section, we focus on the query processing per-

formed by each super-peer based on its peers’ data. In more
detail, first we consider the query processing performed by a

Algorithm 1 Peer query processing.

1: Input: (q, r)
2: Output: Result set S
3: for Ci ∈ {LCp} do

4: if (d(Ki, q) − r ≤ ri) then

5: cursor ← B+tree range query[dist(Ki, q) + i ∗ c −
r, dist(Ki, q) + i ∗ c + r]

6: while (candidate = has next(cursor)) do

7: if (dist(candidate, q) ≤ r) then

8: S ← S ∪ {candidate}
9: end if

10: end while

11: end if

12: end for

13: return S

single peer, therefore we present the iDistance indexing tech-
nique used by each peer. Then, we consider query processing
with respect to a single super-peer and its associated peers.
For this task, an efficient extension of iDistance is proposed
and a search algorithm is presented that allows a super-peer
to choose the subset of its peers that are relevant to the
query. Finally, we discuss the extensions that are required
to support k-NN queries and focus on the progressive eval-
uation of range queries with increasing radius. In the next
section, we present the routing indices technique, that en-
ables efficient similarity search over the whole network.

5.1 Peer Query Processing
Each peer is responsible for its own data, which is orga-

nized and stored based on the iDistance concept. First, the
peer applies a clustering algorithm on its local data. Even
though the choice of the algorithm influences the overall
performance of the system, each peer may choose any clus-
tering algorithm. The clustering algorithm leads to a set of
clusters LCp={Ci : (Ki, ri)|1 ≤ i ≤ kp}. Each cluster is de-
scribed by a cluster centroid Ki and a radius ri, which is the
distance of the farthest point of the cluster to the centroid.

Each data object is assigned to the nearest cluster Ci and
it is mapped to a one dimensional value following the same
mapping as iDistance. The iDistance values of the data
objects are indexed in an ordinary B+-tree, while the list
of the clusters LCp, with the centroids and the radii of the
clusters, is kept in main memory.

Peers process mainly range queries over their local data.
As stated in [16, 33], the range algorithm examines each clus-
ter in the list LCp and searches separately those clusters that
possibly contain objects matching the query. Algorithm 1
describes how range query processing on a peer is performed.
Practically, for each peer cluster Ci ∈ LCp, the algorithm
tests if the query intersects the cluster area (line 4). Thus,
if a cluster Ci satisfies the inequality dist(Ki, q)−r ≤ ri, an
interval search [dist(Ki, q)+ i∗ c− r, dist(Ki, q)+ i∗ c+ r] is
posed on the B+-tree. This iDistance interval corresponds
to the cluster area that should be scanned in order to find all
relevant objects. After these objects are retrieved, a refine-
ment step is required, due to the lossy mapping of iDistance,
which maps different equidistant points from Ki to the same
one dimensional value. In the refinement step, each object’s
distance to q is computed and if it is smaller than r (line 7),
the object is added to the result set S (line 8). For exam-
ple in Fig. 1 the range query intersects with both clusters
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C1, C2. According to the iDistance values all objects falling
in the dark grey shadowed area are retrieved and examined
whether they belong to the result set.

Notice that in contrast to [33] we do not focus on I/O
optimization issues, since it is out of the scope of this pa-
per. Additionally, B+-trees are available in any commercial
database system, so that our algorithm can be built on any
existing system and peers do not have to maintain special
purpose indexes.

5.2 Super-peer Query Processing
A super-peer SPA processes a range query by using its

peers’ cluster descriptions. Therefore, a super-peer deter-
mines the clusters and, consequently, also the peers, that
intersect with the range query, while the actual data is ac-
cessed directly from peers during query processing. Since
the number of clusters increases rapidly according to the
number of connected peers, in order to reduce the number
of distance computations and intersection calculations and
provide efficient query processing, the iDistance concept is
followed. SPA applies a clustering algorithm on the cluster
descriptions and – in a similar way to iDistance – maps high-
dimensional points to one dimensional values. The cluster
descriptions (having high-dimensional cluster centers) are
mapped to one dimensional values, in such a way that range
and k-NN queries can be mapped into an interval search.

In the following, first we extend the iDistance mapping
for clusters and then we present the search algorithm, which
ensures that all clusters that intersect with the range query
are retrieved.

5.2.1 One Dimensional Mapping of Clusters
A super-peer SPA collects the cluster descriptions from

its associated peers LCsp={(K1, r1), ..., (Knsp , rnsp)}, where
nsp is the total number of clusters. For the sake of simplicity,
we assume that nsp=kp ∗DEGp, i.e. all peers have the same
number of clusters kp. Following the iDistance concept, SPA

applies a clustering algorithm on the list LCsp which results
in a list of clusters (called hyper-clusters) LHCsp={HCi :
(Oi, r

′
i)|1 ≤ i ≤ ksp}, where ksp the number of hyper-

clusters, Oi the hyper-cluster center and r′i the hyper-cluster
radius, which is the distance of the farthest point of all clus-
ters assigned to the hyper-cluster, to the centroid.

Each cluster Cj is mapped to a one-dimensional value
based on the nearest hyper-cluster center Oi using formula:

keyj=i ∗ c + [dist(Oi, Kj) + rj ]
which practically maps the farthest point of a cluster Cj

based on the nearest reference point Oi. Similarly to iDis-
tance, the one dimensional values are indexed using a B+-
tree. In more detail, the B+-tree entry ej consists of the
cluster’s center Kj , its radius rj and the distance dj to its
nearest reference point:

ej : (keyj , Kj , rj , dj , IPj)
Additionally, in the B+-tree entry, the IP address of the
peer is stored, in order to be able to propagate the query to
those peers that have clusters that intersect with the query.

Furthermore, for each hyper-cluster HCi, except from the
radius r′i, we also keep a lower bound (dist mini) of all clus-
ter distances. The distance dist mini is the distance of the
nearest point of all clusters Cj to Oi. These two distances
practically define the effective data region of reference point
Oi, or in other words, the region where all points of all clus-
ters Cj belong to.
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Figure 2: Covering region for a hyper-cluster Oi,

and search interval based on range query R(q, r).

Algorithm 2 Range Query Search.

1: Input: (q, r)
2: Output: Result set S
3: for Oi ∈ {LHC} do

4: dis ← dist(Oi, q)
5: lower ← max(dis − r, dist mini)
6: if (dis − r ≤ r′i) and (dis + r ≥ dist mini) then

7: lnode ← LocateLeaf(btree, i ∗ c + lower)
8: Outward(lnode, i ∗ c + r′i, dis)
9: end if

10: end for

11: return S

5.2.2 Range Query Processing
In this section, we provide an algorithm that retrieves all

clusters that intersect with a given range query R(q, r). In
order to retrieve all clusters that belong to a hyper-cluster
HCi an interval search [i ∗ c + dist mini, i ∗ c + r′i] on the
iDistance values is posed, since the region [dist mini, r′i]
contains all clusters assigned to the hyper-cluster HCi. In
the following, we denote with dis the distance of Oi to q.
The goal of our search algorithm is to filter out clusters
that do not intersect with the query, based on the iDistance
values. Since the points are mapped to one dimensional
values with respect to the farthest points of each cluster,
searching all indexed points until r′i cannot be avoided. This
is clearly depicted in Fig. 2 by means of an example. The
hyper-cluster radius r′i is defined by the farthest point of the
cluster C1, whereas dist mini is defined by cluster C5. The
query intersects with C1 that is mapped to an iDistance
value based on the r′i distance. In other words, it is not
enough to search until dis + r, since some farthest points of
intersecting clusters may be overlooked. The starting point
of the interval search is the iDistance value corresponding
to max(dis − r, dist mini). For the query R(q, r), in our
example (Fig. 2), the search scans the interval [i ∗ c + dis −
r, i ∗ c + r′i].

Algorithm 2 describes the range query search algorithm
performed by super-peer. Range query search takes as input
a query point q and a radius r. The range search algorithm
essentially consists of three steps: 1) it checks whether the
hyper-cluster HCi can provide relevant results (line 6), 2) (if
so) it locates a starting point, denoted as lower = max(dis−
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Algorithm 3 Outward.

1: Input: (node, ivalue, dis)
/* {E} is the set of entries in node */

2: for (ei : (keyi, Ki, ri, di, IPi) ∈ {E}; keyi < ivalue) do

3: if (|dis − di| ≤ r + ri) then

4: if (dist(Ki, q) ≤ r + ri) then

5: S ← S ∪ ei

6: end if

7: end if

8: end for

9: if (elast.key < ivalue) then

10: Outward(node.rightnode, ivalue)
11: end if

12: return

r, dist mini) (line 5), for starting an interval search on the
B+-tree (line 7), and 3) scans the interval until r′i (line 8).
LocateLeaf() implements a standard search for some input
value on a B+-tree and returns the leaf node corresponding
to the input value. Notice that we use the same notation as
in the original iDistance publication [33].

Outward (Algorithm 3) takes as input the leaf node from
which the search starts, the high-end value for searching
and the distance dis of the query point to the hyper-cluster.
Each entry ei, i.e. cluster, stored in node is checked to ensure
that it is within distance r+ri to the query (line 4). The ob-
jective of the range query algorithm is to reduce, besides the
number of accessed nodes, also the number of distance com-
putations needed for query processing, which may be costly
for metric spaces and complex distance functions. For this
propose, all the information concerning distances stored in
the nodes of the B+-tree is used to effectively apply the tri-
angle inequality. The |dis − di| (line 3) is a lower bound on
the distance of dist(Ki, q). The inequality in line 3 reduces
the number of distance computations during query process-
ing. If necessary, the algorithm initiates a search to the next
leaf (line 9-10) of the B+-tree.

5.3 k-NN Search
In a similar way to iDistance, peers are capable to pro-

cess nearest neighbor queries locally. According to [16, 33],
a peer would process the query by executing a range query
with an initial range. If less than k data objects are re-
trieved, the radius of the range query is increased repeat-
edly, until k data object are retrieved. Since our application
area is a P2P environment, a strategy that uses a small ra-
dius and increments it until k objects are retrieved would
cause more than one round-trips over the network, which is
quite costly. In SIMPEER the super-peers maintain a set of
statistics that can estimate the distance of the k-th object
from the query point and avoid the execution of multiple
range queries. In Section 7, we discuss alternative radius
estimation techniques and also a naive evaluation over the
initiator’s peers, to estimate an upper bound of the required
range.

In our approach the evaluation of nearest neighbor queries
is restricted to at most two round trips. In the first round
trip, a range query is posed with the radius estimated by the
distributed statistics. If the first round trip fails to retrieve
k objects, a second round-trip cannot be avoided. In the sec-
ond round trip, the upper bound defined by the naive evalua-
tion over the initiator’s peers is used, in order to ensure that

at least k objects are retrieved. To reduce the costs of the
second round trip (if required), our range query algorithms
are extended to efficiently support the progressive evaluation
of range queries with increasing radius. The range query
R(q, r) is enhanced with a lower bound of the distance rlow,
i.e. R(q, r, rlow) and the proposed algorithms support the
evaluation of such queries by retrieving all objects p having a
distance rlow ≤ dist(p, q) ≤ r. The condition of Algorithm 2
(line 6) is enhanced with the condition dis + r′i ≥ rlow in
order to filter out hyper-clusters that cannot contribute to
the result set. Similarly, in Algorithm 3 (line 3) the condi-
tion dist(ei, q) + r(ei) ≥ rlow is included to discard clusters
that were retrieved in the previous round trip. Finally, Al-
gorithm 1 is modified by posing two interval searches on the
B+-tree, namely [dist(Ki, q)+i∗c−r, dist(Ki, q)+i∗c−rlow]
and [dist(Ki, q) + i ∗ c + rlow, dist(Ki, q) + i ∗ c + r].

In order to further reduce the network traffic for the case
of k-nearest neighbor search, each intermediate super-peer
receives at most k results from each neighboring super-peer
or connected peer and propagates back (using the query
routing path) only the k results with lowest distance to
the query. It should be noted, that to reduce the associ-
ated computation and routing costs even more, intermedi-
ate super-peers can decrease the estimated radius, provided
that they find k results locally and the distance of the k-th
object is smaller than the estimated radius. Nevertheless,
this would require serialized query processing, therefore we
do not consider this option.

6. ROUTING INDICES
This section first discusses the query routing that is per-

formed by utilizing the routing indices and presents the con-
struction and maintenance of the routing information at
super-peer level. Afterwards, we discuss how churn (peer
joins and failures) affects the proposed system.

6.1 Usage, Construction and Maintenance
As regards routing index construction, each super-peer

builds a variant of routing indices, in order to efficiently
route queries to the appropriate neighboring super-peers.
The routing information consists of assembled hyper-clusters
HCi of other super-peers. In more detail, for each neighbor-
ing super-peer a list of hyper-clusters is maintained, corre-
sponding to hyper-clusters that are reachable through this
particular neighboring super-peer. During query routing,
the routing indices are used to prune neighboring super-
peers, thus inducing query processing only on those super-
peers that can contribute to the final result set. More for-
mally, given a query R(q, r) and a set of hyper-clusters
HCi:(Oi, ri), a neighboring super-peer is pruned if for all of
its hyper-clusters HCi it holds:

dist(Oi, q) > r + ri

Each super-peer SPA broadcasts its hyper-clusters using
create messages in the super-peer network. Then, each recip-
ient super-peer SPr reached by create messages, assembles
the hyper-clusters of other super-peers. Even though this
broadcasting phase can be costly, especially for very large
super-peer networks, we emphasize that this cost 1) is paid
only once at construction time, 2) depends mainly on the
number of super-peers Nsp and hyper-clusters per super-
peer ksp and not on the cardinality n of the data set, as in
the case of structured P2P networks, and 3) can be toler-
ated for the network sizes of currently deployed super-peer
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networks, as we will also show in the experiments. In this
paper we focus on algorithms that return accurate results
in the covered network. We leave for future work the exten-
sion and study of query processing in the cases of networks
with limited resources that can not support broadcasting of
super-peer hyper-clusters.

Because the list of assembled hyper-clusters at SPr may
be potentially big to maintain in main memory, SPr runs a
clustering algorithm, which results in a set of routing clus-
ters (RC). Then SPr indexes the hyper-clusters, in a com-
pletely analogous manner as it clustered its peers clusters
into hyper-clusters. The only difference is that for each
routing cluster, the identifier of the neighboring super-peer,
from which the owner of the hyper-cluster is accessible, is
additionally stored.

Summarizing, a super-peer SPA uses the extension of the
iDistance in two ways. First, it clusters its peers’ clusters
{LCpi|1 ≤ i ≤ DEGp} into hyper-clusters HCi and indexes
this information in a B+-tree. SPA also clusters the hyper-
clusters {LHCi|1 ≤ i ≤ Nsp−1} collected from other super-
peers, resulting in a list of routing clusters LRCA. These
are then used to index LHCi in a separate B+-tree using
the one dimensional mapping of iDistance, analogously to
the technique employed for its peers’ clusters.

Maintenance of routing indices is straightforward and can
be accomplished using the well-established techniques de-
scribed in [9]. In practice, when a super-peer detects a
significant change in one of its hyper-clusters, it decides to
broadcast this modification in a similar way to the construc-
tion phase. A modification can be due to peer data updates
that altered the radius of a peer cluster, and eventually its
hyper-cluster. It can also be the result of churn (peer joins
or failures), that alter the radius of a hyper-cluster.

6.2 Churn
The SIMPEER architecture makes the system more re-

silient to failures compared to other P2P systems. Super-
peers have stable roles, but in the extreme case that a super-
peer fails, its peers can connect to another super-peer using
the basic bootstrapping protocol. A peer failure may cause
the responsible super-peer to update its hyper-cluster ra-
dius. Only if churn rate is high, these changes are prop-
agated to other super-peers. Even if updates do not occur
immediately after a peer fails, the only impact to our system
is that the cost of searching is increased (i.e. super-peers no
longer holding relevant results may be contacted), but the
validity of the result is not compromised.

As already mentioned, a peer joins the network by con-
tacting a super-peer using the bootstrapping protocol. The
bootstrapping super-peer SPB uses its routing clusters to
find the most relevant super-peer to the joining peer. This
is equivalent to a similarity search over the super-peer net-
work. When the most relevant super-peer SPr is discovered,
the new peer joins SPr. An interesting property of our ap-
proach is that joining peers become members of relevant
super-peers, so it is expected as new peers join the system,
that clustered data sets are gradually formed, with respect
to the assigned super-peers. This is close to the notion of
semantic overlay network (SON) construction [10], which is
similar to having clustered data assignment to super-peers.

7. NEAREST NEIGHBOR SEARCH
In highly distributed systems, such as P2P networks, each

communication phase (round trip) during query processing
is costly. Ideally, in a P2P environment, it is beneficial to
have a small fixed number of round-trips in the network,
ensuring small query response times, even at the cost of
higher local computation costs and local interactions.

In this section, we present our approach in which the
super-peers maintain a set of statistics that aim to estimate
the distance of the k-th object from the query point and
avoid the execution of multiple range queries. Given a k-
NN query q, the objective is to find a radius rk to trans-
form NNk(q) into a range query R(q, rk). To avoid multiple
round trips, the radius rk should be slightly overestimated,
in order to increase the probability that one round-trip is
enough for retrieving the correct results. If less than k data
objects are retrieved, a second round trip can not be avoided.
To ensure that in the second round trip we return at least
k objects, we present an algorithm for the naive evaluation
of k-NN queries, with respect only to the initiator super-
peer and its associated peers, in order to estimate an upper
bound of the required range for a distributed k-NN query.

To summarize we consider two different methods for ra-
dius estimation that can be performed at any initiator super-
peer locally, i.e. without any communication, namely: 1)
histogram-based local estimation (LE), and 2) histogram-based
global estimation (GE). A histogram maintains information
about the distribution of distances within a cluster. We
also present a naive approach, called initiator computation
(IC), in which the initiator actually communicates with all
its peers to retrieve a local radius value, which is used as an
upper bound for radius.

7.1 Initiator Computation
The initiator super-peer SPA determines the nearest clus-

ter Ci ∈ LHCA to the query point q, where LHCA denotes
the main memory list of hyper-clusters. Thereafter, SPA

determines the peer to which the cluster Ci belongs, and
sends a k-NN query to it. As mentioned before, peers are
capable to process k-NN queries, for instance by repeatedly
executing local range queries with increasing range2. After
processing the query, the peer returns the distance rk of its
k-th nearest object to the query. The distance rk can be
used by SPA to initiate the range query R(q, rk) that cor-
responds to the k-NN query. Notice that in this approach,
the distance rk is large enough to ensure us that at least k
objects are retrieved and no other round-trip is required. In
fact, rk can be potentially large, since it is computed based
on the data present on one peer only. Therefore SPA needs
to shrink the range of the posed query, however without
paying a high cost (e.g. by contacting other super-peers).
An option is to send a range query R(q, rk) to the rest of its
peers only, in order to retrieve a better (i.e., smaller) value of
rk. This value is used to query the rest of the super-peer net-
work. It should be emphasized that initiator computation
requires actual communication between the initiator and its
peers, so it is a distributed process that bears some non
negligible communication cost, in contrast to the proposed
estimation techniques.

7.2 Histogram Construction
Our approach is applicable for any metric-based distance

function, thus, it does not rely on information about data

2If more advanced local algorithms are employed this is com-
plementary to our work
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Figure 3: Radius estimation rk for query (q, rk).

distribution. Metric spaces are characterized by (an esti-
mate of) the distance distribution of the objects [7].

Given a metric space M the (overall) distribution of dis-
tances is defined as: F (r) = Pr{d(q, p) ≤ r}, where q and p
are any two random points. Since F (r) denotes the proba-
bility for a point to lie in the range query with radius r and
center the point q the expected number of objects retrieved
by a range query R(q, r) are objs(R(q, r)) = n ∗F (r), where
n denotes the cardinality of the dataset.

We follow the same methodology as in [7]. We assume
that the index of homogeneity of viewpoints is ”high”, which
means that two random points are very likely to have an al-
most common view of the metric space M . [7] verifies that
this is very common in a wide variety of real and synthetic
datasets. Capitalizing on this assumption, the relative dis-
tance distribution Fq of a query object q is well approxi-

mated by a sampled distance distribution F̂ , which can be
represented by the m × m matrix of pairwise distances be-
tween m objects.

We propose an approach relying on histograms to approx-
imate the distance distribution. Histograms are employed
to summarize the number of distances between data object.
Optimization of histograms is out of the scope of this pa-
per and is left as future work, so we base our model on
equi-width histograms, even though we could succeed bet-
ter performance with optimized histograms [1, 15].

Our objective is to represent the approximate distance
distribution within each cluster Ci and estimate the distance
of the k-th nearest object to a query point q. Towards this
goal, the distance distribution is approximated by an equi-
width histogram with size of bin rB

3, respectively storing
the values of: F̂i(rB), F̂i(2 ∗ rB) ... F̂i(s ∗ rB), i.e., using
as many bins (s) as necessary for reaching the maximum
distance in cluster Ci, in other words the minimum s for
which: s ∗ rB ≥ 2 ∗ ri. In fact, each bin F̂i(l ∗ rB) holds the
frequency of the distances for which: dist(pm, pn) ≤ l ∗ rB

where pm, pn any data objects.

7.3 Histogram-based Radius Estimation
We first propose a method (LE) for estimating the dis-

tance of the k-th nearest neighbor based only on the cluster
descriptions kept by one super-peer. For any cluster Ci that
intersects with the query R(q, rk), we estimate the num-
ber of objects that can be retrieved by the query based on
Ci’s histogram. Assuming a radius rk, for any intersecting
cluster Ci two cases can be distinguished: 1) the inequality

3In the following, for sake of simplicity we assume that clus-
ter histograms are represented with a common size of bins
rB .

Algorithm 4 k-NN radius estimation.

1: Input: Query q, k, List of peer clusters LCp, Maximum
histogram bin of any cluster Ci: smax

2: Output: Estimated radius rk

3: low ← 0
4: high ← smax

5: while (low < high) do

6: mid ← ⌈ low+high

2
⌉

7: sum ← 0
8: for (Ci ∈ LCsp) do

9: if (dist(Ki, q) + mid ≤ ri) then

10: sum ← sum + ni ∗ F̂ n
i (mid ∗ rB)

11: end if

12: if (dist(Ki, q) + mid > ri) then

13: sum ← sum + ni ∗ F̂ n
i (mid∗rB+ri−dist(Ki,q)

2
)

14: end if

15: end for

16: if (sum ≥ k) then

17: high ← mid
18: else

19: low ← mid
20: end if

21: end while

22: rk ← low ∗ rB

23: return rk

dist(Ki, q) + rk ≤ ri holds, or 2) cluster Ci partially inter-
sects with the range query R(q, rk). An example of both
cases for the Euclidean distance is depicted in Fig. 3.

For the first case we estimate the number of objects (oi)
retrieved by the query R(q, rk) from cluster Ci:

oi = objs(R(q, rk)) = ni ∗ F̂i(rk) (1)

where ni is the cardinality of cluster Ci.
In the second case, where the query partially intersects

with a cluster, the number of objects (oi) retrieved by the
query R(q, rk) from cluster Ci is estimated based on a smaller
radius that corresponds to the intersection and is approxi-

mated by r′k = ri+rk−dist(Ki,q)
2

. The estimated number of
objects (oi) retrieved from Ci is:

oi = objs(R(q,
ri + rk − dist(Ki, q)

2
)) (2)

Considering Fig. 3(b), we use as query area the dark grey
shadowed circle that is contained in the cluster, which is
smaller than the real intersection, and leads to an underes-
timation of the number of objects contained, therefore an
overestimation of radius rk.

Algorithm 4 describes how radius estimation is performed.
The intuition of the algorithm is based on a binary search
of the interval (low, high) = (1, smax). Notice that smax

denotes the maximum number of bins in any histogram of all
clusters Ci. In more detail, in each iteration of the algorithm
(line 5), the middle mid of the interval (low, high) is used,
in order to search within each intersecting cluster Ci. If
Ci contains the query area, equation 1 is used, otherwise
equation 2 is employed, in order to add up the estimated
number of objects that can be retrieved from intersecting
clusters. If the estimated number of objects (sum) is larger
than or equal to k (line 16), a binary search on the interval
(low, mid) is initiated. If the number of objects is less than
k (line 18) the interval searched is (mid, high). Eventually,
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the binary search terminates, based on the condition on line
5, and the estimated value of the radius (line 22) is returned.

In Algorithm 4, we implicitly assume that all clusters in
LCsp intersect with the query. In order to reduce the com-
putational cost, instead of examining all clusters Ci ∈ LCsp,
we first examine whether the hyper-cluster HCi ∈ LHC in-
tersects with the query. For each hyper-clusters HCi which
intersects with the query, we retrieve from the B+-tree the
clusters intersecting with the query, based on their iDistance
values.

7.4 Global Radius Estimation
In order to get a more refined radius estimation, we extend

the estimation algorithm to be applicable over the routing
indices that describe the objects over the whole network.
Thus, we consider how to enrich the hyper-clusters, which
are stored for routing purposes, with histogram information
aggregated from the individual clusters.

Let us consider a hyper-cluster HCi where a set of clus-
ters Cj – each of them having a histogram describing its
distance distribution – are assigned to HCi. Each hyper-
cluster is enhanced with two histograms, in order to esti-
mate the number of data objects retrieved by a range query
from HCi. In other words, the distance distribution is de-
scribed by a two-level histogram approximation. The first
histogram hci determines the number of clusters nci that
the query intersects. The second histogram hdi maintains
an estimate of the number of data objects ndi that a cluster
contains, based on the radius of the intersection.

Practically, for histogram hci, we need to describe the dis-
tance distribution of the clusters within the hyper-cluster.
We build a histogram based on the cluster distances. Simi-
larly to the histogram construction of the cluster, we approx-
imate the distance distribution based on the frequencies of
distances that occur for any pair of clusters. Let’s assume
that we have two clusters Ci and Cj . We use as distance
between two cluster centroids Ki, Kj the distance of the
cluster centroid Ki to the nearest point of cluster Cj , i.e.
dist(Ki, Kj)− rj . In other words, we calculate the required
radius of a range query at q = Ki for intersecting with clus-
ter Cj . For example consider Fig. 4(a) that depicts three
clusters A, B and C, inside a hyper-cluster and a matrix
with their pairwise distances dist(Ki, Kj) − rj . The matrix
is read row-by-row, for instance the first row means that
cluster’s A distance to B is 2 units, while its distance to C
is 3 units. If rB denotes the histogram’s bin size, the value
of bin i is then computed as the number of cells in matrix
with value smaller or equal to i divided by the total number
of cells. In this example, the histogram values are rB = 4/9,
2 ∗ rB = 6/9 and 3 ∗ rB = 1.

Then, for histogram hdi, we need to summarize the in-
formation of clusters Cj . Since our goal is to estimate a
radius that probably contains k points in its range, HCi

keeps a new superimposed histogram hdi containing in each
bin the minimum value of the bins of all cluster histograms
that correspond to the same distance. In addition, for each
hyper-cluster HCi we also maintain the minimum cardinal-
ity nc = min(nCj

|Cj ∈ HCi) of all clusters belonging to
HCi. The summarized histogram and the minimum cluster
cardinality nc are attached to the hyper-cluster HCi, and
broadcasted during the routing index construction phase.

Now we can proceed to global radius estimation, based
on the two histograms. The algorithm for the estimation
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Figure 4: Hyper-clusters for radius estimation.

based on the hyper-clusters through the routing index is
completely similar to the Algorithm 4. Again, our algorithm
is based on a binary search to estimate the radius rk. In each
step, a potential radius rk is calculated and all hyper-clusters
{HCi : (Oi, r

′
i)} ∈ LHC that intersect with the query based

on the current radius rk are retrieved. For each hyper-cluster
the number of objects oi retrieved by the query R(q, rk)
from hyper-cluster HCi is estimated. In a similar way to
the local estimation, we distinguish two cases and define
as l the number of bins that are required for intersection.
If the inequality dist(Oi, q) + rk ≤ r′i holds we define l =

⌈ r
rB

⌉ else l = ⌈
r′

i+rk−dist(Oi,q)

2∗rB
⌉. The number of objects oi

retrieved by a range query R(q, rk) from the hyper-cluster

HCi is given by: oi =
∑l

j=0(nci(j ∗rB)∗ndi(j ∗rB)), where

nci(j ∗rB) is the estimated number of clusters that intersect
the query with radius j∗rB (and do not intersect with radius
(j − 1) ∗ rB) and ndi(j ∗ rB) is the estimated number of
objects retrieved by a query with radius j ∗rB . The number
of clusters nci that intersect with the query is given by:
nci(j) = nHCi

∗ (hci(j ∗ rB) − hci((j − 1) ∗ rB)), while the
number of objects is given by ndi(j) = nc ∗hdi((l− j) ∗ rB),
where j ≤ l and hci(−1) = 0. For the example in Figure 4(b)
the number of points for rk = 2∗rB results in: 2∗hdi(rB)+
hdi(2 ∗ rB). Finally, we are looking for the smallest radius
rk for which the inequality

∑
HCi∈LHC oi ≥ k holds.

8. EXPERIMENTAL STUDY
We evaluate the performance of SIMPEER using a simu-

lator prototype implemented in Java. The simulations run
on 3.8GHz Dual Core AMD processors with 2GB RAM. In
order to be able to test the algorithms with realistic net-
work sizes, we ran multiple instances of the peers on the
same machine and simulated the network interconnection.

In our experiments, we used the GT-ITM topology gener-
ator4 to create well-connected random graphs of Nsp super-
peers with a user-specified average connectivity (DEGsp).
We vary the following values: network size Np = 4000 −
16000 peers, DEGsp = 4 − 7, and DEGp = 20 − 60. The
number of peer clusters is kp = 10, while we test the effect
of different super-peer clusters ksp = {5, 10, 15}. We also
change the query selectivity Qsel of range queries.

In order to evaluate the scalability of SIMPEER we exper-
imented with synthetic data collections, namely uniform and
clustered, that were horizontally partitioned evenly among
the peers. The uniform dataset includes random points in
[0, 10000]d. For the clustered dataset, each super-peer picks

4Available at: http://www.cc.gatech.edu/projects/gtitm/
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Figure 5: Experiments with range queries on uniform and clustered datasets.

randomly a d-dimensional point and all associated peers ob-
tain kp cluster centroids that follow a Gaussian distribution
on each axis with variance 0.05. Thereafter, the peers’ ob-
jects are generated by following a Gaussian distribution on
each axis with variance 0.025, and a mean equal to the corre-
sponding coordinate of the centroid. Again, the value of each
dimension belongs to [0...10000]. We conduct experiments
varying the dimensionality (8-32d) and the cardinality (3M-
12M) of the dataset. Additionally, two real data collections
were used: 1) VEC: consists of 1M 45-dimensional vectors
of color image features, and 2) Covtype consists of 581K
54-dimensional instances of forest Covertype data, available
from UCI Machine Learning Repository.5 In all cases, we
generate 100 queries uniformly distributed and we show the
average values. For each query a peer initiator is randomly
selected. Although different metric distance functions can
be supported, in this set of experiments we used the Eu-
clidean distance function.

8.1 Construction Cost
At first the construction cost is considered, in order to

study the feasibility of the proposed routing index construc-
tion. By means of a simple analysis, it is straightforward
to derive that the construction cost depends mainly on the
super-peer topology, in other words on the number of super-
peers (Nsp) and the number of super-peer clusters (ksp).

The total construction cost is measured in terms of the
total volume (in bytes) that is transferred over the net-
work. We test two network sizes: 200 and 400 super-peers,
both times with Np = 12000, for varying connectivity degree
(DEGsp = 4−7) and for cardinality n = 6∗106 objects. The
results show that for our largest configuration, namely 400
super-peers and an average of 7 connections per super-peer,
the total construction cost is approximately 600MB, which
is quite tolerable. Practically each super-peer induces traffic
equal to 1.5MB, and this cost is paid only once at construc-

5http://www.ics.uci.edu/ mlearn/MLRepository.html

tion phase.

8.2 Range Queries
The performance of range queries is studied in the fol-

lowing. In Fig. 5(a), we show the average traffic volume
induced by range query processing for a uniform dataset.
On the x-axis the query selectivity is presented as a per-
centage of the cardinality n. Clearly the volume decreases
as queries become more selective. The larger super-peer
networks induce more traffic, but it is noticeable that also
other topology characteristics, such as the connectivity de-
gree of super-peers, play an important role. As the network
gets denser, the cost of searching increases. The maximum
hop count decreases for higher DEGsp values, as depicted in
Fig. 5(b). This is the number of maximum number of hops
required to reach the most distant peer that contributes re-
sults to the final result set.

Thereafter, we studied the scalability of our approach
with the cardinality n of the dataset. The results, shown in
Fig. 5(c), both for uniform and clustered datasets, demon-
strate that the response time increases only slightly with the
dataset cardinality. In Fig. 5(c), we denote as k the selectiv-
ity of the range query in terms of retrieved objects. Further-
more, in the case of the clustered dataset, the response time
is significantly higher than for the uniform dataset. This
may seem counter-intuitive, however it is due to the fact
that in the uniform case many peers contribute to the re-
sults set, but only with few results. In the clustered dataset,
only few peers contribute to the result set returning more
objects, therefore the response time increases, since some
network paths cause important delays. Fig. 5(c) depicts the
total response time taking into account the network delay,
which depends on the size of transmitted data. We assume a
modest 4KB/sec as the network transfer bandwidth on each
connection.

Then we study the effect of larger networks in terms of
participating peers Np on the performance of our approach.
In Fig. 5(d), the traffic volume induced is depicted for uni-

995



0


10


20


30


40


50


60


70


80


d=16 k=100
 d=16 k=50
 d=32 k=100
 d=32 k=50


O
ve

re
st

im
at

io
n 

(%
)


LE/RE


GE/RE


(a) Clustered dataset
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(b) Uniform dataset
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(c) VEC dataset
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Figure 6: Comparison of radius estimation techniques and results from k-NN search.

form and clustered datasets and different query selectivity.
Obviously as the network size grows, the volume in the case
of uniform dataset increases too, as data objects are re-
trieved from any part of the network, i.e. also from farther
peers. This is not the case for the clustered dataset, where
the traffic volume remains practically unaffected regardless
of the network size, as only specific super-peers (and network
paths) contribute to the result set.

In the next set of experiments, we use a clustered dataset.
Fig. 5(e) shows the number of contacted super-peers (SP)
and peers (P) for different dimensionality values (d = 8 and
d = 32). Fig. 5(f) shows the success ratio, i.e. how many
of the contacted peers (super-peers) returned results. The
chart shows that specifically the super-peer success ratio is
very high, reaching 98%. In the case of peer ratio, the suc-
cess ratio is admittedly lower, which means that messages
are sent to peers, that eventually do not contribute to the
result set.

8.3 k-Nearest Neighbor Queries
For nearest neighbor queries, we first evaluate the radius

estimation techniques, and then we proceed to study the
query processing cost. Fig. 6(a), 6(b), 6(c) show our experi-
mental results for radius estimation. The setup for synthetic
datasets is Nsp = 200, Np = 4000 and n = 106, while for the
real datasets we use Np = 2000. Given a nearest neighbor
query NNk(q), we use RE to refer to the real distance of
the k-th nearest neighbor, while LE refers to local estima-
tion and GE to global estimation. For combination X/Y the
overestimation percentage is computed as: 100 ∗ X−Y

X
%.

Our results show that in the case of clustered datasets
GE performs better (Fig. 6(a)) than LE. However for uni-
form datasets, LE is better than GE (Fig. 6(b)), as all peers
have objects that are nearby to any query point. Thus LE
works well for any super-peer. In the case where the initiator
super-peer does not index objects near the query point, LE
fails and overestimates highly the radius. On the other hand,
GE is influenced by the clustering quality and the number
of the hyper-clusters ksp. Therefore the performance of LE

is more stable for uniform data, than the GE technique.
In the case of the VEC dataset (Fig. 6(c)), we see that

LE performs better, however when we increase the number
of hyper-peer clusters ksp, GE becomes the prevailing ap-
proach. Notice that the real datasets performance is similar
to the uniform datasets, since the data objects are uniformly
distributed among the peers. In all cases, the radius of our
best estimation overestimates – even slightly – the real k-th
NN radius that ensures us that all similar objects are re-
trieved, while the area searched during the query processing
increases slightly compared to the query with the real k-th
NN radius.

In Fig. 6(d) and Fig. 6(e), we show the performance of
nearest neighbor search on the VEC and the Covtype datasets,
in terms of traffic volume. We observe that for GE the vol-
ume decreases significantly with increasing ksp values, while
for LE it remains practically stable. LE is not effected by the
ksp since the radius estimation is performed with respect to
only one super-peer and its clusters. On the other hand, GE
is calculated based on the histograms that are attached on
the super-peer. As the ksp is higher, the overlap of the clus-
ters is reduced. Thus, each super-peer has a more detailed
view of the clusters, leading to a more accurate estimation.
Finally, in Fig. 6(f), we show the processing time for the
Covtype dataset.

9. CONCLUSIONS AND FUTURE WORK
In this paper we presented SIMPEER, a novel framework

for similarity search in P2P networks. Our framework is
based on a novel three-level clustering scheme utilizing a set
of distributed statistics, in the form of histograms. These
statistics are maintained by the super-peers, in order to
estimate the radius of the k-th nearest neighbor distance.
We provide algorithms for efficient distributed range query
processing, while nearest neighbor queries are mapped into
range queries according to the estimated radius. Finally,
our experimental evaluation employs real and synthetic data
collections and shows that our approach performs efficiently
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both in terms of computational and communication costs.
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