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ABSTRACT
We propose XRPC, a minimal XQuery extension that enables dis-
tributed yet efficient querying of heterogeneous XQuery data sources.
XRPC enhances the existing concept of XQuery functions with
the Remote Procedure Call (RPC) paradigm. By calling out of an
XQueryfor-loop to multiple destinations, and by calling functions
that themselves perform XRPC calls, complex P2P communication
patterns can be achieved. The XRPC extension is orthogonal to all
XQuery features, including the XQuery Update Facility (XQUF).
We provide formal semantics for XRPC that encompasses execu-
tion of both read-only and update queries.

XRPC is also a network SOAP sub-protocol, that integrates seam-
lessly with web services and Service Oriented Architectures (SOA),
and AJAX-based GUIs. A crucial feature of the protocol isbulk
RPC, that allows remote execution of many different calls to the
same procedure, using possibly a single network round-trip. The
efficiency potential of XRPC is demonstrated via an open-source
implementation in MonetDB/XQuery. We show, however, that XRPC
is not system-specific: every XQuery data source can serviceXRPC
calls using a wrapper.

Since XQuery is a pure functional language, we can leverage
techniques developed for functional query decomposition to rewrite
data shipping queries into XRPC-based function shipping queries.
Powerful distributed database techniques (such as semi-join opti-
mizations) directly map on bulk RPC, opening up interestingfuture
work opportunities.

1. INTRODUCTION
The main contribution of this paper is the proposal of a mini-

mal yet powerful XQuery extension, XRPC, that enables efficient
distributed querying with a focus on interoperability between het-
erogeneous data sources. In this paper we provide in-depth insight
in the consequences of this proposal for the formal semantics of
XQuery (inclusive updates), the ease and potential efficiency of its
implementation in existing XQuery systems, and the expressive-
ness of XRPC to specify distributed query processing strategies.

In more detail, we view our contributions as follows:(i) to es-
tablish the XRPC language syntax extension, including its SOAP-
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based XRPC network protocol, and provide a formal semanticsfor
XRPC. (ii) the idea of set-at-a-time RPC (a.k.a. Bulk RPC) to
make XRPC truly efficient.(iii) identifying various isolation lev-
els for distributed XRPC updates, that result from callingupdating
functions, as defined by the XQuery Update Facility (XQUF) W3C
Draft, over XRPC.(iv) showing that XRPC is sufficiently powerful
to be used as the target language for a distributed query optimizer
that can generate query plans for heterogeneous XQuery systems.

XRPC Language Extension.XQuery only provides adata ship-
ping model for querying XML documents distributed on the Inter-
net. The built-in functionfn:doc() fetches an XML document
from a remote peer to the local server, where it subsequentlycan
be queried. The recent W3C working draft of XQuery Update Fa-
cility (XQUF) introduces a built-in functionfn:put() for remote
storage of XML documents, which again implies data shipping.

There have been various proposals to equip XQuery withfunc-
tion shippingstyle distributed querying abilities [28, 30, 33], and
on the syntax level, we consider our XRPC proposal an incremen-
tal development of these. XRPC adds RPC to XQuery in the most
simple way, adding a destination URI to the XQuery equivalent of
a procedure call (i.e. function application).

The design goal of XRPC is to create a distributed XQuery mech-
anism with which different XQuery processors at different sites can
jointly execute queries. This implies that our proposal also encom-
passes anetwork protocol. Network communication in XRPC uses
SOAP (i.e. XML messages) over HTTP. XML is ideal for dis-
tributed environments (think of character encoding hassles, byte
ordering), XQuery engines are perfectly equipped to process XML
messages, and an XML-based message protocol makes it trivial to
support passing values of any type from the XQuery Data Model[15].
The choice for SOAP brings as additional advantages seamless in-
tegration of XQuery data sources with web services and Service
Oriented Architectures (SOA) as well as AJAX-style GUIs.

Bulk RPC. Our SOAP XRPC protocol allows to compute multi-
ple applications of the same function (with different parameters) in
a single request/response network interaction. Bulk RPC ismuch
more efficient than repeated single RPC as network latency isamor-
tized over many calls, and performance becomes bounded by net-
work bandwidth or CPU throughput (hardware factors that scale
much better than network latency).

We implemented XRPC in the relational open-source XQuery
DBMS MonetDB/XQuery [9] based on thePathfindercompiler [18].
The essence of the compilation technique employed by Pathfinder
is loop-lifting [18], which translates XPath/XQuery expressions in-
sidefor-loops into single bulk relational query plans that process
all iterations of the loop independently of each other. In case of
Pathfinder, with its loop-lifted approach to XQuery translation, it
was trivial to generate Bulk RPC requests for any XRPC call found
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in an XQuery. That is, a XRPC call nested in afor-loop taken
many times leads to only a single Bulk XRPC request/response,
which invokes the function for all iterations of the loop in bulk.

Another way to look at Bulk RPC is that it exposes bulk exe-
cution opportunities, such that e.g. a function that selects with a
constant argument is turned into a join against the sequenceof all
arguments. Bulk RPC thus has a direct correspondence with set-
oriented processing as offered by query algebras, and we believe
can be generally applied any algebraic XQuery implementation.

XRPC and Updates.During a single XRPC query, it may happen
that multiple read-only XRPC requests are sent to the same site. In
therepeatable readisolation level we define, each request from the
same query is guaranteed to see the same database state.

XRPC queries may themselves also update the databases, by in-
voking XQUF “updating functions” over XRPC. Note that XQUF
queries only perform side-effecting actionsafter all query execu-
tion has finished, such that during query execution the database
state is constant, and updating queries behave much like read-only
queries. Obviously, atomically committing a distributed transaction
requires a protocol like two-Phase Commit (2PC). We decidednot
to add 2PC to the XRPC network protocol, but rather rely on the
recent industry standard Web Services Atomic Transaction (WS-
AtomicTransaction) [3, 4] that provides exactly this feature for dis-
tributed web-service transactions.

XRPC as target language.One of the design goals of XRPC is
– besides it being directly useful as an explicit instrumentto write
distributed queries – to have it serve as the target languagefor a
distributed XQuery optimizer that takes queries without XRPC as
input (thus data shipping only), and produces a decomposed query
as output that uses XRPC for function shipping.

Our choice to make distributed execution explicit in terms of
remote functions and their dependencies (parameters), aligns well
with XQuery being a pure functional language. Query decompo-
sition techniques [21] can thus be applied to decompose the full
query (function) into sub-queries (again functions), thateach can
in theory be executed on any of the participating sites.

Note that automatic query decomposition techniques are beyond
the scope of this paper (but part of our future work). We limit
ourselves here to showing how some well-known distributed query
execution strategies, such as the distributed semi-join strategy, can
be elegantly expressed in XRPC. To demonstrate the performance
opportunities of XRPC, as well as its interoperability, we provide
some initial performance experiments with one peer runningMon-
etDB/XQuery, and another running Saxon.1

Outline. This paper is organized as follows. In Section 2 we
give a definition of the XRPC language extension, including the
SOAP sub-protocol it uses, and spend considerable time in rigor-
ously defining the formal semantics of XRPC. Section 3 outlines
the initial implementation of XRPC in MonetDB/XQuery, inclusive
the correspondence of Bulk RPC with the loop-lifting technique
applied by the pathfinder compiler. In Section 4 we demonstrate
in case of Saxon how XRPC can be used already withanyXQuery
system, using an XRPC wrapper that is capable of translatingBulk
RPC requests into XQuery. Section 5 then shows how XRPC can
be used to elegantly express various distributed query processing
strategies, including experiments in which MonetDB/XQuery and
Saxon work together over XRPC, using e.g. the distributed semi-
join strategy. Finally, we discuss related work in Section 6before
outlining our conclusions and future work in Section 7.

1Section 4 outlines a simpleXRPC wrapperthat allows arbitrary
XQuery data sources to handle XRPC calls.

2. THE XRPC LANGUAGE EXTENSION

Syntax. Remote function applications take the XQuery syntax:

execute at { Expr}{ FunApp( ParamList) }

whereExpr is an XQueryxs:string expression that specifies the
URI of the peer on whichFunAppis to be executed. The function
to be applied can be a built-in or user-defined. For user-defined
functions, we currently restrict ourselves to functions defined in an
XQuery Module. A small (future) extension to the network proto-
col would also allow functions defined inside the query to be exe-
cuted over XRPC.

For a precise syntax definition, we show the rules of the XQuery
1.0 grammar that were changed:
PrimaryExpr ::= ...| FunctionCall | XRPCCall | ...

XRPCCall ::= "execute at" "{" ExprSing "}" "{" FunctionCall "}"

FunctionCall::= QName "(" (ExprSingle("," ExprSingle)*)? ")"

Example. As a running example, we will assume a set of XQuery
database systems (peers) that each store a movie database docu-
ment"filmDB.xml" with contents similar to:

<films>
<film><name>The Rock</name><actor>Sean Connery</actor></film>
<film><name>Goldfinger</name><actor>Sean Connery</actor></film>
<film><name>Green Card</name><actor>Gerard Depardieu</actor></film>

</films>

We assume an XQuery modulefilm.xq stored atx.example.org,
that defines a functionfilmsByActor():

module namespace film="films";
declare function film:filmsByActor($actor as xs:string) as node()*
{ doc("filmDB.xml")//name[../actor=$actor] };

We can execute this function on remote peer"y.example.org" to
get a sequence of films in which Sean Connery plays in the remote
film database:

import module namespace f="films" at "http://x.example.org/film.xq";
<films> {
execute at {"xrpc://y.example.org"}

{f:filmsByActor("Sean Connery")} (Q1)
} </films>

We introduce here a newxrpc network protocol, accepted in the
destination URI ofexecute at. The generic form of such URIs
is: xrpc://< host> [: port] [/[path]]. Thexrpc:// indicates the
network protocol. The second part,< host> [: port], indicates the
remote peer. The third part,[/[path]], is an optional local path at
the remote peer.

The above example yields:

<films><name>The Rock</name><name>Goldfinger</name></films>

More Examples.A more elaborate example demonstrates the pos-
sibility of multiple remote function calls to a peer:

import module namespace f="films" at "http://x.example.org/film.xq";
<films> {
for $actor in ("Julie Andrews", "Sean Connery")
let $dst := "xrpc://y.example.org" (Q2)
return execute at {$dst} {f:filmsByActor($actor)}

} </films>

and to make it a bit more complex, we could do multiple function
calls to multiple remote peers:

import module namespace f="films" at "http://x.example.org/film.xq";
<films> {
for $actor in ("Julie Andrews", "Sean Connery")
for $dst in ("xrpc://y.example.org", "xrpc://z.example.org") (Q3)
return execute at {$dst} {f:filmsByActor($actor)}

} </films>
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2.1 SOAP XRPC Message Format
SOAP (Simple Object Access Protocol) is the XML-based mes-

sage format used for web services [26, 19, 20], and we propose
the use of SOAP messages over HTTP as the network protocol un-
derlying XRPC. SOAP web service interactions usually follow an
RPC (request/response) pattern, though the SOAP protocol is much
richer and allows multi-hop communications, and highly config-
urable error handling. For the simple RPC use of SOAP over HTTP,
a sub-protocol called “SOAP RPC” is in common use [20]. SOAP
RPC is oriented towards binding with programming languagessuch
as C++ and Java, and specifies parameter marshaling of a certain
number of simple (atomic) data types, and also allows passing ar-
raysandstructsof such data-types. However, its supported atomic
data types do not match directly those of the XQuery Data Model
(XDM) [15], and the support for arrays and structs is not relevant
in XRPC, where there rather is a need for supporting arbitrary-
shaped XML nodes as parameters as well as sequences of hetero-
geneously typed items. This is the reason, why our SOAP XRPC
message format, while supporting the general SOAP standardover
HTTP with the purpose of RPC, implements a new parameter pass-
ing sub-format (SOAP XRPC6= SOAP RPC). The most often used
form of SOAP RPC is calledrpc/encoded, while our SOAP XRPC
protocol belongs to the family ofdocument/literal. It was shown
in [12] that rpc/encoded in general is significantly slower than doc-
ument/literal, and suffers from scalability problems whenthe mes-
sage size increases.

XRPC Request Message.SOAP messages consist of an envelope,
with a (possibly empty) header and a body. Inside the body, we
define arequest that specifies a module URImodule, an at-hint
location, a function namemethod and itsarity. The actual pa-
rameters of a single function call are enclosed by acall element.
Each individual parameter consists of asequence element, that
contains zero or more values.

Below we show the XRPC request message for the first example
query, that looks for films with Sean Connery:

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:xrpc="http://monetdb.cwi.nl/XQuery"
xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery

http://monetdb.cwi.nl/XQuery/XRPC.xsd">
<env:Body>
<xrpc:request module="films" method="filmsByActor" arity="1"

location="http://x.example.org/film.xq">
<xrpc:call>
<xrpc:sequence>
<xrpc:atomic-value
xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>
</xrpc:request>

</env:Body>
</env:Envelope>

Atomic values are represented withatomic-value, and are an-
notated with their (simple) XML Schema Type in thexsi:type
attribute. Thus, the heterogeneously typed sequence consisting on
an integer2 and double3.1 would become:

<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:integer">2</xrpc:atomic-value>
<xrpc:atomic-value xsi:type="xs:double">3.1</xrpc:atomic-value>

</xrpc:sequence>

XML nodes are passed by value in an<element> element:
<xrpc:sequence>
<xrpc:element><name>The Rock</name></xrpc:element>
<xrpc:element><name>Goldfinger</name></xrpc:element>

</xrpc:sequence>

Similarly, the XML SchemaXRPC.xsd2 defines enclosing el-
ements for document, attribute, text, processing instruction, and
comment nodes. Document nodes are represented in the SOAP
message as a<document> element that contains the serialized doc-
ument root. Text, comment and processing instruction nodesare se-
rialized textually inside the respective elements<text>, <comment>
and<pi>. Attribute nodes are serializedinside the<attribute>
element:<xrpc:attribute x="y"/>.

XRPC fully supports the XQuery Data Model, a requirement for
making it an orthogonal language feature. This implies XRPCalso
supports passing of values of user-defined XML Schema types,in-
cluding the ability to validate SOAP messages. XQuery already
allows importing XML Schema files that contain such definitions.
Values of user-definednamedtypes are enclosed in SOAP mes-
sages by<element> elements, with an<xsi:type> attribute anno-
tating their type. The XQuery system implementing XRPC should
include anxsi:schemaLocation declaration as well as anxmlns
namespace definition inside the<Envelope> element, when values
of such imported element types occur in the SOAP message. If a
parameter has ananonymoususer-defined schema type, however,
its type information is lost, but this can be avoided exploiting a fu-
ture protocol extension4 (discussed later) by including the lowest
ancestor-or-self element with anamedschema type in the SOAP
message.

XRPC Response Messagesfollow the same principles. Inside the
body is now anxrpc:response element that contains the result
sequence of the remote function call, e.g.:

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:xrpc="http://monetdb.cwi.nl/XQuery"
xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery

http://monetdb.cwi.nl/XQuery/XRPC.xsd">
<env:Body>
<xrpc:response module="films" method="filmsByActor">
<xrpc:sequence>
<xrpc:element><name>The Rock</name></xrpc:element>
<xrpc:element><name>Goldfinger</name></xrpc:element>

</xrpc:sequence>
</xrpc:response>
</env:Body>

</env:Envelope>

XRPC Error Message. Whenever an XRPC server discovers an
error during the processing of an XRPC request, it immediately
stops execution and sends back an XRPC error message, using the
format of the SOAP Fault message ([26], [19]). Thus, any error
will cause a run-time error at the site that originated the query. As
an example, the following SOAP Fault message indicates thata
required module could not be loaded (we show only theenv:Fault
element):

<env:Fault>
<env:Code><env:Value>env:Sender</env:Value></env:Code>
<env:Reason>

<env:Text xml:lang="en">could not load module!</env:Text>
</env:Reason>

</env:Fault>

Outlook. Our discussion of SOAP XRPC message is not fully done
yet. In the next subsection, we will extend the format with support
for isolation and updates. Then, in Section 3.2 we describe the
Bulk RPCfeature, that allows a single message to request multiple
function calls.

2Seehttp://monetdb.cwi.nl/XQuery/XRPC.xsd
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2.2 XRPC Formal Semantics
In defining the semantics of XRPC, we take care to attach proper

database semantics to the concept of RPC, to ensure that all RPCs
being done on behalf of a single query see a consistent distributed
database image and commit atomically. It is known that full serial-
izability in distributed queries can come at a high cost, andthere-
fore we also define certain less strict isolation levels thatstill may
be useful to certain applications.

We use the following notation and terms:

– P denotes a set ofpeer identifiers. We use the peer identifierp0
to denote thelocal peer, on which a particular query is started. All
other peerspi ∈ P areremote peers. In practice, a peer identifier is
a URI from thexrpc protocol, that contains a host and (optionally)
a port number.
– F denotes a set ofXRPC function applications. An XRPC call
f pi→pj that triggered frompi that causes functionf to be executed
at p j is anupdating XRPC call( f

pi→pj
u ∈Fu), if it calls an updating

function; otherwise, it is anon-updating XRPC call( f
pi→pj
r ∈ Fr ).

If the evaluation of an XRPC callf pi→pj requires evaluation of
other XRPC call(s) atp j , we term f pi→pj a nested XRPC call.

– M denotes a set of XQuerymodules. A module consists of a
number of function definitionsdf . Each XRPC callf pi→pj must
correspond to a definitiondf from some modulemf ∈ M .

– An XRPC queryis an XQuery queryq which contains at least one
XRPC call f pi→pj ∈ Fq, whereFq denotes the set of all function
calls performed during execution ofq. We call a query in which
only one, non-nested XRPC call appears asimple XRPC query. An
XRPC queryq is anupdating XRPC query, if it contains at least
one update command or a call to an updating (XRPC) function.

– Each query operates in adynamic context. The XQuery 1.0 For-
mal Semantics [13] defines that each expression is normalized to
a core expression, which then is defined by a semantic judgment
dynEnv⊢ Expr ⇒ val. The semantic judgment specifies that in
the dynamic contextdynEnv, the expressionExpr evaluates to the
value val, whereval is an instance of the XQuery Data Model
(XDM). For now, we simplify the dynamic environment to a data-
base statedb (i.e. the documents and their contents stored in the
XML database):dynEnv≃ db. The dynEnv.docValuefrom the
XQuery Formal Semantics [13] corresponds todb used here. To
indicate a context at a particular peerp, we writedbp.

– When considering that a database may be changed by updates,
we can view it as a function over timet asdbp(t). In our formal
rules, the default assumption on database states is that they stay
equal over time, unless otherwise stated. When the time context t
is clear, the shorthand notationdbp is used to refer to the current
database state.

Basic read-only XRPC, i.e. the semantics of executing a read-only
function f p0→px ( f ∈ Fr ), is defined by extending the XQuery 1.0
semantic judgments with a new rule3:

dbp0(t0) ⊢ <call>{s2n(v1), · · · ,s2n(vn)}</call>⇒ call;
sendp0→pxrequest(m, fr ,call); tx ≥ t0

dbpx(tx) ⊢ s2n( fr(n2s(call/∗ [1]), · · · ,n2s(call/∗ [n]))) ⇒ res;
sendpx→p0reply(res);

dbp0(t0) ⊢ n2s(res) ⇒ vres;
dbp0(t0) ⊢ f p0→px

r (v1, · · · ,vn) ⇒ vres

(RFr
)

This ruleRFr
states that execution atp0 of the (read-only) XRPC

call f p0→px(v1, · · · ,vn) in the dynamic contextdbp0(t0) (without
3In our rules, we use the ‘;’ sign to suggest an order in the evalua-
tion of the statements.

further assumption ont0) starts with constructing a<call> element
that contains the SOAP representation of all parametersvi . This
XML representation, described in the previous Section 2.1 is cre-
ated by the sequence-to-node marshaling functions2n(), discussed
below. Then, the request(m, f ,call) is sent to peerpx. Here,m is
the module URI (plus at-hint) in which functionfr is defined. The
function fr is then evaluated as a normal local function in the dy-
namic context of the remote peerdbpx(tx), where we only assume
tx ≥ t0. The parameters offr , are obtained by using the inverse
node-to-sequence marshaling functionn2s() to produce the result
noderes. This resultres is sent back to peerp0, which finally con-
vertsres into the result sequencevres.

This definition inductively relies on the XQuery Formal Seman-
tics to evaluatef locally at px, and thus may trigger the evaluation
of additional XRPCs if these happen to be present in the body of f .
Also, this definition covers execution of XRPC calls in the current
database statedbp0 , which we need for our basic purpose of defin-
ing the semantics XRPC queries (in which caset0 is the current
time point). Finally, this XRPC rule does not produce any newcur-
rent local database statedbp0 nor new remote database statedbpx

(i.e. it defines read-only semantics).

Parameter Marshaling. The SOAP representation of a sequence
$seq is created in a new<sequence> node by the function:

declare function s2n($seq as item*) as node()

The inverse transformation (from<sequence> representation to real
item sequence) is provided by:

declare function n2s($n as node()) as item*

For example, we get("abc",42) from calling:
n2s(<xrpc:sequence>

<xrpc:atomic-value xsi:type="xs:string">abc</xrpc:atomic-value>
<xrpc:atomic-value xsi:type="xs:integer">42</xrpc:atomic-value>
</xrpc:sequence>)

An important characteristic of the functionn2s() is that it guar-
antees that for node-typed parameters (i.e. those represented as
<element>, <text>, <document>, <attribute>, <comment> and<pi>)
an XDM node of the correct type is returnedas a separate XML
fragment. This guarantees that evaluating the upwards and hori-
zontal XPath axes on such nodes will return empty results. Itmay
be tempting to return element nodes under the identity foundin the
message (i.e. $request/call/xrpc : sequence[i]/xrpc : element/∗),
but this would allow a query to navigate e.g. to the SOAP envelope
element, or the other function parameters.

One should note thatn2s() ands2n() are internal functions only
that do not need to be exposed to XRPC users, and in fact do not
need to exist in reality, as each XRPC system implementationmay
have its own internal (efficient) mechanisms to process SOAPmes-
sages. In case of MonetDB/XQuery, beyond shredding the SOAP
request and response messages, we do not spend any effort inn2s()
nor s2n() on element construction to retrieve node values of the
correct type, as our implementation directly chops up the shredded
XML message in separate XML fragments per function parameter,
and modifies node types internally (as the SOAP messages are in-
visible to the user, their integrity can be compromised at will by
the system). It is possible, though, to implementn2s() ands2n()
purely in XQuery, as we will show when we discuss the XRPC
wrapper, that allows arbitrary XQuery processors to participate in
distributed XRPC queries in Section 4.

A final detailed remark on parameter marshaling is that XRPC
requires thecaller to perform parameter up-casting. The rationale
is that such casting is already part of the standard functionappli-
cation code generated by any XQuery system, thus easy to do at
the caller for XRPC calls, and makes it easier to implement XRPC
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handlers that have no or limited XQuery capabilities (e.g. wrapped
outside web services as in [28]).

Call-by-Value. An important choice implied by makingn2s() and
s2n() explicit in our Formal Semantics is to enforceby-valuepa-
rameter passing in XRPC. If nodes are passed as parameters ofan
XRPC call, they will be serialized into a SOAP message, shipped
to the remote side, and there new nodes will be constructed (or:
appear) of the correct type with equal-valued contents, butwith
different node identifiers. This can lead to a number of semantic
differences between local and remote function application. We al-
ready mentioned that XPath navigation from node parametersover
non-downwards axes (e.g.parent, following) will always pro-
duce empty results on the remote side. More subtly, if a func-
tion is invoked over XRPC with two nodes as parameters that have
a descendant-or-self relationship, XRPC parameter marshaling
will destroy this relationship at the remote side4 Finally, the XQuery
Formal Semantics specifies that some consistent order should be
enforced over nodes from different documents, but our semantics
will not respect this order on their copies when shipped overXRPC.

The rationale behind this by-value choice is thatby-referencese-
mantics would lead to complications when the upwards or sideways
XPath axes are invoked on node parameters (or results) of XRPC
calls. Correctly supporting that would either lead to the need to
ship the full XML data fragment for all node parameters upfront
(defeating the purpose of function shipping) or cause implicit com-
munication when navigating beyond the descendants of such nodes.

Obviously, call-by-value semantics complicate life when XRPC
is used as the target language for automatic query distribution (as
opposed to explicit XRPC query processing, where we can assume
the query writer to be aware of the call-by-value semantics). In that
case, the query optimizer has the task to make sure by-value param-
eter passing does not affect query semantics. The simplest solution
is to refrain from function shipping in problematic cases, but more
sophisticated solutions may be found for some query patterns.

qp0

︷ ︸︸ ︷

ւ ↓ ց
f p1
1 . . . f pi

i
ւ↓ց ւ ↓ց

f
pj

j . . . f pk
k f pl

l . . . f pm
m

...
...

...
...

...
...

Nested XRPC Calls.The general pattern of XRPC function appli-
cations generated by a query is atree, as each XRPC call may again
perform more XRPC calls. This happens when a query contains
multiple XRPC function applications, or when such a function ap-
plication occurs inside afor-loop. In the above diagram, the arrow
‘→’ should be read as “XRPC call”.

4We are considering a future XRPC protocol extension that allows
node parameters to be referred to using anxrpc:nodeid attribute
that holds a node identifier. This alternative node representation
can be used for nodes that are a descendant-or-self of another pa-
rameter that is fully serialized in the SOAP message. Thes2n()
function would then be altered to return nodes from the XML frag-
ment that corresponds with that fully serialized parameter. This
change of semantics ensures that ancestor/descendant relationships
among parameters at the calling peer are preserved at the remote
XRPC peer. Thisindirect addressingis useful for compressing the
SOAP message. Moreover, if applied maximally, the resulting call-
by-fragmentresult/parameter passing, allows an distributed XRPC
rewriter to relocate parts of certain query predicates thatdodepend
on node identity (i.e. node-valued join conditions whose predicates
only contain descendant/ancestor XPath steps).

The peersp0, p1, · · · , pi , p j , · · · , pk, · · · , pl , · · · , pm are not nec-
essarily unique: some peerpi (or in fact many such peers) may
occur multiple times in this tree. When considering ruleRFr

, the
dynamic environmentdynEnvpi containing thecurrent database
statedbpi may thus be seen multiple times during query evaluation.
In between those multiple function evaluations, other transactions
may update the database and changedbpi . Thus, those different
XRPC calls to the same remote peerpi from the same queryq may
see different database states. This will not be acceptable for some
applications and therefore, we deem it worthwhile to definerepeat-
able readisolation for queries that perform XRPC calls.

Repeatable Read.XQuery users can control per query which se-
mantics is used by using the XQuerydeclare option feature, set-
ting xrpc:isolation either to"none" (rule RFr

) or "repeatable",
defined by ruleR′

Fr
:

dbp0(t p0
q ) ⊢ <call>{s2n(v1), · · · ,s2n(vn)}</call>⇒ call;

sendp0→pxrequest(q,m, fr ,call);
dbpx(t px

q ) ⊢ s2n( fr(n2s(call/∗ [1]), · · · ,n2s(call/∗ [n]))) ⇒ res;
sendpx→p0reply(q, res);

dbp0(t p0
q ) ⊢ n2s(res) ⇒ vres;

dbp0(t p0
q ) ⊢ f p0→px

r (v1, · · · ,vn) ⇒ vres

(R′
Fr

)

The above ruleR′
Fr

specifies that for evaluating XRPC calls
on behalf of queryq, peerpx uses always the same database state
dbpx(t px

q ). Time t px
q is typically time that the first XRPC request

of query q reachedpx; but we place no specific restriction on it.
Observe that a unique query identifierq is now passed as an ex-
tra parameter in the XRPC request, such that a peer can recognize
which XRPC calls belong to the same query and it can associatean
isolated database state with it.

Clearly, XRPC with repeatable reads requires more resources to
implement, as somedatabase isolationmechanism (of choice) will
have to be applied to retaindbpx(t px

q ) across calls. The transac-
tion mechanism of MonetDB/XQuery, for example, uses snapshot
isolation based on shadow paging, which keeps copies of modified
pages around. Systems that provide the isolation levels serializable
or repeatable reads (obviously) can also provide this semantics.

A quite common reason why a peer is called multiple times in
the same query and the need for repeatable reads arises, is when an
XRPC call appears inside a for-loop. In Section 3.2 we describe
how Bulk RPChelps avoid these costly isolation measures in case
of simpleXRPC queries (i.e. those that contain only one non-nested
function application).

Other Isolation Levels. If we would suppose that all peers in-
volved in q support the isolation levelsnapshot isolation, and all
would use thesametimestamptq as the one in which the original
query executes, i.e.t p0

q = · · · = t px
q = · · · = t pm

q = tq, we could ob-
tain the isolation leveldistributed snapshot isolation. Just using a
globally consistent query timestamp is actually not enoughfor that,
extra effort is needed to enforce distributed commits to happen at
the same time point (one way to do that is to block or abort in-
coming reads while a node is in prepared stated – this is called the
pessimistic approach in [32]). For this to be meaningful in practice,
however, we would have to have a representation oft values (until
now, this is left opaque) that allows a full ordering, thus enabling
us to define a “happened before ” query/transaction ordertq1 ≪ tq2.
However, as XRPC is also intended for use in P2P settings, we
make no assumptions on a centralized distributed transaction coor-
dinator that could give out unique and monotonically increasing t
numbers. In absence of that, one could think oft numbers gener-
ated by Lamport Clocks [23], but while this method guarantees that
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a transaction that depends on a previous one (“happened before”)
has a smaller Lamport clock value, the reverse inference cannot be
made (i.e. meaningfully enforcing a transaction order depending
on sucht-s) unless all peers participate in all queries (which again
is not a reasonable assumption in P2P). Of course, we can think of
t as being “exact” (UTC) time, but as we do not want to assume
either that all participating peers possess (synchronized!) Stratium
grade precision clock hardware, this is only a theoretical notion.

For this reason, we leave the maximum XRPC isolation currently
at the repeatable read level, though finding a distributed isolation
level useful in P2P is on our future work agenda.

SOAP XRPC Extension: Isolation.XRPC uses repeatable reads
semantics for requests that have the optionalqueryID child ele-
ment in thexrpc:request element. ThequeryID in the SOAP
message containshost andtimestamp attributes that state on which
host and at UTC time the query started initially, and atimeout at-
tribute that specifies a local number of seconds during whichto
conserve the isolated database state. Note that the timeoutis rela-
tive, it is a number of seconds – this mitigates problems caused by
different peers having big clock synchronization differences. When
the timeout passes, the isolated database state can be discarded,
freeing up system resources. However, the local XRPC handler
should still remember expiredqueryIDs, such that it can give er-
rors on XRPC requests that arrive too late. The purpose of sending
thetimestamp of the originating host is to ease the administration
of expiredqueryIDs, as per host only the latest timestamp needs to
be retained, and can be restricted to some sane time interval.

A timeout mechanism is inevitable, even if XRPC would use a
2PC-like coordination protocol to signal the finishing of a query
(for updates, XRPC actually does so via WS-AtomicTransaction),
because such a coordination protocol also needs a timeout tocon-
clude that remote hosts are no longer responding. Automatically
computing a good timeout value requires a cost model that takes
into account the query, data-distribution, network, and peer charac-
teristics – a task we leave for our future work on automatic query
distribution. Therefore, the timeout to use is specified in the query
usingdeclare option xrpc:timeout <sec>, so users and ap-
plications can set them according to their needs.

2.3 XRPC Update Semantics
The XRPC language extension is fully orthogonal to all XQuery

features, and thus one can also make XRPC calls to user-defined
updating functions, as defined by the XQuery Update Facility (XQUF).
The XQUF syntax ensures that if a user-defined function contains
one updating function, it must itself be an updating function. XQuery
updates (and thus updating functions) determine which nodes to
change (and how), purely based on the database state before the
update, and produce apending update list∆. Only after query ex-
ecution has finished, all updates in the pending update list are to
be applied and committed. This concept is quite similar to IOmon-
ads, used in functional languages like Haskell, that cleanly separate
functional execution from any side-effecting actions.

dbp0(t0) ⊢ <call>{s2n(v1), · · · ,s2n(vn)}</call>⇒ call;
sendp0→pxrequest(m, fu,call); tx ≥ t0

dbpx(tx) ⊢ fu(n2s(call/∗ [1]), · · · ,n2s(call/∗ [n])) ⇒ ∆;
dbpx(tx) ⊢ applyUpdates(∆) ⇒ dbpx ;

sendpx→p0reply()
dbp0(t0) ⊢ f p0→px

u (v1, · · · ,vn) ⇒ (),dbpx

(RFu
)

The above ruleRFu
states that update functions apply the pend-

ing update list∆ immediately, producing a new current remote

database statedbpx . For this purpose, we use the internal func-
tion applyUpdates() defined in the XQUF [11] that carries through
all changes in a pending update list. Note that this rule executes an
updating call betweenp0 andpx in databases states fromt0 resp.tx
without other assumptions thantx ≥ t0. Typically, an implementa-
tion may choose to usedbpx , i. e. the latest database state to handle
each XRPC request.

Remote execution of an XQUF updating function causes no new
dbp0 state directly (it returns an empty pending update list), but
does yield a newdbpx . This is a simplification, becausefu() it-
self may perform XRPC calls that modify database states of other
peers involved inq – and potentially evendbp0 itself. While the
local queryq at p0 always operates indbp0(t0), if it performs mul-
tiple XRPC calls to the same peerpx, these calls will thus poten-
tially see different statesdbpx(tx1),dbpx(tx2), . . . , which may even
include the updates caused by the previous XRPC calls made for q.
Therefore, while easy to implement, this semantics does notguar-
antee repeatable reads, even allows lost updates at the samepeer
between multiple calls performed on behalf of the same query, and
will cause non-atomic distributed commits to happen if XRPCex-
ecution is aborted halfway due to an error.

Atomic Updates with Isolation. We now define an improved XRPC
isolation level that provides repeatable reads as well as atomic dis-
tributed commit. Recall that the effects of XQUF updates areinvis-
ible until query execution finishes; only thenapplyUpdates() is in-
voked on the pending update list. In the previous ruleRFu

, updates
were visible directly after handling each individual XRPC request.
The new ruleR′

Fu
given below, thus corresponds more closely to

the intent of the XQUF, in that no side effects of queryq are visible
at any involved peerpx until the query commits.

The repeatable read isolation implies that peers defer applying
pending update lists created by individual XRPC calls made on
behalf of the same queryq until the point thatq actually com-
mits. Thus, peerspx must not only keep track of the database
statedbpx(t px

q ), but also of a collection of pending update lists
∆px

q = ∪∀i∈{1,··· ,U px
q }∆px

q (i), whereU px
q is the number of updating

XRPC callspx has handled so far forq.

dbp0(t p0
q ),∆p0

q ⊢ <call>{s2n(v1), · · · ,s2n(vn)}</call>⇒ call;
sendp0→pxrequest(q,m, fu,call);

dbpx(t px
q ),∆px

q ⊢ fu(n2s(call/∗ [1]), · · · ,n2s(call/∗ [n])) ⇒ ∆px
q (U px

q );
sendpx→p0reply()

dbp0(t p0
q ),∆p0

q ⊢ f p0→px
u (v1, · · · ,vn) ⇒ ()

(R′
Fu

)

The translation of isolated updating XRPC calls is depictedin
the inference ruleR′

Fu
above. Like ruleR′

Fr
, this rule again pro-

vides for proper isolation by keeping the database statedbpx(t px
q )

constant throughout the query. The execution of a functionfu() at
px causes a new pending update list to be created, that becomes part
of the collection∆px

q .
Obviously, atomically committing a distributed transaction re-

quires a protocol like 2PC or one of its more advanced deriva-
tives [29, 17]. We decided not to add 2PC to the XRPC network
protocol, but rather rely on the recent industry standard WS-Atomic-
Transaction [3, 4] that provides exactly this feature for distributed
web-service transactions. WS-AtomicTransaction [3] provides a
rather vanilla SOAP-based 2PC interface with e.g.Prepare() and
Commit() functions. It is embedded in the WS Coordinator frame-
work [4] that allows to register a collection of peers that partici-
pate in a distributed transaction, and subsequently run a transaction
protocol on those (in this case WS-AtomicTransaction). Thus, in
order to support updates with this isolation level, XRPC systems
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must implement support for these web service interfaces, and offer
them over the same HTTP SOAP server that runs XRPC.

To implement proper 2PC, thePrepare() function bringsq in
prepared state. It may raise an error, if a conflicting transaction has
reached this state already. Else, it logs the union of the pending
update lists (∆px

q ) to stable storage, ensuringq can commit later:

sendp0→pxrequest(q,Prepare);
dbpx(t px

q ),∆px
q ⊢ log(∆px

q ) ⇒ r;
sendpx→p0reply(r)

dbp0(t p0
q ),∆p0

q ⊢ Preparep0→px() ⇒ r

Commit() carries through the updates, creating a new database state:

sendp0→pxrequest(q,Commit);
dbpx(t px

q ),∆px
q ⊢ applyUpdates(∆px

q ) ⇒ dbpx

dbp0(t p0
q ),∆p0

q ⊢Commitp0→px() ⇒ dbpx

More SOAP XRPC Extensions.In XRPC, peerpq that starts the
queryq is the one that registers the participating peers at the WS
Coordinator service and initiates the Prepare and Commit phases.
For this registration task, it thus needs to know a full list of peers
that participate in the transaction. Due to nested XRPC calls, it
may not be aware of all peers and therefore we extended the SOAP
XRPC protocol to piggyback a list of all unique participating peers
in the response message.

Finally, the XQUF specifies that when the same node is updated
twice in the same query, the order in which the different update ac-
tions on that node are applied isnon-deterministic! This means that
we can simply union all individual∆px

q (i) pending update lists (one
for each XRPC call handled inpx for q) to get a full update list
∆px

q without worrying about preserving some proper order on the
update actions. In a separate work [35], omitted here for reasons of
space, we have defined a deterministic update order for XQUF,and
devised a way to enforce it over XRPC using a small XRPC pro-
tocol extension, despite the out-of-order execution effects of Bulk
RPC, that will be observed at the end of Section 3.1.

3. MONETDB/XQUERY IMPLEMENTATION
We implemented XRPC in MonetDB/XQuery, an efficient yet

purely relational XML database system [9]. It consists of the Mon-
etDB relational database back-end, and thePathfindercompiler [18],
that translates XQuery into relational algebra as front-end.

The XRPC module contains an ultra-light HTTP daemon imple-
mentation [24] that runs a request handler (the XRPC server), and
contains a message sender API (the XRPC client). We also had to
add support for theexecute at syntax to the Pathfinder XQuery
compiler, and change its code generator to generatestub codethat
invokes the new message sender API.

The stub code uses the message sender API to generate a SOAP
message from actual function parameters. This process reuses the
normal sequence serialization mechanism in MonetDB/XQuery. The
message sender API sends the XML message using HTTP POST
and waits for a result message. The result message is subsequently
shredded into a relational table, the way all XML documents are
shredded in MonetDB/XQuery. The stub code retrieves atomicval-
ues from the SOAP document nodes; node-typed values just refer
to the nodes in the newly shredded SOAP document.

The request handler, on the other side, behaves similarly. It lis-
tens for SOAP requests and shreds incoming messages into a tem-
porary relational table, from which the parameter values are ex-
tracted. As MonetDB/XQuery is a relational system, XQuery val-
ues are all represented as (temporary) relational tables. The mod-
ule function specified in the SOAP request is then executed locally

Operator Semantics
σa select all rows with columna = true
πa1:b1,...,an:bn

project columnsb1, . . . ,bn and possibly rename
columnsbi to ai (no duplicate removal)

δ duplicate elimination
.
∪ disjoint union
1a=b equi-join
ρb:〈a1,...,an〉/p row numbering (DENSERANK SQL:1999)
ab literal table

Table 1: Relational Algebra Generated By Pathfinder

with these parameter tables, producing a result table. The request
handler then builds a response message in which this result table
is serialized into XML, using the normal MonetDB/XQuery serial-
ization mechanism onto the network socket.

3.1 Relational XQuery And Loop-Lifting
The Pathfindercompiler [18] translates XPath/XQuery expres-

sions into bulk query plans formulated in the vanilla relational alge-
bra, depicted in Table 1. All operators are well-known, except per-
haps the row numbering operatorρ, which is similar to the SQL:1999
operator DENSERANK: ρb:〈a1,...,an〉/p(q) that assigns each tuple
in q a rank (i.e. number), which is saved in columnb. The con-
straint for the enumeration is the implicit order orq by the columns
a1, . . . ,an. Numbers consecutively ascend from 1 in each partition
defined by the optional grouping columnp.

positem
1 x1
2 x2
...

...
n xn

Representing sequences as tables.The evaluation
of any XQuery expression yields anordered sequence
of n ≥ 0 items xi , denoted (x1,x2, . . . ,xn). Mon-
etDB/XQuery is a relational system, thus sequences are
represented as tables, with schemapositem. Since rela-
tions have (unordered) set-semantics, sequence order mustbe ex-
plicitly maintained using apos column. In the XQuery data model,
a single itemx and the singleton sequence(x) are identical. Itemx
is represented as a single row table containing the tuple〈1,x〉. The
empty sequence() maps into the empty table.

Loop-lifting. Each XQuery is translated bottom-up into a single
relational algebra plan consisting only of the classical relational
operations (select, project, join, etc); that is, the XQuery concept
of nestedfor-loops is fully removed and a single bulk (=efficient
and optimizable) execution plan is created.

s0







for $x in (10,20)

s1

{
return for $y in (100,200)

s2

{
let $z := ($x,$y)
return $z

Q5

The result of an XQuery
at each step of bottom-
up compilation is a
relational plan that yields
the result sequencefor eachnested iteration, all stored together. To
make this possible, these intermediate tables have three columns:
iterpositem, whereiter is a logical iteration number, as shown in
the tables below. For each scope, we keep aloop relation that holds
all iters.5 If we focus on the execution state in the innermost it-
eration body (marked as scopes2) of Q5, there will be three such
tables that represent the live variables$x, $y and$z respectively.

loop
iter
1
2
3
4

x
iterpositem
1 1 10
2 1 10
3 1 20
4 1 20

y
iterpositem
1 1 100
2 1 200
3 1 100
4 1 200

z
iterpositem
1 1 10
1 2 100
2 1 10
2 2 200
3 1 20
3 2 100
4 1 20
4 2 200

As we can see from the
iter columns, there are
four iterations in scopes2
(numbered from 1 to 4)
and as expected,$x takes
the value10 in the first two
iterations and the value20
in the second two iterations.
Similarly, $y takes the value100 in the odd iterations and the value

5The loop relation allows to keep track of empty sequence values,
encoded by the absence of tuples in the expression representation.
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mapp1
iteriterp1
1 1
3 2

mapp2
iteriterp2
2 1
4 2

reqp1
iterp1 pos item

1 1 "Julie Andrews"
2 1 "Sean Connery"

reqp2
iterp2 pos item

1 1 "Julie Andrews"
2 1 "Sean Connery"

=⇒

=⇒

msgp1
iterp1 pos item

2 1 "The Rock"
2 2 "Goldfinger"

msgp2
iterp2 pos item

1 1 "Sound Of Music"

map back
⇒

map back
⇒

resp1
iterpos item
3 1 "The Rock"
3 2 "Goldfinger"

resp2
iterpos item
2 1 "Sound Of Music"

.
∪(resp1,resp2)

=⇒

result
iterpos item
2 1 "Sound Of Music"
3 1 "The Rock"
3 2 "Goldfinger"

Figure 1: Relational Processing of Bulk RPC (Multiple Destinations Example)

200 in the even ones. Finally,$z is a sequence of two values in all
four iterations (having the value of$x concatenated with$y).

3.2 Bulk RPC actor
iterpos item
1 1 ”JulieAndrews”
2 1 ”SeanConnery”

dst
iterpos item
1 1 ”http : //y.example.org/”
2 1 ”http : //y.example.org/”

Our earlier example queryQ2
contains a function application
inside afor-loop. Inside this
loop, the variables$dst and
$actor yield relational tables
shown left. Thus, the value of
$dst is the same in both iterations of thefor-loop, whereas
$actor takes on values"Julie Andrews" in the first and"Sean
Connery" in the second iteration.

SOAP XRPC Extension: Bulk RPC.The loop-lifted processing
model of MonetDB/XQuery thus collects in a single table all XRPC
function parameters needed by a remote function call, nested in
one or morefor-loops. This is exploited in SOAP XRPC by al-
lowing Bulk RPC, in which a single XRPC message to the desti-
nation peer requests to performmultiple function calls. Each call
is represented by an individualxrpc:call child element of the
xrpc:request. Such a Bulk RPC also returns multiple results in
thexrpc:response (onexrpc:sequence sequence for each call).
From the shredded XRPC response message, it is quite straightfor-
ward to obtain theiter|pos|item table that represents an XDM
result value for each iteration. Note that Bulk RPC exactly fits
in the existing loop-lifted processing model of MonetDB/XQuery:
without execute at, the local function translation mechanism al-
ready produced such aiter|pos|item table.

We show thexrpc:request part of the SOAP message in our
Bulk RPC example, which contains two calls:
<xrpc:request module="films" method="filmsByActor" arity="1"

location="http://x.example.org/film.xq">
<xrpc:call> <!-- first call -->
<xrpc:sequence>
<xrpc:atomic-value
xsi:type="xs:string">Julie Andrews</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>
<xrpc:call> <!-- second call -->
<xrpc:sequence>
<xrpc:atomic-value
xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>
actor
iterpos item
1 1 ”JulieAndrews”
2 1 ”JulieAndrews”
3 1 ”SeanConnery”
4 1 ”SeanConnery”

dst
iterpos item
1 1 ”http : //y.example.org/”
2 1 ”http : //z.example.org/”
3 1 ”http : //y.example.org/”
4 1 ”http : //z.example.org/”

In the previous example the
execute at expression $dst
happened to be constant, such
that all loop-lifted function calls
had the same destination peer,
and could be handled by the sin-
gle Bulk RPC request above.

Let us now consider our other
previous exampleQ3. We now
have an innerfor-loop with four iterations, but$dst takes
on two different values, identifying peersy.example.org and

iterpositem result⇐
.
∪∀p∈δ(dst.item)(resp)

with :
iterpositem resp = πiter,pos,item(1iterp=iterp (msgp,mapp))

iteriterp mapp = πiter,iterp(ρiterp(σitem=p(dst)))
iterppositem msgp = f (req1

p, · · · ,reqn
p)@p

iterppositem reqi
p = πiterp,pos,item(ρpos(1iter=iter (mapp, parami)))

execute at {iterpositem dst}
{ f (iterpositem param1, · · · , iterpositem paramn) }⇒ iterpositem result

Figure 2: Relational Translation of XRPC

z.example.org, in respective the odd and even iterations. The
general rule to translate a loop-lifted XRPC call is shown inFig-
ure 2 and Figure 1 shows the intermediate steps taken. The system
establishes a list of unique peers, and for eachp extracts from each
parameteriter|pos|item those iteration (tuples) that invoke the
function onp. The resulting request tables (reqp) are used to gen-
erate a Bulk RPC top. Observe that usingρ a newiterp column is
created, and a mapping table (mapp) that maps old to new iteration
numbers. The mapping table is then again used to map the new
iteration numbers back into old ones, and all result tables (resp) are
united with a (merge-)union on theiter column, to guarantee the
correct order of the result.

Parallel & Out-Of-Order. The XRPC execution in Figure 1 per-
forms two Bulk RPC calls. The first call processes both valuesof
$actor ony.example.org. Then a second call performs the same
task onz.example.org. It is important to observe that this order of
processing is different than what is suggested by the query (i.e. first
Julie Andrews on both, then Sean Connery on both). If a loop-lifted
XRPC function application has multiple destination peers,in fact
MonetDB/XQuery improves performance by dispatching all Bulk
RPC requestsin parallel, which makes the exact order in which
peers execute the query unpredictable. After all parallel results are
united, the mapping of temporaryiterp numbers intoiters guar-
antees that the final result is produced in the correct order.

The out-of-order processing effects of loop-lifting are most eas-
ily explained in a single-destination (hence non-parallel) query:
import module namespace f="films" at "http://x.example.org/film.xq";
for $name in ("Julie", "Sean")
let $connery := concat($name, " ", "Connery")
let $andrews := concat($name, " ", "Andrews") (Q6)
return (
execute at {"xrpc://y.example.org"} {f:filmsByActor($connery)},
execute at {"xrpc://y.example.org"} {f:filmsByActor($andrews)} )

Here, only the peery.example.org is involved twice within the
same query due to sequence construction. In the first Bulk RPC
call, it will look for films by two actors with surname Connery,
resp. surname Andrews in the second RPC. Note that the intuitive
order suggested by the query would be to look for actors by the
name Julie first, and those named Sean second.

The above is also a good example of a query that needsisola-
tion, because it handles two RPC requests inside the same query.
While in this particular case, those two requests could potentially
be combined, this is much harder if two different functions would
be executed, or downright impossible if the parameters of one de-
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No Function CacheWith Function Cache
$x=1 $x=1000 $x=1 $x=1000

one-at-a-time 133 2696 2.6 2696
bulk 130 134 2.7 4

Table 2: XRPC Performance (msec): loop-lifted v.s. one-at-a-
time; function cache v.s. no function cache

pend on the outcome of the other. Certain classes of queries,such
as those that contain only a single non-nested XRPC call, canbe
easily identified at compile time to send at most one XRPC request
to each destination peer. For such queries, we can use the cheaper
XRPC mechanism withoutqueryID (see Section 2.2), while still
guaranteeing repeatable reads.

Note that without Bulk RPC, the costly isolation mechanism
would be required for any XRPC that performs more than a single
XRPC call. Thanks to Bulk RPC, many queries have to send just a
single message to each peer, thus not only reducing the number of
network I/Os, but also lessening the overhead of isolation.

3.3 Performance Evaluation
We conducted some experiments to evaluate the performance of

XRPC in MonetDB/XQuery. The test setup consisted of two 2GHz
Athlon64 Linux machines connected on 1Gb/s Ethernet.

Efficiency of Loop-lifting. To study the effect of loop-lifting, we
define anechoVoid function and call it over XRPC while varying
the number of iterations:
module namespace tst = "test";
declare function tst:echoVoid() { () };

import module namespace t="test" at "http://x.example.org/test.xq";
for $i in (1 to $x)

return execute at {"xrpc://y.example.org"} {t:echoVoid()}

While in MonetDB/XQuery loop-lifting of XRPC calls (i.e. Bulk
RPC) is the default, we also implemented a one-at-a-time RPC
mechanism for comparison. The left half of Table 2 (the “No Func-
tion Cache” column) shows the experiment where we compare per-
formance of Bulk RPC with single RPC at-a-time, while varying
the number of loop iterations$x. It shows that performance is
identical at$x=1, such that we can conclude that the overhead of
Bulk RPC is small. At$x=1000, there is an enormous difference,
caused by(i) serialization/deserialization of the request/response
messages,(ii) network communication cost and(iii) overhead of
function call (1000 calls instead of 1 call). This is easily explained
as the one-at-a-time RPC experiment involves performing 1000
times more synchronous RPCs.

Throughput. We also carried out bandwidth experiments (details
omitted for space) that scaled request and response payloads. Here
we observed throughput of 8MB/s (large requests) and 14 MB/s
(large responses), which correspond roughly with resp. thedocu-
ment shredding and serialization speed of MonetDB/XQuery [9].
Thus, like other SOAP-based messaging [16], XRPC data through-
put on a fast local 1Gb network is CPU-bound rather than network-
bound (though in a WAN it is likely to be the other way around).

Function Cache. XQuery Modules have the advantage that they
may be pre-loaded and cached, and our choice to let XRPC use
modules as the query transport mechanism also opens the possibil-
ity to reap performance profit from module pre-processing.

The feature ofprepared queriesis well-known for RDBMS, al-
lowing a parametrized query plan to be parsed and optimized off-
line, such that an application can quickly enter actual parameters
in the prepared plan and execute it. The ODBC and JDBC APIs
export this functionality of relational databases using a program-
ming language binding. MonetDB/XQuery has a mechanism for

supporting prepared queries that does not need specific API sup-
port. Exploiting the fact that a prepared query is in essencea func-
tion with parameters, MonetDB/XQuerycachesall query plans for
(loop-lifted) function calls, for functions defined in XQuery Mod-
ules. Queries that just load a module and call a function in itwith
constant values as parameter, are detected by a pre-parser.The pre-
parser then extracts the function parameters, and feeds them into a
cached query plan. In MonetDB/XQuery, queries on small datasets
can be accelerated ten-fold by this mechanism [9]. Note, that the
function cache isnot a query cache: queries are executed always
on the latest data, and the performance improvement stems solely
from the fact that query translation and optimization is avoided.

This same function cache mechanism is used by the XRPC re-
quest handler. This means that in MonetDB/XQuery an XRPC re-
quest usually does not need query parsing and optimization,just
execution. The right half of Table 2 (the “With Function Cache”
column) shows the impact of enabling the function cache: we see
the processing time go down by 130ms (XQuery module translation
time), improving both the single- and many-iteration Bulk RPC ex-
periments. Thanks to the function cache, MonetDB/XQuery can
achieve a minimum RPC latency of 3 msec – which is identical to
that of commercial-strength software like .NET ([16, 27]).

4. XRPC WRAPPER

XQuery Engine

XRPCWrapper

HTTP
response

request.xml

generated query

XRPC Response

XRPC Request

Cross-system distributed XRPC
querying can be achieved even
without XRPC being integrated
into an XQuery processing engine.
What is needed is a simpleXRPC
wrapperon top of the XQuery sys-
tem. The XRPC wrapper is a SOAP service handler that stores
the incoming SOAP XRPC request message in a temporary loca-
tion, generates an XQuery query for this request, and executes it
on an XQuery processor. The generated query is crafted to com-
pute the result of a Bulk XRPC by calling the requested function
on the parameters found in the message, and to generate the SOAP
response message in XML using element construction. Such an
XRPC wrapper only allows tohandlecalls with normally XRPC-
incapable systems, but obviously does not allow to make outgoing
XRPC calls from them.

We illustrate how such an XRPC wrapper works by an example.
The following function returns theperson node from an XMark
document ($doc) whose@id attribute matches a given$pid:
declare function getPerson($doc as xs:string,

$pid as xs:string) as node()?
{ zero-or-one(doc($doc)//person[@id=$pid]) };

Figure 3 shows the query generated by XRPC wrapper to handle
thegetPerson request.

The XRPC protocol includes information about the arity of the
function (as well as its return type), so it is easy to generate the right
amount ofparamparameters in the call. The brunt of the work is
done by then2s() ands2n() marshaling functions, introduced in
Section 2.2. These functions (omitted for reasons of space), can be
implemented purely in XQuery.

The n2s() function, used here to process all parameters, needs
to convert a SOAP XRPC element into an item sequence, where
each item has the right type. This is done by going over all children
of thexrpc:sequence using a series ofif..then XQuery statements
that select on thexsi:type attribute found in thexrpc:atomic-value
nodes. In case ofxrpc:element nodes with anxsi:type, XQuery
validation is performed. Thes2n() function is used here only to
convert the function return value into a correct SOAP XRPC node.
It iterates over the input item sequence, and for each item uses an
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import module namespace func = " f unctions"
at "http : //example.org/ f unctions.xq";

declare namespace env = "http://www.w3.org/2003/05/soap-envelope";
declare namespace xrpc = "http://monetdb.cwi.nl/XQuery";

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xrpc="http://monetdb.cwi.nl/XQuery"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery

http://monetdb.cwi.nl/XQuery/XRPC.xsd">
<env:Body>
<xrpc:response xrpc:module=" f unctions" xrpc:method="getPerson">{

for $call in doc("/tmp/requestXXX.xml")//xrpc:call
let $param1 := n2s($call/xrpc : sequence[1])
let $param2 := n2s($call/xrpc : sequence[2])
return s2n( f unc: getPerson($param1,$param2))

}</xrpc:response>
</env:Body>
</env:Envelope>

Figure 3: XQuery generated for the getPerson() XRPC request

XQuery typeswitch() to generate the right SOAP node. If the re-
turn type is a sequence of nodes that have a schema type (this in-
formation is supplied in the SOAP request) we insert the correct
xsi:type attribute in it.

Saxon Experiments.Using the wrapper, we can run a number of
experiments on the Saxon XSLT/XQuery processor [1] (Saxon-B
8.7). Like the experiments in Section 3.3, we put theexecute at in-
side afor-loop with a varying number of iterations ($x) to study the
performance impact of Bulk RPC. By absence of a function cache,
Saxon latency is dominated by startup and compilation time,so we
focus here on the internal Saxon timings (compile, treebuild, exec)
and disregard network communication cost, which is a few msec at
most. For theechoVoid experiment, we see that Bulk RPC again al-
lows to amortize XRPC latency really well: instead of 1000 times
the latency, with a 1000 times more work total latency increases
just over a factor 2. As the execution time still is increasedby a
factor 30, the low impact is due to other amortized latencies, in
parsing the XML request document, compiling the query, etc.

We also show the results of thegetPerson() example above.
This exposes an additional benefit of Bulk RPC over just amortized
fixed latencies: whereas in the single-call case,getPerson() be-
haves like a selection over the XMark document, the Bulk version
of getPerson(), that iterates over all calls in the request, becomes
anequi-join. Again, the total time for a Bulk RPC with 1000 calls
is only about twice as much as a single call, but here we see that
the execution time impact has increased only by a factor of 3 (was
30 in echoVoid). The explanation is that Saxon is able to detect
the join condition and builds a hash-table such that performance
remains linear in the size of the XMark document, just like itwas
in the single call selection.

5. DISTRIBUTED XQUERY WITH XRPC
One of the design goals of XRPC is to have it serve as the tar-

get language for a distributed XQuery optimizer that takes queries
without XRPC calls as input (hence, only data shipping) and pro-
duces a decomposed query as output that uses XRPC for function
shipping. In this section, we show how some well-know distributed
query execution strategies, such as distributed semi-join, can be el-
egantly expressed in XRPC. We also outline several future work
issues in the area of automatic query distribution techniques using
functional decomposition.

Let us assume a distributed XDBMS system with two peers{pa, pb}.
An XMark document is distributed between these two peers, with
pa stores all persons in “persons.xml”, and pb stores all items and
(open/closed) auctions in “auctions.xml”.

total compile treebuild exec

echoVoid$x=1 275 178 4.6 92
echoVoid$x=1000 590 178 86 325

getPerson$x=1 4276 185 1956 2134
getPerson$x=1000 8167 185 1973 6010

Table 3: Saxon Latency via the XRPC Wrapper (msec)

for $p in doc("persons.xml")//person,
$ca in doc("xrpc://B/auctions.xml")//closed_auction (Q7)

where $p/@id = $ca/buyer/@person
return <result>{$p,$ca/annotation}</result>

The above query is executed at peerpa. For each person and for
every item this person has bought, queryQ7 returns theperson
node and theannotation node of the bought item in a newresult
node. For the moment, assume thatfn:doc() is invoked with a
compile-time known constant URI from ourxrpc:// URI name
scheme, which indicates the peer supports XRPC.

Predicate Pushdown. A first heuristic optimization is to push
predicates that depend only on a singlefn:doc(’xrpc://p/..’)
into data sourcep. Thus, instead of transferring the whole doc-
ument “auctions.xml” from pb to pa, we define a function to
return allclosed auction nodes and execute this function onpb
module namespace b = "functions_b";
declare function b:Q_B1() as node()*
{ doc("auctions.xml")//closed_auction };

--- Rewritten query Q7_1 ---
import module namespace b="functions_b" at "http://example.org/b.xq";

for $p in doc("persons.xml")//person,
$ca in execute at {"B"} { b:Q_B1() },

where $p/@id = $ca/buyer/@person
return <result>{$p,$ca/annotation}</result>

This heuristic rewrite can simply be triggered by the presence
of fn:doc(). The required analysis how much of the XQuery
(Core) expression is dependent on thatfn:doc() alone, and can
be pushed, is highly similar to [25].

Advanced Pushdown. We could even push expressions that de-
pend on afn:doc() application even if that function application
has a non-constant URL argument, and even could depend on a
for-loop variable. That is, using the helper functions:

declare function xrpc:host ($url as xs:string) as xs:string
declare function xrpc:path ($url as xs:string) as xs:string

where by defaulthost() returns"localhost" andpath() returns
its argument – except forxrpc:// URLs, where they would separate
the URL in a host prefix and path suffix – we could rewrite calls to
fn:doc($url) into:
execute at { xrpc:host($url) } { fn:doc(xrpc:path($url)) }

This approach, however, does require a refinement of the work
in [25]. One must bear in mind that any of the rewrites discussed
here should only be made by an automatic rewriterif it can estab-
lish that the call-by-value semantics of XRPC will not compromise
the semantics of the query. This at least involves a check whether
nodes that come from pushed expressions are only navigated down-
wards, and also involves checking against node identity tests and
order-dependent (XPath, order by) processing of node sequences
that stem from multiplefn:doc() calls pushed to different sources.

Execution Relocation.The possibilities of query rewriting do not
stop at push-down offn:doc(’xrpc://..’)-dependent expres-
sions. Even if a query depends on a setP XRPC peers that con-
tribute documents, one could decide to select one peerpi from P

and putall execution onpi . We call this mechanismExecution Re-
location. For example, it might be beneficial to relocate all execu-
tion onpb, if "auctions.xml" is much larger than"persons.xml":
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Total Time MonetDB Time Saxon Time

data shipping 28122 16457 11665
predicate push-down 25799 2961 22838
execution relocation 53184 69 53115
distributed semi-join 10278 118 10160

Table 4: Execution time (msecs) of queryQ7 distributed on
MonetDB/XQuery and Saxon (Saxon Time includes network).

module namespace b = "functions_b";
declare function b:Q_B2() as node()*
{ for $p in doc("xrpc://A/persons.xml")//person,

$ca in doc("auctions.xml")//closed_auction
where $p/@id = $ca/buyer/@person
return <result>{$p, $ca/annotation}</result>

};

Then peerpa needs only to call this function to get the results:
import module namespace b="functions_b" at "http://example.org/b.xq";
execute at {"B"} { B:Q_B2() }

Distributed Semi-join. The classical distributed semi-join strat-
egy [7, 34] can be employed as well. The XRPC equivalent of the
semi-join strategy uses a XRPC function call with a loop-dependent
parameter. In this case, the person@id for all persons could be
passed in a loop to a function executed atpb that returns those
closed auctions with buyers having that@id:
module namespace b = "functions_b";
declare function b:Q_B3($pid as xs:string) as node()*
{ doc("auctions.xml")//closed_auction[./buyer/@person=$pid] };

--- Rewritten query Q7_3 ---
import module namespace b="functions_b" at "http://example.org/b.xq";

for $p in doc("persons.xml")//person
let $ca := execute at {"B"} {b:Q_B3($p/@id)}
return if(empty($ca)) then ()

else <result>{$p, $ca/annotation}</result>

This shows that federating data sources with XRPC (even via the
XRPC Wrapper) is more powerful than the ”wrapper-architecture” [22]
used in federated database systems. Such wrappers typically lack
the possibility to push table-valued parameters into data sources,
which is required for the semi-join optimizations.

Saxon and MonetDB/XQuery Joined by XRPC.To demonstrate
the interoperability, expressiveness and performance potential of
XRPC we run queryQ7 on two peers using all four mentioned
strategies. On peerpa (the local peer), we run MonetDB/XQuery
with the document “persons.xml” (1.1MB, 250person nodes); on
peerpb the Saxon XSLT/XQuery processor with the document “auc-
tions.xml” (50MB, 4875closed auction nodes). There are 6
matches between theperson nodes and theclosed auction nodes.

All communication between MonetDB/XQuery and Saxon hap-
pens via XRPC. The XRPC wrapper described in Section 4 is used
to generate the XQuery query from an XRPC request message.

The measured execution times are shown in Table 4. In the col-
umn “MonetDB Time” are execution times on peerpa and in the
column “Saxon Time” are execution times on peerpb. The Saxon
time was measured by subtracting MonetDB time from total time,
such that it also included communication. We should stress that this
experiment is not a rigorous evaluation of distributed query execu-
tion strategies, rather a demonstration of the possibilities of XRPC.
The results here show that the “data shipping” query is relatively
expensive, since it spends quite some Saxon time on shippingthe
50MB document and then still needs to do the join. The “predicate
push-down” approach improves the performance, as we would ex-
pect. The “execution relocation” largely relieves the MonetDB peer
from execution responsibilities, but still ships a significant amount

of data and tasks Saxon with the whole join and result construction
effort (where it takes longer than on MonetDB). The “distributed
semi-join” is the strategy that incurs least data shipping,and is most
efficient in this case.

6. RELATED WORK
In the area of extending XQuery with distributed querying, our

work is mostly related to Galax DXQ [14], Active XML [2, 8, 6],
Galax Yoo-Hoo! [28], XPeer [31] and XQueryD [30].

DXQ [14] is developed as an extension of Galax. We are not
aware of a formal semantics defined in DXQ, especially consider-
ing updates. Also, XRPC is intended for use in P2P projects and
targets any data source that supports XQuery, whereas DXQ de-
pends on distributed query plans, in terms of the internal Galax ex-
ecution algebra, generated by the Galax optimizer. This will have
certain advantages, such as better control over the capabilities of
the distributed nodes and possibly better physical plans and opti-
mization, but the use of an internal algebra makes it much harder
to achieve cross-system DXQ.

In Active XML (AXML) [6], calls to Web or AXML service
functions are embedded in XML documents. The evaluation of a
service call results in an XML fragment, which is inserted into the
original XML document, and gets re-evaluated (allowing fornest-
ing in case of AXML service calls). AXML has shown the value of
distributed query optimization, identifying lazy evaluation schemes
and various rewrite strategies [5]. Service functions are defined in
AXML using an XML query language (X-OQL in the open-source
implementation [2]), which itself does not allow distributed evalua-
tion (an embedding piece of AXML is always needed). The SOAP
protocol used for AXML services has not been specified formally;
like XRPC it uses a document/literal encoding to represent XML
subtree values. We think the ideas proposed in XRPC, namely(i)
a well-defined XQuery extension that allows specification ofdis-
tributed queriesinside the service function ,(ii) a semantics for
distributed XQUF transactions, and(iii) a SOAP network protocol
that supports the full XQuery Data Model as well as Bulk RPC,
could all be exploited in AXML.

Galax Yoo-Hoo! [28] is related to our work in the sense that web
services are accessed using remote procedure calls and SOAPmes-
sages are used as the communication protocol. As Yoo-Hoo! fo-
cuses on web service calls, it uses the simple SOAP RPC protocol,
which lacks support for XML element (sub-tree) parameters and
sequences, as well as Bulk RPC. Another difference is that Galax
Yoo-Hoo RPC calls support onlyonefixed destination URI for each
imported web service module (not a computed one).

XPeer [31] is a P2P XDBMS for sharing and querying XML
data, on top of a super-peer network. The query algebra of XPeer
takes explicitly into account data dissemination, data replication
and data freshness. We think our future work on query decomposi-
tion can build on some of the techniques employed in XPeer.

The syntax of XRPC is inspired by that of XQueryD [30], which
support shipping of free-form XQuery queries. XQueryD thusre-
quires a runtime rewriter to scan the XQuery expressions in the
execute statement for variables and substitute them with the run-
time values. Such a rewriter is not needed in XRPC, since the bind-
ing of the parameters of an XRPC function application is doneby
the compiler as if it was a normal function application. Unlike
XRPC, XQueryD does not define an network protocol.

In the area of distributed query processing and transactions, much
prior work is surveyed in [22, 34] and parts of the book of [29]. Dis-
tributed snapshot isolation has received some attention infederated
situations with a single coordinator [32].
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7. CONCLUSION
In this paper, we presented XRPC, a minimal XQuery exten-

sion that enables distributed query execution with a focus on in-
teroperability. We first gave a formal definition of the syntax and
the semantics of XRPC, including the semantics of distributed up-
dates, that follow from the use of XQuery Updating Functionsover
XRPC. This includes the definition of two isolation levels for read-
only and updating XRPC queries.

Since interoperability is our goal, the XRPC proposal also com-
prises a message protocol, which we chose to base on SOAP. Such a
SOAP protocol has the additional advantage of seamless integration
with web services and AJAX-based GUIs. To enhance adoption of
XRPC, we described a XRPC wrapper that allows any XQuery data
source to handle XRPC calls.6

Our experiences in MonetDB/XQuery suggest that adding XRPC
to existing XML database systems is easy; as shredding, serializa-
tion and HTTP functionality are usually already present thework
is limited to a small parser extension and stub code generation.

The SOAP XRPC protocol supports the concept of Bulk RPC;
the execution of multiple function calls in a single messageex-
change. This amortizes network and parsing latencies, and can
make XRPC a quite efficient communication mechanism. We have
shown that the loop-lifting technique, pervasively applied in our
MonetDB/XQuery system for the translation of XQuery expres-
sions to relational algebra can easily generate such Bulk RPC re-
quests. During our Saxon experiments, we also saw that Bulk RPC
enables set-oriented optimizations, such that Bulk RPC execution
of a selection function can be handled using a join strategy.

In the near future, we plan to work on a distributed query opti-
mizer that converts non-XRPC data shipping queries into function-
shipping queries using XRPC. In this paper, we showed some initial
experiences in distributed query execution, where MonetDB/XQuery
and Saxon cooperated via XRPC. To allow automatic query rewrites
into distributed plans, future research needs to address the prob-
lem of finding rewrites that hide the by-value parameter passing
of XRPC, to correctly preserve XQuery node identity semantics.
Other future work goes into applying XRPC for P2P data manage-
ment [10], both in the area of designing a sound yet practicalP2P
update semantics, as well as integrating XRPC with advancedP2P
data structures such as Distributed Hash Tables (DHTs).
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