XRPC: Interoperable and Efficient Distributed XQuery

Ying Zhang
Centrum voor Wiskunde en Informatica
P.O.Box 94079, 1090 GB
Amsterdam, the Netherlands

Y.Zhang@cwi.nl

ABSTRACT

We propose XRPC, a minimal XQuery extension that enables dis
tributed yet efficient querying of heterogeneous XQuerpdaturces.
XRPC enhances the existing concept of XQuery functions with
the Remote Procedure Call (RPC) paradigm. By calling outnof a
XQueryf or -loop to multiple destinations, and by calling functions
that themselves perform XRPC calls, complex P2P commuaitat
patterns can be achieved. The XRPC extension is orthogoradl t
XQuery features, including the XQuery Update Facility (XU
We provide formal semantics for XRPC that encompasses execu
tion of both read-only and update queries.

XRPC is also a network SOAP sub-protocol, that integratamse
lessly with web services and Service Oriented Archite&(80A),
and AJAX-based GUIs. A crucial feature of the protocobigk
RPC that allows remote execution of many different calls to the
same procedure, using possibly a single network round-fFipe
efficiency potential of XRPC is demonstrated via an operre®u
implementation in MonetDB/XQuery. We show, however, thRPC
is not system-specific: every XQuery data source can seXiRieC
calls using a wrapper.

Since XQuery is a pure functional language, we can leverage
techniques developed for functional query decompositiaswrite
data shipping queries into XRPC-based function shippireyigs.
Powerful distributed database techniques (such as sémojii-
mizations) directly map on bulk RPC, opening up interestirigre
work opportunities.

1. INTRODUCTION

The main contribution of this paper is the proposal of a mini-
mal yet powerful XQuery extension, XRPC, that enables effici
distributed querying with a focus on interoperability betm het-
erogeneous data sources. In this paper we provide in-degithit
in the consequences of this proposal for the formal sem=tic
XQuery (inclusive updates), the ease and potential effigier its
implementation in existing XQuery systems, and the express
ness of XRPC to specify distributed query processing sirase

In more detail, we view our contributions as follow@) to es-
tablish the XRPC language syntax extension, including @&\B-

Permission to copy without fee all or part of this materiajianted provided
that the copies are not made or distributed for direct consrakadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to possesvers
or to redistribute to lists, requires a fee and/or speciaipgsion from the
publisher, ACM.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3@./

99

Peter Boncz
Centrum voor Wiskunde en Informatica
P.O.Box 94079, 1090 GB
Amsterdam, the Netherlands

P.Boncz@cwi.nl

based XRPC network protocol, and provide a formal semaftics
XRPC. (ii) the idea of set-at-a-time RPC (a.k.a. Bulk RPC) to
make XRPC truly efficient(iii) identifying various isolation lev-
els for distributed XRPC updates, that result from callipglating
functions as defined by the XQuery Update Facility (XQUF) W3C
Draft, over XRPC(iv) showing that XRPC is sufficiently powerful
to be used as the target language for a distributed querynoet
that can generate query plans for heterogeneous XQuermrsgst

XRPC Language Extension.XQuery only provides alata ship-
ping model for querying XML documents distributed on the Inter-
net. The built-in functiorf n: doc() fetches an XML document
from a remote peer to the local server, where it subsequeatty
be queried. The recent W3C working draft of XQuery Update Fa-
cility (XQUF) introduces a built-in functiorin: put () for remote
storage of XML documents, which again implies data shipping

There have been various proposals to equip XQuery fuitic-
tion shippingstyle distributed querying abilities [28, 30, 33], and
on the syntax level, we consider our XRPC proposal an increme
tal development of these. XRPC adds RPC to XQuery in the most
simple way, adding a destination URI to the XQuery equiviat#n
a procedure call (i.e. function application).

The design goal of XRPC is to create a distributed XQuery mech
anism with which different XQuery processors at differatéscan
jointly execute queries. This implies that our proposab &acom-
passes aetwork protocal Network communication in XRPC uses
SOAP (i.e. XML messages) over HTTP. XML is ideal for dis-
tributed environments (think of character encoding hasdtgte
ordering), XQuery engines are perfectly equipped to precadL
messages, and an XML-based message protocol makes it toivia
support passing values of any type from the XQuery Data Mdd#!
The choice for SOAP brings as additional advantages searnmes
tegration of XQuery data sources with web services and 8ervi
Oriented Architectures (SOA) as well as AJAX-style GUIs.

Bulk RPC. Our SOAP XRPC protocol allows to compute multi-
ple applications of the same function (with different paetens) in

a single request/response network interaction. Bulk RP@ush
more efficient than repeated single RPC as network lateraayn -
tized over many calls, and performance becomes boundedtby ne
work bandwidth or CPU throughput (hardware factors thatesca
much better than network latency).

We implemented XRPC in the relational open-source XQuery
DBMS MonetDB/XQuery [9] based on thiathfindercompiler [18].
The essence of the compilation technique employed by Pdé#fin
is loop-lifting [18], which translates XPath/XQuery expressions in-
sidef or -loops into single bulk relational query plans that process
all iterations of the loop independently of each other. Isecaf
Pathfinder, with its loop-lifted approach to XQuery tratisla, it
was trivial to generate Bulk RPC requests for any XRPC caihtb

in an XQuery. That is, a XRPC call nested irf ar -loop taken 2. THE XRPC LANGUAGE EXTENSION
many times leads to only a single Bulk XRPC request/response
which invokes the function for all iterations of the loop inlk. Syntax. Remote function applications take the XQuery syntax:
Another way to look at Bulk RPC is that it exposes bulk exe-
cution opportunities, such that e.g. a function that seledth a
constant argument is turned into a join against the sequeinakk whereExpris an XQueryxs: st ri ng expression that specifies the
arguments. Bulk RPC thus has a direct correspondence with se URI of the peer on whiclrunAppis to be executed. The function
oriented processing as offered by query algebras, and wevbel to be applied can be a built-in or user-defined. For user-édfin
can be generally applied any algebraic XQuery implemeonati functions, we currently restrict ourselves to functionfired in an

) .) XQuery Module. A small (future) extension to the networktpro
XRPC and Updates.During a single XRPC query, it may happen .| would also allow functions defined inside the query to ke-e
that multiple read-only XRPC requests are sent to the satmelsi cuted over XRPC.

therepeatable readsolation level we define, each request from the For a precise syntax definition, we show the rules of the XQuer
same query is guaranteed to see the same database state. 1.0 grammar that were changed:

XRPC queries may themselves also update the databases, by ing,; maryExpr := .| FunctionCall | XRPCCall | ...
voking XQUF “updating functions” over XRPC. Note that XQUF

execute at { Expr}{ FunApp(ParamList) }

X 2 . . XRPCCal | ::= "execute at" "{" ExprSing "}" "{" FunctionCall "}"
queries or_1ly perform snde-effectl_ng actioafter all query execu- FunctionCal | :: = Quame " (" (ExprSingle(”," ExprSingle)*)?)"
tion has finished, such that during query execution the datab)]
state is constant, and updating queries behave much likearlg Example. As a running example, we will assume a set of XQuery
queries. Obviously, atomically committing a distributeatisaction ~ database systems (peers) that each store a movie datalmse do

requires a protocol like two-Phase Commit (2PC). We decitgd ~ ment”fi | nDB. xni " with contents similar to:
to add 2PC to the XRPC network protocol, but rather rely on the

; . . : <films>
recent industry standard Web Services Atomic TransactiS <fi | np<nane>The Rock</ name><act or >Sean Connery</ act or ></ fi | np
AtomicTransaction) [3, 4] that provides exactly this feattor dis- <fi I mp<name>Col df i nger </ name><act or >Sean Conner y</ act or ></ fi | m>
tributed web-service transactions. </<I: : x:nam»e' een Car d</ name><act or >Ger ar d Depar di eu</ act or></fil mp

XRPC as target language.One of the design goals of XRPC is
— besides it being directly useful as an explicit instruntentrite
distributed queries — to have it serve as the target langfmge
distributed XQuery optimizer that takes queries withoutP@as nodul e nanmespace filne"filns";) .
input (thus data shipping only), and produces a decomposery q ?98'032 ?f{ :”r'&' ipﬂfBDTHL'WLFEB)'QEES;(Q:E{gha}s xs:string) as node()
as output that uses XRPC for function shipping.

Our choice to make distributed execution explicit in ternfis o We can execute this function on remote pegrexanpl e. org" to

We assume an XQuery moddlel m xq stored ak. exanpl e. or g,
that defines a functiofi | nsByAct or () :

remote functions and their dependencies (parameterghsaicell get a sequence of films in which Sean Connery plays in the emot
with XQuery being a pure functional language. Query decompo film database:

sition techniques [21] can thus be applied to decomposeuthe f jmort modul e namespace f="films" at "http://x. exanple.org/filmxq";
query (function) into sub-queries (again functions), teath can <films> {

in theory be executed on any of the participating sites. execute at {"xrpc://y. exanpl e. org’}

) " . f:filnsByActor (" Sean Co "
Note that automatic query decomposition techniques arertsy } </ s> {f-fiTmsByActor("Sean Connery”)} (@

the scope of this paper (but part of our future work). We limit))
ourselves here to showing how some well-known distributeety, We introduce here a newr pc network protocol, accepted in the
execution strategies, such as the distributed semi-joitesty, can ~ destination URI ofexecute at. The generic form of such URIs
be elegantly expressed in XRPC. To demonstrate the perfmena iS: Xrpc: // < host> [: port] [/[path]. Thexrpc:// indicates the

opportunities of XRPC, as well as its interoperability, weyide network protocol. The second pat,host> [: port], indicates the
some initial performance experiments with one peer runiviog- remote peer. The third part/[path], is an optional local path at
etDB/XQuery, and another running Saxbn. the remote peer.

The above example yields:
Outline. This paper is organized as follows. In Section 2 we
give a definition of the XRPC language extension, including t
SOAP sub-protocol it uses, and spend considerable timeyar-ri
ously defining the formal semantics of XRPC. Section 3 oe8in
the initial implementation of XRPC in MonetDB/XQuery, inslive

<fil ms><name>The Rock</ name><name>Gol df i nger </ nane></fi| ms>

More Examples. A more elaborate example demonstrates the pos-
sibility of multiple remote function calls to a peer:

the correspondence of Bulk RPC with the loop-lifting tecius L mor m{DdU' e namespace f="filns" at "http://x.exanple.org/filmxq";
. . . . <tilns>

gpplled by the pathfinder compiler. In Section 4 we demotestra for $actor in ("Julie Andrews”, "Sean Connery")
in case of Saxon how XRPC can be used already amhXQuery let $dst :="xrpc://y.exanple. org" (@)
system, using an XRPC wrapper that is capable of trans|&tirk) L/e; _Ulf“ ixecut e at {$dst} {f:filmsByActor($actor)}
RPC requests into XQuery. Section 5 then shows how XRPC can! fi1m
be used to elegantly express various distributed queryegsiog and to make it a bit more complex, we could do multiple functio
strategies, including experiments in which MonetDB/XQuand calls to multiple remote peers:
,Si,ixon work together Over,XRPC’ using e.g. the dIStr.IbutGEdl-SG inport nodul e nanespace f="films" at "http://x.exanple.org/filmxq";
join strategy. Finally, we discuss related work in Sectionefore <films> {
outlining our conclusions and future work in Section 7. for $actor in ("Julie Andrews", "Sean Connery")

for $dst in ("xrpc://y.exanpl _e.org", "xrpc://z.exanple.org") (@)
1Section 4 outlines a simplERPC wrappetthat allows arbitrary return execute at {$dst} {f:filmsByActor(Sactor)}
XQuery data sources to handle XRPC calls. bl s>

100

2.1 SOAP XRPC Message Format
SOAP (Simple Object Access Protocol) is the XML-based mes-

Similarly, the XML SchemaXRPC. xsd? defines enclosing el-
ements for document, attribute, text, processing insooctand

sage format used for web services [26, 19, 20], and we propose comment nodes. Document nodes are represented in the SOAP

the use of SOAP messages over HTTP as the network protocol un-

derlying XRPC. SOAP web service interactions usually folkan
RPC (request/response) pattern, though the SOAP pro®oul¢h
richer and allows multi-hop communications, and highly fapn
urable error handling. For the simple RPC use of SOAP over®TT
a sub-protocol called “SOAP RPC” is in common use [20]. SOAP
RPC is oriented towards binding with programming languageh

as C++ and Java, and specifies parameter marshaling of éncerta
number of simple (atomic) data types, and also allows pgssin
raysandstructsof such data-types. However, its supported atomic
data types do not match directly those of the XQuery Data Mode
(XDM) [15], and the support for arrays and structs is not vete

in XRPC, where there rather is a need for supporting arlyitrar

message as<alocunent > element that contains the serialized doc-
ument root. Text, comment and processing instruction nadese-
rialized textually inside the respective elemegitext >, <conment >
and<pi >. Attribute nodes are serializadsidethe<attri but e>
element:i<xrpc: attribute x="y"/>.

XRPC fully supports the XQuery Data Model, a requirement for
making it an orthogonal language feature. This implies XRRi&0
supports passing of values of user-defined XML Schema types,
cluding the ability to validate SOAP messages. XQuery dyea
allows importing XML Schema files that contain such defimito
Values of user-definedamedtypes are enclosed in SOAP mes-
sages byel ement > elements, with arxsi : t ype> attribute anno-
tating their type. The XQuery system implementing XRPC &thou

shaped XML nodes as parameters as well as sequences of-heterdnclude anxsi : schemaLocat i on declaration as well as ami ns

geneously typed items. This is the reason, why our SOAP XRPC
message format, while supporting the general SOAP starmled
HTTP with the purpose of RPC, implements a new parameter pass
ing sub-format (SOAP XRP& SOAP RPC). The most often used
form of SOAP RPC is calledpc/encodedwhile our SOAP XRPC
protocol belongs to the family adlocument/literal It was shown

in [12] that rpc/encoded in general is significantly slowsart doc-
ument/literal, and suffers from scalability problems wtliea mes-
sage size increases.

XRPC Request MessageSOAP messages consist of an envelope,
with a (possibly empty) header and a body. Inside the body, we
define ar equest that specifies a module URbdul e, an at-hint

| ocati on, a function nameret hod and itsari ty. The actual pa-
rameters of a single function call are enclosed tmakl element.
Each individual parameter consists osequence element, that
contains zero or more values.

namespace definition inside thkEnvel ope> element, when values

of such imported element types occur in the SOAP message. If a
parameter has aanonymousiser-defined schema type, however,
its type information is lost, but this can be avoided exjmgjta fu-

ture protocol extensidh(discussed later) by including the lowest
ancestor-or-self element withreamedschema type in the SOAP
message.

XRPC Response Messagdsllow the same principles. Inside the
body is now arxrpc: response element that contains the result
sequence of the remote function call, e.g.:

<?xm version="1.0" encodi ng="utf-8"?>

<env: Envel ope xni ns: xrpc="http://monetdb. cwi .nl/XQuery"

xnl ns: env="http://ww. w3. or g/ 2003/ 05/ soap- envel ope"

xm ns: xs="http: //wwmv. w3. or g/ 2001/ XM.Schema"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"

xsi : schemaLocati on="http:// nonetdb. cwi . nl / XQuery
http://monetdb. cwi . nl / XQuery/ XRPC. xsd" >

Below we show the XRPC request message for the first example <env: Body>

query, that looks for films with Sean Connery:

<?xm version="1.0" encoding="utf-8"?>
<env: Envel ope xm ns: xrpc="http://monetdb. cwi . nl/ XQuery"
xm ns: env="htt p: // wwmv. w3. or g/ 2003/ 05/ soap- envel ope"
xnl ns: xs="http: // ww. w3. or g/ 2001/ XM_.Schenma"
xnl ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance”
xsi: schemaLocation="http://nonetdb. cwi .nl/XQuery
http://monet db. cwi . nl / XQuer y/ XRPC. xsd" >
<env: Body>
<xrpc:request nodul e="filnms" nethod="filmsByActor" arity="1"
| ocation="http://x.exanple.org/filmxqg">
<xrpc:call>
<Xrpc: sequence>
<xrpc: atom c-val ue
Xsi:type="xs:string">Sean Connery</xrpc: atonic-val ue>
</ xrpc: sequence>
</ xrpc:cal | >
</ xrpc: request >
</ env: Body>
</ env: Envel ope>

Atomic values are represented wihoni c- val ue, and are an-
notated with their (simple) XML Schema Type in thei : type
attribute. Thus, the heterogeneously typed sequencestimigson
an integer and double3. 1 would become:
<Xrpc:sequence>

<xrpc: atom c-val ue xsi:type="xs:integer">2</xrpc: atom c-val ue>

<xrpc: atonic-val ue xsi:type="xs: doubl e">3. 1</ xr pc: at oni c- val ue>
</ xrpc: sequence>

XML nodes are passed by value in el ement > element:

<Xrpc: sequence>
<xrpc: el ement ><nane>The Rock</ nane></ xr pc: el enent >
<xrpc: el ement ><nane>Col df i nger </ name></ xr pc: el enent >
</ xrpc: sequence>

101

<xrpc: response modul e="films" method="fil msByActor">
<Xrpc: sequence>
<xrpc: el ement ><name>The Rock</ nane></xrpc: el enent >
<xrpc: el enent ><nane>Col df i nger </ nane></ xr pc: el enent >
</ xrpc: sequence>
</ xrpc: response>
</ env: Body>
</ env: Envel ope>

XRPC Error Message. Whenever an XRPC server discovers an
error during the processing of an XRPC request, it immebjiate
stops execution and sends back an XRPC error message, hising t
format of the SOAP Fault message ([26], [19]). Thus, anyrerro
will cause a run-time error at the site that originated therguAs
an example, the following SOAP Fault message indicatesahat
required module could not be loaded (we show onlyetie Faul t
element):
<env: Faul t >

<env: Code><env: Val ue>env: Sender </ env: Val ue></ env: Code>

<env: Reason>

<env: Text xm :lang="en">coul d not |oad nodul e! </ env: Text>

</ env: Reason>
</env: Faul t>

Outlook. Our discussion of SOAP XRPC message is not fully done
yet. In the next subsection, we will extend the format withsart

for isolation and updates. Then, in Section 3.2 we desctilee t
Bulk RPCfeature, that allows a single message to request multiple
function calls.

2Seeht tp: // monet db. cwi . nl / XQuer y/ XRPC. xsd

2.2 XRPC Formal Semantics

In defining the semantics of XRPC, we take care to attach prope
database semantics to the concept of RPC, to ensure thad?@8 R
being done on behalf of a single query see a consistentlulistd
database image and commit atomically. It is known that fedic-
izability in distributed queries can come at a high cost, trate-
fore we also define certain less strict isolation levels gtifitmay
be useful to certain applications.

We use the following notation and terms:

— P denotes a set gieer identifiers We use the peer identifigr

to denote thdocal peer on which a particular query is started. All
other peerg; € P areremote peersin practice, a peer identifier is
a URI from thexr pc protocol, that contains a host and (optionally)
a port number.

— F denotes a set ofRPC function applicationsAn XRPC call
fPi—Pi that triggered fronp; that causes functioh to be executed
atpj is anupdating XRPC calff{' "™ e F,), ifit calls an updating
function; otherwise, it is aon-updating XRPC calif” ~" € 7).
If the evaluation of an XRPC calfP—Pi requires evaluation of
other XRPC call(s) apj, we termfP—Pi anested XRPC call

— M denotes a set of XQuemnodules A module consists of a
number of function definitionsl;. Each XRPC callf P —~Pi must
correspond to a definitiods from some modulen; € M.

— An XRPC querys an XQuery query which contains at least one
XRPC call fP—Pi € T4, whereFq denotes the set of all function
calls performed during execution gf We call a query in which
only one, non-nested XRPC call appeasiraple XRPC queryAn
XRPC queryq is anupdating XRPC quernyif it contains at least
one update command or a call to an updating (XRPC) function.

— Each query operates indgnamic contextThe XQuery 1.0 For-
mal Semantics [13] defines that each expression is norndatze

a core expression, which then is defined by a semantic judgment
dynEnvi- Expr=- val. The semantic judgment specifies that in
the dynamic contexdynEny the expressiof xpr evaluates to the
value val, whereval is an instance of the XQuery Data Model
(XDM). For now, we simplify the dynamic environment to a data
base statelb (i.e. the documents and their contents stored in the
XML database):dynEnv~ db. The dynEnwlocValuefrom the
XQuery Formal Semantics [13] correspondsdio used here. To
indicate a context at a particular pggrwe writedbP.

further assumption otp) starts with constructing cal | > element
that contains the SOAP representation of all parameterd his
XML representation, described in the previous Section &.4ré-
ated by the sequence-to-node marshaling funcitaf) , discussed
below. Then, the requesin, f,call) is sent to peepx. Here,mis
the module URI (plus at-hint) in which functiof is defined. The
function f, is then evaluated as a normal local function in the dy-
namic context of the remote peeb®™ (t), where we only assume
txy > to. The parameters of;, are obtained by using the inverse
node-to-sequence marshaling functi@a() to produce the result
noderes This resultresis sent back to peqyp, which finally con-
vertsresinto the result sequencges.

This definition inductively relies on the XQuery Formal Sema
tics to evaluatef locally at py, and thus may trigger the evaluation
of additional XRPCs if these happen to be present in the bédy o
Also, this definition covers execution of XRPC calls in thereat
database stat#bP, which we need for our basic purpose of defin-
ing the semantics XRPC queries (in which casés the current
time point). Finally, this XRPC rule does not produce any roes
rent local database statP® nor new remote database staltig®
(i.e. it defines read-only semantics).

Parameter Marshaling. The SOAP representation of a sequence
$seq is created in a newsequence> node by the function:

declare function s2n($seq as itent) as node()

The inverse transformation (frorsequence> representation to real
item sequence) is provided by:
declare function n2s($n as node()) as itent

For example, we get'abc", 42) from calling:

n25(<xr pc: sequence>
<xrpc: atoni c-val ue xsi:type="xs:string">abc</xrpc: aton c-val ue>
<xrpc: atom c-val ue xsi:type="xs:integer">42</xrpc: at om c- val ue>
</ xrpc: sequence>)

An important characteristic of the functimas() is that it guar-
antees that for node-typed parameters (i.e. those repiessas
<el ement >, <t ext >, <docunent >, <at tri but e>, <comment > and<pi >)
an XDM node of the correct type is returnad a separate XML
fragment. This guarantees that evaluating the upwards and hori-
zontal XPath axes on such nodes will return empty resultsalt
be tempting to return element nodes under the identity fonrlde
message (i.e.rdquesfcall /xrpc: sequenci]/xrpc: elementsx),

— When considering that a database may be changed by updateshut this would allow a query to navigate e.g. to the SOAP epe!

we can view it as a function over timteasdbP(t). In our formal
rules, the default assumption on database states is thastag
equal over time, unless otherwise stated. When the timesgbint
is clear, the shorthand notatiatb® is used to refer to the current
database state.

Basic read-only XRPC i.e. the semantics of executing a read-only
function fPo—Px (f € F¢), is defined by extending the XQuery 1.0
semantic judgments with a new ride

dbP(tg) +<cal I >{s2n(vy),--,s2n(vpy)}</ cal | > = call;
send®—Pxrequestm, fr,call);tx > to
dbPx(ty) s2n(f,(n2g(call/*[1]),--- ,n25(call/«[n]))) = res
send*~Poreply(res);
dbP(tp) - n2s(res) = Ve

dbpo (to) '7 frpog}px(v:]_7 R 7Vn) = Vres

(Rg,)
This ruleR 4, states that execution pg of the (read-only) XRPC
call fP=Px(vy,--- vy) in the dynamic contextlb (t) (without

3In our rules, we use the *;’ sign to suggest an order in thetgval
tion of the statements.

102

element, or the other function parameters.

One should note thabs() ands2n() are internal functions only
that do not need to be exposed to XRPC users, and in fact do not
need to exist in reality, as each XRPC system implementatiay
have its own internal (efficient) mechanisms to process S@®ABR-
sages. In case of MonetDB/XQuery, beyond shredding the SOAP
request and response messages, we do not spend any effwit)in
nor s2n() on element construction to retrieve node values of the
correct type, as our implementation directly chops up threddhed
XML message in separate XML fragments per function paramete
and modifies node types internally (as the SOAP messager-are i
visible to the user, their integrity can be compromised dt ki
the system). It is possible, though, to implemend() ands2n()
purely in XQuery, as we will show when we discuss the XRPC
wrapper, that allows arbitrary XQuery processors to pguéte in
distributed XRPC queries in Section 4.

A final detailed remark on parameter marshaling is that XRPC
requires thecaller to perform parameter up-casting. The rationale
is that such casting is already part of the standard functjmpli-
cation code generated by any XQuery system, thus easy to do at
the caller for XRPC calls, and makes it easier to implemenPXR

handlers that have no or limited XQuery capabilities (e.capped
outside web services as in [28]).

Call-by-Value. An important choice implied by makinges() and
s2n() explicit in our Formal Semantics is to enforbg-valuepa-
rameter passing in XRPC. If nodes are passed as parametamns of
XRPC call, they will be serialized into a SOAP message, sdpp
to the remote side, and there new nodes will be constructed (o
appear) of the correct type with equal-valued contents,witht
different node identifiers. This can lead to a number of se¢iman
differences between local and remote function applicatite al-
ready mentioned that XPath navigation from node parametens
non-downwards axes (e.gparent, fol | owi ng) will always pro-
duce empty results on the remote side. More subtly, if a func-
tion is invoked over XRPC with two nodes as parameters thet ha
a descendant -or-sel f relationship, XRPC parameter marshaling
will destroy this relationship at the remote stdgnally, the XQuery
Formal Semantics specifies that some consistent order dshaul
enforced over nodes from different documents, but our séiggn
will not respect this order on their copies when shipped XRPC.
The rationale behind this by-value choice is thptreferencese-
mantics would lead to complications when the upwards omgigs
XPath axes are invoked on node parameters (or results) ofCcXRP
calls. Correctly supporting that would either lead to thed¢o
ship the full XML data fragment for all node parameters upfro
(defeating the purpose of function shipping) or cause iaitpdom-
munication when navigating beyond the descendants of suadsn
Obviously, call-by-value semantics complicate life wheRPC
is used as the target language for automatic query disimibas
opposed to explicit XRPC query processing, where we camassu
the query writer to be aware of the call-by-value semanticshat
case, the query optimizer has the task to make sure by-vahaep
eter passing does not affect query semantics. The simliesion
is to refrain from function shipping in problematic casest imore
sophisticated solutions may be found for some query pattern

qpo
v !
(O
v lp\ VEURN
P P f|p| frﬁm

Nested XRPC Calls.The general pattern of XRPC function appli-
cations generated by a query ize@e, as each XRPC call may again
perform more XRPC calls. This happens when a query contains
multiple XRPC function applications, or when such a functip-
plication occurs inside Bor -loop. In the above diagram, the arrow
‘—’ should be read as “XRPC call”.

4We are considering a future XRPC protocol extension thatna|
node parameters to be referred to usingcapc: nodei d attribute
that holds a node identifier. This alternative node reprdiem
can be used for nodes that are a descendant-or-self of ampathe
rameter that is fully serialized in the SOAP message. 32i€)
function would then be altered to return nodes from the XMagf
ment that corresponds with that fully serialized paramefEhis
change of semantics ensures that ancestor/descenddinnships
among parameters at the calling peer are preserved at theaem
XRPC peer. Thisndirect addressings useful for compressing the
SOAP message. Moreover, if applied maximally, the resylitial-
by-fragmentresult/parameter passing, allows an distributed XRPC
rewriter to relocate parts of certain query predicates doatepend
on node identity (i.e. node-valued join conditions whosjates
only contain descendant/ancestor XPath steps).

103

The peersp07pl7"'7pi7pj7“' yPks 5 Py, Pmoa@re not nec-
essarily unique: some pegy (or in fact many such peers) may
occur multiple times in this tree. When considering rilg , the
dynamic environmentlynEn¥ containing thecurrent database
statedbP may thus be seen multiple times during query evaluation.
In between those multiple function evaluations, othergeations
may update the database and chadg&. Thus, those different
XRPC calls to the same remote pgefrom the same querg may
see different database states. This will not be acceptableome
applications and therefore, we deem it worthwhile to defapeat-
able readisolation for queries that perform XRPC calls.

Repeatable Read XQuery users can control per query which se-
mantics is used by using the XQuetscl are option feature, set-
ting xrpc: i sol ati on either to"none" (rule R,) or "repeatabl e”,
defined by ruleR’, :

dbP (t5°) I <cal | >{s2n(vy), - ,s2n(Vn)}</ cal | > = call;
send®~Pxrequestq, m, f,call);
dpr(tc’fx) Fs2n(fr(n2s(call / «[1]),--- ,n25(call/ «[n]))) = res
send>~Poreply(q, res);
db™ (tf°) F n2s(res) = Vies,
dbpo(tqpo) }7 frpOHpX(VL" . 7Vn) = Vres

(R'7,)

The above ruleR’s, specifies that for evaluating XRPC calls
on behalf of queny, peerpy uses always the same database state
dbP(t§¥). Timet§ is typically time that the first XRPC request
of query q reachedpx; but we place no specific restriction on it.
Observe that a unique query identifigiis now passed as an ex-
tra parameter in the XRPC request, such that a peer can rigeogn
which XRPC calls belong to the same query and it can asscamate
isolated database state with it.

Clearly, XRPC with repeatable reads requires more ressurce
implement, as soméatabase isolatiomechanism (of choice) will
have to be applied to retaidb™ (t§*) across calls. The transac-
tion mechanism of MonetDB/XQuery, for example, uses snaipsh
isolation based on shadow paging, which keeps copies offiraddi
pages around. Systems that provide the isolation leveializable
or repeatable reads (obviously) can also provide this séosan

A quite common reason why a peer is called multiple times in
the same query and the need for repeatable reads arisesgrisanh
XRPC call appears inside a for-loop. In Section 3.2 we dbscri
how Bulk RPChelps avoid these costly isolation measures in case
of simpleXRPC queries (i.e. those that contain only one non-nested
function application).

Other Isolation Levels. If we would suppose that all peers in-
volved inq support the isolation levednapshot isolationand all
would use thesametimestampty as the one in which the original
query executes, i.@f’ = - = E’* =... =t§" =1tq, we could ob-
tain the isolation levetlistributed snapshot isolationJust using a
globally consistent query timestamp is actually not endoglthat,
extra effort is needed to enforce distributed commits topleapat
the same time point (one way to do that is to block or abort in-
coming reads while a node is in prepared stated — this iscctike
pessimistic approach in [32]). For this to be meaningfulriagtice,
however, we would have to have a representationvailues (until
now, this is left opaque) that allows a full ordering, thusigimg

us to define a “happened before " query/transaction deglet tq,.
However, as XRPC is also intended for use in P2P settings, we
make no assumptions on a centralized distributed tramsactior-
dinator that could give out unique and monotonically insiegt
numbers. In absence of that, one could think atimbers gener-
ated by Lamport Clocks [23], but while this method guarastéat

a transaction that depends on a previous one (“happenedebefo
has a smaller Lamport clock value, the reverse inferenceatare
made (i.e. meaningfully enforcing a transaction order delpey
on sucht-s) unless all peers participate in all queries (which again
is not a reasonable assumption in P2P). Of course, we candhin
t as being “exact” (UTC) time, but as we do not want to assume
either that all participating peers possess (synchrohizggatium
grade precision clock hardware, this is only a theoreticaiom.

For this reason, we leave the maximum XRPC isolation cugrent
at the repeatable read level, though finding a distributeli®n
level useful in P2P is on our future work agenda.

SOAP XRPC Extension: Isolation. XRPC uses repeatable reads
semantics for requests that have the optianaryl D child ele-
ment in thexr pc: request element. Theueryl D in the SOAP
message contaimest andt i mest anp attributes that state on which
host and at UTC time the query started initially, and aeout at-
tribute that specifies a local number of seconds during which
conserve the isolated database state. Note that the tirsemia-
tive, it is a number of seconds — this mitigates problems ey
different peers having big clock synchronization diffevzes. When
the timeout passes, the isolated database state can beddisca
freeing up system resources. However, the local XRPC handle
should still remember expireguer yl Ds, such that it can give er-
rors on XRPC requests that arrive too late. The purpose afisgn
thet i nest anp of the originating host is to ease the administration
of expiredquer yl Ds, as per host only the latest timestamp needs to
be retained, and can be restricted to some sane time interval

A timeout mechanism is inevitable, even if XRPC would use a
2PC-like coordination protocol to signal the finishing of aegy
(for updates, XRPC actually does so via WS-AtomicTransagti
because such a coordination protocol also needs a timeaonto
clude that remote hosts are no longer responding. Autoaibtic
computing a good timeout value requires a cost model thastak
into account the query, data-distribution, network, anermharac-
teristics — a task we leave for our future work on automatiergu
distribution. Therefore, the timeout to use is specifiechie query
usingdecl are option xrpc:tinmeout <sec>, so users and ap-
plications can set them according to their needs.

2.3 XRPC Update Semantics
The XRPC language extension is fully orthogonal to all XQuer

features, and thus one can also make XRPC calls to user-define
updating functionsas defined by the XQuery Update Facility (XQUF).

The XQUF syntax ensures that if a user-defined function ¢osita
one updating function, it must itself be an updating functigQuery
updates (and thus updating functions) determine which sxéde
change (and how), purely based on the database state bbéore t
update, and producepending update lisf. Only after query ex-
ecution has finished, all updates in the pending update risstaa
be applied and committed. This concept is quite similar tor@n-
ads, used in functional languages like Haskell, that clesgparate
functional execution from any side-effecting actions.

dbP(tg) +<cal I >{s2n(vy),--,s2n(vpy)}</ cal | > = call;
send®—Pxrequestm, fy,call);ty > tg

dbPx(ty) + fu(n2g(call/«[1]),--- ,n2s(call/*[n])) = A,
dbPx(tx) - appl yUpdat es(A) = dbPx;

send>~Poreply()
dbpo(t()) F fLPOpr(Vlf" . 7Vn) = ()7dbpx
(Rg,)

The above rulek 4, states that update functions apply the pend-
ing update listA immediately, producing a new current remote

104

database statébPx. For this purpose, we use the internal func-
tion appl yUpdat es() defined in the XQUF [11] that carries through
all changes in a pending update list. Note that this rule @escan
updating call betweepg and py in databases states fragresp.tx
without other assumptions than> tg. Typically, an implementa-
tion may choose to us#oP, i. e. the latest database state to handle
each XRPC request.

Remote execution of an XQUF updating function causes no new
dbPo state directly (it returns an empty pending update list, bu
does yield a newdbP. This is a simplification, becausk/() it-
self may perform XRPC calls that modify database statestadrot
peers involved i — and potentially evenb®™ itself. While the
local queryq at pp always operates idbP (tp), if it performs mul-
tiple XRPC calls to the same pepx, these calls will thus poten-
tially see different statedbP (tyq),dbP(ts2), ..., which may even
include the updates caused by the previous XRPC calls madg fo
Therefore, while easy to implement, this semantics doeguat-
antee repeatable reads, even allows lost updates at thepsmne
between multiple calls performed on behalf of the same quary
will cause non-atomic distributed commits to happen if XR&C
ecution is aborted halfway due to an error.

Atomic Updates with Isolation. We now define an improved XRPC
isolation level that provides repeatable reads as well@siatdis-
tributed commit. Recall that the effects of XQUF updatesiaris-
ible until query execution finishes; only theppl yUpdat es() is in-
voked on the pending update list. In the previous fRile,, updates
were visible directly after handling each individual XRP&Zjuest.
The new ruleR’, given below, thus corresponds more closely to
the intent of the XQUF, in that no side effects of qugrgre visible

at any involved peepy until the query commits.

The repeatable read isolation implies that peers deferyaypl
pending update lists created by individual XRPC calls made o
behalf of the same querg until the point thatq actually com-
mits. Thus, peergpx must not only keep track of the database
statedbPX(t(‘fX), but also of a collection of pending update lists
AF = Ugicqa,... up A8 (i), whereUg* is the number of updating
XRPC callspx has handled so far fay.

dbP (t5°), A8 - <cal I >{s2n(vy), - ,s2n(Vn)}</ cal | > = call;
send®~Pxrequestq, m, f, call);
dbP(t§), A5 F fu(n2g(call/ «[1]),--- ,n2s(call/* [n])) = A (US);
send~Poreply()
dbPo (t5°), A8 - £8P (vy, - vn) = ()

(R'7,)

The translation of isolated updating XRPC calls is depidted
the inference rul&’ s, above. Like ruleR’s , this rule again pro-
vides for proper isolation by keeping the database sibf’e(t(’fx)
constant throughout the query. The execution of a functigh at
px causes a new pending update list to be created, that becamtes p
of the collectionAf.

Obviously, atomically committing a distributed transacatire-
quires a protocol like 2PC or one of its more advanced deriva-
tives [29, 17]. We decided not to add 2PC to the XRPC network
protocol, but rather rely on the recent industry standard A¥@mic-
Transaction [3, 4] that provides exactly this feature fatibuted
web-service transactions. WS-AtomicTransaction [3] [des a
rather vanilla SOAP-based 2PC interface with e2gepare() and
Commi t () functions. It is embedded in the WS Coordinator frame-
work [4] that allows to register a collection of peers thattjzi
pate in a distributed transaction, and subsequently rusnsaction
protocol on those (in this case WS-AtomicTransaction). sThao
order to support updates with this isolation level, XRPCiays

must implement support for these web service interfaces péfier
them over the same HTTP SOAP server that runs XRPC.

To implement proper 2PC, therepare() function bringsq in
prepared state. It may raise an error, if a conflicting tratisa has
reached this state already. Else, it logs the union of thelipgn
update IistsAQX) to stable storage, ensuriggcan commit later:

seng,_.p,requesta, Preparg;
dbP(t§), A8 F1og(AF) = 1;
sengh—p,reply(r)
dbPo(t5°), A - Preparéo—Px() = r

Operator Semantics

Oa select all rows with columa =true_

Thyby,.ach, Project columngy,..., by and possibly rename
columnsb; to g (no duplicate removal)

0 duplicate elimination

U disjoint union

Map equi-join

Po:(ay,...an)/p FOW numbering (DENSERANK SQL:1999)

abl literal table

Table 1: Relational Algebra Generated By Pathfinder

with these parameter tables, producing a result table. &geest
handler then builds a response message in which this redlé t

Conmi t () carries through the updates, creating a new database stateis serialized into XML, using the normal MonetDB/XQuery isér

sen &prreques(q,COmmit);
dbPx (tgx),Aq I appl yUpdat es(Agx) = dbPx
dbP (t5°), A - Commio—P«() = dbPx

More SOAP XRPC Extensions.In XRPC, peeipq that starts the
queryq is the one that registers the participating peers at the WS
Coordinator service and initiates the Prepare and Comnaisgh

For this registration task, it thus needs to know a full lispeers
that participate in the transaction. Due to nested XRPGcill
may not be aware of all peers and therefore we extended thd®’SOA
XRPC protocol to piggyback a list of all unique participafipeers

in the response message.

Finally, the XQUF specifies that when the same node is updated
twice in the same query, the order in which the different tpde-
tions on that node are appliedrisn-deterministic This means that
we can simply union all individualgx(i) pending update lists (one
for each XRPC call handled ipy for g) to get a full update list
AQX without worrying about preserving some proper order on the
update actions. In a separate work [35], omitted here faars of
space, we have defined a deterministic update order for X@htF,
devised a way to enforce it over XRPC using a small XRPC pro-
tocol extension, despite the out-of-order execution éffe€ Bulk
RPC, that will be observed at the end of Section 3.1.

3. MONETDB/XQUERY IMPLEMENTATION

We implemented XRPC in MonetDB/XQuery, an efficient yet
purely relational XML database system [9]. It consists &f khon-
etDB relational database back-end, andRaghfindercompiler [18],
that translates XQuery into relational algebra as frord-en

The XRPC module contains an ultra-light HTTP daemon imple-
mentation [24] that runs a request handler (the XRPC seraan
contains a message sender API (the XRPC client). We alsoohad t
add support for thexecut e at syntax to the Pathfinder XQuery
compiler, and change its code generator to genestate codethat
invokes the new message sender API.

The stub code uses the message sender API to generate a SOA |

message from actual function parameters. This processséehe
normal sequence serialization mechanism in MonetDB/XQUdre
message sender API sends the XML message using HTTP POS
and waits for a result message. The result message is s@gbqu
shredded into a relational table, the way all XML documents a
shredded in MonetDB/XQuery. The stub code retrieves atealic
ues from the SOAP document nodes; node-typed values just ref
to the nodes in the newly shredded SOAP document.

The request handler, on the other side, behaves similddig- |
tens for SOAP requests and shreds incoming messages into a te
porary relational table, from which the parameter values ex-
tracted. As MonetDB/XQuery is a relational system, XQueais v
ues are all represented as (temporary) relational tables. nfod-
ule function specified in the SOAP request is then executeallip

105

ization mechanism onto the network socket.

3.1 Relational XQuery And Loop-Lifting

The Pathfindercompiler [18] translates XPath/XQuery expres-
sions into bulk query plans formulated in the vanilla relatl alge-
bra, depicted in Table 1. All operators are well-known, gtqeer-
haps the row numbering operamrwhich is similar to the SQL:1999
operator DENSERANK: py. 5, . a,y/p(d) that assigns each tuple
in g a rank (i.e. number), which is saved in coluron The con-
straint for the enumeration is the implicit ordergby the columns
a1,...,an. Numbers consecutively ascend from 1 in each partition
defined by the optional grouping colunm

of n > 0 items x;, denoted (X1,%2,...,%). Mon-
etDB/XQuery is a relational system, thus sequences
represented as tables, with scheltBEW. Since rela-
tions have (unordered) set-semantics, sequence orderbauest-
plicitly maintained using @os column. In the XQuery data model,
a single itemx and the singleton sequenpe are identical. Itenx
is represented as a single row table containing the t{ipke. The
empty sequencg maps into the empty table.

are :
n

Loop-lifting. Each XQuery is translated bottom-up into a single
relational algebra plan consisting only of the classicétienal
operations (select, project, join, etc); that is, the XQuewncept
and optimizable) execution plan is created.
The result of an XQuery
L ; return for $y in (100, 200)

up compilation is a %\ s g { et 82 1= (3x,8y) Qs
relational plan that yields
make this possible, these intermediate tables have thteens:
[EFEHED, wherei t er is a logical iteration number, as shown in

| iters® If we focus on the execution state in the innermost it-
eration body (marked as scopg of Qs, there will be three such

of nested or -loops is fully removed and a single bulk (=efficient
at each step of bottom- for Sx in (10.20)
return $z
the result sequender eachnested iteration, all stored together. To
e tables below. For each scope, we ketgoarelation that holds

_llables that represent the live variab$s $y and$z respectively.

As we can see from the .«
iter columns, there areli
four iterations in scope,
(numbered from 1 to 4)|3
and as expectedix takes [4
the valuelO in the first two
iterations and the valu20

in the second two iterations.
Similarly, $y takes the valué00 in the odd iterations and the value

z

y
iter positemffiter positem |terp05|ter.n
. !

5Thelooprelation allows to keep track of empty sequence values,
encoded by the absence of tuples in the expression repa¢isent

msg

re.

map, regp D
— IS item map back iterpos item
"Julie Andrews” " The Rock" " The Rock" result
[3] 2] [2]71]" Sean Connery"] [2 [2]Goldfinger™] [3] 2] Goldfinger™ | - iterpos item
U(resp,;, resp,) "Sound OF Music"
ma reqp msg, res, - 31 [The Rock"
iterp, pos item = B item map back FEYIS item 3] 2 ["Goldfinger”
"Julie Andrews” "Sound OF Music" "Sound OF Music"
[4] 2] [2 [T1] Sean Connery"]|

Figure 1: Relational Processing of Bulk RPC (Multiple Desthations Example)

200 in the even ones. Finall$z is a sequence of two values in all
four iterations (having the value 8k concatenated withy).

3.2 Bulk RPC sctor

i |terpos item
Our earlier exa:mple qu.e@? JulieAndrews
contains a function application2 | 1 "SeanConnery”

inside af or-loop. Inside this

loop, the variables$dst and pos em
$act or yield relational tables|1] 1 "http:”y.exa.mple.org!”
shown left. Thus, the value of2] 1 ["http://y.example.org/

$dst is the same in both iterations of tHeor -loop, whereas
$act or takes on value$Jul i e Andrews" in the first and' Sean
Connery" in the second iteration.

SOAP XRPC Extension: Bulk RPC.The loop-lifted processing
model of MonetDB/XQuery thus collects in a single table dRXC
function parameters needed by a remote function call, deste
one or moref or -loops. This is exploited in SOAP XRPC by al-
lowing Bulk RPC in which a single XRPC message to the desti-
nation peer requests to perfomrmultiple function calls. Each call
is represented by an individual pc: cal | child element of the
xrpc: request. Such a Bulk RPC also returns multiple results in
thexrpc: response (onexr pc: sequence sequence for each call).
From the shredded XRPC response message, it is quite sfoaigh
ward to obtain the t er| pos| it emtable that represents an XDM
result value for each iteration. Note that Bulk RPC exactly fi
in the existing loop-lifted processing model of MonetDB/X&)y:
withoutexecut e at, the local function translation mechanism al-
ready produced suchider | pos| it emtable.

We show thexr pc: request part of the SOAP message in our
Bulk RPC example, which contains two calls:

| ocation="http://x.exanple.org/filmxqg">
<xrpc:call><!l-- first call -->
<Xrpc: sequence>
<xrpc: atom c-val ue
xsi:type="xs:string">Julie Andrews</xrpc: atom c-val ue>
</ xrpc: sequence>
</xrpc:call>
<xrpc:call> <!I--
<Xrpc: sequence>
<xrpc: atom c-val ue
xsi:type="xs:string">Sean Connery</xrpc: atomi c-val ue>
</ xrpc: sequence>
</xrpc:call>
</ xrpc: request >

. actor
In the previous example theigns

second call -->

Item
execute at expression$dst ,JulieAndrews’
JulieAndrews
happened to be constant, sugts| 1 "SeanConnery”
that all loop-lifted function calls [4] 1 SeanConnery

had the same destination peeggt

and could be handled by the sin

"http . //y.example.org/”

gle Bulk RPC requ_est above. 1['http : //z example org)”

Let us now consider our other 3| 1 ["http : //y.example.org,”
previous exampl€sz. We now [4]1

N

"http : //z.example.org/”
have an innerfor-loop with four iterations, but$dst takes
on two different values, identifying peery. exanpl e. org and

106

result <= Uypes(dstitem (T€Sp)
with :

[T res, = Triter.posilem(miterp:iterp (msgy, map))
IERER map, = Tierter, (Piter, (Oitem=p(dsY))
msg, — (ech. 1o} Gp
redp = Triterp.posilem(Ppos(Niter:iter (map,, param)))

execute at {EIFTIEm dst
{ f(EMEED param,--- , EFEEEREN param,) } = [[EREHEN result
Figure 2: Relational Translation of XRPC

z. exanpl e. org, in respective the odd and even iterations. The
general rule to translate a loop-lifted XRPC call is showrkig-

ure 2 and Figure 1 shows the intermediate steps taken. Thensys
establishes a list of unique peers, and for epeixtracts from each
parametei t er | pos| i t emthose iteration (tuples) that invoke the
function onp. The resulting request tablee(p) are used to gen-
erate a Bulk RPC t@. Observe that using a newiterp column is
created, and a mapping tabled,) that maps old to new iteration
numbers. The mapping table is then again used to map the new
iteration numbers back into old ones, and all result tabies) are
united with a (merge-)union on the er column, to guarantee the
correct order of the result.

Parallel & Out-Of-Order. The XRPC execution in Figure 1 per-

forms two Bulk RPC calls. The first call processes both vabhfes
$act or ony. exanpl e. org. Then a second call performs the same
task orz. exanpl e. or g. Itis important to observe that this order of
processing is different than what is suggested by the quieryfifst
Julie Andrews on both, then Sean Connery on both). If a |dftgel
XRPC function application has multiple destination peardact
MonetDB/XQuery improves performance by dispatching allkBu
RPC requestin parallel, which makes the exact order in which
peers execute the query unpredictable. After all paradislits are
united, the mapping of temporary er , numbers inta t er s guar-
antees that the final result is produced in the correct order.

The out-of-order processing effects of loop-lifting aresneas-
ily explained in a single-destination (hence non-parptelery:
inport nodul e namespace f="films" at "http://x.exanple.org/filmxq";
for $name in ("Julie", "Sean")

let $connery := concat($name, " ", "Connery")
I et $andrews := concat($name, " ", "Andrews")

()
return (

execute at {"xrpc://y.exanple.org"} {f:filmsByActor($connery)},

execute at {"xrpc://y.exanple.org"} {f:filnmsByActor($andrews)})

Here, only the peey. exanpl e. or g is involved twice within the
same query due to sequence construction. In the first Bulk RPC
call, it will look for films by two actors with surname Connery
resp. surname Andrews in the second RPC. Note that theivetuit
order suggested by the query would be to look for actors by the
name Julie first, and those named Sean second.

The above is also a good example of a query that nesda-
tion, because it handles two RPC requests inside the same query.
While in this particular case, those two requests could mihy
be combined, this is much harder if two different functionsuad
be executed, or downright impossible if the parameters efae

No Function Cach@with Function Cache
$x=1] $x=1000 [[$x=1] $x=1000
one-at-a-timg 133 2696 2.6 2696
bulk 130 134 2.7 4

Table 2: XRPC Performance (msec): loop-lifted v.s. one-a&
time; function cache v.s. no function cache

pend on the outcome of the other. Certain classes of queries,
as those that contain only a single non-nested XRPC callbean
easily identified at compile time to send at most one XRPCeasgju
to each destination peer. For such queries, we can use thpahe
XRPC mechanism withowjuer yl D (see Section 2.2), while still
guaranteeing repeatable reads.

Note that without Bulk RPC, the costly isolation mechanism
would be required for any XRPC that performs more than a singl

supporting prepared queries that does not need specific ¥Rl s
port. Exploiting the fact that a prepared query is in essenftanc-
tion with parameters, MonetDB/XQuerachesall query plans for
(loop-lifted) function calls, for functions defined in XQueMod-
ules. Queries that just load a module and call a function witit
constant values as parameter, are detected by a pre-pEnsgure-
parser then extracts the function parameters, and feedsitiie a
cached query plan. In MonetDB/XQuery, queries on small dats
can be accelerated ten-fold by this mechanism [9]. Notd,ttea
function cache isiot a query cache: queries are executed always
on the latest data, and the performance improvement stelely so
from the fact that query translation and optimization isided.

This same function cache mechanism is used by the XRPC re-
quest handler. This means that in MonetDB/XQuery an XRPC re-
quest usually does not need query parsing and optimizajtish,

XRPC call. Thanks to Bulk RPC, many queries have to send just a execution. The right half of Table 2 (the “With Function Cath

single message to each peer, thus not only reducing the muwhbe
network 1/0s, but also lessening the overhead of isolation.

3.3 Performance Evaluation

column) shows the impact of enabling the function cache: @& s
the processing time go down by 130ms (XQuery module traioslat
time), improving both the single- and many-iteration BUR®ex-
periments. Thanks to the function cache, MonetDB/XQuery ca

We conducted some experiments to evaluate the performdnce o achieve a minimum RPC latency of 3 msec — which is identical to

XRPC in MonetDB/XQuery. The test setup consisted of two 2GHz
Athlon64 Linux machines connected on 1Gb/s Ethernet.

Efficiency of Loop-lifting. To study the effect of loop-lifting, we
define arechoVoi d function and call it over XRPC while varying
the number of iterations:

modul e namespace tst = "test";

declare function tst:echoVoid() { () };

import nodul e nanespace t="test" at "http://x.exanple.org/test.xq";
for $i in (1to $x)
return execute at {"xrpc://y.exanple.org"} {t:echoVoid()}

While in MonetDB/XQuery loop-lifting of XRPC calls (i.e. Bki

that of commercial-strength software like .NET ([16, 27]).

4. XRPC WRAPPER

Cross-system distributed XRP Cxrec response
querying can be achieved even xrecrequest
without XRPC being integrated
into an XQuery processing engine.
What is needed is a simp¢RPC
wrapperon top of the XQuery sys-
tem. The XRPC wrapper is a SOAP service handler that stores
the incoming SOAP XRPC request message in a temporary loca-

XRPCWrapper

HTTP

RPC) is the default, we also implemented a one-at-a-time RPC tion, generates an XQuery query for this request, and ezsdtit

mechanism for comparison. The left half of Table 2 (the “Na&u
tion Cache” column) shows the experiment where we compare pe
formance of Bulk RPC with single RPC at-a-time, while vagyin
the number of loop iteration$x. It shows that performance is
identical at$x=1, such that we can conclude that the overhead of
Bulk RPC is small. Atx=1000, there is an enormous difference,
caused by(i) serialization/deserialization of the request/response
messages(ii) network communication cost ar{di) overhead of
function call (1000 calls instead of 1 call). This is easikpkained

as the one-at-a-time RPC experiment involves performing010
times more synchronous RPCs.

Throughput. We also carried out bandwidth experiments (details
omitted for space) that scaled request and response paylbade

we observed throughput of 8MB/s (large requests) and 14 MB/s
(large responses), which correspond roughly with resp.dtiei-
ment shredding and serialization speed of MonetDB/XQuety [
Thus, like other SOAP-based messaging [16], XRPC data gtwrou
put on a fast local 1Gb network is CPU-bound rather than nétwo
bound (though in a WAN it is likely to be the other way around).

Function Cache. XQuery Modules have the advantage that they

on an XQuery processor. The generated query is crafted te com
pute the result of a Bulk XRPC by calling the requested fumcti

on the parameters found in the message, and to generate &fe SO
response message in XML using element construction. Such an
XRPC wrapper only allows thandlecalls with normally XRPC-
incapable systems, but obviously does not allow to makeoingg
XRPC calls from them.

We illustrate how such an XRPC wrapper works by an example.
The following function returns theer son node from an XMark
document $doc) whose@ d attribute matches a givelpi d:
decl are function getPerson($doc as xs:string,

$pid as xs:string) as node()?
{ zero-or-one(doc($doc)//person[@d=$pid]) };
Figure 3 shows the query generated by XRPC wrapper to handle
theget Per son request.

The XRPC protocol includes information about the arity o th
function (as well as its return type), so it is easy to gereettae right
amount ofparamparameters in the call. The brunt of the work is
done by then2s() ands2n() marshaling functions, introduced in
Section 2.2. These functions (omitted for reasons of spaee)be
implemented purely in XQuery.

may be pre-loaded and cached, and our choice to let XRPC use Then2s() function, used here to process all parameters, needs

modules as the query transport mechanism also opens thibiposs
ity to reap performance profit from module pre-processing.

The feature oprepared queriess well-known for RDBMS, al-
lowing a parametrized query plan to be parsed and optimifled o
line, such that an application can quickly enter actual ppatars
in the prepared plan and execute it. The ODBC and JDBC APIs
export this functionality of relational databases usingregpam-
ming language binding. MonetDB/XQuery has a mechanism for

107

to convert a SOAP XRPC element into an item sequence, where
each item has the right type. This is done by going over altioéi

of thexr pc: sequence using a series dff . . t hen XQuery statements
that select on thesi : t ype attribute found in ther pc: at oni ¢- val ue
nodes. In case ofrpc: el ement nodes with arxsi: type, XQuery
validation is performed. The2n() function is used here only to
convert the function return value into a correct SOAP XRP@e0

It iterates over the input item sequence, and for each itezs aa

import nodul e namespace func = " functions
at "http: //exampleorg/functionsxq';

decl are namespace env = "http://ww w3. or g/ 2003/ 05/ soap- envel ope";
decl are nanespace xrpc = "http://nonetdb. cw .nl/XQuery";

<env: Envel ope xm ns: env="http://ww. w3. or g/ 2003/ 05/ soap- envel ope"

xm ns: xrpc="http://monetdb. cwi.nl/XQuery"

xmi ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns: xsi ="http;//ww. w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemaLocation="http://nmonetdb. cwi . nl / XQuery

http://monet db. cwi . nl / XQuer y/ XRPC. xsd" >

<env: Body>
<xrpc: response xrpc: modul e=" function$ xrpc: met hod="getPersoh>{

for $call in doc("/tmp/requestXXXxml")//xrpc:call
l'et $paraml : = n2g($call/xrpc: sequencd])

l'et $paran® : = n2g($call/xrpc: sequence))

return s2n(func: getPersofi$paraml, $paran®))

}<Ixrpc:response>

</ env: Body>
</ env: Envel ope>

Figure 3: XQuery generated for the getPerson() XRPC request

XQuerytypeswitch() to generate the right SOAP node. If the re-

turn type is a sequence of nodes that have a schema typenhis i

formation is supplied in the SOAP request) we insert theemtrr
xsi : type attribute in it.

Saxon Experiments.Using the wrapper, we can run a number of
experiments on the Saxon XSLT/XQuery processor [1] (Sa&on-
8.7). Like the experiments in Section 3.3, we putdkezut e at in-
side & or - loop with a varying number of iteration$x) to study the
performance impact of Bulk RPC. By absence of a function each
Saxon latency is dominated by startup and compilation tsneye
focus here on the internal Saxon timings (compile, treebeikec)
and disregard network communication cost, which is a fewmase
most. For thechoVoi d experiment, we see that Bulk RPC again al-
lows to amortize XRPC latency really well: instead of 1000e5s
the latency, with a 1000 times more work total latency insesa
just over a factor 2. As the execution time still is increabgda
factor 30, the low impact is due to other amortized latencies
parsing the XML request document, compiling the query, etc.
We also show the results of thet Person() example above.
This exposes an additional benefit of Bulk RPC over just aizext
fixed latencies: whereas in the single-call cage Person() be-
haves like a selection over the XMark document, the Bulkivers

of get Person(), that iterates over all calls in the request, becomes

anequi-join Again, the total time for a Bulk RPC with 1000 calls

||total||compile]treebuild|exec

echoVoid$x=1 275[] 178 4.6 92
echoVoid$x=1000 || 590|| 178 86 325
getPersor$x=1 4276 185 1956 (2134
getPersor$x=1000(|8167| 185 1973 |6010

Table 3: Saxon Latency via the XRPC Wrapper (msec)

for $p in doc("persons.xnl")//person,

$ca in doc("xrpc://Blauctions.xm")//closed_auction
where $p/ @d = $cal buyer/ @erson
return <resul t>{$p, $ca/ annot ation}</resul t>

The above query is executed at pgar For each person and for
every item this person has bought, quéry returns theper son
node and thannot at i on node of the bought item in a navesul t
node. For the moment, assume that doc() is invoked with a
compile-time known constant URI from our pc:// URI name
scheme, which indicates the peer supports XRPC.

(Q1)

Predicate Pushdown. A first heuristic optimization is to push
predicates that depend only on a sinfghedoc(’ xrpc://p/..")
into data source. Thus, instead of transferring the whole doc-
ument ‘auctions. xm ” from pp to pa, we define a function to
return allcl osed_auct i on nodes and execute this function pg

modul e namespace b = "functions_b";
declare function b: Q B1() as node()*
{ doc("auctions.xm")//closed_auction };

- Rewitten query Q7_1 ---
inport nodul e namespace b="functions_b" at "http://exanple.org/b.xq";

for $p in doc("persons.xnl")//person,

$ca in execute at {"B"'} { b:QBL() },
where $p/ @d = $cal buyer/ @erson
return <resul t>{$p, $ca/ annot ation}</resul t>

This heuristic rewrite can simply be triggered by the presen
of fn:doc(). The required analysis how much of the XQuery
(Core) expression is dependent on thatdoc() alone, and can
be pushed, is highly similar to [25].

Advanced Pushdown. We could even push expressions that de-
pend on & n: doc() application even if that function application

has a non-constant URL argument, and even could depend on a

for-loop variable. That is, using the helper functions:

declare function xrpc:host ($url as xs:string) as xs:string
declare function xrpc:path ($url as xs:string) as xs:string

is only about twice as much as a single call, but here we see tha where by defaulhost () returns'| ocal host" andpat h() returns

the execution time impact has increased only by a factor @fe(

30 in echoVvoi d). The explanation is that Saxon is able to detect

the join condition and builds a hash-table such that perémre
remains linear in the size of the XMark document, just likevés
in the single call selection.

5. DISTRIBUTED XQUERY WITH XRPC

One of the design goals of XRPC is to have it serve as the tar-

get language for a distributed XQuery optimizer that takesrigs
without XRPC calls as input (hence, only data shipping) amd p

duces a decomposed query as output that uses XRPC for fanctio

shipping. In this section, we show how some well-know distied
query execution strategies, such as distributed semj-gain be el-
egantly expressed in XRPC. We also outline several futunk wo
issues in the area of automatic query distribution techesqusing
functional decomposition.

Let us assume a distributed XDBMS system with two péekspy} -
An XMark document is distributed between these two peert) wi
pa stores all persons irptr sons. xm ”, and py, stores all items and
(open/closed) auctions iraticti ons. xm .

108

its argument — except far pc: / / URLS, where they would separate
the URL in a host prefix and path suffix — we could rewrite cails t
fn:doc($url) into:

execute at { xrpc:host($url) } { fn:doc(xrpc:path($url)) }

This approach, however, does require a refinement of the work
in [25]. One must bear in mind that any of the rewrites disedss
here should only be made by an automatic rewiitércan estab-
lish that the call-by-value semantics of XRPC will not compise
the semantics of the query. This at least involves a checkhghe
nodes that come from pushed expressions are only navigavat d
wards, and also involves checking against node identity tesd
order-dependent (XPath, order by) processing of node segse
that stem from multiplén: doc() calls pushed to different sources.

Execution Relocation.The possibilities of query rewriting do not
stop at push-down ofn: doc(’' xrpc://..")-dependent expres-
sions. Even if a query depends on a $eXRPC peers that con-
tribute documents, one could decide to select one peéfom P
and putall execution orp;. We call this mechanisrExecution Re-
location For example, it might be beneficial to relocate all execu-
tiononpy, if "aucti ons. xm " is much larger thahper sons. xm ":

|| Total Time || MonetDB Time | Saxon Time

data shipping 28122 16457 11665
predicate push-do 25799 2961 22838
execution relocatio 53184 69 53115
distributed semi-joi 10278 118 10160

Table 4: Execution time (msecs) of queryQ; distributed on
MonetDB/XQuery and Saxon (Saxon Time includes network).

modul e namespace b = "functions_b";

declare function b: Q B2() as node()*

{ for $p in doc("xrpc://Al persons.xm")//person,
$ca in doc("auctions.xm")//closed_auction

where $p/ @d = $cal buyer/ @erson

return <result>{$p, $ca/annotation}</result>

b

Then peemp, needs only to call this function to get the results:

import nodul e nanespace b="functions_b" at "http://exanple.org/b.xq";
execute at {"B"} { B:QB2() }

Distributed Semi-join. The classical distributed semi-join strat-
egy [7, 34] can be employed as well. The XRPC equivalent of the
semi-join strategy uses a XRPC function call with a loopetefent
parameter. In this case, the pers@nl for all persons could be
passed in a loop to a function executedpgtthat returns those
closed auctions with buyers having ti@d:

nmodul e nanespace b = "functions_b";
declare function b: Q B3($pid as xs:string) as node()*
{ doc("auctions.xn")//closed_auction[./buyer/ @erson=$pid] };

- Rewitten query Q7_3 ---
inport nodul e namespace b="functions_b" at "http://exanple.org/b.xq";

for $p in doc("persons.xnl")//person
let $ca := execute at {"B"} {b:QB3($p/@d)}
return if(enpty($ca)) then ()
el se <resul t>{$p, $calannotation}</result>

This shows that federating data sources with XRPC (everheia t
XRPC Wrapper) is more powerful than the "wrapper-archiiegt [22]
used in federated database systems. Such wrappers typamk|
the possibility to push table-valued parameters into dataces,
which is required for the semi-join optimizations.

Saxon and MonetDB/XQuery Joined by XRPC.To demonstrate
the interoperability, expressiveness and performancenpiad of
XRPC we run queryQy on two peers using all four mentioned
strategies. On peqy, (the local peer), we run MonetDB/XQuery
with the document “persons.xml” (1.1MB, 2p@r son nodes); on
peerpy, the Saxon XSLT/XQuery processor with the document “auc-
tions.xml” (50MB, 4875cl| osed_auction nodes). There are 6
matches between tiper son nodes and thel osed_auct i on nodes.

All communication between MonetDB/XQuery and Saxon hap-

of data and tasks Saxon with the whole join and result cocitstn
effort (where it takes longer than on MonetDB). The “distitied
semi-join” is the strategy that incurs least data shippamgl is most
efficient in this case.

6. RELATED WORK

In the area of extending XQuery with distributed queryingr o
work is mostly related to Galax DXQ [14], Active XML [2, 8, 6],
Galax Yoo-Hoo! [28], XPeer [31] and XQueryD [30].

DXQ [14] is developed as an extension of Galax. We are not
aware of a formal semantics defined in DXQ, especially carsid
ing updates. Also, XRPC is intended for use in P2P projeats an
targets any data source that supports XQuery, whereas DXQ de
pends on distributed query plans, in terms of the interndaGex-
ecution algebra, generated by the Galax optimizer. Thishawe
certain advantages, such as better control over the cé#pebibf
the distributed nodes and possibly better physical placiscgui-
mization, but the use of an internal algebra makes it muctdrar
to achieve cross-system DXQ.

In Active XML (AXML) [6], calls to Web or AXML service
functions are embedded in XML documents. The evaluation of a
service call results in an XML fragment, which is insertetbithe
original XML document, and gets re-evaluated (allowing tiest-
ing in case of AXML service calls). AXML has shown the value of
distributed query optimization, identifying lazy evalioat schemes
and various rewrite strategies [5]. Service functions afned in
AXML using an XML query language (X-OQL in the open-source
implementation [2]), which itself does not allow distrikdtevalua-
tion (an embedding piece of AXML is always needed). The SOAP
protocol used for AXML services has not been specified folynal
like XRPC it uses a document/literal encoding to represevtX
subtree values. We think the ideas proposed in XRPC, na(ely
a well-defined XQuery extension that allows specificatiordist
tributed queriesnside the service function (ii) a semantics for
distributed XQUF transactions, arifiii) a SOAP network protocol
that supports the full XQuery Data Model as well as Bulk RPC,
could all be exploited in AXML.

Galax Yoo-Hoo! [28] is related to our work in the sense thabwe
services are accessed using remote procedure calls and S@#P
sages are used as the communication protocol. As Yoo-Hoo! fo
cuses on web service calls, it uses the simple SOAP RPC piptoc
which lacks support for XML element (sub-tree) parametersd a
sequences, as well as Bulk RPC. Another difference is thiExGa
Yoo-Hoo RPC calls support onbynefixed destination URI for each
imported web service module (not a computed one).

XPeer [31] is a P2P XDBMS for sharing and querying XML
data, on top of a super-peer network. The query algebra oEKPe

pens via XRPC. The XRPC wrapper described in Section 4 is used takes explicitly into account data dissemination, datdicapon

to generate the XQuery query from an XRPC request message.

The measured execution times are shown in Table 4. In the col-

umn “MonetDB Time” are execution times on pegy and in the
column “Saxon Time” are execution times on p@gr The Saxon
time was measured by subtracting MonetDB time from totaétim
such that it also included communication. We should stiesshis
experiment is not a rigorous evaluation of distributed guetecu-
tion strategies, rather a demonstration of the possislitif XRPC.
The results here show that the “data shipping” query is ixelt
expensive, since it spends quite some Saxon time on shipiping
50MB document and then still needs to do the join. The “pra@ic
push-down” approach improves the performance, as we woduld e
pect. The “execution relocation” largely relieves the Mt peer
from execution responsibilities, but still ships a sigrafic amount

109

and data freshness. We think our future work on query decsmpo
tion can build on some of the techniques employed in XPeer.

The syntax of XRPC is inspired by that of XQueryD [30], which
support shipping of free-form XQuery queries. XQueryD thes
quires a runtime rewriter to scan the XQuery expressionién t
execut e statement for variables and substitute them with the run-
time values. Such a rewriter is not needed in XRPC, sinceitite b
ing of the parameters of an XRPC function application is doye
the compiler as if it was a normal function application. Wali
XRPC, XQueryD does not define an network protocol.

In the area of distributed query processing and transastionch
prior work is surveyed in [22, 34] and parts of the book of [2D]s-
tributed snapshot isolation has received some attentitedierated
situations with a single coordinator [32].

7. CONCLUSION

In this paper, we presented XRPC, a minimal XQuery exten-

sion that enables distributed query execution with a foausne
teroperability. We first gave a formal definition of the syntnd
the semantics of XRPC, including the semantics of distetutp-
dates, that follow from the use of XQuery Updating Functioner
XRPC. This includes the definition of two isolation levels fead-
only and updating XRPC queries.

Since interoperability is our goal, the XRPC proposal alsme

prises a message protocol, which we chose to base on SOAPaSuc

SOAP protocol has the additional advantage of seamleggatien

with web services and AJAX-based GUIs. To enhance adopfion o

[10] P. Boncz and C. Treijtel. AmbientDB: relational quemppessing in
a P2P network. IDBISP2R Sep. 2003.

[11] D. Chamberlin, D. Florescu, and J. Robie. XQuery Updeility.
W3C Working Draft 11 July 2006.
http://www.w3.0rg/TR/2006/WD-xqupdate-20060711.

[12] F. Cohen. Discover SOAP encoding’s impact on web servic
performance, March 2003. http://www-
128.ibm.com/developerworks/webservices/library/wagenc.

[13] D. Draper, P. Fankhauser, M. Fernandez, A. MalhotraR#se,

M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.th&br
Semantics. W3C Candidate Recommendation 8 June 2006.
http://www.w3.0rg/TR/2006/CR-xquery-semantics-206088.

[14] M. Fernandez, T. Jim, K. Morton, N. Onose, and J. Simédighly
distributed xquery with dxg. I8IGMOD dempJune 2007.

XRPC, we described a XRPC wrapper that allows any XQuery data [15] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. §tal

source to handle XRPC calfs.

Our experiences in MonetDB/XQuery suggest that adding XRPC

to existing XML database systems is easy; as shreddingligeri
tion and HTTP functionality are usually already presentwoek
is limited to a small parser extension and stub code geoerati

The SOAP XRPC protocol supports the concept of Bulk RPC;

the execution of multiple function calls in a single message

change. This amortizes network and parsing latencies, and c
make XRPC a quite efficient communication mechanism. We have

shown that the loop-lifting technique, pervasively applia our

MonetDB/XQuery system for the translation of XQuery expres

sions to relational algebra can easily generate such Bulk RP
quests. During our Saxon experiments, we also saw that BRIB R
enables set-oriented optimizations, such that Bulk RPCueian
of a selection function can be handled using a join strategy.

In the near future, we plan to work on a distributed query-opti

mizer that converts non-XRPC data shipping queries intotfan-

shipping queries using XRPC. In this paper, we showed soitia in
experiences in distributed query execution, where MonéxORiery
and Saxon cooperated via XRPC. To allow automatic queryitesvr
into distributed plans, future research needs to addrespitbb-

lem of finding rewrites that hide the by-value parameter ipass
of XRPC, to correctly preserve XQuery node identity sentamti

Other future work goes into applying XRPC for P2P data manage

ment [10], both in the area of designing a sound yet pracB@#
update semantics, as well as integrating XRPC with advaR@&d
data structures such as Distributed Hash Tables (DHTS).

8. REFERENCES

[i] SAXON The XSLT and XQuery Processor.
http://saxon.sourceforge.net.

[2] The ActiveXML Project. http://activexml.net.

[3] Web Services Atomic Transaction (WS-AtomicTransac)joAugust
2005. ftp://Iwww6.software.ibm.com/software/develdfilerary/WS-
AtomicTransaction.pdf.

[4] Web Services Coordination (WS-Coordination), Augudd2.
ftp://wwwe.software.ibm.com/software/developer/iby/WS-
Coordination.pdf.

[5] S. Abiteboul, O. Benjelloun, B. Cautis, I. ManolescuMilo, and
N. Preda. Lazy query evaluation for active xml.3iGMOD, pages
527-538, 2004.

[6] S. Abiteboul, I. Manolescu, and E. Taropa. A framework fo
distributed xml data management.EBDBT, March 2006.

[7] P. Apers, A. Hevner, and S. Yao. Optimization algorithfos
distributed queriedEEE Trans. Software Engd(1):57—-68, 1983.

[8] O. Benjelloun.Active XML: A data-centric perspective on Web
services PhD thesis, September 2004.

[9] P.Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rigin@and
J. Teubner. MonetDB/XQuery: A Fast XQuery Processor Potvere
by a Relational Engine. IBIGMOD, June 2006.

XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C Candidate
Recommendation 11 July 2006.
http://www.w3.0rg/TR/2006/CR-xpath-datamodel-20060.7

[16] M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. van Eglgn, and
M. J. Lewis. Toward Characterizing the Performance of SOAP
Toolkits. INnGRID '04, 2004.

[17] J. Gray and L. Lamport. Consensus on transaction con#x@ii
Transactions on Database Systerd$(1):133—-160, 2006.

[18] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Host¥LIDB,
pages 252-263, September 2004.

[19] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and-H
Nielsen. SOAP Version 1.2 Part 1: Messaging Framework. W3C
Recommendation 24 June 2003.
http://www.w3.0rg/TR/2003/REC-soap12-part1-20030624

[20] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and-H
Nielsen. SOAP Version 1.2 Part 2: Adjuncts. W3C Recommeéaidat
24 June 2003.
http://www.w3.0rg/TR/2003/REC-soapl12-part2-20030624

[21] V. Josifovski and T. Risch. Query Decomposition for atibuted
Object-Oriented Mediator Systemistributed and Parallel
Databases11(3):307-336, 2002.

[22] D. Kossmann. The state of the art in distributed quepcpssing.
ACM Computing Survey82(4):422-469, 2000.

[23] L. Lamport. Time, clocks, and the ordering of events idistributed
systemCommun. ACM21(7):558-565, 1978.

[24] S. Lyubka. SHTTPD: Simple HTTPD. http://shttpd.s@forge.net.

[25] A. Marian and J. Siméon. Projecting XML DocumentsMbDB,
September 2003.

[26] N. Mitra and Y. Lafon. SOAP Version 1.2 Part O: Primer. @/3
Recommendation 24 June 2003.
http://www.w3.0rg/TR/2003/REC-soapl12-part0-20030624

[27] A.Ng, S. Chen, and P. Greenfield. An Evaluation of Corgerary
Commercial SOAP Implementation. RWSA April 2004.

[28] N. Onose and J. Siméon. XQuery at Your Web ServicéVMWWW
pages 603-611, 2004.

[29] M. T. Ozsu and P. Valdurie®rinciples of distributed database
systems (2nd ed Prentice-Hall, Inc., NJ, USA, 1999.

[30] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distrikdit&¢Query. In
IIWeb, pages 116-121, September 2004.

[31] C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPe& Self
-Organizing XML P2P Database SystemBBT Workshops2004.

[32] R. Schenkel, G. Weikum, N. Weienberg, and X. Wu. Feédra
transaction management with snapshot isolatioProteedings of
the 8th International Workshop on Foundations of Models and
Languages for Data and Objects - Transactions and Database
Dynamics '99 Dagstuhl Castle, Germany, 1999.

[33] C. Thiemann, M. Schlenker, and T. Severiens. Propogedification
of a Distributed XML-Query NetworkCoRR ¢s.DC/0309022, 2003.

[34] C. Yuand C. Chang. Distributed query processingM Computing
Surveys16(4):399-433, 1984.

[35] Y. Zhang and P. A. Boncz. Loop-Lifted XQuery RPC with
Deterministic Updates. Technical Report INS-E0607, CWI,
Amsterdam, The Netherlands, November 2006.

6XRPC and the XRPC wrapper are available in the open-source
XDBMS MonetDB/XQuery (www.monetdb.nl).

110

