
VLDB Journal,2, 331-360 (1993), Michael Carey and Patrick Valduriez, Editors
t~)VLDB

331

A Theory of Global Concurrency Control in
Multidatabase Systems

Aidong Zhang and Ahmed K. Elmagarmid

Received December 1, 1992; revised version received February 1, 1992; accepted March
15, 1993.

Abstract. This article presents a theoretical basis for global concurrency control to
maintain global serializability in multidatabase systems. Three correctness criteria
are formulated that utilize the intrinsic characteristics of global transactions to de-
termine the serialization order of global subtransactions at each local site. In par-
ticular, two new types of serializability, chain-conflicting serializability and shar-
ing serializability, are proposed and hybrid serializability, which combines these
two basic criteria, is discussed. These criteria offer the advantage of imposing no
restrictions on local sites other than local serializability while retaining global se-
rializability. The graph testing techniques of the three criteria are provided as
guidance for global transaction scheduling. In addition, an optimal property of
global transactions for determinating the serialization order of global subtransac-
tions at local sites is formulated. This property defines the upper limit on global
serializability in multidatabase systems.

Key Words. Chain-conflicting serializability, sharing serializability, hybrid serial-
izability, optimality.

1. Introduction

Centralized databases were predominant during the 1970s, a period which saw
the development of diverse database systems based on relational, hierarchical, and
network models. The advent of applications involving increased cooperation between
systems necessitated the development of methods for integrating these pre-existing
database systems. The design of such global database systems must allow unified
access to these diverse database systems without subjecting them to conversion or
major modifications. A multidatabase system (MDBS) is such a global database
system.

Aidong Zhang is a Ph.D. candidate, and Ahmed K. Eimagarmid, Ph.D., is Professor, Department of Com-
puter Science, Purdue University, West Lafayette, IN 47907, USA.

332

The overriding issue for any MDBS is the preservation of local autonomy. Various
aspects of local autonomy, such as design, execution, and control, have been studied
(Litwin, 1986; Garcia-Molina and Kogan, 1988; Breitbart and Silberschatz, 1988; Pu,
1988; Veijalainen, 1990), and their effects on MDBSs have been discussed (Du et al.,
1990). In essence, an MDBS may not have the ability to fully modify, control, and
have knowledge of component database systems. For instance, an MDBS may have
to deal with the heterogeneity of local database systems. This autonomy distinguishes
MDBSs from traditional distributed database systems. Therefore, many of the early
techniques developed for distributed database systems are no longer applicable to
MDBSs, for which new principles and protocols need be developed.

This article is concerned with the issue of global concurrency control in MDBSs.
The goal of concurrency control is to ensure that transactions behave as if they
were executed in isolation. Serializability, 1 the conventional concurrency control
correctness criterion, is adopted as the global concurrency control correctness crite-
rion. The difficulty of maintaining global serializability in multidatabase systems has
been evident in the recent literature (Alonso et al., 1987; Breitbart and Silberschatz,
1988; Pu, 1988; Du and Elmagarmid, 1989; Georgakopoulos et al., 1991; Veijalainen
and Wolski, 1992). The integration of autonomous local database systems, each
with its own concurrency controller (or scheduler), into a multidatabase via a global
concurrency controller inevitably gives rise to a hierarchical structure of global con-
currency control At the lower level, local concurrency controllers maintain local
serializability at local sites, while at the higher level the global concurrency controller
maintains global serializability. These two levels are highly interrelated. Global
subtransactions, which will be defined precisely in Section 2, are received by the local
concurrency controller and treated as local transactions. The global concurrency
controller, on the other hand, must reflect the serialization orders in a manner that
is consistent with its local counterparts. In other words, the serialization order of
global subtransactions in a local concurrency controller must somehow be reflected
or inherited by the global concurrency controller. Thus, the most fundamental issue
of global serializability is whether and how the global concurrency controller can
determine the serialization order of global subtransactions at each local site without
violation of local autonomy.

Some approaches to the above issue propose to relax the global serializability
theory and simplify global concurrency control. These approaches, e.g., quasi-
serializability (Du and Elmagarmid, 1989) and two-level serializability (Mehrotra
et al., 1991), can maintain global consistency in restricted applications. For exam-
ple, the requirement that there be no value dependency among sites is allowed in
quasi-serializability, and restricted Read-Write models are employed in two-level
serializability. Other methods use local serialization information contained in local
concurrency control protocols. These approaches, e.g., rigorous local schedules

1. In this article, serializability refers to conflict serializability (Papadimitriou, 1986).

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 333

(Breitbart, et al., 1991), strongly recoverable local schedules (Breitbart and Silber-
schatz, 1992; Raz, 1992), or serialization events at local sites (Pu, 1988; Elmagarmid
and Du, 1990; Mehrotra et al., 1992), have also achieved initial success. If the local
transaction management systems satisfy these restrictions, then these theories are
applicable. The Optimistic Ticket Method (OTM) proposed in Georgakopoulos
et al. (1991) is the first to show successfully that the serialization order of global
subtransactions in a local site can be determined at the global level without violation
of local autonomy.

In this article, we provide a theoretical basis for global transaction scheduling
to maintain global serializability. In particular, we address the scenario in which the
local databases are required only to ensure serializability. Specifically, we attempt
to determine:

1. The sufficient conditions for the global concurrency controller to determine
the serialization orders of global subtransactions at local sites without imposing
additional restrictions on local database systems; and

2. The weakest sufficient condition for global transaction scheduling approaches.

Therefore we shall seek to determine the maximum set of globally serializable
schedules that can be developed in the MDBS environment without violation of
local autonomy. In general, the global concurrency controller has no information
about the local serialization orders, and the execution orders of global subtransactions
may differ from their serialization orders at local sites. It has been pointed out (Du
and Elmagarmid, 1989; Georgakopoulos et al., 1991) that local indirect conflict is
the major factor in these discrepancies. Thus, the key approach to the above two
questions is the avoidance of the problems caused by local indirect conflicts. We
propose the use of novel global scheduling criteria to achieve this goal. Two basic
criteria for global transaction scheduling, chain-conflicting serializability and sharing
serializability, are introduced, and hybrid serializability, a criterion that combines
these two basic criteria, is proposed. An optimal property of global transactions for
the determination of the serialization order of global subtransactions at each local
site indicates the maximum class of global schedules that may be generated at the
global level to maintain global serializability.

The remainder of this article is organized as follows. Section 2 introduces the
system model, defines the relevant terminology, and presents the background of
the problem. Sections 3 and 4 discuss, in turn, the two basic criteria of global
transaction scheduling, chain-conflicting serializability, and sharing serializability.
In Section 5, hybrid serializability, which combines the features of the two basic
criteria, is analyzed. In Section 6, present research is compared with related work,
and the effect of failures on the global concurrency control theory is investigated.
Conclusions are set forth in Section 7.

334

Figure 1. Conceptual multidatabase architecture

G i ...

LI' "'" NNNN~ ~ I G!BSI / Ihal --.

~ ,°.

LS 1 LSm

2. Preliminaries

In this section we provide a precise definition of the system under consideration,
introduce basic notation and terminology, and discuss the background of the problem.

2.1 The System Model

An MDBS consists of a set of local databases (LDBSs) {LDBSi, for 1 < i <
m}, where each LDBSi is a pre-existing autonomous database management system
on a set of data items Di, superimposed on which is a global database management
system (GDBS). Figure 1 depicts the model.

Global transactions (G) are submitted to the GDBS and then divided into a
set of global subtransactions that are submitted to the LDBSs individually, while
local transactions (L) are submitted directly to the LDBSs. Furthermore, as stated
in Gligor and Popescu-Zeletin (1986), global serializability generally cannot be
maintained in MDBSs if a global transaction has more than one subtransaction at
a given local site. Thus, we assume that each global transaction has at most one
subtransaction at each local site.

As a necessary assumption of global serializability, we also presume that the
concurrency control mechanisms of LDBSs ensure local serializability. However,
no restriction is imposed on these mechanisms.

2.2 Notation and Terminology

For the elements of a transaction, we assume the availability of four basic operations:
r(x),w(x),c, and a, where c and a are commit and abort termination operations, and
r(x) and w(x) are read and write operations which access data item x in an LDBS. Two
operations share with each other if they access the same data item. Two operations

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 335

conflict with each other if they are sharing operations and at least one of them is
a write operation.

A transaction is a partial order of read, write, commit, and abort operations
which must specify the order of conflicting operations and contain exactly one
termination operation that is the maximum (last) element in the partial order. A
more formal definition of a transaction can be found in Bernstein et al. (1987) and
Hadzilacos (1988). A local transaction Lij is a transaction that accesses data items
at a single local site LSi. A global transaction is a set of global subtransactions
where each global subtransaction is a transaction accessing the data items at a
single local site. The global transaction Gi consists of a set of global subtransactions
{Gijl, Gij2,"" ,Gij~} where subtransaction Gijl (1 <_ l <_ r) is a transaction
accessing LDBSjl. A set G = {G1," • • ,Gn} contains those global transactions that
are submitted to the GDBS, and Gk denotes the set of global subtransactions of

at local site LSk. A transaction T refers to either a local or global transaction,
while DT denotes the set of data items accessed by T and OPT denotes the set of
operations contained in T.

Two local transactions Ti and Tj conflict, denoted Ti c Tj, if there are conflicting
operations oi and oj such that oi C OPTs and oj E OPTj. Two local transactions
Ti and Tj share, denoted Ti C (or D) Tj, if DTi C (or D) DTj.

A schedule over a set of transactions is a partial order of all and only the
operations of these transactions that order all conflicting operations and respect
the order of operations specified by the transactions. A more formal definition of a
schedule can also be found in Bernstein et al. (1987) and Hadzilacos (1988). A local
schedule Sk is a schedule over both local transactions and global subtransactions
which are executed at local site LSk. A global schedule S is the combination of
all local schedules. A global subschedule S~ is S restricted to the set ~ of global
transactions in S. A lower case s refers to either a local or global schedule.

We say that a schedule s is serial if the operations of different transactions in
s are not interleaved. We say that the execution of T1 precedes the execution of
T2 in schedule s if all operations of T1 are executed before any operation of T2
in s. Obviously, a total execution order on transactions in a serial schedule can be
determined. We denote o1 ~ s o2 if operation Ol is executed before operation o2
in schedule s. We denote T1 ~ s T2 if, for transactions T1 and T2 in s and every
operation Ol E T1 and every operation o2 E T2, Ol ~s o2.

Let s be a schedule and C(s) be s restricted to the committed transactions in
s. We say that s is serializable if there is a serial schedule s, ~ and C(s) is (conflict)
equivalent 2 to s. t The execution order of transactions in s t is a serialization order of
s. Thus, a global schedule S is serializable if and only if S is serializable in a total
order on both committed global and local transactions in S. We denote T1 Mssr T2

2. See the definition given in Bernstein et al. (1987) and Hadzilacos (1988).

336

if T1 precedes T2 in the serialization order of s.

2.3 Global Serialization Theorem

Because a global schedule is the combination of all local schedules, the global
serialization order must inherit local serialization orders. On the other hand, the
relative serialization order of the global subtransactions of each global transaction
at all local sites needs to be synchronized to maintain global serializability (Breitbart
and Silberschatz, 1988).

Let O be a total order on transactions. We say that an order O I is consistent with
O if O ~ is a subsequence of O. We assume that a global subtransaction takes the name
of the global transaction to which it belongs as its order symbol in the serialization
order. The following theorem states that a global schedule S is serializable if and
only if each local restriction of S is serializable and there is a total order O on
the global transactions in S such that, in each local schedule of S, the serialization
order of its global subtransactions is consistent with O.

Theorem 1. Global serialization. If S is a global schedule, then S is serializable if
and only if all Sk (k = 1,...,m) are serializable and there is a total order O on global
transactions in S such that for each local site LSk(1 < k < m), the serialization
order of global subtransactions in Sk is consistent with O.

Theorem 1 has been identified in Mehrotra et al. (1992); its proof is given in
Appendix A.

The above theorem shows that the maintenance of global serializability can be
reduced to synchronizing the relative serialization orders of global subtransactions of
each global transaction at all local sites. This further implies that the serializability
of local schedules, on their own, is not sufficient to maintain global serializabil-
ity, because global subtransactions in different local databases may have different
serialization orders.

Though Theorem 1 provides a necessary and sufficient condition to maintain
global serializability, due to the constraints of local autonomy, the GDBS may not
be able to generate all global schedules satisfying this condition. Our research
has sought to identify alternative correctness conditions to be placed on global
subschedules to provide sufficient conditions for the GDBS to maintain global
serializability without imposing restrictions on local sites.

2.4 Effects of Local Indirect Conflicts

In their early work, Gligor and Popescu-Zeletin (1986) considered it sufficient to
synchronize the serialization orders of global subtransactions that conflict at local
sites. It was generally believed that non-conflicting global subtransactions had no
effect on global serializability. Later results indicated that, due to local indirect
conflicts, the execution order of global subtransactions at a local site may not be
consistent with their serialization order, even if they do not conflict (Breitbart

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 337

and Silberschatz, 1988; Du and Elmagarmid, 1989; Georgakopoulos, 1991). The
following example illustrates this situation.

Example 1. Consider an MDBS consisting of two LDBSs on D1 and D2, where data
item a is in D1, and b,c are in D2. The following global transactions are submitted:

Gl :Wgl (a)r91(b),
G2:r92(a)wg2(c).

Let L21 be a local transaction submitted at local site LS2:

L21:W L21 (b)w L21 (C).

Let $1 and $2 be local schedules:

S1:wax(a)r92(a),
$2 :W L21 (b)r sl (b)w g2 (C)W L21 (C),

and S = {$1,$2 }. Although the execution orders of global transactions at both local

sites are G1 ~ G2, the only serialization order of $2 is G2 ~ssr 2 L21 '~sSr 2 G1. The
serialization order of global subtransactions at local site LS2 is not consistent with
their execution order, arising from the indirect conflict of G22 with G12 (because
Wg 2 (c) conflicts with WL21 (c) and WL21 (b) conflicts with rgl (b)).

Thus, even though the execution orders of the global subtransactions at all
local sites are consistent, they may differ from their serialization orders in local
schedules because of local indirect conflicts. Consequently, global serializability is
not maintained. Local indirect conflict is thus the major cause of the difficulty of
achieving global serializability in MDBSs. Unfortunately, it is impossible to predict
local indirect conflicts at the global level without violation of local autonomy, because
the GDBS has no knowledge of the submissions of local transactions.

This discussion of local indirect conflicts indicates how the characteristics of
local transactions determine the serialization order of global subtransactions at local
sites. Conversely, we observe that the characteristics of global transactions can also
indirectly affect the serialization order of local schedules at local sites. For instance,
if, in Example 1, G 2 is defined instead as rg2(a)wg2(C)Wg2(b), then at local site
LS2, after WL21 (b)r91 (b) is scheduled, WL21 (c) must be scheduled before w92 (c) to
maintain local serializability. Hence, the correct schedule for $2 is:

$2 :WLzl (b)rgl (b)wL21 (c)wg2 (c)wv2 (b),

which implies G1 "~sSr ~ G2. The existence of conflict between global subtransactions
G12 and G22 here imposes an indirect effect on local scheduling. As another
instance, if, in Example 1, G2 is instead defined as r92(a)rg2(b) and the execution
of rga(b) at site LS2 precedes the execution of r92(b), then G1 ~sSr 2 G2 will always

be assured in LS2 (note that G2 ~sSr 2 G1 may also hold), even though G12 and
G22 do not conflict. This is due to the fact that there is no local transaction L that

338

can conflict with G12 and G22, such that G2 "<sSr ~ L -'~sSr 2 G1. We will discuss these
properties in detail in the next two sections.

3. Chain-Conflicting Serializability

In this section, we investigate a correctness criterion on global subschedules that
maintains the execution order of conflicting operations of global subtransactions as
identical to the serialization order of the global subtransactions at each local site. This
criterion, termed chain-conflictingserializabilit~ provides a sufficient condition for the
GDBS to synchronize the relative serialization orders of the global subtransactions
of each global transaction at all local sites without imposing any restrictions other
than requiring each LDBS to ensure local serializability.

3.1 The Principle

Definitions of chain-conflicting transactions and chain-conflicting serializable sched-
ules will be provided first. We will then show that global serializability is assured
if global subschedules are chain-conflicting serializable. No restriction other than
local serializability is required at local sites.

Definition 1. Chain-conflicting transactions. A set T of local transactions is chain-

conflicting if there is a total order Til ,Ti2 , • " " ,Ti,~ on T such that T i l c Ti2 ~ • • • '~
Ti,~. A set G of global transactions is chain-conflicting if there is a total order O
on G such that for all k, where 1 < k < m, ~k is chain-conflicting in an order

consistent with O. (Note that T1 c T2 ~ Ta may not imply T1 '~ Ta and that a
set of transactions that are all in mutual conflict is always chain-conflicting in any
order.)

Example 2. Consider an MDBS consisting of two LDBSs on D1 and D2, where data
item a is in D1, and b,c are in D2. Three global transactions are given as follows:

Gl :rg 1 (a)wg 1 (b)rg 1 (c),
G2:wg2(a),
Ga:rga(a)rga(b),

where {G1,G2 ,G3} is chain-conflicting in the order G1 ~ G2 --~ G3. An alternative
chain-conflicting order is G3 ~ G2 ~ G1. No other chain-conflicting orders exist.
Note that G2 does not have a global subtransaction at local site LS2.

Definition 2. Chain-conflicting serializability. A schedule s is chain-conflicting serial-
izable if the set T of committed transactions in s is chain-conflicting in a total order
O on T and s is serializable in O.

Definition 2 implies that chain-conflicting serializability is stronger than seri-
alizability; i.e., chain-conflicting serializability implies serializability. We will now
illustrate the application of chain-conflicting serializability in an MDBS environment.

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 339

We give the following main theorem first.

Theorem 2. Let S be a global schedule and ~ be the set of global transactions in
S. If S~ is chain-conflicting serializable, then the local serializability of Sk (for k =
1,...,m) implies the global serializability of S.

The proof of this theorem relies on Lemma 1, which shows that the outcome
of a concurrent execution of transactions depends only on the relative ordering of
conflicting operations (Bernstein et al., 1987).

Lemma 1. If o I and 02 are conflicting operations of transactions T1 and T2
(respectively) in a serializable schedule s, then ol ~ s o2 if and only if T1 ~Ssr T2.

Proof: (if) We need to show that T1 ~ r T 2 implies O 1 "~s 02. Suppose 01 7~s 02.
Then, because Ol and 02 conflict, we must have 02 '<s 01. Thus, in any serial
schedule s t which is conflict equivalent to s, 02 ~s ' 01. Hence, T1 7~r T2.

(only if) Conversely, we need to show that 01 -~s 02 implies T1 ~ . T2. As in
the above situation, suppose T1 ~ssr T2. Then, because s is serializable, we must
have T2 ~ssr T1. Because ox conflicts with o2, in any serial schedule s I, which is
conflict equivalent to s, T2 '<s' T1, which implies 02 ~s ' 01. Hence, 02 ~ s 01.
Consequently, 01 7~s 02. []

We now apply Lemma i to the MDBS environment. Assume a global subschedule
S~ of global schedule S is serializable in a total order O on Q, and Gi E
precedes Gj E Q in O. If, for integer k (1 < k < m), Gik "~ Gjk and oik, ojk are
conflicting operations of Gik and Gjk, respectively, then, by the "if" part of Lemma
1, oi~ '<so Ojk. Consequently, at local site LSk, oik '~Sk ojk. If Sk is serializable,

then, by the "only if" part of Lemma 1, Gik ~sSr k Gjk. We have shown that the
conflicting characteristics of global transactions can indirectly affect the serialization
orders of global subtransactions in local schedules. We now present the proof of
Theorem 2.

Proof: Suppose Sg is chain-conflicting serializable in a total order Gil ,Gi~ , . . . ,
Gi,~ on ~. Without loss of generality, we assume that, at local site LSk (1 < k
< m), Gilk,Gi2k, • • • ,Gi~k exist. We need to prove that, if Sk is serializable, then
Gilk ~sSr k Gi2k ~sSr ~ "'" ~sSr k Gi,~k. This proof proceeds by induction on a number
n of global transactions:

n = 1: Straightforward.
Suppose for n = j (> 1), Gilk ~sSr ~ Gi2k ~sSr ~ "'" ~sSr k Gijk holds.

Consider n = j + 1. Because Gij precedes Gij+l in O, Gijk c Gij+lk. If oi~k
and oij+lk are conflicting operations of Gijk and Gij+~k, respectively, then, by the
"if" part of Lemma 1, Oij k -"<Sg Oij+lk, which is equivalent to Oij k '~Sk Oij+lk.
Then, by the "only if" part of Lemma 1, Gijk --<ssr ~ Gi~+,k.

Thus, our induction proof shows that Gilk ~sSr k Gi2k ~sSr k "'" ~sSr ~ Gi,~k.

340

Hence, the serialization order of global subtransactions in Sk (1 < k < m) is
consistent with O. Consequently, by Theorem 1, S is serializable. []

The fundamental concern of chain-conflicting serializability is to formulate the
weakest conflicting relationship on global transactions such that the GDBS can
indirectly determine the serialization order of global subtransactions at local sites
without violation of local autonomy. We will address this issue more precisely in
Section 5.

3.2 Graph Testing of Chain-Conflicting Serializability

Following Theorem 2, global serializability can be achieved at the global level by
controlling the execution order of global transactions for a special class of global
transactions which is chain-conflicting. In addition, only conflicting operations
need be ordered. A traditional graph-theoretic characterization of chain-conflicting
serializability for global transaction execution ordering is discussed below. Let us
first introduce the global transaction execution graph.

Definition 3. Chain-conflicting execution graph. Let ~ be the set of committed global
transactions in the global schedule S, G being chain-conflicting in a total order O
on ~. The chain-conflicting execution graph of Sa in O, denoted by GEGc(S~O), is
a directed graph whose nodes are the global transactions in ~ and whose edges are
all the relations (Gi, Gj) (i 5~ j) such that Gi ~ Gj if and only if: (1) Gi precedes
Gj in O; or (2) there are conflicting operations, oik E OPGi~, ojk E OPGjk and
oik -<Sk ojk, at LSk (1 < k < m).

Theorem 3. Chain-conflicting execution theorem. Let ~ be the set of committed
global transactions in global schedule S. If G is chain-conflicting in a total order
O on ~, then Sg is chain-conflicting serializable in O if and only if GEGc(S~) is
acyclic.

Proof: Let S = {$1, S2,...,Sm} be a global schedule and ~ be the set of committed
global transactions in S, with G being chain-conflicting in a total order O of
Gix ,Gi2 ~ • • ",Gi~.

(if) Because GEGc(S~) is acyclic, it can be topologically sorted. Obviously,

by the definition of GEGc(S~), Gil,Giz,..., Gi,~ must be the topological sort of

GEGc(S~). Let S~ be the serial schedule Gil,Gi2,...,Gi,. We claim that S G is
!

conflict equivalent to Sa. To illustrate this, let oi E OPG i and oj C OPGj, where
Gi,Gj are committed global transactions in S. Suppose oi and oj conflict and oi -'<s~
oj. By the definition of GEGc(S~), Gi ~ Gj is an edge in GEGc(S~). Thus,
in S~, all operations of Gi appear before any operation of Gj and, in particular,
oi '<sb oj. In a situation comparable to the proof of the serialization theorem in

Bernstein et al. (1987), S~ is conflict equivalent to S~. Hence, Sa is chain-conflicting
serializable in O.

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 341

(only if) Let S# be chain-conflicting serializable in O. Let S~ be a serial schedule
Gi~,Gi2,...,Gi~ which is conflict equivalent to S~. Consider an edge Gi ~ Gj in

GEGc(S~). Either Gi precedes Gj in O or there are two conflicting operations
oi,oj of Gi,Gj (respectively) such that oi ~sa oj. Thus, it follows that Gi appears

I I before Gj in Sa, because S~ is serial in O and conflict equivalent to S~. Let there

be a cycle in GEGc(S~) which, without loss of generality, is G1 ~ G2 ~ "" •
!

Gr ~ G1 (r > 1). These edges imply that, in Sa, G1 appears before G2 which
appears before G3 which appears ... before Gr which appears before G1. Thus,
the existence of the cycle implies that each of G1,G2,'" ",Gr appears before itself

I in the serial schedule S~, thus contradicting our assumption. Hence, GEGc(S~) is
acyclic. []

A sufficient condition for global transaction scheduling to maintain global serial-
izability in a failure-free multidatabase environment follows directly from Definition
3 and Theorem 3. That is, the execution order of conflicting operations of global
transactions must act in accordance with the order of their chain-conflicting aspects.
This condition is applicable to the global transaction concurrency controller because,
as we have indicated in the system model, the GDBS can control the submissions
of global transactions. Consequently, the execution order of global transactions
can be controlled at the global level. We give an illustrative example below. The
enforcement of chain-conflicts on global transactions will be discussed in the next
subsection, and the effect of failures on global concurrency control will be discussed
in Section 6.2.

Example 3. Consider an MDBS consisting of two LDBSs on D1 and D2, where data
item a is in D1, and b,c are in D2. The following global transactions are submitted:

Cl :wg (a)rg (b),
G2 :r92 (a)w92 (c)w92 (b),
G3:wg3(a)rg3(c),

which are chain-conflicting in the order G1 ~ G2 ~ G3. Let L21 be a local
transaction submitted at local site LS2:

L21:wL21 (b)wL21 (c).
Let S = {S1,$2 } be the global schedule:

sl :wg (a)r92 (a) (a),
$2 :WL21 (b)r91 (b) wL21 (c)wg2 (c)r93 (c)w92 (b).

Obviously, $6 is chain-conflicting serializable in the order G1 ~ G2 ----r G3, and S
is serializable. Note that, as long as the execution orders of conflicting operations
of global subtransactions are controlled identically at both local sites, such as:

w91(a) -~sl rg2(a) -~s~ wg3(a)
rgl(b) 482 wg2(b)

342

wg (c) rg3(c)

then global serializability is always maintained, even if local sites produce different
local serializable schedules from the above. Local indirect conflicts will no longer
create problems.

In GEGc(srOrh,G2,Gs}),.~ " we have:

c

Note that G12 ~ G32. In the following schedule S':
S] :Wg 1 (a)wg 3 (a) rg 2 (a),
S~:WL21 (b)rgl (b) rg a (C)WL21 (C)Wg 2 (C)Wg 2 (b),

S~ is serializable (not chain-conflicting serializable) in the order G 1 -----r G3 ----r G2,

but S' is not serializable. []

3.3 Forcing Chain-Conflicts in Global Transactions

One advantage of chain-conflicting serializability is that it can be easily generalized to
all global transactions by forcing chain-conflicts in global transactions. For example,
an elegant method, termed the ticket method, is proposed in Georgakopoulos et al.
(1991). The ticket method introduces a data item called ticket at each local site and
requires each global subtransaction to access the ticket at its site. Consequently,
conflicts are created among all global subtransactions which are executed at the
same site. The ticket method thus generates an instance which satisfies a strong
condition of the chain-conflicting property; that is, tickets cause the set of all global
transactions to be chain-conflicting in any order. A minor problem with the ticket
method is that a local site may not allow the creation of a ticket in its database.

An alternative method, which we will term the extra operation method, may be
suggested to circumvent this difficulty. In local site LSk, let Gik and Gjk be global
subtransactions that do not conflict. Chain-conflicts can then be simulated. Suppose
that Gik is executed before Gjk. If one of the operations of Gik is on data itemx, we
then append operations r(x) and w(x) to Gjk. Let G)k denote Gjk after appending

these extra operations. Now Gik and G)k conflict with each other, and the effect

on Dk made by G)k remains the same as that made by Gjk. One advantage of
the extra operation method is that it requires nothing from local sites. In addition,
the implementation of this method can be transparent to application programmers
and local databases; i.e., the global concurrency controller can hide the details of
implementing the enforcement of chain-conflicts from application programmers and
local databases.

The degree of difficulty of enforcing chain-conflicts on global transactions varies

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 343

with the interface available between the GDBS and the LDBSs. Current research
assumes the availability of global transaction operations submitted by the GDBS
to the LDBSs and that the completion of these operations is acknowledged by the
LDBSs to the GDBS (Mehrotra et al., 1992; Breitbart et al., 1992). In such cases,
the extra operation method certainly can be implemented. In Section 5, we will
show that the insertion of update operations can be avoided.

4. Sharing Serializability

In this section, we investigate another correctness criterion of global subschedules,
one that maintains that the execution order of the sharing operations of global
subtransactions is identical to their serialization order at each local site. This
criterion, termed sharing serializabilit~ provides another sufficient condition for the
GDBS to synchronize the relative serialization orders of the global subtransactions
of each global transaction at all local sites.

4.1 The Principle

The definitions of fully sharing transactions and sharing serializable schedules will first
be provided. We will then show that, if global subschedules are sharing serializable,
global serializability is assured. No restriction other than local serializability is
required at local sites.

Definition 4. Fully sharing transactions. A set T of local transactions is fully sharing
if there is a total order Til,Ti2,... ,Ti,, on T such that DTq C DTi2 C_ . . . C_
DT~,. A set G of global transactions is fully sharing if there is a total order O on
G such that for all k~ where 1 < k _< m, ~k is fully sharing in an order consistent
with O.

The fully sharing relationship of transactions is defined with respect to all data
accessed by those transactions, exclusive of types of operations. A set of transactions
may be chain-conflicting but not fully sharing, or it may be fully sharing but not
chain-conflicting. In Example 2, {G1,G2,G3} is fully sharing in the order G2 -+
G3 ~ G1. There is no other alternative fully sharing relationship.

The execution order of sharing operations of transactions can also determine
the serialization order of the transactions, as expressed in the following lemma:

Lemma 2. Assume that T1 and T2 are transactions in a serializable schedule s such
that Dr1 C DT2. If, for all sharing operations 01 E OPT 1, 02 ~ OPT2, Ol "~s 02,
then T1 <~r T2.

Proof: (1) If T1 and T2 conflict, then, because conflicting operations must access
common data, there are conflicting operations 01 E OPT1, o2 E OPT2, Ol <s o2.
Hence, T1 <sSr T2 follows from Lemma 1; otherwise

344

(2) If T1 and T2 do not conflict, then we need to prove that there is no transaction
14 that conflicts with T1, and consequently also conflicts with T2 (because DT1 C_
DT2), such that T2 ~ r T' ~ , . T1.

The proof proceeds by contradiction. Suppose we do have a transaction T ~ that
conflicts with T1 and T2 such that T2 ..<s 14 ~s r T1. Because DT~ C_ DT2, an
operation of T ~ that conflicts with T1 must also conflict with T2. Without loss of
generality, let ol, 0 I, and 02 be conflicting operations of T1, T', and T2, respectively.
From Lemma 1, we have 02 ~s o ~ ~s 01, contradicting the assumption Ol ~s 02.

[]

Definition 5. Sharing equivalence. Two global subschedules S G and S~ of global
_ _ !

schedules S and S I are said to be sharing equivalent, denoted Sg =s S¢, if they
have the same operations of G, where G is fully sharing in a total order O on G
and, if Gi precedes Gj in O, then for each integer k (1 < k < m) and all sharing
operations Oik ~ OPGik, Ojk E OPGjk, Oik "~S~ Ojk and Oik ~S~ Ojk.

Definition 6. Sharing serializability. A global subschedule Sg is sharing serializable
if and only if C(Sg) is sharing equivalent to a serial global subschedule.

Note that sharing serializability is stronger than serializability; i.e., sharing
serializability implies serializability. In Example 2, a global subschedule Sa =
Wg2(a) rg3(a)rgl(a)rg 3 (b)rgl(b)rgl(C) is sharing serializable in the order G2 --~
G3 ~ G1.

We now illustrate the application of sharing serializability in an MDBS envi-
ronment, first addressing the application of Lemma 2.

Assume a global subschedule Sg is sharing serializable in a total order O on
~, and Gi C ~ precedes Gj C ~ in O. If, for integer k (1 < k < m), for all
sharing operations Oik E OPGik, Ojk E OPG~k, Oik '~S G Ojk, then Oik "~Sk Ojk at

local site LSk. If Sk is serializable, then from Lemma 2, Gik ~sSr k Gilt. We have
shown that the sharing characteristics of global transactions can indirectly affect the
serialization order of global subtransactions in local schedules.

Our major theorem is the following:

Theorem 4. Let S be a global schedule and ~ be the set of global transactions in
S. If S¢ is sharing serializable, then the local serializability of Sk (for k = 1,...,m)
implies the global serializability of S.

Proof: Suppose S~ is sharing serializable in a total order 0 of Git ,Gi~," • • ,Gi,~
on G. Without loss of generality, we assume that, at local site LSk (1 < k <
m), Gilk,Gi2k, ' '" ,Gi,~k exist. We need to prove that, if Sk is serializable, then
Gitk -'<sS~ Gi2k ~sS~ "" " "<sSr k Gi,~k. The proof proceeds by induction on a number
n of global transactions:

n = 1: Straightforward.
Suppose for n =j (> 1), Gilk ~sS~ k Gi2k _~S~ . . . _~S~ Gijk holds.

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 345

Consider n = j + 1. Since Gi~ precedes Gij+l in O, then for all sharing
operations Oij k E OPGij k, Oij+lk ~ OPGij+lk, Oij k "~S~ Oij+lk, which is equivalent

to Oij k '~Sk Oij+lk" By Lemma 2, Gijk "~sSr k ai j+lk .

Thus, our induction proof shows Gilk ~sSr k Gi2k -~sS,~ "'" ~sS~ Gi,~k. Hence,
the serialization order of global subtransactions in Sk (1 < k < m) is consistent
with O. Consequently, by Theorem 1, S is serializable. []

The fundamental concern in sharing serializability is to seek alternative prop-
erties of global transactions other than conflicts such that the GDBS can indirectly
determine the serialization order of global subtransactions at local sites without
violating local autonomy. The feasibility of this approach will be explored further.

Note that a similar theory to Definition 4, Lemma 2, and Theorem 4 also can
be propounded using the relationship DTq D DT~2 D • • • D DT~ .

4.2 Graph Testing of Sharing Serializability

Following Theorem 4, global serializability can be achieved at the global level
by controlling the execution order of global transactions for a special class of global
transactions that is fully sharing. In addition, only sharing operations need be
ordered. This criterion shows that the serialization order of global subtransactions
at a local site can be determined at the global level without requiring that the global
subtransactions be conflicting. Note that both classes of global subschedules that
satisfy chain-conflicting serialization or sharing serializability are not disjoint.

A traditional graph-theoretic characterization of sharing serializability for global
transaction execution ordering is discussed below.

Let us first introduce the global transaction execution graph.

Definition 7. Sharing execution graph. Let ~ = {G1,G2, • • • ,Gn} be committed
global transactions in global schedule S, with G being sharing serializable in a total
order O on G. The sharing execution graph of S¢ in O, denoted GEGs(S~), is a
directed graph whose nodes are the global transactions in S and whose edges are
all the relations (Gi,Gj)(i 5~ j) such that Gi ~ Gj if and only if: (1) Gi precedes
Gj in O; or (2) at LSk (1 < k < m), there are sharing operations Oik E OPa~k,
Ojk ~ OPGjk and oik '~s~ Ojk.

Theorem 5. Sharing execution theorem. Let ~ be the set of committed global
transactions in global schedule S. If ~ is fully sharing in a total order 0 on ~, then
Sg is sharing serializable in 0 if and only if GEGs(S~) is acyclic.

Proof: Let S = {$1,$2, ...,Sin} be a global schedule and ~ be the set of com-
mitted global transactions in S, with ~ being fully sharing in a total order 0 of
Gil ,Gi2 ~ " " " ~Gi~.

(if) Because GEGs(S~) is acyclic, it can be topologically sorted. Obviously,

by the definition of GEGs(S~), Gil,Gi2, ...,Gin must be the topological sort of

346

GEGs(S~). Let S~ be the serial schedule Gil,Gi2, ...,Gin. We claim that S¢ is
sharing equivalent to S t ¢. To illustrate this, let oi C OPG~ and oj C OPGj, where
Gi,Gj are committed global transactions in S. Suppose oi and oj share with each

other and oi ~so oj. By the definition of GEGs(S~), Gi ~ Gj is an edge in
I GEGs(S~). Thus, in S~, all operations of Gi appear before any operation of Gj,

I and in particular, oi ~sb oj. By Definition 5, S~ is sharing equivalent to S~.
Hence, S# is sharing serializable in O.

I (only if) Let Sa be sharing serializable in O. Let S~ be a serial schedule
Gil,Gi 2 , ...,Gi,~ which is sharing equivalent to S¢. Consider an edge Gi ~ Gj
in GEGs(S~). Either Gi precedes Gj in O or there are two sharing operations
oi,oj of Gi,Gj (respectively) such that oi '~so oj. Thus, it follows that Gi appears

S ~ is serial in O and sharing equivalent to S G. Let there before Gj in Sa, because G

be a cycle in GEGs(S~) that, without loss of generality, is G1 --~ G2 ~ "" • --~
Gr ~ G1 (r > 1). These edges imply that, in S' a, G1 appears before G2, which
appears before G3 which appears ... before Gr which appears before G1. Thus,
the existence of the cycle implies that each of G1,G2, • • • ,Gr appears before itself
in the serial schedule S ~ ¢, thus contradicting our assumption. Hence, GEGs(S~) is
acyclic. []

Similarly, a sufficient condition for global transaction scheduling to maintain
global serializability in a failure-free multidatabase environment follows directly
from Definition 7 and Theorem 5, i.e., the execution order of sharing operations
of global transactions must act in accordance with the order of their fully sharing
property. The following example illustrates this result.

Example 4. Consider an MDBS consisting of two LDBSs on D1 and D2, where data
item a is in D1, and b,c are in D2. The following global transactions are submitted:

G l :w gx (a)r91(b),
G2 :r92 (a)w92 (c)rg~ (b),

which is fully sharing in the order G1 ~ G2. Let L21 be a local transaction
submitted at local site LS2:

L 2 1 : W L 2 1 (b)rL~l(C)
Let S ={$1,$2} be the global schedule:

sl :Wgx (a)rg~ (a),
$2 :W L~i (b)r gl (b)r L21 (c)w gz (c)r92 (b).

Obviously, S¢ is sharing serializable in the order G1 ~ G2, and S is serializable.
Note that G12 and G22 do not conflict. However, as long as the execution orders
o f sharing operations of global subtransactions are controlled in the order:

Wgl (a) -~$1 tg2(a)
rg~(b) ~s~ rg2(b)

then global serializability is always maintained, even if local sites produce local

V L D B Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 347

serializable schedules that are different from the above. Local indirect conflicts will
no longer create problems. In GEGs(S~G1,G2}) , we have:

@

4.3 Forcing Sharing Operations in Global Transactions

The extra operation method also can be used to enforce the fully sharing prop-
erty on all global transactions, requiring only the insertion of retrieval operations.
Since retrieval operations cause less blocking than do update operations, shar-
ing serializability is simpler and more efficient than chain-conflicting serializability.
When global transactions diversely access different data, the application of the extra
operation method to global transactions may sometimes burden them with long
appendices. However, such long appendices will always be finite, because the data
items in a local database are finite. In the next section, we will show that such
exponentially increasing appendices can be reduced automatically when the fully
sharing property is merged with the chain-conflicting property. Nevertheless, more
elegant approaches need to be investigated. At this point, use of the fully sharing
property alone does not appear to offer the GDBS significant assistance toward the
preservation of global serializability.

5. Hybrid Serializability

We will now discuss hybrid serializability, a correctness criterion that exhibits char-
acteristics of both chain-conflicting and sharing serializability.

5.1 Hybrid Serializability

The definitions of hybrid transactions and hybrid serializable schedules, presented
below, clarify the manner in which they effectively combine the best features of
chain-conflicting serializability and sharing serializability.

Definition 8. Hybrid transactions. A set T of local transactions is hybrid if there
is a total order Til,Ti2,... ,Ti,~ on T such that Til~ T i2~"" ~ Ti,~ where

E {,'~,, C_, D} 3 and no three adjacent Tit, Tij+l, and Tij+2 (1 < j) are connected
as Tit D Tij+l C Tij+2. A set G of global transactions is hybrid if there is a total
order O on ~ such that for all k; where 1 < k < m, ~k is hybrid in an order

c
3. We consider that ~ has a higher priority than C (or ~) , i.e., if two transactions Ti and Tj have both

T i c T" and T i ~ (or ~) T" properties, then T i c T" will be chosen in the hybrid ordering instead 3 - - - - 3 3
of T i C (or ~) Tj. Both C and ~ have the same priority.

348

consistent with O.

The operations that determine the hybrid property on global transactions are
termed hybrid operations.

!
Definition 9. Hybrid equivalence. Two global subschedules S¢ and S~ of global
schedule S and S ~ are said to be hybrid equivalent, denoted Sa --:h S~, if they have
the same operations of G, where G is hybrid in a total order O on .~ and, for any
Gi preceding Gj in O, the following conditions are satisfied for all integer k (1 <
k < m):

• if Gik c Gj k in O, then for all conflicting operations Oik E OPGik, Ojk C
OPGjk, Oik "~Sg Ojk and oik ~s~ ojk; or

• if Gik C Gjk (or Gik _D Gjk) in O, then for all sharing operations oik E
OPGik, Ojk E OPGj~, Oik ~Sg Ojk and Oik "~S~ Ojk.

Definition 10. Hybrid serializability. A global subschedule S 9 is hybrid serializable if
and only if C(Sg) is hybrid equivalent to a serial global subschedule.

Following the properties of chain-conflicting and sharing serializability, hybrid
serializability is stronger than serializability; i.e., hybrid serializability implies seri-
alizability.

Lemmas 1 and 2 have indicated that if Ti ,.L Tj or Ti C (D) Tj, then the
serialization order of Ti and Tj can be determined by controlling the execution
order of their conflicting (or sharing) operations. When the mixed relationships
of ~ , C, and _D are considered among more than two transactions, the situation
becomes more complex. The following example is illustrative:

Example 5. Consider the following set of transactions:
Ti: r 1 (x) r l(w) r 1 (y),
T2: r2(x),
T3: r3(x) r3(v) r3(z),
T4: w4(r) w4(z).

Note that T1 D T2 C T3. Let a serializable schedule s be:
s:rl(x) r2(x) r3(x) rl(w) r3(v) w4(y) rl(y) r3(z) w4(z).

We have either T1 --<ssr T2 or T2 <ssr T3. However, T1 -'<sSr T2 <~r T3 does not
hold, because T3 -'<sSr T4 '<sSr T1 is uniquely determined. []

We will now illustrate the application of hybrid serializability in an MDBS
environment. We first introduce the following lemma:

[,emma 3. Assume that T1, T2 and T3 are transactions in a serializable schedule s
such that T i ~ T2 ~ T3 where ~ E { c , C, D } and no T1 D T 2 C T 3 is allowed.

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 349

If, for any T i ~ Ti+l (1 < i < 2) and all hybrid operations Ol E OPTs, 02 E
OPTi+i, Ol "~s 02, then T 1 -KsSr T 2 <sSr T 3.

Proof: If we have T1 ~ T2 ~ T3, T1 C T2 C T3 or T1 D T2 ~ T3, then T1 <~r
T2 'K s Ta follows directly from the discussion in Sections 3 and 4. We now consider
the other cases.

. Suppose T1 ~ T2 C_ (_D) T3. Following Lemma 1, T1 ~ T2 is uniquely
determined in s. Following Lemma 2, T2 -< ~s r T3 holds in s. Hence, T1 ~ ~
T2 -.,K~r T 3.

2. Suppose T1 C (_D) T2 ,.L T3. Because the proof of this case is similar to 1
(above), it is omitted here.

. Suppose T1 C_ T2 D T3. Following Lemma 2, there is no transaction ffl that
conflicts with T1 and T2 such that T2 -'Kssr T~i "Kit T1, and also, there is no
transaction if2 that conflicts with T2 and T3 such that T3 ~],. 7" 2 ~] r T2.
We show that there is also no transaction T' that conflicts with T1 and T3
such that T3 ~ssr ff ~] r T1. The proof proceeds by contradiction. Suppose
we have a transaction ff that conflicts with T1 and T3 such that T3 ..Ks
T ~ ~]~ T1. Without loss of generality, let Ol, o t be conflicting operations of
T1 and 7 ~, respectively, and o n, 03 be conflicting operations of 7 ~ and T3,
respectively. By Lemma 1, we have o3 ~ o n and o t -'Ks Ol. Because T1 C
T2 _D T3, by the given condition, there are operations 05, o 2" of T2 that
conflict with d,o n respectively and Ol ~ o 5 and og -'Ks o3. Consequently,

' Following Lemma 1, T2 ~]~ ff and T' ~]~ T2 must o~ -Ks o" and o ~ -'Ks 02.
hold simultaneously, which is a contradiction. Hence, T1 ~sr T2, T2 ~ssr
T3 and T 1 ~ r T3 can hold simultaneously. []

Theorem 6. Let S be a global schedule and G be the set of global transactions in
S. If Sa is hybrid serializable, then the local serializability of Sk (for k = 1,...,m)
implies the global serializability of S.

The proof of this theorem can be based directly upon Lemma 3. The construction
of the proof is comparable to that of Theorem 2 and 4 and is therefore omitted
here.

The fundamental advance offered by hybrid serializability is the exploitation of
the mixed features of transactions to maintain global serializability. This formulation
of hybrid serializability possesses several novel features which will be discussed in
the following subsections.

Following Theorem 6, global serializability can be achieved at the global level
by controlling the execution order of global transactions for a special class of hybrid
global transactions. In addition, only hybrid operations need be ordered.

350

A global transaction execution graph of S~ in an order O (on ~) for hybrid
serializability, denoted GEGh(S~), can be defined by combining the conditions set
forth in Definition 3 and 7. A similar global execution theorem can also be derived,
assuming that the set ~ of global transactions possesses a hybrid order. Rather
than reiterating these formulations, we provide the following illustrative example:

Example 6. Consider an MDBS consisting of two LDBSs on D1 and D2, where data
item a is in D1, and b,c are in D2. The following global transactions are submitted:

G1 :Wg 1 (a)rg 1 (b),
G2 :rg 2 (a)wg2 (c)rg 2 (b),
G3 :r93 (a)r93 (c)rg3 (b),
6 4 :w g, (a)rg, (c),

which is hybrid in the order G1 ~ G2 ~ G3 "---> G4, where at local site LS1,
Gll c G21 ~ G31 "~ G41 and at local site LS2, G12 C_ G22 ~ G32 ~ G42. Let
L21 be a local transaction submitted at local site LS2:

L21 :WL2z (b)rL21 (c).
Let S = {S1,$2} be the global schedule:

Sl :Wg 1 (a)rg~ (a)rg 3 (a)wg, (a),
$2 :W L2i (b)rgl (b)r L21 (C)W g2 (C)rgz (c)rg3 (b)rg4 (c)r92 (b).

The global subschedule Sa is hybrid serializable in the order G1 ~ G2 ~ G3
G4, and S is serializable. Note that, if the execution order of key operations that
determine the hybrid relationships among global transactions are maintained:

Wgl(a) "~S1 F92(a) '~Sl /'g3(a) '~Sl W.q4(a)
rgl(b) ~S2 r92(b)

then global serializability is always maintained, even if local sites produce different
local serializable schedules from the above. Local indirect conflicts will no longer
create problems. In GEGh(S~), we have:

[]

In summary, hybrid serializability can be maintained by holding the execution
order of hybrid operations of global transactions consistent with the order of their
hybrid property. Thus, global concurrency control is actually simplified. Given this
basis, it is necessary to enforce only the hybrid property on global transactions, an
issue which will be addressed in the following subsection.

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 351

5.2 Forcing the Hybrid Property in Global Transactions

As pointed out earlier, the chain-conflicting and fully sharing properties present the
drawback of appending unnecessary updating operations or exponentially increasing
appendices of extra retrieval operations. By combining the best features of these
two properties, the hybrid property not only presents an optimal formulation but
also offers a novel approach to compensating for the weakness of both previous
methods. This is illustrated as follows:

According to the theory proposed in Subsection 5.1, the hybrid relationships

among global subtransactions can be arbitrarily chosen from {~ , C, 2 }, as long
as no three adjacent Tij, Tij+ 1 , a n d Tij+2 (1 < j) are connected as Tit ~ Tij+x
Tij+2. Suppose we enforce the hybrid property on general global transactions by

a particular order. 4 We append extra retrieval operations only if no hybrid order
can be found between two global subtransactions. These appendices may render a
subtransaction unwieldy, but they also increase the likelihood that it will conflict
with or be fully sharing with (2) the following subtransaction. Therefore, extra
operations may not need to be appended to the following subtransaction. The
problem of exponentially increasing appendices is thus automatically avoided. The
following example details these concepts.

Example 7. Consider an MDBS consisting of two LDBSs on D1 and D2, where
data item a is in D1, and b,c,d are in D2. The following globally non-hybrid global
transactions are submitted to the GDBS in the order.G1,G2,Ga,G4,G5:

Gl :Wgx (a)rgl (b),
G2:rg2(a)rg2(C),
G3:rea(a)raa(d),
G4:wa,(a)ra,(b),
Gs:r95(a)wgs(b).

After appending extra retrieval operations in first-come-first-served order, we get:
G i : wgl(a)ra,(b), }
G2 "r92(a)r92(c) ~ ,

appended
G3: rga(a)rga(d)rga(b)rga(c),

Y

appended

V4: Wg,(a)rg,(b),
G5:rgs(a)wgs(b),

increasing appendices

reducing appendices

4. This may be either first-come-first-served, which enforces a hybrid order identical to the submitting
order, or best-fit, which groups the global transactions and determines the most efficient hybrid order. In
the presence of dynamically arriving global transactions, the first-come-first-served ordering strategy seems
to be a better choice.

352

which is hybrid in the order G1 --> G2 ~ G3 ---> G4 ~ Gs, where, at site LS1,
Gll "~ G21 ~ (or ~) G31 c G41 c G51, and at site LS2, G12 C G22 C G32

G42 ~ G52. []

Typically, the phases involving increasing and reducing appendices alternate,
thus avoiding the spectre of exponentially increasing appendices. Furthermore, no
extra updating operation needs to be appended to global transactions.

The extra operation method is presented here only as a theoretical vehicle to
illustrate the potential generalization of the hybrid property to all global transactions.
A detailed analysis of the enforcement of the hybrid property on global transactions
is here eschewed in lieu of a formal treatment of global concurrency control. As
mentioned earlier, it is possible to enforce the hybrid property in a manner which
appears completely transparent to application programmers. Details regarding
the enforcement of the chain-conflicting property of global transactions and the
maintenance of the chain-conflicting serializability of global subschedules appears
in Zhang et al. (1993).

5.3 Optimality

Part of the attractiveness of hybrid serializability stems from our interest in defining
all possible globally serializable schedules that can be determined without violation
of local autonomy. Its efficacy in achieving this result is illustrated in the following
discussion.

A property P of global transactions is defined as optimal 5 If there is no other
property that is strictly weaker than P, we say that a property P1 is weaker than
a property P2 where a set of global transactions that satisfies P2 also satisfies P1;
that is, if P2 implies P1. A property P1 is strictly weaker than a property P2 if P1
is weaker than P2 and if P2 is not weaker than P1.

We now investigate an optimal property of global transactions needed by the
GDBS to indirectly determine the serialization order of global subtransactions at a
local site. We have shown that the hybrid property is sufficient for such a purpose.
However, it is not optimal. If any three transactions T1, T2, and T3 in schedule s
are connected as T1 ~ T2 _C T3, where T1 C (or D) T3, then T1 -'<8 T2 ~8 T3
implies T1 ~ r T2 ~ r T3. The proof of this can be constructed similarly to the
proof of Lemma 3. We omit it here.

Definition 11. Extra-hybrid transactions. A set T of local transactions is extra-hybrid
if there is a total order Til,Ti~,... ,Ti, on T such that T i ~ T i2~"" ~ Ti,

5. A similar definition has been suggested in Weihl (1989).
C

6. We also consider that r~ has a higher priority to be chosen than C (or ~).

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 353

where ~ E { c , C_, ~}0 and for any three adjacent Tip, Tip+l, and Ti.+2, which
are connected as Ti~ ~ Ti~+x C Ti~+2, Tit C_ (or ~) Tij+2. A set ~ of global
transactions is extra-hybrid if there is a total order O on G such that for all ~ where
1 < k < m, Gk is extra-hybrid in an order consistent with O.

We claim that the application of the extra-hybrid property H of global transactions
to global transaction scheduling provides an optimal condition for the GDBS to
indirectly determine the serialization order of global subtransactions at a local site.
That is, no other property is strictly weaker than H and allows the GDBS to indirectly
determine the serialization order of global subtransactions at a local site. 7 This is
formally proven in the following theorem:

Theorem. Optimality. The extra-hybrid property of global transactions is an optimal
condition that allows the GDBS to indirectly determine the serialization order of
global subtransactions at a local site without imposing any restrictions on or requiring
any information from local sites other than local serializability.

Proof: Let local concurrency controllers generate only locally serializable schedules.
The proof proceeds by contradiction. Suppose the extra-hybrid property H of global
transactions is not optimal. There is then a property P of global transactions that
is strictly weaker than H, and the serialization order of global subtransactions at a
local site is determined at the global level by controlling the execution of the global
transactions. A generic counter-example shows, however, that such a property does
not exist.

Suppose that, at a local site LSk, a set Gk = {Glk, ...,Gnk} of global sub-
transactions satisfies P and does not satisfy H. Thus, Gk is not extra-hybrid in any
order. Without loss of generality, let Gk be serially executed in an order O. We

have at least two global subtransactions Gik that precede Gjk in O such that Gik ~L
Gjk, Gik ~ Gjle, Gik ~ Gjk and if there must be another global subtransaction
Gzk executed between Gik and Gjk, then Gik ~ Gtk C_ Gjk. There are then
two different data items x and y such that Gik accesses x and does not access
y, while Gjk accesses y and does not access x. We construct a local transaction
Lkl : w(x)w(y). The local concurrency controller at LSk may produce the following
locally serializable schedule:

Sk : ...w(x)Gik...Gjkw(y)...

Note that Sk is conflict equivalent to ...Gflew(x)w(y)Gik... because Gik does not
conflict with Gjk and w(y), Gjk does not conflict with Gik and w(x), and any global
transaction executed between Gik and Gjk does not conflict with any of Gik, Gjk
and Lkl. As a result, Sk is serializable in the order ...Gjk --.r Lkl ~ Gik... On

7. Note that, ifP is strictly weaker than H, then there exists a set of global transactions that satisfies P and
does not satisfy H.

354

the other hand, the local concurrency controller may produce the following locally
serializable schedule:

Sk :

In this instance, Sk is serializable in the order ...Gik "-+ L k l ----r Gjk.. .
Consequently, the serialization order of the global subtransactions responds

dynamically to the interactions entered into by the local transaction, even though
the execution order of global subtransactions remains consistent in both cases. Hence,
the extra-hybrid property provides an optimal condition for the determination of
the serialization order of global subtransactions at a local site without imposing
any restrictions on or requiring any information from local sites other than local
serializability.

The generality of the above counter-example also implies that, for any set of global
transactions which is not extra-hybrid, the serialization order of its subtransactions
at a local site may not be determined at the global level. Hence, the extra-hybrid
property is also the only weakest property with which we are concerned. []

Therefore, no other property of global transactions can be strictly weaker than
the extra-hybrid property and can be applied as a sufficient condition for the GDBS
to indirectly determine the serialization order of global subtransactions at a local
site without imposing any restrictions on or requiring any information from local
sites.

Defining through the above novel feature of the extra-hybrid property, a cor-
rectness criterion for the execution of global transactions which combines hybrid
serializability with the case of T 1 ~ T2 C_ T3, where T1 C (or 2) T3, can be
formulated to encompass the maximum set of globally serializable schedules that can
be determined without violation of local autonomy. We will not discuss it further.

6. Related Issues

In this section, other issues of interest will be discussed; in particular, the relationship
of hybrid serializability to other suggested approaches and its adaptability to failure-
prone multidatabase environments.

6.1 Relationship to Other Research

Many approaches have been proposed to solve the problem of global concurrency
control in MDBSs. Among these, two-level serializability (Mehrotra et al., 1991)
and quasi-serializability (Du and Elmagarmid, 1989) characterize two correctness
criteria for global schedules that maintain global consistency without imposing any
restrictions on local sites. In this section, we compare the present work with these
two correctness criteria.

Both two-level serializability and quasi-serializability relax global serializability
to a certain degree. Informally, a global schedule S is two-level serializable if S

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 355

Figure 2. Relationships among 2LSR, QSR, SR, HSR, CCSR, SHSR,
OTM

All global schedules

2LSR

QSR
SR

HSR

restricted to each local site is serializable and S restricted to the set of global
transactions in S is also serializable. A global schedule is quasi-serial if and only if it
is serializable when restricted to each local site and there is a total order of its global
transactions such that, if Ti precedes Tj, all operations of Ti are executed before
those of Tj in each local schedule. A global schedule S is quasi-serializable if it is
equivalent to a quasi-serial schedule of the same set of transactions. Although both
criteria simplify the problem of global concurrency control, they can only maintain
some degree of global consistency in certain restricted applications.

Let 7-L denote the set of all possible global schedules; 2LSR denotes the set
of two-level serializable global schedules; QSR denotes the set of quasi-serializable
global schedules; SR denotes the set of serializable global schedules; CCSR denotes
the set of serializable global schedules in which the global subschedules of the global
schedules are chain-conflicting serializable; SHSR denotes the set of serializable
global schedules in which the global subschedules of the global schedules are sharing
serializable; and HSR denotes the set of serializable global schedules in which the
global subschedules of the global schedules are hybrid serializable.

As stated in Mehrotra et al. (1991) and Du and Elmagarmid (1989), 2LSR is
a superset of QSR, and QSR is a superset of SR. As pointed out earlier in this
paper, HSR is a subset of SR and a superset of both CCSR and SHSR. There is
no inclusive relationship between CCSR and SHSR. Note that the set of global
schedules generated by the Optimistic Ticket Method (Georgakopoulos et al., 1991)
is a subset of CCSR. Figure 2 depicts the relationships among these different types

356

of global schedules.
If the set of all global transactions submitted at the global level is chain-conflicting,

the problem of global transaction scheduling is further reduced to maintaining
the serializability of global transactions in a certain order. This is a sufficient
condition for two-level serializability, which then maintains global serializability.
Thus, enforcing the hybrid property on global transactions simplifies the problem
of global concurrency control, and global serializability is still retained.

6.2 Effects of Failures on Global Concurrency Control

The proposed criteria for global schedules have been developed in a manner
appropriate to a failure-prone multidatabase environment, i.e., only committed
global transactions are considered. Because any uncommitted global transaction
may abort or a system failure may cause such transactions to abort at local sites,
resubmission of aborted global transactions may result in an execution order of global
transactions that is different from the original execution order. An irremediably non-
serializable schedule may therefore be produced. The following example illustrates
this situation.

Example 8. Consider an MDBS consisting of two LDBSs on D1 and D2 where data
item a is in D 1 at LS1, and c is in D2 at LS2. The following global transactions
G1 and G2 are submitted:

GI: rgl(a)rgl(C),
G2:w92 (a)w92(c).

Let S = {S1,$2} be the global schedule:

SI: rgx(a) wg2(a) c921 ~* * * * *~
Y

failure
S2: rgl(c) Wg2(C) cgl2 Cg22
That is, for some reason, global subtransaction Gll:rgl(a) is aborted before

it commits. It cannot then be re-executed without rendering the global schedule
S non-serializable. Note that, in this case, there are no local transactions to be
considered in S. []

Thus, a protocol for hybrid serializability in a failure-prone multidatabase en-
vironment must take into account the effects of failures and be able to recover
from such effects. It follows from Example 8 that the commit order of global
subtransactions must be consistent with their serialization order. A uniform theory
of global concurrency control and failure recovery ensues. Moreover, this theory
must be compatible with the preservation of the atomicity of global transactions.

7. Conclusions

To date, there has been no theoretical study of the maintenance of global serializ-
ability through global transaction scheduling in the MDBS environment. Existing

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 357

approaches to global concurrency control in MDBSs either relax the serializability
theory or impose restrictions on local concurrency control mechanisms. In this
article, we have proposed three global transaction scheduling criteria to maintain
global serializability without imposing any additional restrictions on LDBSs other
than local serializability. These three criteria are chain-conflicting serializability,
sharing serializability, and hybrid serializability.

We have therefore:

• Formally proposed and proven a theory of global concurrency control for
maintaining global serializability in multidatabase systems without placing
any additional restrictions on local sites other than local serializability; and

• Indicated the upper limit on global serializability while maintaining local
autonomy.

As an outgrowth of these criteria, we have shown that global serializability
can be ensured at the global level by utilizing the intrinsic characteristics of global
transactions. The mixed structural features of the hybrid property of global transac-
tions provides a sufficient condition for the GDBS to synchronize the serialization
orders of global transactions at all local sites without violation of local autonomy.
Moreover, global concurrency control is simplified by controlling the execution order
of the hybrid operations that determine the hybrid property of global transactions.
By providing the weakest condition for the GDBS to determine the serialization
order of global subtransactions at the global level, we have also shown that global
concurrency may be limited if local autonomy is a major factor to be considered in
MDBSs.

Thus, the hybrid property of global transactions is considered to be the fun-
damental structural feature of global transactions necessary for achieving global
serializability without violating local autonomy. The central issue of global concur-
rency control therefore becomes the enforcement of the hybrid property on global
transactions. A ticket method (Georgakopoulos et al., 1991) is proposed to force
conflicts among all global transactions, thus generating a strong implementation of
the hybrid property. An extra operation method is also proposed in this paper to
enforce the hybrid property on global transactions. The extra operation method
enforces the hybrid property on global transactions in a manner transparent to
application programmers. Protocols are currently being developed to implement
this method.

To implement hybrid serializability in a failure-prone multidatabase environment,
the commit order of global subtransactions must obey their serialization order.
Moreover, preservation of the atomicity of global transactions may be ensured
through atomic commitment protocols. The results of these investigations are
presented elsewhere.

358

Acknowledgements

Zhang is supported by a Purdue Research Foundation Fellowship, and Elmagarmid
is supported by NSF under grant IRI-8857952. This article is based in part on Zhang
(1993). The authors have benefitted greatly from discussions in the InterBase group
at Purdue University. We especially thank Xiangning Liu and Marian H. Nodine
for taking the time to read this paper and for their suggestions that helped us to
improve the technical accuracy and presentation of this article.

References

Alonso, R., Garcia-Molina, H., and Salem, K. Concurrency control and recovery
for global procedures in federated database systems. IEEE Data Engineering
Bulletin, 10(3):5-11, 1987.

Bernstein, E, Hadzilacos, V, and Goodman, N. Concurrency Control and Recovery
in Databases Systems. Reading, MA: Addison-Wesley Publishing Co., 1987.

Breitbart, Y., Garcia-Molina, H., and Silberschatz, A. Overview of multidatabase
transaction management. VLDBJourna~ 1(2):181-239, 1992.

Breitbart, Y., Georgakopoulos, D., Rusinldewicz, M., and Silberschatz, A. On rigor-
ous transaction scheduling. IEEE Transactions on Software Engineering 17(9):954-
960, 1991.

Breitbart, Y., and Silberschatz, A. Multidatabase update issues. Proceedings of the
ACM SIGMOD Conference on Management of Data, Chicago, IL, 1988.

Breitbart, Y., and Silberschatz, A. Strong recoverability in multidatabase systems.
Proceedings of the Second International Workshop on Research Issues on Data Engi-
neering: Transaction and Query Processing Tempe, AZ, 1992.

Du, W. and Elmagarmid, A. Quasi serializability: A correctness criterion for global
concurrency control in InterBase. Proceedings of the Fifteenth International Con-
ference on l~ry Large Databases, Amsterdam, 1989.

Du, W., Elmagaramid, A., and Kim, W. Effects of local autonomy on heterogeneous
distributed database systems. Technical Report ACT-00DS-EI-059-90, MCC,
February, 1990.

Elmagarmid, A., and Du, W. A paradigm for concurrency control in heterogeneous
distributed database systems. Proceedings of the Sixth International Conference on
Data Engineering Los Angeles, 1990.

Garcia-Molina, H. and Kogan, B. Node autonomy in distributed systems. Proceed-
ings of the First International Symposium on Databases for Parallel and Distributed
Systems, Austin, TX, 1988.

Gligor, V. and Popescu-Zeletin, R. Transaction management in distributed het-
erogeneous database management systems. Information Systems, 11(4):287-297,
1986.

VLDB Journal 2 (3) Zhang: Global Concurrency Control in MDBSs 359

Georgakopoulos, D., Rusinkiewicz, M., and Sheth, A. On serializability of multi-
database transactions through forced local conflicts. Proceedings of the Seventh
International Conference on Data Engineering~ Kobe, Japan, 1991.

Hadzilacos, V. A theory of reliability in database systems. Journal of the Association
for Computing Machinery, 35(1):121-145, 1988.

Litwin, W. A multidatabase interoperability. IEEE Computer Journal, 19(12):10-18,
1986.

Mehrotra, S., Rastogi, R., Breitbart, Y., Korth, H.E, and Silberschatz, A. The
concurrency control problem in multidatabases: Characteristics and solutions.
Proceedings of the ACM SIGMOD Conference on Management of Data, San Diego,
CA, 1992.

Mehrotra, S., Rastogi, R., Korth, H.E, and Silberschatz, A. Non-serializable exe-
cutions in heterogeneous distributed database systems. Proceedings of the First
International Conference on Parallel and Distributed Information Systems, Miami
Beach, FL, 1991.

Papadimitriou, C. The Theory of Database Concurrency Control. Rockville, MD: Com-
puter Science Press, 1986.

Pu, C. Superdatabases for composition of heterogeneous databases. Proceedings of
the Fourth International Conference on Data Engineering, Los Angeles, CA, 1988.

Raz, Y. The principle of commitment ordering, or guaranteeing serializability in
a heterogeneous environment of multiple autonomous resource-managers. Pro-
ceedings of the Eighteenth International Conference on l,~ry Large Databases, Van-
couver, British Columbia, 1992.

Veijalainen, J. Transaction Concepts in Autonomous Database Environments. Munich,
Germany: R. Oldenbourg-Verlag, 1990.

Veijalainen, J. and Wolski, A. Prepare and commit certification for decentralized
transaction management in rigorous heterogeneous multidatabases. Proceedings
of the Eighth International Conference on Data Engineering Tempe, AZ, 1992.

Weihl, W. Local atomicity properties: Modular concurrency control for abstract data
types. ACM Transactions on Programming Languages and Systems, 11(2):249-282,
1989.

Zhang, A., Chen, J., Elmagarmid, A.K., and Bukhres, O. Decentralized global
transaction management in multidatabase systems. TechnicalReport CSD-TR-93-
016, Purdue University, 1993.

Zhang, A. and Elmagarmid, A.K. On global transaction scheduling criteria in mul-
tidatabase systems. Proceedings of the Second International Conference on Parallel
and Distributed Information Systems, San Diego, California, 1993.

360

Appendix A

Proof of Theorem 1:
(if) Assume that there is a total order O on global transactions in S, and for

every local site LSk (1 < k < m), the serialization order of global subtransactions
in Sk is consistent with O. We construct the serialization graph SG for S, denoted
SG(S), as a directed graph whose nodes are the transactions in S and whose edges
are all Ti --~ Tj (i ~ j) on both global and local transactions, such that one of the
operations of Ti precedes and conflicts with one of the operations of Tj in S. We
need to prove that SG(S) is acyclic (Bernstein et al., 1987).

Suppose there is a cycle in SG(S). Without loss of generality, let the cycle
be T1 -* T2 ~ " " --~ Tk ~ T1 (k > 1). These edges imply that in S, T1
appears before T2, which appears before T3, which appears . . . before Tk, which
appears before T1. Because each local subschedule of S is serializable and there
is no conflict between local transactions at one site and local transactions (or
global subtransactions) at another site, there must be a set of global transactions
{ail ,ai2, '" ",Gi,~} C {T1, T 2 , " " ,Tk} such that Gil precedes Gi2, Gi2 precedes
Gi3~ • • • ~Gi,. precedes Gil. There is therefore no total order on global transactions
such that Gil precedes Gi2, Gi2 precedes Gia~"" ~Gi,. precedes Gil at the same
time. This is contradictory to our assumption. Hence, SG(S) is acyclic. By the
serialization theorem given in Bernstein et al. (1987), S is serializable.

(only if) Assume that S is serializable in a total order O. Then, for each local
site LSk (1 < k < m), the serialization order of Sk is consistent with O. Let O t be
O restricted to the global transactions in S. Consequently, the serialization order
of global subtransactions at each local site LSk (1 < k < m) is consistent with O ~.
Hence, the theorem is proven. []

