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Abstract. Several object-oriented database management systems have been im- 
plemented without an accompanying theoretical foundation for constraint, query 
specification, and processing. The pattern-based object calculus presented in this 
article provides such a theoretical foundation for describing and processing object- 
oriented databases. We view an object-oriented database as a network of interre- 
lated classes (i.e., the intension) and a collection of time-varying object association 
patterns (i.e., the extension). The object calculus is based on first-order logic. It 
provides the formalism for interpreting precisely and unifor/nly the semantics of 
queries and integrity constraints in object-oriented databases. The power of the 
object calculus is shown in four aspects. First, associations among objects are ex- 
pressed explicitly in an object-oriented database. Second, the "nonassociation" 
operator is included in the object calculus. Third, set-oriented operations can be 
performed on both homogeneous and heterogeneous object association patterns. 
Fourth, our approach does not assume a specific form of database schema. A pro- 
posed formalism is also applied to the design of high-level object-oriented query 
and constraint languages. 

Key Words. Object-oriented databases, association patterns, semantic constraints, 
query expressions. 

1. Introduction 

Many object-oriented (OO)  database models (Batory and Kim, 1985; Banerjee et al., 
1987; Fishman et al., 1987; Hull and King, 1987; S u e t  al., 1989) and OO database 
management  systems like Vbase (Ontologic, Inc., 1988), Iris (Fishman et al., 1987), 
GemStone (Maier et al., 1986), ORION (Banerjee et al., 1987), 02  (Lecluse et 
aL, 1988), and ObjectStore (Object Design, Inc., 1990) have emerged recently for 
supporting advanced application areas such as CAD/CAM, office automation,  and 

Nabil Kamel, Ph.D., is Assistant Professor; Ping Wu, Ph.D., is Research Assistant; and Stanley Y.W. Su, 
Ph.D., is Professor, Database Systems Research and Development Center, Computer and Information Sci- 
ences Department, E470 CSE, University of Florida, Gainesville, FL, 3261 I--6125. 



54 

multi-media databases. Unlike the relational approach to databases which was based 
on a firm theoretical foundation, that is, the mathematical notion of relations and the 
accompanying relational algebra and relational calculus, object-oriented databases 
and object-oriented database management systems (DBMSs) are primarily founded 
on ideas adopted from object-oriented programming languages. Implementations of 
object-oriented DBMSs have been carried out without the accompanying theoretical 
foundation. As a result, three major problems have surfaced in 0 0  database 
applications. 

First, there is no query language for existing O,O database systems. Most of the 
existing OO systems provide their own query languages to manipulate the objects 
in the database (Shipman, 1981; Zaniolo, 1983; Schaffert et al., 1986; Fishman et 
al., 1987; Carey et al., 1988). 

Second, most of the reported OO data models do not provide formal constraint 
languages for declaratively specifying various semantic constraints found in different 
application domains. Like relational databases (Ullman, 1982), object-oriented 
databases need such languages to define security and integrity constraints so that 
an application world can be modeled accurately. In most of the implemented OO 
DBMSs, a rudimentary set of constraints is "hard-coded" to represent the semantics 
of a data model. Constraints not captured by the data model have to be implemented 
as procedures in application programs. Several researchers have introduced different 
constraint representations such as Horn logic clauses (Urban and Delcambre, 1989), 
constraint equations (Morgenstern, 1984), and rules based on an associative net 
(Shepherd and Kerschberg, 1984). However, no uniform constraint representation 
is established for interrelating constraints captured by different data models. 

Third, the existing implementations of query processors and query optimizers are 
not guided by a well-defined mathematical formalism. Efficiency in object-oriented 
DBMS implementations is difficult to achieve without a solid theoretical foundation. 

Several research efforts have been undertaken to establish a theoretical foun- 
dation for processing OO databases. Two general approaches have been made: the 
algebraic approach and the logic approach. The first approach defines the formal 
semantics of an OO query model based on object algebras (Manola and Dayal, 
1986; Osborn, 1988, 1989; Shaw and Zdonik, 1989; Guo et al., 1991; Straube, 1991). 
Among them, only the algebra in Straube (1991) has an accompanying calculus. The 
second approach uses logic to formally specify the semantics of the OO paradigm 
(Maier, 1986; Chen and Warren, 1989; Kifer and Lausen, 1989; Kifer and Wu, 
1989). The most complete work of this approach is represented by F-logic (Kifer 
and Wu, 1989). F-logic is a database logic formalism which provides a clean dec- 
laration for most of the "object-oriented" features such as object identity, complex 
objects, inheritance, methods, etc. In contrast, our model is simpler, (i.e., it contains 
fewer linguistic constructs) and lower level in the sense that it does not attempt 
to tie the language too strongly to higher-level concepts, such as inheritance. The 
language is strongly rooted in first order logic. We rely on the notions of association 
and non-association among objects exclusively to specify queries and constraints 
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as patterns of associated (or non-associated) objects. This flexibility allows the 
language to be used with other navigational models, such as the Entity-Relationship 
(E-R), network, and hierarchical data models, none of which adopts the notion of 
inheritance (in their purest form). 

In this article, we present a pattern-based object calculus for formally describing 
and manipulating objects and object association patterns in OO databases. This 
object calculus is based on first-order logic. It is the accompanying formalism to 
the association algebra reported by Guo et al. (1991) and Su et al. (1993). Its main 
feature is the concise yet semantically powerful expressions for specifying queries 
and constraints in terms of patterns of object associations. It captures the semantics 
of "association" and "nonassociation" relationships explicitly, that is, it identifies 
respectively the related and unrelated objects among classes which are associated 
with one another in the intensional database. The semantics of nonassociation 
cannot be easily expressed in other calculus-based languages. This calculus can also 
express set operations on both homogeneous and heterogeneous object association 
patterns whereas set operations expressible in the relational calculus can only be 
performed on union-compatible (i.e., homogeneous) relations. A calculus expression 
specifies a subdatabase that satisfies the expression and the calculus preserves the 
closure property (i.e, the output of an expression is association patterns which can 
be operated on by another expression). Because of its uniform object association 
pattern representation, the object calculus can be used to express formally both 
search queries and semantic constraints. Therefore, unlike some implemented 
systems in which the query processing subsystem is separated and different from the 
constraint enforcement subsystem, a DBMS can be built to use the same semantic 
constructs expressed in the calculus for both query and constraint processing. It is 
also shown later in this article that the calculus can provide a formal basis for the 
design of high-level OO query and constraint languages. 

The rest of this article is organized as follows. In Section 2, an OO view of 
databases based on objects, classes, and associations is first described and compared 
with the relational view of databases. Section 3 presents the main features of 
the object calculus including its syntax and formal semantics. The object calculus' 
expressive power in formulating queries is presented in Section 4 by examples. Section 
5 shows an application of the object calculus for defining semantic constraints. The 
status of the system implementation based on the OO view is briefly described in 
Section 6. Concluding remarks are given in Section 7. 

2. Object-Oriented vs. Relational Databases 

In this section, we point out the main differences between the relational and object- 
oriented data modeling paradigms as a justification for introducing two important 
semantic constructs: the association and the nonassociation operators, in the object 
calculus. 
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In the relational model, relations are used to represent entities and associations 
in the real world. An entity or association instance (or an object) is represented by a 
tuple, and it is distinguished from others by its unique primary key value. The entity 
integrity enforces the rule that null values cannot be accepted as the primary key 
values. To relate one instance of one relation to an instance in a second relation, an 
attribute, called a foreign key, is used in the second relation. Foreign-to-primary-key 
matching is used in query processing to identify n;lationships between tuples. It is 
carried out by the expensive (i.e., computationally costly)join operation between 
relations. Referential integrity guarantees such a match between a foreign key value 
and a primary key value. In a relational query, the matchings of keys and foreign 
keys must be explicitly specified when traversing a number of relations. We call 
this type of query specification and processing attribute-based. 

Unlike the relational view, our object-oriented view of a database is based on 
the essential characteristics of the object-oriented paradigm. First, an object in 
the database represents a real world entity, such as a physical object, an abstract 
thing, an event, a process, or whatever is of interest, and each object is assigned 
a system-defined, unique object identifier (OLD). The OID allows an object to be 
distinguished from other objects. Second, objects having the same structural and 
behavioral properties are grouped together to form an object class. Third, a class 
can associate (interrelate) with other classes to represent the relationships among 
the real world entities. As a result, objects in a class can associate with objects in 
other classes. Different association-types between or among object classes have been 
recognized in different OO data models. Two of the most commonly recognized 
association types are aggregation and generalization. Aggregation association captures 
the semantics of "is part of, .... is composed of," or "has properties of" relationship. 
It allows an object to be defined in terms of other objects. In Figure 1, for example, 
a Section object can be associated with (or semantically is composed of) a Teacher 
object, a (set of) Student object(s) (the cardinality mapping between Section and 
Student can be specified), and a Course object. The generalization association 
captures the semantics of "is a" or "is a kind of" relationship. Objects in the 
subclass inherit the structural and the behavioral properties (operations and rules) 
from one or more superclasses. In our discussion, an object is represented using 
its OID and it encapsulates all its structural and behavioral properties, such as its 
inherited attributes, its associations with other objects, and so on. 

An association between two objects is represented by bi-directionally linking 
these two objects using OID references which can be easily mapped to some physical 
pointers for locating these objects. For this reason, we can simply use the association 
operator "*" to specify the existence of an association between two objects. For 
example, we use the expression objl* obj2 to denote that an object which is bound to 
the object variable objl is associated with another object which is bound to the object 
variable obj2. Similarly, we can use the nonassociation operator "!" to explicitly 
specify the absence of an association between two objects, (e.g., objl! obj2). The 
notion of nonassociation is not included explicitly in the existing relational languages. 
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Figure 1. University database schema 
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It has to be expressed in a round-about way by a number of other operators. 

Different OO data models may capture different association types such as aggre- 
gation, generalization, using, composition, etc. The semantics of these association 
types in a database can be represented by a set of constraints which govern the 
processing of association-type objects in an object-objected DBMS. For this reason, 
their semantics do not have to be restated in the expressions of the object calcu- 
lus. The object calculus presented in this article is developed for expressing and 
processing the common primitives found in most OO models, (i.e., objects, classes, 
and association between objects and classes). The semantics of association types 
are handled by the underlying DBMS. 

To conclude our discussion on the OO view of databases, we consider an example 
database in a university environment. Figure 1 is a schema for the university database, 
which is modeled using the object-oriented semantic association model (OSAM*) (Su 
et al., 1989). The OSAM* data model provides five types of system-defined semantic 
associations, although only two types appear in the schema, namely, Aggregation 
(A) and Generalization (G). In the schema, class Section has six attributes which 
are represented by '~ '  links to domain classes (section#, room#, and textbook) 
and entity classes (Teacher, Student, and Course). That is, a Section object instance 
is composed of a section number, a room number, a text book and references to 
objects of Teacher, Student and Course. Class Person is defined as the superclass of 
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Figure 2. Object-oriented view of a subdaltabase 

(a) The intentional view of a subdatabaso 
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(b) The extensional view of a subdataba..;e 

Teacher and Student. An OO view of a subdatabase consisting of Teacher, Section, 
and Course classes is shown in Figure 2. Figure 2(a) is "the intensional (i.e., schema) 
view of the subdatabase which shows the classes and their interconnections. Figure 
2(b) is the extensional (i.e., instance) view which shows the objects (represented by 
OID's) in different classes and their associations (represented by edges). Because 
the nonassociations among objects are the complement of associations among the 
objects, they are not drawn explicitly in the figure. From the extensional pattern 
we know that Teacher t l  teaches Section sl, which is opened for Course el. We 
also know that Teacher t l  does not teach Section s2. 

3. Object Calculus 

In this section, we first introduce the basic features of the object calculus and then 
describe its syntax and semantics in detail. 

3.1 Basic Features of the Object Calculus 

The underlying philosophy of the object calculus is to provide a formalism for 
describing and manipulating objects and object associations. Objects and object 
associations are the basic constituent elements used to express the object association 
patterns which may have linear, tree, or general network structures. The object 
calculus allows object association patterns to be specified by the user as search 
conditions which are to be matched against the ,extensional representation of an 
OO database. 

Database objects are referenced by object variables. An object variable is defined 
for a class so that it can be bound to any object in the class. For example, if variable 
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sect is defined for class Section and we assume the extension of the database is as 
shown in Figure 2(b), then sect can be bound to any one of the objects, sl ,  s2, s3, 
or s4, in class Section. 

At the primitive level of OO database representation, two objects can be either 
associated or not associated with each other. Suppose variables tchr and sect are 
defined for classes Teacher and Section, respectively. If a user is interested in 
those teachers who teach some sections (i.e., the associations between the Teacher 
instances and the Section instances), then he/she can use the expression tchr * sect 

to represent the intended semantics. Here, tchr * sect is a predicate which is an 
expression that returns "true" or "false." What the expression means is to: (1) 
bind the variables to two objects in their respective classes, (2) return "true" if the 
bound objects satisfy the relationship specified by the association operator * in the 
predicate, (3) return "false" if the bound objects do not satisfy the relationship 
as specified. Again, we assume the database of Figure 2(b), object pairs (tl, Sl), 
(t2, s2), and (t3, s3) satisfy the predicate because there are associations between 
the paired objects in the database, and all other object pairs make the predicate 
evaluate to false. On the other hand, predicate tchr ! sect evaluates to true when the 
object bound to tchr is not associated with the object bound to sect in the database. 
For example, the following pairs of objects satisfy the above predicate: (tl, s2), (tl, 
s3), (tl, s4), (t2, sl), etc. Only three pairs of objects make the predicate evaluate 
to false: (tl, Sl), (t2, s2), and (t3, s3). 

When bound to the same pair of objects, the predicates varl* var2 and varl! 
var2 are complements of each other. That is, if the first predicate is true, the second 
is false; and vice versa. A user-issued query is interpreted as a request to output 
those database objects that satisfy the specified predicate. In the rest of this section, 
we present the detailed syntax and semantics of the object calculus. 

3.2 Grammar 

We first introduce a concrete syntax for the object calculus. This syntax is similar to 
the tuple-oriented relational calculus with the exception of the introduction of an 
association pattern into a "well-formed formula" (wff) and the binding of variables 
to objects. The Backus-Naur Form (BNF) grammar of the language is given in 
Figure 3. 

Several points about the BNF are noted below: 

. The categories "class," "variable," "attribute," and "asso_name" are defined 
to be identifiers (a terminal category with respect to this grammar). They 
represent a class name, an object variable name, an attribute name, and an 
association name, respectively. 

. The category "comparison" represents either a simple scalar comparison 
operation (=,  < > ,  > = ,  etc.) between two scalar values or an object 
comparison operation (=,  < > )  between two object variables. A scalar 
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Figure 3. BNF grammar for the object callculus 
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value, in turn, consists of either an attribute value represented by an attribute 
reference of the form "variable.attribute" or a scalar literal. 

. 

. 

. 

The category "association-pattern" represents either an object of the form 
"class" or an association pattern of the form "class1 op class2 op . . .  
op classn," where "op" can be either "*[aSsoname]" or "! [asso~ame]", and 
"classi" is an object variable for the class. In general, we use the "asso_name" 
to designate a specific association between two classes when there are multiple 
associations between the classes. To simpli~ the presentation, we assume that 
there is only one association between two classes and omit the "asso_name" in 
the rest of this article. An expression of class1* class2 ! class3 is the shorthand 
for the expression (classl* class2) A N D  (class2! class3). 

The category wff represents a "well-formed formula." Wffs are discussed in 
detail in the following subsections. 

For simplicity of descriptions, the following abbreviations are used- -NOT 
( - ) ,  AND (A), OR (V), < >  (~) ,  EXISTS (3), NOT EXISTS (~), and 
FORALL (V). The logical implication operator IF f THEN g is represented 
by f ---~ g. 
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3.3 Object Variables 

An object variable is defined by means of a statement of the form 

RANGE OF x IS X 

where x is the name of an object variable that ranges over class X. Hence, the 
object variable x represents an object of class X in the database. When there is 
no explicit range definition, the default is that if a class name is used as an object 
variable name, then the object variable represents an object of the class. Multiple 
object variables can be defined for a class as illustrated by the following example. 

RANGE OF el IS Employee 
RANGE OF e2 IS Employee 

Each variable represents a separate scan of instances of Employee class. 

3.4 Wff Involving Association Patterns 

Based on the BNF grammar, a wff takes one of the following forms: a simple 
comparison, an association pattern, logical operations (i.e., with NOT, AND, OR), 
quantified expressions (i.e., with the existential quantifier EXISTS and the universal 
quantifier FORALL), and the logical implication operation (i.e., IF f THEN g). 

A wff is a predicate. As defined in the predicate calculus, a predicate is an 
expression that returns a truth value (true or false). When a wff takes the basic 
form of a simple comparison, its meaning is apparent. 

The meaning of a wff that takes the form of an association pattern is decided by 
its domain and interpretation. The domain of an association pattern is the underlying 
database, which includes the objects of different classes and the object associations. 
The domain of an object variable defined for a class is all the object instances of 
the class. An interpretation of a wff is the objects bound to the variable occurrences 
in the wff and the associations among these objects. An object variable occurrence 
can be bound to any object in its domain. In general, for a given wff, there may be 
many different interpretations, thus, resulting in different truth values. A wff is said 
to be valid if it yields the value true for every interpretation. Thus, a wff is nonvalid 
if and only if there is some interpretation for which the wff yields the value false. 
A wff is said to be unsatisfiable if it yields the value false for every interpretation. 

Assume that two classes classi and classj have been defined in the database 
schema and that there is an association between these two classes. Also assume that 
object variable objvari and objvarj range over classi and classj, respectively. The basic 
association patterns for the two given classes are objvari* objvarj and objvari! objvarj. 
The notions "*" and "!" can be viewed as the two binary predicates, Association(x~y) 
and Nonassociation(x,y) respectively, where x and y are object variables. Therefore, 
we have the following equivalent expressions: 
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Figure 4. Evaluation of wff expressions 

Class1 Class2 

(a) A simple database for the basic association pattems. 

Interpretation 
Value of the wff 

objvarl "objvar2 objvarl I objvar2 
(sl, t l )  true false 
(sl, t2) false true 
(s2, t l) false true 
(s2, t2) true false 

(b) The values of the wff's under different interpretation. 

objvari* objvarj ~ Association(objvari, objvarj) 
objvari ! objvarj _= Nonassociation(objvari, objvarj) 

As an example, consider a simple database whose extensional view is shown 
in Figure 4(a). The domains of objvarx and objvar2 are {Sl, s2} and {tx, t2}, 
respectively. The truth values of objvarl* objvar2 and objvarx ! objvar2 under different 
interpretations are shown in Figure 4(b). 

A quantified wff is evaluated by applying the object variables in the wff to all 
the objects in their domains. If the database objects satisfy the semantics of a 
quantified wff, then this wff is evaluated to true, and otherwise evaluated to false. 

(a) The quantifier FORALL (universal quantifier) stands for the words "for all 
... is true." The value of V objvar(wff (objvar)) is true if for all objects 
over objvar's domain, the value of wff(objvar)) (with the object bound to all 
occurrences of objvar) is true; otherwise, the value of V objvar(wff(objvar)) is 
false. The expression wff(objvar) means that the wff has free variable objvar. 

(b) The quantifier EXISTS (existential quantifier) stands for the words "there 
exists ... such that ... is true." The value of 3 objvar(wff(objvar)) is true if 
there is an object over objvar's domain., such that the value of wff(objvar) 
(with the object bound to all occurrences of objvar) is true; otherwise, the 
value of 3 objvar(wff(objvar)) is false. 

We introduce an explicit syntactic form for the logical implication operator. If f 
and g are wffs, then the logical implication expression "IF f THEN g" is also defined 
to be a wff. As we will see later, this logical implication expression as a wff can be 
used widely to express various kinds of constraint rules in knowledge bases. 
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3.5 Expressions 

An object calculus expression has the following form: 

target-list [ WHERE f ] 

A target list consists of a list of "target items" separated by commas, in which each 
item is either a simple object variable name such as O or an attribute expression 
of the form O.a. The value of the object calculus expression is defined to be all 
sets of objects in the target-list and the associations among these objects for which 
f evaluates to true. In other words, an object calculus expression returns both 
database objects and associations among them. 

Objects returned by an object calculus expression may be different from the 
original objects in the database, dependent on the form of the target item. When 
the target item is in the form of an object variable name such as O, then the 
qualifying objects are returned as original database objects. When the target item is 
in the form of an attribute expression such as O.a, then all attributes of the returned 
objects are stripped from them except for the specified attribute. If more than one 
attribute is specified with the same object variable in different target items, say 
O.a, O.b, then all these specified attributes are retained foi: the returned objects. 
In our OO view of databases, an object encapsulates its structural and behavioral 
properties. Therefore, the object's inherited attributes can also be specified in target 
items. 

Completeness. The notion of completeness for database languages was first defined 
for the relational model (Codd, 1972). According to that definition, a language 
is relationally complete if databases definable by relational calculus expressions 
are retrievable using statements of that language. This notion of completeness 
was tightened later by requiring that any database definable by a single relational 
calculus expression be retrievable via a single statement of the language (Date, 
1982). The same notion of completeness can be applied to any other OO query 
language vis-a-vis the object calculus. A more detailed discussion of completeness 
can be found in S u e t  al. (1993) which defines this notion in the context of the 
association algebra. 

Safety and Closure of Expressions. A system that allows writing expressions against 
finite databases that return infinite results is called unsafe. In the same manner, 
an expression written against a finite database that could return an infinite result 
is called unsafe. It is possible to write safe expressions within unsafe systems. It is, 
however, not possible to write unsafe expressions within safe systems. 

Unsafe Systems: Consider the object calculus expression: 

RANGE of T IS Teacher 
RANGE of P IS Person 
T, P WHERE ~(T * P) 
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If the calculus defines the Range statement to range its variable over its entire 
domain (e.g., all possible teachers in the universe), then this expression is unsafe 
because it will return all possible non-associated teacher-person pairs, even if they 
are not in the database. The following is an example of a safe expression written 
under the same unsafe system: 

RANGE of T IS Teacher 
RANGE of P IS Person 
RANGE of F IS Faculty 
RANGE of S IS Student 
T, P WHERE ~(T * P) AND (T * F) AND (P * S) 

The above expression is safe because of the further qualification placed on 
Teachers and Persons (Teachers must be existing faculty and Persons must be 
existing students). 

The object calculus eliminates the problem of unsafe expressions by restricting 
the meaning of the Range statement to range its variable over only the current 
class contents inside the database. For example, the statement: 

RANGE of T IS Teacher 

will be interpreted as ranging the object variable T over the existing teacher objects in 
the database. This interpretation guarantees safety for all object calculus expressions, 
and consequently results in a safe system. 

Another important property for database systems is the notion of closure. A 
database language is called closed if the expressions of the language are always 
guaranteed to return results in a compatible form for further operations. In other 
words, the expressions of the query language can be nested to any depth. The object 
calculus assumes databases consisting of four types of primitive entities: objects, 
classes, association links, and non-association links, as shown in Figure 5. Object 
calculus expressions operate against databases consisting of only these four primitive 
constructs and always return finite databases consisting of the same constructs. The 
closure of the object calculus follows directly from this observation. 

4. Using Object Calculus to Express Queries 

The object-oriented view of an application world can be represented in the form of 
a network of classes and associations among these classes. Since an application is 
modeled in such an object-oriented fashion, the information about the application 
is therefore stored as objects and associations among objects in the database. Users 
can query the database by specifying the desired object association patterns in their 
queries. 
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Figure 5. Basis of closure property 
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The object calculus provides a formalism to formally express queries that are 
to be processed against an object-oriented database. A query expression specified 
by a predicate is interpreted as identifying those database objects that satisfy the 
specified predicate. The subdatabase formed by the qualified database objects can 
be output to a user or subject to other system-defined or user-defined database 
operations as desired. 

In this section, we present several examples on the use of the object calculus 
in formulating queries. The basic features of the object calculus are shown through 
these examples. All example queries are issued against the university database 
modeled in Figure 1. Unless specified otherwise, all object variables share the same 
names as the class names on which they range. 

Query 1. Display the names of those teachers who teach some sections and the 
section#'s for these sections. 

Teacher.name, Section.section# 
WHERE Teacher * Section 

In this query the association operator is used in the WHERE clause. The wff 
predicate Teacher * Section evaluates to true for each pair of Teacher object and 
Section object that are associated with each other. The calculus expression returns 
the names of the qualified Teacher objects and the section# of the qualified Section 
objects. 

Query 2. Display the "department names for all departments that offer 6000 level 
courses that have current offerings (sections). Also, display the titles of these courses 
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and the textbooks used in each section. 

Department.name, Course.title, Section.textbook 
WHERE Department * Course * Se, ction 

AND Course.course# /,= 6000 AND Course.course# i 7000 

In this calculus expression, the wff specifies those objects in classes Department, 
Course, and Section that are associated with one another in the manner that a 
Department object is associated with a Course object, which is in turn associated 
with a Section object; also, the Course objects' attribute values of course# must be 
in the range between 6000 and 7000. The calculus; expression returns the attribute 
values.of those database objects that satisfy the wff. 

Query 3. Display the names of those graduate students who are TAs but not RAs. 

Grad.name 
WHERE (Grad * TA) AND (FORALL RA (Grad!RA)) 

This query shows the use of nonassociation between objects and the universal 
quantifier. The wff in the WHERE clause identifies those objects in the classes 
Grad, TA and RA satisfying the condition that those Grad objects associated with 
TA objects are not associated with any RA object 

Query 4. Display the ssn's of all graduate students (whether they have advisors 
or not) and for those graduate students who have advisors, display their advisors' 
names. 

Grad.ssn, Faculty.name 
WHERE Grad * Advising * Faculty OR Grad 

This query illustrates the calculus' capability in specifying heterogeneous association 
patterns in an expression. The wff in the WHERE clause specifies two different 
association patterns: Grad * Advising * Faculty and Grad. These two association 
patterns are connected by the logical OR operator to capture the semantics of the 
outer-join concept introduced by Codd (1979). The calculus allows heterogeneous 
patterns of object associations to be unioned to retain all Grad objects, whether 
they are advised by faculty members or not. This is different from the relational set 
operations which operate only on union-compatible relations. The logical OR and 
AND operators can operate on potentially very complex heterogeneous patterns. 

Query 5. Find the faculty member(s) in the Electrical Engineering department who 
advise(s) all the EE department's graduate students. 

RANGE OF Gradl IS 
(Grad WHERE Grad * Student * Department AND Department.name = "EE") 
Faculty WHERE FORALL Gradl (Faculty * Advising * Grad1) 
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This query first defines a variable that ranges over a set of graduate students whose 
major department is the Electrical Engineering department. Then, it searches for 
the faculty member(s) who advise(s) all the graduate students in that set. To express 
the semantics of this query in the calculus, object variable Grad1 is ranged over 
the class Grad to represent the subset of graduate students who are in the EE 
department. In addition, the universal quantifier is applied to Grad1 to represent 
the semantics of one faculty member advising all the graduate students in Grad1. 
This example illustrates the closure property of the object calculus in which Grad1 
identifies a subdatabase which in turn becomes an operand of the expression in the 
second WHERE clause. 

The object calculus can also be used to specify complex nonlinear association 
patterns (i.e., tree or lattice structures) in a database by using the logical AND 
and OR constructs. For example in Figure 6(a), a complex association pattern is 
specified in the database schema level. In the figure, the logical AND branching 
from class B specifies that any object in class B must associate with an object in 
class C and with an object in class D as well. Likewise, the logical OR branching 
from class C specifies that any object in class C must associate with either an object 
in class E or an object in class E Figure 6(b) further illustrates this association 
pattern with instantiated objects in the database. For such a complex pattern, it 
can be expressed in the object calculus as 

(A , B , C  , E V A  , B  , C  ,F)  A (A * B *  D * G )  

We should clarify one very important point. The primary purpose of the 
calculus is not merely for data retrieval, though the previous examples may suggest 
so. The fundamental intent of the calculus is to allow the writing of expressions 
that identify objects satisfying specified patterns of object associations and perform 
system-defined and/or user-defined database operations (e.g., DELETE, UPDATE, 
ASSIGN_PROJEC'I~ etc.) on these objects. Therefore, the object calculus provides 
a theoretical foundation for writing OO query expressions. It can serve as a template 
when designing for OO query languages. To demonstrate this point, we give the 
following example to show how an (pseudo) OO query language can be designed 
based on the object calculus. 

Structurally, the (pseudo) query language has two parts: the subdatabase defi- 
nition part and the operation part. In the subdatabase part, by using object calculus 
expressions, we specify a subdatabase that satisfies the user-defined semantics. In 
the operation part we can specify system-defined or user-defined operations that are 
performed on the specified subdatabase. Consider two examples that respectively 
employ a system-defined operation and a user-defined operation with respect to the 
database schema of Figure 1. 

Example 1. Delete those Faculty members who are not currently teaching any 
section of a course. 

DELETE 
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Figure 6. A complex association pattern in the database 

(a) 

F 

G 

(b) 

Faculty WHERE FORALL Section (Faculty • 'reacher ! Section) 

In this query, the subdatabase is specified by the object calculus expression: 

Faculty WHERE FORALL Section (Faculty * Teacher ! Section) 

and the system-defined operation DELETE is performed on the Faculty objects that 
constitute the subdatabase returned by the calculus expression. 

Example 2. Assign projects to those students who are in EE department. 

ASSIGN_PROJECT 
Student WHERE (Student * Department) AND (Department.name = "EE") 

In this query, the object calculus expression: 

Student WHERE (Student * Department) AND (Department.name = "EE") 

specifies the Student objects as the subdatabase, and the user-defined operation 
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ASSIGN_PROJECT is performed on these objects in the subdatabase. Here, we 
assume that the user-defined operation ASSIGN_PROJECT is implemented as a 
method of the class Student. 

5. Using Object Calculus to Express Semantic Constraints 

in O 0  Databases 

For a database to be an accurate model of an application world, semantic constraints 
that identify the invalid or illegal states pertaining to the real world entities and their 
relationships need to be captured in the database. Commonly, database constraints 
are specified as integrity and security rules. The semantics of these rules are enforced 
by the DBMS at all times. If any database object violates a rule, then the database 
enters into an illegal state. 

We can use object calculus wffs to represent rules. However, the semantics of 
a wff used as a rule are somewhat different from those of a wff used as a search 
query. In a query expression, a wff is used to identify those database objects which 
evaluate the wff to true. In a rule expression, it is used to express a constraint 
such that all database objects comply with the constraint. That is, all the concerned 
database objects must satisfy the rule. We now give the formal definition. A rule 
is said to be satisfied if and only if its object calculus wff expression is evaluated to 
true under all interpretations in its database domain. A rule is said to be violated 
if and only if its object calculus wff expression is evaluated to false under some 
interpretation in its database domain. 

A database needs to maintain not only the conventional integrity constraints 
supported by existing commercial systems but also many other application-oriented 
constraints which can be represented in an object-oriented database by patterns of ob- 
ject associations (Su and Alashqur, 1991). Certain association patterns among objects 
may need to be maintained in a database at all times. In addition, the existence/non- 
existence of some association patterns may depend on the existence/non-existence 
of other association patterns. In the following subsections, we describe various types 
of constraints that may exist in object-oriented databases and formally specify these 
constraints by rules using object calculus expressions. The usage of object variables 
is self-explanatory in the following examples; thus the definitions of these variables 
are omitted. 

5.1 Constraints on Attribute Values 

This type of constraint is like the ones in the relational model in that restrictions 
are specified on the attribute values. They can be represented simply by first-order 
predicates of the object calculus. 

Example 1 (unconditional constraint). Every employee's salary must be higher than 
$25K. 
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Rule 1: Employee.salary > 25K 

Note that this rule is expressed as a wff with a free object variable (i.e., Employee). 
The number of interpretations for this wff is equal to the number of Employee 
object instances in a given database. For this rule to be satisfied, the wff must be 
true in all the interpretations. On the other hand, :if the wtf is false in any of its 
interpretations, then the rule is violated. The semantics of this rule can also be 
expressed by the following logically equivalent wff with a universal quantifier: 

V Employee (Employee.salary > 25K) 

That is, given a database, these two rules have the same truth value. Their difference 
is that the second expression does not have a free object variable. In the constraint 
rules given below, we do not use quantifiers if they are not necessary. 

Example 2 (conditional constraint). Employees whose ages are over 45 must have 
salaries higher than $35K. 

Rule 2: IF Employee.age > 45 THEN Employee.salary > 35K 

or equivalently 

(Employee.age > 45) V (Employee.salary > 35K) 

5.2 Constraints on Association Patterns 

Some constraints can be specified in terms of the object association patterns. These 
constraints can be classified into two categories. The first category is constraints 
that specify nonpermissible extensional pattern(s) of object associations. That is, 
the constraints enforce the restrictions that certain association patterns of objects 
in some specified classes are not allowed to exist in the database at any point in 
time. The second category is constraints that specify that certain object patterns 
must (or must not) exist if some other object patterns do (or do not) exist. These 
two categories of constraints are illustrated by the following examples using the 
university database schema in Figure 1. 

5.2.1 Nonpermissiblo Extensional Patterns. This type of constraint states that, if a 
database operation results in the formation of nonpermissible extensional pattern, 
then the stated constraint is violated. 

Example 3. A faculty member must have a Ph.D. degree. 

Rule 3: 3Faculty(Faculty.degree ~_z "Ph.D. ") 

or equivalently 

V Faculty( Faculty. degree = "Ph.D. ") 
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If a Faculty instance in the database is updated and the attribute degree has a value 
other than "Ph.D.," or a new instance is created with that value, this rule is violated 
and some action should be taken by the DBMS to correct the situation. 

Example 4. An undergraduate student cannot register in a graduate course (i.e., 
one with a course number greater than 5000). 

Rule 4: ~ (Undergrad * Section * Course A Course.course# > 5000) 

This rule prohibits an object association pattern specifying that an Undergrad 
instance is associated with a Section instance and the Section instance is associated 
with a Course instance whose course# is greater than 5000. 

5.2.2 Conditional Constraints. This type of constraint explicitly enforces the rela- 
tionship between object association patterns. That is, the existence of one association 
pattern implies the existence of another association pattern in the database. The 
implication construct in the object calculus 

IF wff THEN wff 

represents precisely the semantics of this kind of constraint, where each wff specifies 
an object association pattern. The following examples are constraints of this type. 

Example 5. A graduate student who is an RA must have an advisor, that is, if a 
Grad instance is associated with an RA instance, it must also be associated with an 
Advising instance. 

Rule 5: IF Grad * RA THEN 3 Advising(Grad * Advising) 

or equivalently 

(Grad * R/t) V3Advising(Grad * Advising) 

Example 6. TAs who are majoring in the department of Electrical Engineering 
cannot teach courses that belong to other departments. 

Rule 6: 
RANGE OF Dept_l IS Department 

RANGE OF Dept_2 IS Department 

IF TA • Dept_l /k Dept_l.name = "EE" 
THEN --1 (TA • Teacher * Section * Course * Dept_2 A Dept_2.name 5~ "EE") 

In this example, we use the alias variables Dept_l and Dept_2 for class Department 
so that these two variables can both represent objects of the same class. We also 
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assume that the underlying data model captures tile generalization or superclass- 
subclass semantics. Therefore, the TA instances inherit the properties (specifically, 
the associations) of the Student instances. We can use the expression, TA * Dept_l, 
as a shorthand for TA * Grad * Student * Dept_l. 

Example 7. A faculty member who is not an advisor of any graduate student must 
teach at least one section. 

Rule 7: IF 3Advising(Faculty * Advising) THEN 3Section(Faculty * Section) 

or equivalently 

3Advising(Faculty • Advising) V 3  Section(Faculty * Section) 

This rule will be violated if there is a Faculty instance that is associated with neither 
an Advising instance nor a Section instance. In other words, the pattern of an 
isolated Faculty instance is not allowed to exist in the consistent database. 

From the above examples, one can see that the object calculus can express 
many types of constraints for OO databases. It can serve as a theoretical basis for 
the design of high-level constraint languages in OO databases with various syntactic 
sugar (i.e, syntactic constructs that make the language easier to use). 

A constraint language defines a complete rule structure which usually includes 
the trigger condition, constraint rule body, and/or corrective action (Date, 1981; 
Stonebraker et al., 1987; Su and Alashqur, 1991). The rule body is the most 
important part of a constraint language; it specifies the constraint that the database 
must comply with. As shown in the above examples, our object calculus can be 
used to express well the constraint rules in the rule body. Because not all the 
system-defined and user-defined operations will change a database from a legal 
status to an illegal status, the constraint rules need not be checked and fired all the 
time. The trigger condition specifies when the rule should be checked and enforced. 
In addition, some corrective actions can be specified in a rule to cause actions to 
be taken if a constraint rule (i.e., the rule body) is violated. As a result, a complete 
structure of a rule in a constraint language can have the following structure: 

Trigger_condition (<Trigger_time, operat ion> pairs) 
Rule_body (the object calculus wff) 
Corrective_action (procedures/methods) 

An example of a complete rule is given below: 

Constraint Rule: After update Grad, TA, or RA, a graduate student cannot be both 
a TA and an RA at the same time. If the rule is violated, print a message to warn 
the user. 

Trigger_condition (After update(Grad), After update(TA), After update(RA)) 
(IF Grad * TA THEN V RA(Grad ] RA))  A 
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(IF Grad * RA THEN k/TA(Grad ! TA)) 

Corrective_action (Message: ("A graduate student cannot be both a TA and an 
R~:')) 

6. System Implementation Status 

An object-oriented knowledge base management system (OSAM*.KBMS) has been 
designed and implemented in the Database Systems Research and Development 
Center at the University of Florida. In the system, a high-level query language, 
called OQL (Alashqur et al., 1989), and a high-level constraint language (Su and 
Alashqur, 1991) have been developed based on the object-oriented view of databases 
as patterns of object and class associations (although its development had preceded 
the development of the object calculus). The OQL is a non-procedural OO query 
language. It is an association- or pattern-based query language instead of a more 
traditional attribute-based query language. It allows data search conditions of 
different degrees of complexity to be specified uniformly and simply as patterns of 
object class associations instead of comparing values of keys and foreign keys. 

The high-level constraint language has trigger and rule speqification constructs 
for declaratively specifying semantic constraints. In a constraint rule, the association 
pattern specification is used so that a complex pattern of object associations can be 
stated as the condition for activating some operations. In addition to the association 
pattern specified in the constraint rule, the activation of a rule also can be made 
subject to various trigger conditions and time constraints as explained in the previous 
section. 

Both OQL and the constraint language have been incorporated in a knowledge 
programming language called K (Shyy and Su, 1991; Arroyo, 1992). The processing 
of queries and knowledge rules is supported by persistent knowledge bases. In the 
present implementation, K programs are translated in C+ + code. During execution, 
the translated programs make calls to the knowledge-based management system to 
retrieve, store or update the persistent data, to make use of the trigger and rule 
processing facility, and to make use of other object management functions. The object 
manager is built on top of the commercial system ONTOS which provides all the 
needed storage management functions. A prototype system has been demonstrated 
in an international conference (Su et al., 1993). 

7. Conclusion 

In this article, we introduced a pattern-based object calculus which incorporates the 
concept of association pattern specification into the first-order predicate calculus. 
This incorporation allows complex patterns of object associations to be specified 
in wffs, thus greatly increasing the expressive power of the calculus. Specifically, 
the greater expressive power of the object calculus over that of the relational 
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calculus can be shown in three aspects. First, based on our OO view of databases, 
relationships between objects (or tuples, in the relational model) are expressed 
explicitly in the database. Matching of keys and foreign keys in calculus expressions 
is not required; thus the expressions for complex queries are simplified. Second, the 
"nonassociation" operator, whose semantics are not easily expressible in relational 
calculus or other languages, is included explicitly in the object calculus. Third, this 
calculus allows set-oriented operations to be performed on both homogeneous and 
heterogeneous object association patterns, whereas set operations in the relational 
model can only be performed on union-compatible (i.e., homogeneous) relations. 
Furthermore, the object calculus can be used in a uniform fashion to express search 
queries involving complex object association patterns and to express various kinds of 
semantic constraints and deductive rules in OO databases. Expressions of this object 
calculus are safe, and the closure property is also preserved. One of the potential 
applications of the proposed formalism is that its precise interpretive semantics can 
serve as the theoretical foundation for designing high-level OO query languages 
and constraint languages. 
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