
A Practical Scalable Distributed B-Tree

Marcos K. Aguilera∗

Microsoft Research Silicon Valley
Mountain View, CA

USA

Wojciech Golab∗

University of Toronto
Toronto, ON

Canada

Mehul A. Shah
HP Laboratories

Palo Alto, CA
USA

ABSTRACT
Internet applications increasingly rely on scalable data struc-
tures that must support high throughput and store huge
amounts of data. These data structures can be hard to
implement efficiently. Recent proposals have overcome this
problem by giving up on generality and implementing spe-
cialized interfaces and functionality (e.g., Dynamo [4]). We
present the design of a more general and flexible solution:
a fault-tolerant and scalable distributed B-tree. In addition
to the usual B-tree operations, our B-tree provides some im-
portant practical features: transactions for atomically exe-
cuting several operations in one or more B-trees, online mi-
gration of B-tree nodes between servers for load-balancing,
and dynamic addition and removal of servers for supporting
incremental growth of the system.

Our design is conceptually simple. Rather than using
complex concurrency and locking protocols, we use distri-
buted transactions to make changes to B-tree nodes. We
show how to extend the B-tree and keep additional infor-
mation so that these transactions execute quickly and effi-
ciently. Our design relies on an underlying distributed data
sharing service, Sinfonia [1], which provides fault tolerance
and a light-weight distributed atomic primitive. We use this
primitive to commit our transactions. We implemented our
B-tree and show that it performs comparably to an existing
open-source B-tree and that it scales to hundreds of ma-
chines. We believe that our approach is general and can be
used to implement other distributed data structures easily.

1. INTRODUCTION
Internet applications increasingly rely on scalable data

structures that must support high throughput and store
huge amounts of data. Examples of such data structures
include Amazon’s Dynamo [4] and Google’s BigTable [3].
They support applications that manage customer shopping
carts, analyze website traffic patterns, personalize search re-
sults, and serve photos and videos. They span a large num-
ber of machines (hundreds or thousands), and store an un-

∗Work developed while author was at HP Laboratories.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

precedented amount of data (tens of Petabytes) for a huge
customer base (hundreds of millions of users) that can gen-
erate high retrieve and update rates.

Besides massive scalability, three other requirements drive
the design of these data structures: low cost, fault toler-
ance, and manageability. Low cost calls for cheap commod-
ity hardware and precludes the use of expensive business
software. Fault tolerance is important for continuous busi-
ness operation. And manageability is necessary because hu-
man time is precious and unmanageable systems can lead
to catastrophic human errors. These requirements are not
easy to meet, and as a result recent proposals compromise
on generality and opt for approaches tailored for a given
use. In particular, most deployed solutions are limited to
simple, hash-table-like, lookup and update interfaces with
specialized semantics [4].

In this paper, we present a more general and flexible data
structure, a distributed B-tree that is highly scalable, low
cost, fault-tolerant, and manageable. We focus on a B-tree
whose nodes are spread over multiple servers in a local-area
network1. Our B-tree is a B+tree, where leaf nodes hold
key-value pairs and inner nodes only hold key-pointer pairs.
A B-tree supports the usual dictionary operations (Insert,
Lookup, Update, Delete), as well as ordered traversal (GetNext,
GetPrev). In addition, our distributed B-tree provides some
practical features that are absent in previous designs (such
as [9, 14]):

• Transactional access. An application can execute sev-
eral operations on one or more B-trees, and do so atom-
ically. Transactional access greatly simplifies the de-
velopment of higher-level applications.

• Online migration of tree nodes. We can move tree
nodes transparently from one server to another exist-
ing or newly-added server, while the B-tree continues
to service requests. This feature helps in performing
online management activities necessary for continuous
business operation. It is useful for replacing, adding,
or maintaining servers, and thus it enables smooth in-
cremental growth and periodic technology refresh. It
also allows for load balancing among servers to accom-
modate changing workloads or imbalances that arise as
servers come and go.

1.1 Motivating use cases
Here are some concrete use cases and examples of how

applications might benefit from our B-tree:
1Throughout the paper, the term node refers to nodes of the
B-tree, unless explicitly qualified, as in “memory nodes.”

598

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

7
4
9

5

a

b c

d e f g

version
table
a
b
c

g

server 1 (memory node 1)

a

b c

d e f g

version
table
a
b
c

g

7
4
9

5

server 2 (memory node 2)

a

b c

d e f g

version
table
a
b
c

g

7
4
9

5

server 3 (memory node 3)

a

b c

d e f g

client 1

application

inner node lazy replica

Sinfonia user library

B-tree client library

a

b c

d e f g

client 2

application

inner node lazy replica

Sinfonia user library

B-tree client library
= B-tree inner node

= B-tree leaf node

= absence of node

LEGEND

7
4
9

5

Figure 1: Our distributed B-tree. Nodes are divided

among servers (grey indicates absence of node). A

version table stores version numbers for inner nodes.

Leaf nodes have versions, but these are not stored in

the version table. Two types of replication are done

for performance: (a) lazy replication of inner nodes

at clients, and (b) eager replication of the version

table at servers. Note that a realistic B-tree will

have a much greater fan-out than shown. With a

fan-out of 200, inner nodes represent ≈ 0.5% of all

nodes.

• The back-end of a multi-player game. Multi-player
games have thousands of players who generate high
aggregate request rates, and latency can be critical.
These systems keep persistent state for the players,
such as their inventory and statistics. Our B-tree could
keep this persistent state: transactional access can im-
plement atomic multi-object updates that ensure state
consistency, while range queries are useful for search-
ing. For instance, transactional access ensures that a
player’s item does not appear in two places simulta-
neously, and range queries can be used to search for
items in a player’s inventory.

• Keeping metadata in a cluster file system. In a file sys-
tem, metadata refers to the attributes of files, the list
of free blocks, and the contents of directories. Meta-
data access is often a bottleneck in cluster file systems
such as Lustre or Hadoop’s HDFS [21, 22]. Our B-tree
could hold the metadata and alleviate this bottleneck.
Transactional access is useful for implementing atomic
operations, like rename, which involves atomically in-
serting and deleting a key-value. Ordered traversal is
useful for enumerating files in a directory. And distri-
bution provides scalable performance.

• Secondary indices. Many applications need to keep
more than one index on data. For example, an e-

auction site may support search of auction data by
time, bid price, and item name, where each of these
attributes has an index. We can keep each index in a
separate B-tree, and use transactional access to keep
indices mutually consistent.

One might be able to use database systems instead of
distributed B-trees for these applications, but distributed B-
trees are easier to scale, are more streamlined, have a smaller
footprint, and are easier to integrate inside an application.
In general, a distributed B-tree is a more basic building block
than a database system. In fact, one could imagine using
the former to build the latter.

1.2 Challenges and contribution
Our B-tree is implemented on top of Sinfonia, a low-level

fault-tolerant distributed data sharing service. As shown
in Figure 1, our B-tree comprises two main components: a
B-tree client library that is linked in with the application,
and a set of servers that store the B-tree nodes. Sinfonia
transparently makes servers fault-tolerant.

The main difficulty in building a scalable distributed B-
tree is to perform consistent concurrent updates to its nodes
while allowing high concurrency. Unlike previous schemes
that use subtle (and error-prone) concurrency and locking
protocols [9, 14], we take a simpler approach. We update B-
tree nodes spread across the servers using distributed trans-
actions. For example, an Insert operation may have to split
a B-tree node, which requires modifying the node (stored
on one server) and its parent (stored possibly on a different
server); clients use transactions to perform such modifica-
tions atomically, without having to worry about concurrency
or locking protocols. Sinfonia provides a light-weight distri-
buted atomic primitive, called a minitransaction, which we
use to implement our transactions (see Section 2).

A key challenge we address is how to execute such trans-
actions efficiently. A poor design can incur many network
round-trips or limit concurrent access. Our solution relies
on a combination of three techniques. (1) We combine opti-
mistic concurrency control and minitransactions to imple-
ment our transactions. (2) Our transactions use eagerly
replicated version numbers associated with each B-tree node
to check if the node has been updated. We replicate these
version numbers across all servers and keep them consistent.
(3) We lazily replicate B-tree inner nodes at clients, so that
clients can speculatively navigate the inner B-tree without
incurring network delays.

With these techniques, a client executes B-tree operations
in one or two network round-trips most of the time, and no
server is a performance bottleneck. We have implemented
our scheme and evaluated it using experiments. The B-tree
performs well compared to an open-source B-tree implemen-
tation for small configurations. Moreover, we show that it
can scale almost linearly to hundreds of machines for read
and update workloads.

This paper is organized as follows. We describe the basic
approach in Section 2. In Section 3, we explain the assump-
tions upon which we rely. We then explain the features
of our B-tree in Section 4. In Section 5, we describe the
transactions we use and techniques to make them fast. The
B-tree algorithm is presented in Section 6, followed by its
experimental evaluation in Section 7. We discuss some ex-
tensions in Section 8. Related work is explained in Section 9.
Section 10 concludes the paper.

599

application
node

application
node

application
node

application
node

minitransactions

S
in

fo
ni

a user
library

memory
node

memory
node

memory
node

Figure 2: Sinfonia service, on top of which we build

our distributed B-tree.

2. BASIC APPROACH
In this Section, we give an overview of our B-tree design.

We give further technical details in later sections. Our B-
tree is built on top of the Sinfonia service, and so we first
describe Sinfonia and its features in Section 2.1. Then, in
Section 2.2, we outline our design and justify the decisions
we made.

2.1 Sinfonia overview
Sinfonia is a data sharing service that, like our B-tree,

is composed of a client library and a set of servers called
memory nodes (see Figure 2). Each memory node exports a
linear address space without any structure imposed by Sinfo-
nia. Sinfonia ensures the memory nodes are fault-tolerant,
offering several levels of protection. Sinfonia also offers a
powerful primitive, a minitransaction, that can perform con-
ditional atomic updates to many locations at many servers.
A minitransaction is a generalization of an atomic compare-
and-swap operation. While the compare-and-swap opera-
tion performs one comparison and one conditional update
on one address, a minitransaction can perform many com-
parisons and updates, where each update is conditioned on
all comparisons (i.e., all updates occur atomically only if
all comparisons succeed). Comparisons and updates can be
on different memory locations and memory nodes. In ad-
dition, minitransactions can read data from memory nodes
and return it to the application.

More precisely, a minitransaction comprises a set of com-
pare items, a set of read items, and a set of write items.
Each item specifies an address range on a memory node;
compare items and write items also have data. All items
must be specified before a minitransaction starts executing.
When executed, a minitransaction compares the locations
specified by the compare items against the specified data.
If all comparisons succeed, the minitransaction returns the
contents of the locations specified by the read items and
updates the locations specified by the write items with the
specified data.

Sinfonia uses a variant of two-phase commit to execute
and commit minitransactions in two phases. Memory nodes
lock the minitransaction items only for the duration of the
two-phase commit. Sinfonia immediately aborts the mini-
transaction if it cannot acquire the locks, and the client must
retry. Thus, unlike general transactions, a minitransaction
is short-lived, lasting one or two network round-trips. More
details on minitransactions and commit protocols are in the
Sinfonia paper [1].

Minitransactions are not optimistic, but they can be used
to implement general optimistic transactions, which we use

for our B-tree operations. Briefly, each transaction (not
minitransaction) maintains a read and write set of objects
that it touches. Each object has a version number that is
incremented on updates. We commit a transaction using a
minitransaction to (1) verify that (version numbers of) ob-
jects in the read set are unchanged and, (2) if so, update the
objects in the write set. In other words, a minitransaction
performs the final commit of optimistic transactions.

It is worth noting that, even though we built optimistic
transactions using Sinfonia, we could have implemented them
from scratch. Thus, our B-tree design is not limited to
running on top of Sinfonia. However, the performance and
scalability numbers reported here depend on the lightweight
minitransactions of Sinfonia.

2.2 Design outline
Figure 1 shows how our B-tree is distributed across servers

(which are Sinfonia memory nodes). Each B-tree node is
stored on a single server, though clients may keep replicas
of these nodes (possibly old versions thereof). The true state
of the B-tree nodes is on the servers and the clients store no
permanent state. Nodes are partitioned across servers ac-
cording to some data placement policy. For example, larger
servers may get more nodes than others. Our current im-
plementation allocates nodes randomly among servers.

Our B-tree operations are implemented as natural exten-
sions of centralized B-tree algorithms wrapped in optimistic
transactions. As a client traverses the tree, it retrieves nodes
from the servers as needed, and adds those nodes to the
transaction’s read set. If the client wants to change a node,
say due to a key-value insertion or a node split, the client
locally buffers the change and adds the changed node to the
transaction’s write set. To commit a transaction, the client
executes a Sinfonia minitransaction, which (a) validates that
the nodes in the read set are unchanged, by checking that
their version numbers match what is stored at the servers,
and (b) if so, atomically performs the updates in the write
set. As we explain, a consequence of wrapping B-tree oper-
ations in transactions is that we can easily provide features
such as online node migration and multi-operation transac-
tions.

Since clients use optimistic concurrency control, they do
not lock the nodes during the transaction, thereby allow-
ing high concurrency. Instead, nodes are only locked during
commit— and this is done by Sinfonia as part of minitrans-
action execution—which is short-lived. If a minitransaction
aborts, a client retries its operation. Optimistic concurrency
control works well because, unless the B-tree is growing or
shrinking dramatically, there is typically little update con-
tention on B-tree nodes.

Using optimistic concurrency control alone, however, is
not enough. A transaction frequently needs to check the ver-
sion number of the root node and other upper-level nodes,
because tree traversals will frequently involve these nodes.
This can create a performance bottleneck at the servers
holding these nodes. To avoid such hot-spots, we replicate
the node version numbers across all servers, so that they
can be validated at any server (see Figure 1). Only version
numbers are replicated, not entire tree nodes, and only for
inner nodes, not leaf nodes. We keep the version number
replicas consistent, by updating the version number at all
servers when an inner node changes, and this is done as
part of the transaction. Because inner nodes change infre-

600

quently when the tree fanout is large, the resulting network
traffic is manageable.

Finally, to further reduce network traffic, clients replicate
the B-tree inner nodes as they discover them (see Figure 1).
With large B-tree fan-out (say, 200 or more is typical), inner
nodes comprise a small fraction of the data in a B-tree, and
so replicating inner nodes takes relatively little space. Given
the increasingly larger memory sizes today, it is not infeasi-
ble to replicate the entire B-tree upper-levels of a moderate
sized tree on a single machine. Thus, a typical lookup oper-
ation will only need one network round trip to the server to
fetch the leaf (and simultaneously validate the version num-
bers of nodes on the path from root to leaf). Node replicas
at clients are updated lazily: clients fetch new versions only
after they attempt to use a stale version. This avoids the
problem of updating a large number of clients in a short
period of time when inner nodes change.

As we show, with these techniques, a client executes B-
tree operations in one or two network round-trips most of the
time, and no server is a performance bottleneck. Note that
it is the combination of all three techniques that provides ef-
ficiency. For example, without lazy replication of tree nodes,
clients require multiple network round-trips to just traverse
the B-tree. Without optimistic concurrency control, clients
require additional network round-trips to lock nodes. With-
out eager replication of version numbers, the server holding
the root node becomes a performance bottleneck.

3. ASSUMPTIONS
We now briefly explain assumptions that we made on the

environment and workload.

3.1 Environment
Our B-tree is designed to operate within a data center

environment. A data center is a site with many reasonably
well-connected machines. It can have from tens to thou-
sands of machines running tens to hundreds of applications.
We assume that processes communicate through links that
usually have high bandwidth, low latencies, and small la-
tency variations. Links are fairly stable and made reliable
via TCP. Network partitions are rare, and while they occur
it is acceptable to stall the system, because most likely the
data center is unusable anyways.

Machines are subject to crash failures. Servers have stable
storage to deal with crashes. A server that crashes subse-
quently recovers with its stable storage intact. Clients may
not have stable storage and may not recover from crashes.
(For this reason, no permanent B-tree state should be stored
on clients.) Sinfonia, which provides fault tolerance for our
B-tree, operates in this environment and transparently han-
dles crash failures of clients and servers.

3.2 Workload
We designed our B-tree to handle read and update work-

loads that do not rapidly grow or shrink the tree. This
assumption is common in database systems and reasonable
in our setting. For example, an application that maintains
user profiles need not worry about user populations growing
on the order of 1000s per second. For initializing the B-tree,
one can apply offline B-tree bulk loading techniques (e.g.,
[19]).

4. DISTRIBUTED B-TREE FEATURES
We provide an overview of B-trees, define distributed B-

trees, and explain some additional features that our distribu-
ted B-trees have, such as transactional access and migration.

4.1 B-tree overview
We provide a brief overview of B-trees; details can be

found in a data structures textbook. A B-tree stores a
set of key-value pairs (k, v). A B-tree supports the stan-
dard dictionary operations (Insert, Update, Lookup, Delete)
and enumeration operations (GetNext, GetPrev), described in
Figure 3. Note that in some interfaces, Update and Insert are
combined into a single Insert operation with various flags; we
could have implemented this easily.

Operation Description

Lookup(k) return v s.t. (k, v)∈B, or error if none
Update(k, v) if (k, ∗)∈B then replace it with (k, v) else error
Insert(k, v) add (k, v) to B if no (k, ∗) ∈ B, else Update(k, v)
Delete(k) delete (k, v) from B for v s.t. (k, v)∈B, or error if none
GetNext(k) return smallest k′>k s.t. (k′, ∗)∈B, or error if none
GetPrev(k) return largest k′<k s.t. (k′, ∗)∈B, or error if none

Figure 3: Operations on a B-tree B.

A B-tree is internally organized as a balanced tree. We fo-
cus on the B+tree, a B-tree variant where all key-value pairs
are stored at leaf nodes (Figure 4); inner nodes store only
key-pointer pairs. Each tree level stores keys in increasing
order. To lookup a key, we start at the root and follow the
appropriate pointers to find the proper leaf node. Updating
the value of a key entails looking up the key and, if found,
changing the value associated with it at the leaf. To insert
a pair (k, v), we lookup the leaf node where k would be, and
place (k, v) there if there is an empty slot. Otherwise, we
split the leaf node into two nodes and modify the parent ap-
propriately as illustrated in Figure 5. Modifying the parent
might require splitting it as well, recursively (not shown).
Deleting a key entails doing the inverse operation, merging
nodes when a node is less than half full. The enumera-
tion operations (GetNext and GetPrev) are almost identical
to Lookup.

4.2 Distributed B-tree
A distributed B-tree has its nodes spread over multiple

servers. For flexibility, tree nodes can be placed on any
server according to some arbitrary user-supplied function
chooseServer() that is called when a new node is allocated.
For example, if a new server is added, chooseServer() can
return the new server until it is as full as others.

A B F M R V X

R

F J T

G

*

**v w x v w y v x†

Figure 4: B+tree: leafs store key-value pairs and in-

ner nodes store keys and pointers. Keys and values

are denoted in upper and lower case, respectively.

To lookup key G, we start at the root, follow the left

pointer as G<R, arrive at node ∗, follow the middle

pointer as F<G<J, and arrive at node ∗∗ where we

find G.

601

A B F M R

R

F J T

G
v w x v w y

V
v

W
y

X

X
x

nodes changed
due to split

Figure 5: Splitting nodes: inserting (W, y) causes a

split of node † in the tree from Figure 4.

4.3 Transactional access
Since our B-tree supports concurrent operations by multi-

ple clients, and since each such operation may touch multiple
tree nodes, we use transactions to prevent such operations
from interfering with one another. Moreover, transactional
access allows clients to perform multiple B-tree operations
atomically, even on multiple B-trees.

Transactions are serializable: they appear to execute in
isolation, without intermingling operations of different trans-
actions. We expect transactions to be short-lived rather
than long-lived (i.e., execute within milliseconds, not hours).
Figure 6 below shows a sample transaction.

txn← BeginTx();
v ← Lookup(txn, k);
Update(txn, k, v + 1);
success← Commit(txn);
EndTx(txn);

Figure 6: Transaction to atomically increment the

value associated with key k.

4.4 Migration
On-line migration, or simply migration, refers to the abil-

ity to move B-tree nodes from one server to another, and do
so transparently while allowing other B-tree operations to
execute. The basic migration mechanism is offered through
an operation Migrate(x, s), which migrates B-tree node x to
server s, where x is a node reference represented as a pair
〈server, offset〉. This is a low-level function since it refers
to actual nodes of the B-tree, and it is unlikely to be in-
voked directly by users. Rather, users perform migration
through higher-level migration tasks, which determine what
to migrate and where to migrate to, based on a specific
goal. These migration tasks, shown in Figure 7, are tied
to common management operations: remove a server from
the system (Migrate-away), add a new server (Populate), replace
a server (Move), balance storage (Even-out-storage), and balance
load (Even-out-load).

Migrate task Description
Migrate-away migrate all nodes at server x to other servers.
Populate migrate some nodes from other servers to server x.
Move migrate all nodes from server x to server y.
Even-out-storage migrate some nodes from more full to less full servers.
Even-out-load migrate some nodes from more busy to less busy servers.

Figure 7: Migration tasks on a B-tree.

5. TRANSACTIONS
In our B-tree implementation, clients use a type of distri-

buted, optimistic transaction to atomically manipulate tree

nodes and other objects. We first give an overview of our
transaction interface and then describe the optimizations we
make.

5.1 Transaction interface
A transaction manipulates objects stored at servers. Each

object is a fixed-length data structure, such as a B-tree node
or a bit vector. Objects are either static or allocated from a
static pool at each server, where each object in the pool has
a flag indicating whether it is free. We chose to implement
allocation and deallocation ourselves, so that these can be
transactional. Objects include an ID, which uniquely identi-
fies the object and the server where it is stored, and possibly
a version number, which is incremented whenever the object
changes. Figure 8 below lists the types of objects used in
our implementation.

Object Description

tree node stores keys and pointers or values
bit vector used by node allocator
metadata tracks server list and root node ID

Figure 8: Transactional objects.

Transactions have a read set and a write set, with their
usual semantics: they are empty when a transaction starts,
and as the transaction reads and writes objects, these ob-
jects are added to the read and write sets, respectively. Our
transactions use optimistic concurrency control [10]: objects
are not locked during transaction execution, only during
commit, which is implemented with Sinfonia’s minitrans-
actions.

The interface to transactions is shown below in Figure 9,
where n denotes an object ID and val is an object value.
All transactional operations other than BeginTx() take as an
argument a transaction handle, which is created by calling
BeginTx(). Roughly speaking, Read and Write operations add
objects to the read and write sets, while Commit attempts
to commit the transaction. Abort marks the transaction as
prematurely aborted so that subsequent calls to Commit fail.
IsAborted checks whether the transaction has aborted.

Operation Description

BeginTx() clear read and write sets, return transaction handle
Read(txn, n) read object n locally or from server

and add (n, val) to read set
Write(txn, n, val) add (n, val) to write set
Commit(txn) try to commit transaction
Abort(txn) abort transaction
IsAborted(txn) check if transaction has aborted
EndTx(txn) garbage collect transaction structures

Figure 9: Interface to transactions.

5.2 Lazy replication of objects at clients
The transactions we use tend to have a small write set

with objects at a single server, and a large read set with ob-
jects at many servers. For example, a B-tree Insert typically
writes only to a leaf node and reads many nodes from root
to leaf. To optimize for this type of transaction, clients store
local replicas of certain frequently accessed objects. These
replicas speed up transaction execution because a client can
read replicated objects locally. Not every object is repli-
cated: only inner B-tree nodes and metadata objects (which
record information such as the list of servers in the system),
so that the size of replicated data is small.

602

Replicas are updated lazily: when a transaction aborts
because it used out-of-date objects, the client discards any
local copies of such objects, and fetches fresh copies the next
time the objects are accessed. The use of lazy replicas may
cause a transaction to abort even without any overlap with
other transactions, in case a replica is out-of-date when the
transaction begins. We did not find this to be a problem
for B-trees since the objects we replicate lazily (e.g., inner
nodes of the B-tree) change relatively rarely.

5.3 Eager replication of version numbers at
servers

B-tree operations tend to read upper-level B-tree nodes
frequently. For example, every tree traversal begins at the
root node. As explained above, these nodes are replicated at
clients, but when a transaction commits, they still need to be
validated against servers. The servers holding these popular
nodes can become a performance bottleneck. To prevent this
problem, we replicate the version numbers of all inner nodes
of the B-tree at all servers, so that a transaction can validate
them at any server. This replication scheme is illustrated in
Figure 1. Similarly, we also replicate the version numbers of
metadata objects. The version replicas are kept consistent
by updating them as part of the transaction that changes
the associated objects.

Another benefit of replicated version numbers is to op-
timize transactions that read many inner nodes but only
modify one leaf node, such as when one inserts a key-value
at a non-full leaf, which is a common operation. Such trans-
actions typically need to contact only one server, namely
the one storing the leaf node, since this server can validate
all inner nodes. In such cases, it is possible to commit a
transaction in only one phase instead of two (as explained
below). Thus, by replicating version numbers and keeping
the replicas consistent, most B-tree operations commit in
only one network round-trip.

5.4 Committing transactions
We use Sinfonia’s minitransactions to commit our trans-

actions, taking advantage of minitransaction compare items
to validate all objects read during the transaction. As de-
scribed above, when possible, compare items reference ver-
sion numbers that are all in the same server to minimize
the number of servers involved the transaction. If only one
server is involved, the transaction can be committed faster
(as explained below).

We use minitransaction write items to update objects in
the transaction’s write set. If the updated objects are inner
nodes or metadata objects, then all replicas of their version
numbers are also updated, using additional write items in
the minitransaction.

Sinfonia uses a variant of two phase commit to atomi-
cally execute the minitransaction. Roughly speaking, the
first phase compares and locks the minitransaction items
and the second phase performs the updates if the first phase
is successful. An important optimization is when the mini-
transaction involves only a single server. In this case, Sinfo-
nia uses one-phase rather than two-phase commit, saving a
network round-trip [1].

5.5 Fault tolerance
Sinfonia handles failures that are typical of a single data-

center environment (see Section 3.1). Sinfonia offers mul-

tiple levels of fault tolerance for the servers. It offers log-
ging, primary-backup replication, or both, depending upon
the performance and protection needs of the application.
Primary-backup replication provides fast fail-over with little
downtime but at the cost of twice the hardware and band-
width. Logging uses fewer additional resources but comes at
the cost of higher runtime overhead and slower recovery. The
tradeoffs among the various Sinfonia fault tolerance modes
are quantified in the Sinfonia paper [1].

Sinfonia transparently handles the failure of clients and
servers for us. When clients fail, they may not recover, and
so we store permanent state only on the servers. Sinfonia
cleans up any outstanding minitransactions left by a client
that fails.

By leveraging Sinfonia, we are able to cleanly separate
concerns of fault tolerance and concurrency control. These
two concerns are intimately intertwined in most database
implementations, which increases system complexity. In
contrast, we do not have to worry about recovery mecha-
nisms when a failure occurs, or about locking protocols to
prevent the corruption of data structures and ensure consis-
tency. The result is a design that is simpler and orthogonal
to the fault tolerance that is provided. For instance, Sinfo-
nia can be configured to replicate servers and/or log updates
to disk synchronously, and these choices can be changed by
just flipping a switch, without changing the design of our
distributed B-tree in any way.

5.6 Other optimizations
If a transaction reads an object for which it does not have

a local replica, the client must request the object from the
server storing it. When this happens, we piggyback a re-
quest to check the version numbers of other objects cur-
rently in the read set. If some object is stale, this check
enables clients to abort doomed transactions early. More-
over, a read-only transaction (e.g., which is performed by a
Lookup operation) whose last read was validated as just de-
scribed, can be subsequently committed without any further
communication with servers.

6. DETAILS OF DISTRIBUTED B-TREE
ALGORITHM

We now explain how we use transactions to implement
our distributed B-tree.

6.1 Dictionary and enumeration operations
The dictionary and enumeration operations of a B-tree

(Lookup, Insert, etc) all have a similar structure: they initially
traverse the B-tree to get to the leaf node where the given
key should be. Then, if the operation involves changing
data (i.e., Insert, Delete), one or more nodes close to the
leaf node are changed. We use a transaction to make these
modifications.

Figure 10 shows the detailed fields of a B-tree node, which
we use in our algorithm. Each node has a flag indicating if
the node is a leaf, a height within the tree, and a number
of key-value pairs (for leaf nodes) or key-pointer pairs (for
inner nodes).

Figure 11 shows the code for Insert in detail. Other opera-
tions are analogous. The overall algorithm is very similar to
that of a centralized B-tree; the symbol ⋆ in the pseudo-code
indicates lines where there are differences.

603

Field Description

isLeaf Boolean indicating node type
height distance of node from leaf level
numKeys number of keys stored
keys[1..numKeys] sorted array of keys
values[1..numKeys] values for keys in leaf node
children[0..numKeys] child pointers in inner node

Figure 10: Fields of a B-tree node.

We start by explaining insertion in a centralized B-tree
(readers familiar with the algorithm can just skim this para-
graph). To illustrate the steps involved, we reference the
corresponding lines in Figure 11. Execution begins in func-
tion Insert(k, v), where (k, v) is the key-value pair to insert
(ignore for now the argument txn in Figure 11). Insert in-
vokes a recursive function InsertHelper passing the root node
ID as parameter (line 3). This function actually does inser-
tion; after reading the specified node (line 16), it examines
the keys keys[1..numKeys] stored in the node (which, in the
first invocation, is the root node) to determine which child
corresponds to k (line 20). This is done by calling Search
to find the largest index i such that keys[i] ≤ k. After i is
determined, there are two cases:

• Case 1 (lines 21–29). The node is a leaf node. Then
index i is the place where (k, v) should be inserted. If
keys[i] already has v, then we simply store v in values[i],
the value associated with keys[i] (lines 23–24). Other-
wise, we add (k, v) to the node (lines 27–28). This may
cause the node to have more key-value pairs than its
maximum. This case is handled after we return from
InsertHelper, by splitting the node into two nodes and
updating the parent node (lines 5–10 when the parent
is the root node, and lines 34–39 otherwise).

• Case 2 (lines 30–40). The node is an inner node. Then
we follow the pointer associated with index i, arriv-
ing at a child node, and recursively call InsertHelper
on this child node (lines 31–32). After returning from
InsertHelper, the child node may have grown by one be-
yond its maximum size. In this case, we split the child
into two children and update the parent to reflect the
split (lines 34–39). Updating the parent requires in-
serting a new key-pointer pair at the parent. We then
return from InsertHelper. The caller will then check if
the parent needs to be split, and so on.

The above description is for a centralized algorithm. The
distributed B-tree algorithm requires some simple changes
(the changed lines are indicated by ⋆ marks in Figure 11):

• Accesses to the B-tree occur within a transaction.
• We use the transactional Read and Write to read and

write B-tree nodes and add them to the transaction.
• We use a special getRoot helper function to find the

B-tree root (by way of the metadata object).
• We use our Alloc and Free functions to allocate and free

B-tree nodes transactionally.
• We use ⊥ as a special return value to indicate that

the current transaction has aborted, and we check the
status of the transaction before using any return value.

• We perform various safety checks to prevent the client
from crashing or hanging when its local replicas of ob-
jects are inconsistent with each other.

We now explain these changes in more detail.

Function Insert(txn, key, value) ⋆

Input: txn – transaction handle ⋆

Input: key, value – key/value pair to insert
Output: true iff key was not already in the tree
rootNum← getRoot(txn) ⋆1

if IsAborted(txn) then return ⊥ ⋆2

(ret, root)← InsertHelper(txn, rootNum, key, value, ∞) ⋆3

if IsAborted(txn) then return ⊥ ⋆4

if root has too many keys then5

split root into children child and child′, and new root6

root
c← Alloc(txn); c′ ← Alloc(txn) ⋆7

if IsAborted(txn) then return ⊥ ⋆8

Write(txn, rootNum, root) ⋆9

Write(txn, c, child); Write(txn, c′, child′) ⋆10

return ret11

Function Search(node, key)

Input: node – node to be searched
Input: key – search key
if node.numKeys = 0 then12

return 013

else14

return index of the largest key in node.keys[1..numKeys]15

that does not exceed key, or else 0 if no such key

Function InsertHelper(txn, n, key, value, h) ⋆

Input: txn – transaction handle ⋆

Input: n – node ID
Input: key, value – key/value pair to insert
Input: h – height of previous node visited
Output: tuple (ret, node) where ret = true iff key was not

already in the tree, and node is node n
node← Read(txn, n) ⋆16

if IsAborted(txn) then return (⊥,⊥) ⋆17

if node.height ≥ h then ⋆18

Abort(txn); return (⊥,⊥) ⋆19

i← Search(node, key)20

if node.isLeaf then21

if i 6= 0 ∧ node.keys[i] = key then22

node.values[i]← value23

Write(txn, n, node) ⋆24

return (false, node)25

else26

insert key and value into node27

Write(txn, n, node) ⋆28

return (true, node)29

else30

c← node.children[i]31

(ret, child)← InsertHelper(txn, c, key, value,32

node.height) ⋆

if IsAborted(txn) then return (⊥,⊥) ⋆33

if child has too many keys then34

split child into child and child′, update node as35

needed
c′ ← Alloc(txn) ⋆36

if IsAborted(txn) then return (⊥,⊥) ⋆37

Write(txn, c, child); Write(txn, c′, child′) ⋆38

Write(txn, n, node) ⋆39

return (ret, node)40

Figure 11: Algorithm for Insert.

604

Transaction context. B-tree operations are executed in
the context of a transaction, indicated by a transaction han-
dle txn. Clients obtain txn by calling BeginTx, as explained
in Section 5, and pass this handle when they call B-tree
operations. After executing B-tree operations, clients can
commit the underlying transactions.

Reading and writing B-tree nodes: Read and Write
(lines 9, 10, 16, 24, 28, 38, 39). Reading and writing B-tree
nodes simply entails calling the Read and Write functions
explained in Section 5. These functions perform the read
and buffer the write, respectively, updating the transaction’s
read and write sets.

Finding the root: getRoot (line 1). The B-tree root might
change as it undergoes migration or splits. Since the root
is where all tree traversals start, we need an efficient way
to locate it. To do so, we keep some metadata about the
B-tree in a special metadata object, which includes the ID
of the root node and a list of all current servers. We include
the metadata object, which is replicated at all servers for
efficiency, in a transaction’s read set to ensure the root is
valid.

Node allocation and deallocation: Alloc and Free (lines 7,
36). We need to allocate B-tree nodes transactionally to
avoid races (double allocations) and memory leaks (when a
transaction aborts). To do so, we use a simple allocation
scheme: at each server, there is a static pool of nodes and
a bit vector indicating whether a node in the pool is free.
Clients keep a lazy replica of each server’s bit vector. To
allocate a new node, the client first decides on a server to
host the node, by calling chooseServer() (our implementa-
tion simply returns a random server, but more elaborate
schemes are possible). Next, the client selects a free entry
in the bit vector of that server, and adds that entry (not the
node itself) to the transaction’s read set, marks it as used,
and finally adds the updated entry to the write set.

Node deallocation is analogous to node allocation, except
that a bit vector entry is marked as free instead of used.
Note that Alloc and Free must increment the version number
of the node being allocated or freed, which is necessary to
invalidate lazy replicas stored at clients.

Safety checks (line 18). Clients may have inconsistent data
in their lazy replicas of tree nodes, and so, to avoid crashing
or hanging, clients must detect the following conditions:

• object read has unexpected type
• infinite cycles while traversing B-tree

Failure to catch the first condition may result in a variety
of anomalies, including invalid memory access, divide by
zero, and infinite (or extremely long) loops. The correct way
to check the type of an object is implementation-specific,
and we do not show this in Figure 11. But roughly speaking,
each object has a type identifier and when the code accesses
an object, it checks if the type identifier matches what it
expects. If it does not, the transaction is aborted (the caller
can then restart the transaction).

We detect the second condition by recording the distance
of a node from the leaf level in the height field, and ensuring
that the value of this field decreases monotonically during a
traversal of the tree (line 18). If it does not, the transaction
is aborted (line 19). (In our code, note that leaf nodes have

a height of 0.)
In addition to the consistency checks, we validate the

transaction’s read set whenever a client reads a node from a
server. This does not introduce additional network round-
trips because we can piggyback comparison items in the
same minitransaction that is issued by Read. If this valida-
tion fails (as indicated by Read returning ⊥), the transaction
can abort early.

6.2 Initialization
When a client begins executing, it uses a directory service

to find one of the B-tree servers and contacts this server to
read the metadata object. This object, in turn, specifies the
ID of the root node and the list of servers.

6.3 Transactional access
With our approach, it is straightforward to combine mul-

tiple B-tree operations in the same transaction: the code for
B-tree operations (e.g., Insert or Delete) does not actually be-
gin or commit the transaction, it just accumulates changes
to a transaction’s read and write set. Thus, a client can exe-
cute multiple operations by passing in the same transaction
handle, and then committing the transaction afterwards.

6.4 Migration of nodes
To migrate a node x to server s (operation Migrate(x, s)),

we need to destroy node object x and create a new node
object at server s. To do so, a client executes a transaction
that reads node x, deallocates x using Free, allocates a new
node x′ at server s using Alloc, writes node x′, and replaces
the pointer to x with a pointer to x′ in x’s parent. If x is the
root node, then the transaction also updates the metadata
object with the new root.

We use Migrate() to implement the higher-level migration
tasks, such as the Migrate-away task that migrates all nodes
at a specific server s0 to other servers. This choice is the
simplest and most modular, but not necessarily the most
efficient: for example, it might be faster to migrate several
nodes in the same transaction. However, we were not trying
to optimize the rate of migration, since migration happens
online and can be done in the background provided that the
migration rate is not awfully slow.

For example, for the Migrate-away task, we perform a depth-
first traversal of the B-tree nodes and, whenever we find a
node at server s0 (from which we are migrating away), we
invoke Migrate to move it to another random server. These
actions are executed by a special client machine called the
migration client, which is different from any of the servers
and clients.

There are two caveats in implementing Migrate-away. First,
the goal is to have an empty server s0 at the end, so we must
ensure that clients do not place new B-tree nodes at server
s0. Thus, we need a mechanism to notify clients about s0.
To do so, each server records the set of active servers —
those where allocations are allowed — and clients validate
node allocations against this set. This validation is done
as part of the transaction that allocates the node: if the
validation fails, the transaction aborts.

Second, as the migration client traverses the B-tree, it is
possible that B-tree nodes vanish (another client deletes a
key that causes a node merge), including the node that the
migration client is currently visiting. It is not a problem if
the migration client tries to migrate a vanished node (the

605

transaction of the migration operation will abort since the
node changed). The problem is that the migration client
will not know how to continue its depth-first traversal. One
possibility is to restart from the root, but this is much too
inefficient. Our solution is that the migration client remem-
bers the largest key k at the last leaf node that it visited.
If the node it is visiting vanishes, the migration client finds
k and continues the traversal from there. This method is
not always foolproof: it is theoretically possible that k gets
removed, other keys get added, and k gets placed at a com-
pletely different place in the B-tree. As a result, the migra-
tion client may need additional traversals of the B-tree if,
when it completes its current traversal, nodes are still allo-
cated at server s0. This situation should occur infrequently
in practice.

The other migration tasks are implemented similarly to
Migrate-away, via a depth-first traversal, with differences only
with respect to how the source and destination servers are
selected, and when the migration terminates. For example,
Move and Populate always picks the same target server to which
to migrate a node (instead of the random server chosen in
Migrate-away). In addition, Populate picks the source servers in
a round-robin fashion and migration terminates when the
destination server is satisfactorily full. Even-out-storage picks
source and target servers based on their storage utilization,
while Even-out-load picks servers based on their load.

7. EVALUATION
We now evaluate the performance and scalability of our

B-tree and of its migration capabilities. Our testing infras-
tructure had 188 machines on 6 racks connected by Gigabit
Ethernet switches. Intra-rack bisection bandwidth was ≈14
Gbps, while inter-rack bisection bandwidth was ≈6.5 Gbps.
Each machine had two 2.8GHz Intel Xeon CPUs, 4GB of
main memory, and two 10000RPM SCSI disks with 36GB
each. Machines ran Red Hat Enterprise Linux AS 4 with
kernel version 2.6.9. Sinfonia was configured to log mini-
transactions to disk synchronously.

7.1 Workload
We considered a B-tree with 10-byte keys and 8-byte val-

ues. Each B-tree node had 4 KB and leaf nodes held 220
key-value pairs while inner nodes held 180 key-pointer pairs,
where each pointer had 12 bytes: 4 bytes specify a server
and 8 bytes specify an offset within the server.

In all experiments, workloads were generated at client ma-
chines separated from B-tree server machines. Each server
offered 32MB of available memory for the B-tree. All client
machines accessed the same B-tree. Clients kept a local lazy
replica of all inner nodes of the B-tree but none of the leaf
nodes. Each client machine had 4 parallel threads, each
with one outstanding request issued as soon as the previous
completed. We considered four workloads:

• Insert. New keys are generated uniformly at random
from a space of 109 elements and inserted into the B-
tree.

• Lookup. The previously inserted keys are looked up,
in the same random order in which they were inserted.

• Update. The values for previously inserted keys are
modified.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 10 20 30 40 50 60 70 80 90 100

op
er

at
io

ns
/s

servers and # clients

Distributed B-tree
BerkeleyDB (1 server)

Figure 12: Aggregate throughput, lookup workload.

• Mixed. This is a mixture of 60% lookups and 40%
updates randomly interspersed, for randomly chosen
keys that were previously inserted.

Before the insert workload, the B-tree was pre-populated
with 40,000 elements rather than starting with an empty
B-tree.

7.2 Scalability experiments
In these experiments, we measured the throughput of B-

tree operations for each of the workloads as we increased the
system size. In each experimental run and for each workload,
each client thread issued 2048 requests. For the insertion
workload, for example, a single client issued 8192 requests
total (recall each client had 4 threads).

We also ran our workloads on a centralized system run-
ning an efficient open-source B-tree implementation. This
provides a base comparison for small configurations of our
distributed B-tree. (For larger configurations, we observe
how much performance improves as we increase the system
size.) For the centralized system, we use the open-source
B-tree of BerkeleyDB 4.5. We built a multi-threaded RPC
server of our own to process client requests. Our RPC server
accepts multiple client connections and issues the operations
to BerkeleyDB as they arrive. The BerkeleyDB instance had
a cache of 512MB, so that the entire B-tree could fit in mem-
ory, a setup that favors BerkeleyDB. A larger tree would
have forced BerkeleyDB to perform random I/Os while our
distributed B-tree could stay resident in the servers’ main
memory.

We first discuss the results for the lookup, update, and
mixed workloads, shown in Figures 12, 13, and 14. These
graphs show the aggregate throughput as we increased the
number of servers from 1 to 92. For our distributed B-
tree, we used the same number of clients as servers for each
experiment, thus growing the workload as we increased the
number of servers. For the BerkeleyDB experiment, the x-
axis indicates the number of clients, each with 4 threads
issuing requests.

These graphs show that our B-tree scales linearly with
system size. For these experiments, our servers were nearly
saturated. For example, an increase to 16 threads per ma-
chine increased total throughput of lookups by at most 10%.
For updates, the bottleneck was Sinfonia’s logging subsys-
tem. A closer examination of the update graph shows that
the system improves slightly super-linearly. This improve-
ment is a result of better coalescing of transactions in batch
commits to the log as the workload increases. Since the
mixed workload is a combination of the previous two, it

606

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70 80 90 100

op
er

at
io

ns
/s

servers and # clients

Distributed B-tree
BerkeleyDB (1 server)

Figure 13: Aggregate throughput, update workload.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10 20 30 40 50 60 70 80 90 100

op
er

at
io

ns
/s

servers and # clients

Distributed B-tree
BerkeleyDB (1 server)

Figure 14: Aggregate throughput, mixed workload.

falls squarely between the two.
As expected, the BerkeleyDB instance saturates at a much

lower value. However, BerkeleyDB, a code base optimized
for over 15 years, does outperform our B-tree at small system
sizes. The cross over is at 8 servers for lookups and at about
4 servers for updates. For lookups, part of the difference is
because our clients fetch entire nodes when using our B-tree,
but only fetch an 8 byte value from BerkeleyDB.

Finally, Figure 15 shows the performance of inserts com-
pared to BerkeleyDB. Since our design was not intended
for a rapidly growing B-tree, we see that its performance is
only slightly better than a single BerkeleyDB instance. At
smaller sizes, logging is the bottleneck for our B-tree. As
we increase system size, contention becomes the bottleneck
because as inner nodes split, concurrent inserts need to be
retried. (The point in Figure 15 for 92 clients and servers is
for a single thread rather than four threads.) In cases when
lots of inserts must be done, one might consider using offline
distributed bulk-insertion techniques to speed up the inser-

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

op
er

at
io

ns
/s

servers and # clients

Distributed B-tree
BerkeleyDB (1 server)

Figure 15: Aggregate throughput, insert workload.

tions (e.g., [19]). For BerkeleyDB the bottleneck is logging,
and, as we increase the workload, better coalescing of batch
commits improve the throughput.

These experiments show two important characteristics.
First, at small scale our B-tree is competitive with a well-
developed single-node system, BerkeleyDB. Second, except
for the insert workload, our B-tree scales linearly, which is
the best that one can expect from scaling a system.

7.3 Migration experiments
In these experiments, we measured the performance of the

B-tree while nodes were being migrated in the background.
Migration was performed by a migration client separate from
other clients.

Figure 16 below shows aggregate throughput for a system
with 16 clients and 16 servers, with and without migration
running in the background. We used the Move migration task
shown in Figure 7, which migrates all nodes from a given
server to another server. In cases where the migration task
finished before the experiment completed, we restarted the
task in the other direction, as many times as needed.

Workload Throughput Throughput
without migration with migration

(operations/s) (operations/s)
Insert 870 ± 12 842 ± 32

Lookup 55422 ± 1097 55613 ± 1243
Update 4706 ± 18 4662 ± 19
Mixed 10273 ± 70 10988 ± 109

Figure 16: Effect of Move task on B-tree performance.

As can be seen, the throughput without and with migra-
tion is the same for every workload (for the mixed workload,
performance with migration is better than without — this
is an experimental fluctuation). In other words, migration
imposes negligible overhead on each of the workloads. This
holds for two reasons: the workloads were very active and
our migration scheme backs off aggressively when it detects
contention, choosing to work opportunistically when the sys-
tem is less busy. The rate of migration in a completely idle
system was 55.3 ± 2.7 nodes/s, or around 10000 key-value
pairs/s. In contrast, in the above experiments with the var-
ious workloads, migration backed off to a rate of less than 5
nodes/s.

We also ran the above experiments with the Migrate-away

task, and the results were similar: no noticeable overhead
when migration occurs. We have not implemented the Pop-

ulate, Even-out-storage, or Even-out-load tasks, but we expect them
to behave identically, as migration backs off and does not
interfere.

In our experiments, there were many servers and they
were not fully saturated, and so there was little performance
difference when the number of active servers decreased by
one. When there are only a few servers or all servers are
saturated, we expect migration to have a greater impact.

8. EXTENSIONS
Enhanced migration tasks. We implemented only simple
migration tasks. A production system might benefit from
migration based on expected load (due to expected seasonal
variations) or in reaction to flash crowds. It might be inter-
esting to support a migration scheme that operates more ag-

607

gressively when the system is loaded, to remove load quickly
from overloaded nodes — this is the opposite of what we do
now, where the migration backs off when the system is busy.

Dealing with hot-spots. The system may be subject to
hot-spots, caused by a small number of popular keys that
are accessed at a disproportionately high rate. This would
create a performance bottleneck at the servers holding these
keys, impairing scalability. Migration can help alleviate this
problem, by migrating nodes so that the popular keys are
spread over the servers in the system. This does not work
directly if the popular keys are all stored in a single B-tree
node, since migration granularity is a node. However, in this
case we can use a simple trick: first, we spread the popular
keys apart over different B-tree nodes by artificially inserting
“dummy” key-value pairs between them. Then we spread
the different nodes across servers through node migration.

Varying the replication factor of inner nodes. Cur-
rently, our implementation replicates the version number of
every inner node at every server. Thus, operations that
modify inner nodes (such as an Insert that causes a node
split, or a Delete that causes a node merge) are fairly ex-
pensive because they cause a read-write transaction that
involves every server. We could improve the performance
of these operations by replicating version numbers less ag-
gressively. For example, higher levels of the B-tree tend to
change less frequently and so they could be replicated over
more servers than lower levels.

Finer-grained concurrency control to avoid false shar-

ing. We treat B-tree nodes as indivisible objects in our
transactions, and this sometimes generates false sharing.
For example, suppose that an Insert causes a leaf node to
split, which requires modifying (a small part of) the par-
ent node. Because transactions operate on a whole node
at a time, this will create a conflict with any other B-tree
operation that reads or writes this parent node, causing an
aborted transaction, even if the other operation accesses dif-
ferent key-pointer pairs of the parent node. It should be
possible to avoid this issue by implementing concurrency
control at a finer level than a node.

9. RELATED WORK
As far as we know, this is the first work to provide a

distributed data structure that efficiently and consistently
supports dictionary and enumeration operations, execution
of multiple operations atomically in a single instance and
across multiple instances, as well as online migration of
nodes.

Most prior work on concurrent B-trees focuses on shared
memory systems, in which the B-tree is stored in a single
memory space and multiple threads or processors coordi-
nate access through the judicious use of locks. There are
efficient concurrency control schemes for B-link trees [11,
17], which seek to reduce lock usage for efficiency. A B-link
tree is a B-tree where each tree node is augmented with a
pointer to its right sibling. This pointer allows Lookup op-
erations to execute without acquiring any locks, while Insert
and Delete operations acquire locks on a small number of
nodes. Intuitively, the additional pointer allows a process
to recover from temporary inconsistencies. ARIES/KVL is
a lock-based method popular in commercial database sys-

tems because it accommodates range scans and integrates
well with the recovery subsystem [15].

Algorithms for distributed B-trees in message-passing sys-
tems are proposed in [9, 14]. These algorithms use subtle
protocols and locking schemes. Moreover, they do not sup-
port the execution of multiple operations atomically, node
migration, or dynamic server addition and removal. The
work in [14] considered only a fairly small system of up to
8 machines, and the work in [9] did not publish experimen-
tal results. Replicating B-tree information for performance
is proposed in [9], which replicates inner nodes eagerly at
many servers. In contrast, we replicate inner nodes lazily at
clients for performance, and we replicate version numbers
at servers for performance. The work in [19] presents offline
bulk insertion techniques for data that is range-partitioned
over a cluster. Their method balances insertion throughput
with the cost of re-partitioning the existing data. We could
complement our B-tree design with similar techniques.

Much work has been done on peer-to-peer data structures,
such as distributed hash tables (DHT) (e.g., [20, 16]) and
others. Unlike B-trees, hash tables do not support enumera-
tion operations, though some DHT extensions support range
queries (e.g., [2]). Peer-to-peer data structures work with
little synchrony and high churn (i.e., nodes coming and go-
ing frequently), characteristic of the Internet, but tend to
provide weak or no consistency guarantees. Applications
of peer-to-peer systems include file sharing. In contrast,
our work on the B-tree focuses on providing strong con-
sistency in more controlled environments, such as data cen-
ters and computing clusters. Applications of B-trees include
database systems.

A high-performance DHT that provides strong consistency
in computing clusters was proposed in [5]. Other related
distributed data structures include LH* [13], RP* [12], and
their variants. None of these support transactions over mul-
tiple operations, and furthermore LH* and the DHT in [5]
lack efficient enumeration.

Work on transactional memory proposes to use transac-
tions to implement concurrent data structures [7, 18, 6].
That work focuses on shared memory multiprocessors, where
processes communicate cheaply via a shared address space,
and the challenge is how to execute memory transactions
efficiently. This is done either in hardware, by extending
the cache coherence protocol, or in software, by carefully
coordinating overlapping transactions. In contrast, we con-
sider message-passing systems where process communication
is expensive (compared to shared memory), which calls for
schemes that minimize communication and coordination.

Amazon’s Dynamo [4] is a key-value store kept as a hash
table using consistent hashing, without support for trans-
actions or ordered key traversal. It provides weak consis-
tency when the network partitions, to trade off consistency
for availability. In contrast, our B-tree favors strong consis-
tency and is designed for a single data-center environment.

BigTable [3] (and its variants, HyperTable and HBase)
is a distributed scalable store that provides a “table-like”
structure with rows and columns. There is a single key,
which is one of the columns, and the system supports or-
dered traversal over the rows by the key. Within in each row,
applications can fetch a subset of the columns. Internally,
BigTable uses a tree-based structure similar to a B-tree, to
organize the set of servers that store data. We tend to think
of BigTable as a higher-level building block than a B-tree.

608

BigTable and its variants, however, only provide single-row
atomicity: they do not support atomicity over multiple op-
erations within the same table or across tables. There is
also no support for consistent secondary indices, and this is
a concern for some Google applications [3]. HyperTable and
HBase have a single master that, without additional fault
tolerance mechanisms [8, 22], are a single point of failure.
Our B-tree, on the other hand, relies on Sinfonia for fault
tolerance, which does not have a single point of failure.

Sinfonia [1] is a data sharing service that provides appli-
cations with unstructured address spaces on which to keep
data. Applications are responsible for organizing and struc-
turing their data on top of the address spaces. This is
a lower-level service than a B-tree, which keeps key-value
pairs. Our work builds upon the Sinfonia service.

10. CONCLUSION
We presented the design of a scalable distributed B-tree,

based on distributed transactions for manipulating the B-
tree nodes. Our approach has some features that are impor-
tant in practice, namely (1) atomic execution of multiple
B-tree operations, and (2) migration of B-tree nodes to en-
able important management operations, such as dynamic
addition and removal of servers and load balancing. Our
scheme relies on three key techniques to minimize network
round-trips and achieve high concurrency: optimistic con-
currency control, eager replication of node version numbers
at servers, and lazy replication of inner nodes at clients.
These techniques together allow clients to execute common
B-tree operations efficiently, in one or two network round-
trips most of the time. Our scheme has been implemented
and evaluated. We showed that it scales to hundreds of
machines and, at a small scale, its performance is compa-
rable to BerkeleyDB. We believe that our approach is quite
general and can be easily carried over to implement other
distributed data structures.

Acknowledgements. We would like to thank Theodore
Johnson for his insightful suggestions, and the anonymous
reviewers for many helpful comments.

11. REFERENCES
[1] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: a new paradigm for
building scalable distributed systems. In Proc.

SOSP’07, pages 159–174, Oct. 2007.

[2] A. Andrzejak and Z. Xu. Scalable, efficient range
queries for grid information services. In Proc. P2P’02,
pages 33–40, Sept. 2002.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. Bigtable: A distributed storage system for
structured data. In Proc. SOSP’06, pages 205–218,
Nov. 2006.

[4] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proc. SOSP’07, pages 205–220, Oct. 2007.

[5] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler.
Scalable, distributed data structures for Internet
service construction. In Proc. OSDI’00, pages
319–332, Oct. 2000.

[6] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer. Software transactional memory for
dynamic-sized data structures. In Proc. PODC’03,
pages 92–101, July 2003.

[7] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Proc. ISCA’93, pages 289–300, May 1993.

[8] HyperTable. HyperTable: An Open Source, High
Performance, Scalabe Database, 2008. Online:
http://hypertable.org/.

[9] T. Johnson and A. Colbrook. A distributed
data-balanced dictionary based on the B-link tree. In
Proc. IPPS’92, pages 319–324, Mar. 1992. A longer
version appears as MIT Tech Report
MIT/LCS/TR-530, Feb. 1992.

[10] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.

Database Syst., 6(2):213–226, June 1981.

[11] P. L. Lehman and S. B. Yao. Efficient locking for
concurrent operations on B-trees. ACM Transactions

on Database Systems, 6(4):650–670, Dec. 1981.

[12] W. Litwin, M.-A. Neimat, and D. Schneider. RP*: A
Family of Order Preserving Scalable Distributed Data
Structures. In Proc. VLDB’94, pages 342–353, Sept.
1994.

[13] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* -
a scalable, distributed data structure. ACM Trans.

Database Syst., 21(4):480–525, Dec. 1996.

[14] J. MacCormick, N. Murphy, M. Najork, C. Thekkath,
and L. Zhou. Boxwood: Abstractions as the
foundation for storage infrastructure. In Proc.

OSDI’04, pages 105–120, Dec. 2004.

[15] C. Mohan. ARIES/KVL: A key-value locking method
for concurrency control of multiaction transactions
operating on B-tree indexes. In Proc. VLDB’90, pages
392–405, Aug. 1990.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. SIGCOMM’01, pages 161–172, Aug. 2001.

[17] Y. Sagiv. Concurrent operations on B-trees with
overtaking. In Proc. PODS’85, pages 28–37, Mar.
1985.

[18] N. Shavit and D. Touitou. Software transactional
memory. In Proc. PODC’95, pages 204–213, Aug.
1995.

[19] A. Silberstein, B. F. Cooper, U. Srivastava, E. Vee,
R. Yerneni, and R. Ramakrishnan. Efficient bulk
insertion into a distributed ordered table. In Proc.

SIGMOD’08, pages 765–778, June 2008.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proc.

SIGCOMM’01, pages 149–160, Aug. 2001.

[21] Sun Microsystems. Lustre, 2008. Online:
http://lustre.org/.

[22] The Apache Software Foundation. Hadoop, 2008.
Online: http://hadoop.apache.org/.

609

