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ABSTRACT
In this paper we describe a new approach to extract element labels
from Web form interfaces. Having these labels is a requirement
for several techniques that attempt to retrieve and integrate infor-
mation that is hidden behind form interfaces, such as hidden Web
crawlers and metasearchers. However, given the wide variation in
form layout, even within a well-defined domain, automatically ex-
tracting these labels is a challenging problem. Whereas previous
approaches to this problem have relied on heuristics and manu-
ally specified extraction rules, our technique makes use of a learn-
ing classifier ensemble to identify element-label mappings; and it
applies a reconciliation step which leverages the classifier-derived
mappings to boost extraction accuracy. We present a detailed ex-
perimental evaluation using over three thousand Web forms. Our
results show that our approach is effective: it obtains significantly
higher accuracy and is more robust to variability in form layout
than previous label extraction techniques.

1. INTRODUCTION
The problem of retrieving and integrating information available

in online databases and services has received a lot of attention in
the research and industrial communities [7, 22, 1, 6]. This interest
is driven both by the quality of the information and the growing
number of online databases—it is estimated that there are several
million online databases [12].

Since most online databases and services can only be accessed
through Web form interfaces, to automatically integrate them and
retrieve their contents, their form interfaces must be understood [23,
5, 20, 21]. In particular, it is necessary to identify descriptive la-
bels for the form elements. For example, to integrate multiple on-
line databases, these labels are useful for deriving correspondences
among the elements in different forms [22, 8]. Labels are also
needed for applications that automatically retrieve data hidden be-
hind the form interfaces (e.g., Web integration systems and hidden
Web crawlers), which have to derive valid attribute-value assign-
ments to siphon the database contents [19, 16].

In this paper, we propose a new learning-based approach for au-
tomatically parsing and extracting element labels of form interfaces
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that are designed primarily for human consumption. Although the
HTML standard provides a label attribute to associate descriptive
information with individual form elements, it is not widely used. It
is common practice to intersperse text representing attribute names
with the HTML markup. As Figure 1 illustrates, several different
layouts are possible. Labels can be placed in many different posi-
tions: on top, in the bottom, to the left, to the right of, and even
inside a form element. For example, in Figure 1(a), while the la-
bel Make is above its corresponding selection list in the form on
the left, in the form on the right it is actually one of the values in-
side the selection list. Figure 1(b) shows a dynamic form whose
content and layout change based on which radio button is selected:
if the Car only button is selected, all labels are placed on top of
the form elements. In contrast, if the Car + Flight + Travel
button is selected, some of the labels are placed to the left of the
form elements. Furthermore, a given label may be associated with
multiple form elements. The label Depart in Figure 1(b) (left),
for example, is associated both with the text field for inputting the
date and with the selection list for specifying the time. Last, but
not least, labels may also be placed outside the form tags in the
HTML markup. This wide variation in form design layouts and in
nesting relationship between form elements and labels makes the
problem of automatically identifying element-label mappings par-
ticularly challenging.

Based on the assumption that there are common patterns for la-
bel placement, previous approaches to label extraction relied ei-
ther on heuristics (e.g., based on the textual layout of the page)
to guess the appropriate label for a given form attribute [10, 16]
or on manually-specified extraction rules [23]. These approaches,
however, require substantial human input: extraction rules must be
manually crafted and maintained. Because of the cost involved in
creating these rules, they are often generic and target forms from
multiple domains. However, as we discuss later, due to variability
of form layout across form domains, higher extraction accuracy can
be obtained by designing rules that are specific for a given domain.
Another limitation of these approaches is that they only deal with
static forms. They cannot handle a significant number of forms that
rely on client-side scripting (e.g., JavaScript) to dynamically render
their elements.
Contributions and Outline. In this paper, we address a key prob-
lem in form interface understanding: how to correctly determine
labels associated with elements in both static and dynamic forms.
Given a Web form, our goal is to determine a mapping between the
form elements and their corresponding textual descriptions. Instead
of relying on manually specified rules and heuristics, our approach
uses learning classifiers to identify element labels based on form
layout patterns. The use of a learning-based approach makes our
approach adaptable: to handle new form layout patterns, updated
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(a) Forms in the Auto domain (b) Dynamic form in the Airfare domain

Figure 1: Examples of web search interfaces illustrating the variability in layout design within and across different domains.

classifiers can be derived by adding forms that contain these pat-
terns to the training set. We give an overview of the approach in
Section 2.

As discussed above, there is a wide variation in the way forms
are designed. Thus, an important challenge is how to construct
accurate classifiers. We designed a new hierarchical framework
that performs classification in two steps and is more effective than
a monolithic classifier. The higher accuracy of the classifier en-
semble is due to two main reasons: simpler classifiers can be con-
structed; and each classifier can use the learning technique that is
best suited for its task. The classifier ensemble is described in Sec-
tion 5. The process to generate the candidate mappings that serve
as input to the classifier is presented in Section 3.

The classifier ensemble uses features that are automatically ex-
tracted from Web forms, as described in Section 4. Our approach
extracts features that capture information contained both in the HTML
markup and visual layout. The features are useful for differen-
tiating correct and incorrect label-element mappings and include
characteristics of form elements (e.g., their type), characteristics of
labels (e.g., their font), topological information (i.e., the location
of the label with respect to the element—top, bottom, left, right),
and the distance between the candidate labels and elements. The
feature extraction process utilizes a JavaScript-aware parser and an
HTML rendering engine, making it possible for the label extractor
to handle dynamic forms.

Even within the same domain, forms may use different and con-
flicting layout choices (see Figure 1(a)). Consequently, the classi-
fiers may be unable to correctly identify the label for certain ele-
ments. This may lead both to ambiguities (i.e., multiple labels as-
signed to an element) and dangling elements (i.e., elements with no
associated labels). To deal with this problem, we apply a mapping
reconciliation step, where mappings obtained in the classification
process are used to help identify the correct labels for form ele-
ments that remain unmatched after classification. Previous works
have observed that the set of terms used to represent attributes
in form interfaces from a given domain is small [8]. The intu-
ition behind the effectiveness of our mapping reconciliation is that
terms which occur frequently in mappings across different forms
are more likely to be element labels than terms that appear less
frequently. Thus, when the classification fails (e.g., because of a
pattern that is not captured by the classifiers) and multiple or no
candidate labels exist for an element, we choose the label which
has the highest frequency and that is closest to the element. In Sec-
tion 6, we present our mapping reconciliation algorithm.

We implemented this framework in the LABELEX (Label Ex-
traction) system. We performed a detailed experimental evaluation
using over 3,000 forms from a set of representative domains. The
results described in Section 7 show that LABELEX is effective and
able to identify labels with high precision and recall. We also com-
pare LABELEX against two state-of-the-art techniques for label
extraction: the grammar-based HSP approach proposed by Zhang
et at. [23] and the heuristics-based IEXP approach proposed by He
et al. [10]. LABELEX outperforms both IEXP and HSP, and it is
more robust to variability in the input data.

We review related work in Section 8 and conclude in Section 9,
where we outline plans for future work.

2. PROBLEM DEFINITION AND
SOLUTION OVERVIEW

A Web form consists of a set of elements such as selection lists,
textboxes, and radio buttons. Each element is usually associated
with a textual label1 which describes its meaning. For example, in
Figure 1(a), the attribute car make is represented by label Make:
and the attribute car model is represented by label Model:. In the
remainder of this paper, we refer to element labels and form at-
tribute names interchangeably. The set of values that can be input
into a form element is referred to as the element domain. To inte-
grate and automatically fill out Web forms, it is necessary to under-
stand the form capabilities. This includes the ability to identify the
labels and the domains for the form attributes, as well as to group
related elements [23]. In this paper, we focus on the label extraction
problem.

Definition 1 (Label Extraction) Let L = {l1, l2, ..., lm} be a set of
textual labels located in an HTML page P, and let W be a Web form
located in P that contains set of elements E = {e1,e2, ...,en}. The
label extraction problem consists of determining the set of map-
pings M between each form element ei in E to exactly one label li
in L, such that:

M = {(ei, li) |
⋃n

i=1 ei = E and
⋃m

i=1 li ⊆ L and li best describes
the meaning of ei }.

We cast the problem of label extraction as a learning task. Given
a set of Web forms with labels appropriately identified, we would
like to learn the patterns for label placement. Note that it is often
1Some forms use images, e.g., GIF, to represent labels. Extracting
such labels is beyond the scope of this paper.
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Figure 2: LABELEX: Overview.

the case that a Web page contains many more textual labels than
form elements, i.e., m >> n.

The LABELEX Approach. As illustrated in Figure 2, LABELEX
operates in two phases: the training phase and the extraction phase.
The Mapping Generation component generates a set of candidate
mappings of the form:

mi = (elementID, labeli)

where elementID uniquely identifies a form element and labeli cor-
responds to a label in the neighborhood of the element which is
a possible match (Section 3). For each mapping mi, the Feature
Extraction module derives a set of features f eatureSeti associated
with the label, element, and their relationship. These features in-
clude, for example, the spatial relationship between a label and an
element and content similarity (Section 4).

In the training phase, a set of label-element mappings M is man-
ually derived for the input forms (Manual Mapping Identification).
These are then used to label the candidate mappings: if mi belongs
to M, then the tuple (mi, f eatureSeti) is marked as a positive exam-
ple; all remaining tuples are marked as negative examples. These
tuples are then used to construct the first classifier (Naı̈ve Bayes).
The second classifier (Decision Tree) is trained using the output of
the first classifier. A detailed description of these classifiers is given
in Section 5.

The first step of the extraction phase coincides with that of the
training phase: candidate mappings are generated and their features
extracted. The set M1 of candidate mappings derived in the first
step is used as input to the Pruning Classifier which removes from
M1 mappings identified as incorrect. The pruned set of mappings
M2 is sent to the Mapping Selector, which selects mappings clas-
sified as correct matches. The labels associated with these matches
are then added to the Label Repository. The last step, Mapping
Reconciliation, examines elements associated with multiple labels
(i.e., elements that are present in multiple mappings predicted as
positive by the Decision Tree) and elements with no associated la-
bels (i.e., elements that do not belong to any mapping predicted as
positive by the Decision Tree). Mapping reconciliation uses infor-
mation in the Label repository to determine the best label for each
of these elements.

Form Element

Top+Left

Bottom + Left Bottom + Vertical 
Alignment

Bottom + Right

Left+Horizontal 
Alignment

Top + Vertical 
Alignment

Top+Right

x*element.width x*element.width

y*element.height

y*element.height

Right+Horizontal
Alignment

Figure 3: Spatial features of form elements and candidate po-
sitions for labels.

3. GENERATING CANDIDATE MAPPINGS
Given a Web form, LABELEX first generates a series of can-

didate mappings between form elements and textual labels in the
neighborhood of the elements. The candidate mapping generator
must identify a set of possible labels for each form element. To pre-
vent the mapping generation to negatively impact the accuracy of
the label extraction process, we need to ensure that all correct map-
pings are included in the candidate set. Since there are cases where
form element labels are located outside the HTML FORM tags, we
need to consider all text in the vicinity of the element.

A naı̈ve approach would be to derive all the combinations of tex-
tual labels in the HTML page and form elements. However, this
would be wasteful. As we discussed before, since forms are de-
signed to be understood by people, the correct label for a given
element is usually located in the vicinity of the element. Thus, in-
stead of considering all possible textual labels in the Web page, as
an optimization, we only consider labels that are close to the ele-
ment.

To understand the proximity-based heuristic we use to prune the
space of candidate labels, consider Figure 3. A label l is considered
to be close to element e if l is located within the rectangular box
((2x + 1) ∗ element width, (2y + 1) ∗ element height) around e. In
other words, a label is considered a candidate label if: it is located
at a distance less than y∗ element height from the top or bottom of
e, and at a distance less than x ∗ element width to the left or to the
right of e. We have empirically observed that this optimization is
effective, and even conservative values that over-estimate the size
of the bounding box (e.g., x = 3 and y = 5) lead to substantial
pruning while still capturing all correct mappings.
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Element Candidate labels Correct
label

Radio1 Car Only; Car+Flight+Hotel; From; To;
Depart Car Only

Radio2 Car Only; Car+Flight+Hotel; From; To;
Depart; Return

Car+Flight
+Hotel

Textbox1
Car Only; Car+Flight+Hotel; From;
To; Depart; Return; Car pickup/drop
off base on times selected; Travelers;
Adults; Children; Seniors

From

Textbox2
Car Only; Car+Flight+Hotel; From;
To; Depart; Return; Car pickup/drop
off base on times selected; Travelers;
Adults; Children; Seniors

To

Textbox3

Car Only; Car+Flight+Hotel; From;
To; Depart; Return; Car pickup/drop
off base on times selected; Travelers;
Adults; Children; Seniors; (Max 6); (18-
64) (12-17); (65+); mm/dd/yyyy

Depart

Select1

Car Only; Car+Flight+Hotel; From;
To; Depart; Return; Car pickup/drop
off base on times selected; Travelers;
Adults; Children; Seniors; (Max 6); (18-
64) (12-17); (65+); Morning

Depart

Table 1: Candidate labels for some of the elements in the Air-
fare form shown on the right of Figure 1(b).

The Candidate Mapping Generation (CMG) process works as
follows. It starts by rendering the page where the form is located
in a Web browser so that it can obtain information about the vi-
sual layout of elements and labels. In addition, to handle forms
whose layout changes dynamically as a user interacts with it (e.g.,
by selecting an element in a selection list), the CMG simulates user
actions by invoking event handlers associated with the form ele-
ments. Then, for each element including elements rendered dy-
namically, the algorithm finds all candidate labels using the prox-
imity heuristic and outputs a set of candidate mappings of the form
(elementID, label).

Table 1 illustrates some of the candidate mappings generated by
CMG for elements in the Airfare form shown on the right of Fig-
ure 1(b). We can see the number of candidate labels per element is
much smaller than the number of text labels located inside the form,
and all correct labels are contained in candidate sets. However, the
number of candidate labels per element is still large, e.g., the first
element has five candidate labels, and only one is correct. The large
number of incorrect candidate mappings is our motivation to apply
the pruning step described in Section 5.

4. EXTRACTING FEATURES
Since forms are designed for humans, intuitively, elements labels

have to be placed in such way that they can be clearly identified.
In fact, previous approaches to label extraction have observed the
existence of common patterns in the layout of forms [10, 16, 23].
A label is usually located close to its corresponding element, and
there are certain conventions as to where labels are placed, for ex-
ample, labels for text fields are, very often, located on top or to
the left of the element. Whereas in previous approaches manually-
created rules and heuristics encode these patterns, our goal is to au-
tomatically learn these patterns and create classifiers that are able
to identify the correct label for a form element.

Below, we describe the features used by the LABELEX classifiers
and how they are automatically extracted. The actual classifiers are
presented in Section 5. We consider different types of features,
including: characteristics of form elements and labels; similarity
between labels and element content; and spatial features relating

Feature Description
Element
type

Type of form element (e.g., textbox, selection list,
radio button)

Font type Font type used for label: Bold, Italic or Normal

Internal
Indicates that the label is represented as a value of
the form element (e.g., it is one of the values in a
selection list)

Similarity Normalized LCS score between the label and ele-
ment

Alignment Indicates whether the label and element in a map-
ping are horizontally or vertically aligned

Label
place-
ment

Captures the relatively position of the label with
respect to the element, i.e., that the label is located
on top, to the left, below, or to the right of the
element

Distance Normalized spatial distance between the label and
element

Table 2: List of features used in LABELEX and their meanings.

labels and elements. These features are summarized in Table 2 and
described in detail below.
Form Elements and Labels. These features capture characteristics
of elements and labels expressed in the HTML markup. We have
empirically observed that some layout patterns are specific to par-
ticular form element types. For example, the label of a checkbox
element is usually placed on the right, while the label of a select
element is usually located on the top or on the left. To capture these
element-specific patterns, for each element, LABELEX extracts its
type as one of the features.

For candidate labels, we extract its font and size. These features
are often a good indication of the importance of a token and are
used in many applications, such as in ranking the results of a search
engine [4]. For example, a token that is displayed in bold is more
likely to be a label than a token in italics—Web designers tend to
use italics for explanations.
Label-Element Similarity. There are three possible ways for a
Web designer to associate a textual description with a form ele-
ment: by adding a label, using an internal name, or specifying the
default display value of the element. Although the internal name
and default display value (which can be empty) do not always pro-
vide a good description to the element, when they do, they provide
good evidence for matching. To capture the string similarity be-
tween an element and candidate labels, we use normalized Longest
Common Subsequence (LCS), which is defined as:

normalizedLCS(s1,s2) =
LCS(s1,s2)

min(length(s1), length(s2))
(1)

The string similarity between label and element is then computed
as the minimum value of normalized LCS score between label and
internal name, and between label and default display value.
Spatial Features. The spatial features exploit common design pat-
terns. We consider both topological features and the label-element
distance. Topological features capture information about horizon-
tal and vertical alignment and they also include information about
the relative position of the label with respect to the element: top
(label is on the top of element), bottom (label is on the bottom of
element), left (label is on the left of element), right (label is on the
right of element).

In our first prototype, we used, as a distance measure, the (ab-
solute) number of pixels between the closest edges of the corre-
sponding bounding boxes of elements and labels. However, due to
the variation in form size and density (see Figure 4), this measure
was ineffective—leading to low-accuracy classifiers. A more ac-
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(a)

(b)
Figure 4: Examples of (a) dense and (b) sparse forms in the
Airfare domain.

curate (and robust) measure is obtained by normalizing the pixel
distance between an element and a label by the density of the form.
We define form density as a pair (horizontal density, vertical den-
sity), which measures the closeness among rows and columns in
the form. The horizontal density is defined as

horizontal density =
f orm height

#rows

where #rows is the number of sets of horizontally aligned elements
and labels. Similarly, the vertical density is defined as

vertical density =
f orm width
#columns

where #columns is the number of sets of vertically aligned elements
and labels. If the element and label are horizontally (or vertically)
aligned, the normalized distance is computed as the pixel distance
between them divided by the horizontal density (vertical density).
Figure 3 illustrates some of these spatial features. Our experimental
results discussed in Section 7 indicate that the normalized distance
is effective.

Note that, similar to candidate mapping generation, the feature
extraction process also requires that the page be rendered so that
both visual layout features and features of dynamically rendered
elements can be extracted. In our implementation, these two steps
are performed concurrently.

5. LEARNING TO IDENTIFY MAPPINGS
After the candidate mappings are generated and associated fea-

tures extracted, LABELEX needs to select from the candidate set
only the correct mappings. As discussed in Section 2, we cast the
problem of identifying correct mappings as a learning task.

A peculiar feature of our problem is that, by construction, the set
of negative examples is much larger than the positive counterpart
(see Table 1). Recall from Section 3 that for each form element,
a set of candidate mappings is derived. Among the mappings in
this possibly large set, only one is correct. This can lead to com-
plex and inaccurate classifiers that are likely to misclassify positive

Technique Recall Precision F-measure
Naı̈ve Bayes 97.6% 30.8% 46.9%
Decision Tree (J48) 68.9% 71.4% 70%
SVM 38.1% 68.1% 48.9
Logistic Regression 54.5% 72.8% 62.4%

Table 3: Recall, precision and F-measure scores of different
learning techniques for classifying candidate mappings.

Technique Recall for Posi-
tive

Precision for
Negative

Naı̈ve Bayes 98% 92%
Decision Tree (J48) 69% 97%
SVM 38% 98%
Logistic Regression 54% 98%

Table 4: Recall and precision of different learning techniques
for pruning incorrect candidate mappings.

instances.
We confirmed this experimentally. Using WEKA [18], we con-

structed classifiers to identify correct candidate mappings using
four distinct learning techniques. The recall, precision and F-measure
scores obtained by the resulting classifiers are shown in Table 3.2

The high recall obtained by Naı̈ve Bayes indicates that it is able
to correctly identify the negative instances without removing the
positive ones. But note that the precision and F-measure scores are
consistently low for all classifiers.

Inspired by previous works that combine classifiers to obtain
higher accuracy [3, 11], we designed a classification scheme that
consists of two steps. The first classifier works as a pruning step,
eliminating a large number of negative instances. The pruned set
of candidate mappings, which has a better balance between pos-
itive and negative instances, allows the construction of a simpler
and more accurate classifier for identifying correct mappings. The
two classifiers are described below.

In order to select the best learning technique for each classifier,
we constructed classifiers using different machine learning tech-
niques (Naı̈ve Bayes, J48/Decision Tree, SVM and Logistic Re-
gression) [14] and evaluated their performance. All classifiers were
built using the features described in Section 4.
Pruning Incorrect Mappings. The goal of the first classifier (the
pruning classifier) is to reduce the number of negative instances in
the candidate set. However, to ensure the overall accuracy of the
classification process, it must be conservative and keep the positive
instances. Hence, this classifier must have a high recall for posi-
tive instances and high precision for the negative ones. To evaluate
the performance of different learning techniques, we randomly se-
lected 5% of the forms in our dataset3. We set up the training phase
with 10-fold cross validation and split the dataset in two thirds to
the training set and one third to the test set. The average numbers
for recall over positive instances and precision over negative in-
stances are given in Table 4. These numbers indicate that the Naı̈ve
Bayes classifier is the most effective for this task.
Selecting Correct Mappings. We use the mappings produced the
pruning classifier as the training set for the second classifier, the
mapping selector. Using the same evaluation method as described
above, we obtained the average classification accuracy for the dif-
ferent techniques. The F-measure scores are shown in Table 5.
They indicate that Decision Tree (J48) is the most accurate for se-
lecting the correct mappings.

2Formulas for computing recall, precision and F-measure are given
in Section 7.
3Details about this dataset are given in Section 7.
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Technique F-measure for
Positive

F-measure for
Negative

Naı̈ve Bayes 60% 78%
Decision Tree (J48) 79% 90%
SVM 66% 84%
Logistic Regression 64% 84%

Table 5: F-measure scores for different learning techniques for
selecting correct mappings from the pruned candidate set.

Combining Classifiers. By splitting the classification process into
two steps, pruning and mapping selection, it is possible to select
the learning technique that best suits each problem. As we have
discussed above, a Naı̈ve Bayes classifier is the best for the pruning
step, while J48 (Decision Tree) is the best for selecting the correct
mappings. Our experimental results in Section 7 show that the clas-
sifier ensemble obtains high accuracy and is more effective than a
monolithic classifier (see Table 3).

As Table 4 shows, the Naı̈ve Bayes classifier is able to identify
incorrect mappings with high accuracy and it also has a high recall
for correct mappings. However, it is not effective at identifying
the correct mappings: its precision is only 30.8% (Table 3). A
limitation of the Naı̈ve Bayes classifier comes from the fact that
it assumes all features are independent, and this is not always the
case. For example, if an element is a text box, its label is more
likely to be located on top or to the left; while for a radio button
or check box, labels are often located to the right. There are also
features that are not common but that are useful for discriminating
good labels. For example, although bold labels are not frequent, if
a token is represented in bold, it is very likely to be a good label.

Decision Trees, in contrast, are effective at identifying mappings
which are rare or that contain correlated features. The Decision
Tree classifier obtains a much higher F-measure value (79%) for
classifying correct mappings than Naı̈ve Bayes (60%). The Deci-
sion Tree derived for the Auto domain is shown in Figure 5. Note
that Distance is chosen as the root of the tree—it is the most dis-
criminating feature. In fact, if a label is far from an element, for
most of the cases the mapping is identified as false (see lines 22-
48). If we contrast the rules in lines 21 and 47, we can see that
the Horizontal feature reinforces Distance and Similarity: If a label
and element are far apart and are not similar, the mapping is still
classified as correct if they are horizontally aligned. Note that if
the element and label are not horizontally aligned, the decision is
false (line 37). This tree also confirms our intuition with respect to
the correlations between element types and label placement: labels
for radio buttons and check boxes are usually located to the right,
while labels for text boxes are often located to the left (see lines
6-9).

6. USING PRIOR KNOWLEDGE TO DIS-
COVER NEW LABELS

Although our classifier ensemble is able to obtain high preci-
sion and recall, it is not perfect. In some cases, it may not be able
to reliably identify the label for an element, leading to ambiguous
mappings (i.e., multiple candidate labels for an element) and dan-
gling elements (i.e., an element with no candidate labels). There are
several reasons for this. As discussed above, some forms have con-
flicting layout patterns. In addition, classifiers are as good as their
training data and evidently, they are not able to handle patterns they
have not learned.

If we consider a large set of forms in a domain, they often share
a relatively small vocabulary [3, 8]. Based on this observation, LA-
BELEX uses mappings derived by the classifier ensemble to create
a label vocabulary. This vocabulary is used to reconcile ambiguous

01. distance <= 0.569439
02. | similarity <= 0.625
03. | | distance <= 0.018519
04. | | | left <= 0: true
05. | | | left > 0
06. | | | | element type = text: true
07. | | | | element type = select: true
08. | | | | element type = checkbox: false
09. | | | | element type = radio: false
10. | | distance > 0.018519
11. | | | left <= 0
12. | | | | element type = text: false
13. | | | | element type = select: false
14. | | | | element type = checkbox: true
15. | | | | element type = radio: true
16. | | | left > 0
17. | | | | vertical <= 0
18. | | | | | horizontal <= 0: false
19. | | | | | horizontal > 0: true
20. | | | | vertical > 0: true
21. | similarity > 0.625: true
22. distance > 0.569439
23. | horizontal <= 0
24. | | similarity <= 0.7: false
25. | | similarity > 0.7
26. | | | left <= 0: false
27. | | | left > 0
28. | | | | distance <= 3.478981
29. | | | | | element type = text
30. | | | | | | boldFont <= 0: false
31. | | | | | | boldFont > 0: true
32. | | | | | element type = select
33. | | | | | | boldFont <= 0: false
34. | | | | | | boldFont > 0: true
35. | | | | | element type = checkbox: true
36. | | | | | element type = radio: false
37. | | | | distance > 3.478981: false
38. | horizontal > 0
29. | | distance <= 2.486742
40. | | | similarity <= 0.5
41. | | | | similarity <= 0.444444
42. | | | | | similarity <= 0.428571
43. | | | | | | distance <= 1.619748: false
44. | | | | | | distance > 1.619748: true
45. | | | | | similarity > 0.428571: true
46. | | | | similarity > 0.444444: false
47. | | | similarity > 0.5: true
48. | | distance > 2.486742: false

Figure 5: Decision Tree (J48) in the Auto domain.

mappings and to derive new mappings for dangling elements. The
intuition here is that terms with high frequency in the vocabulary
are more likely to be good labels than terms with low frequency.
Suppose, for example, that an unmatched element in an Airfare
form is close to two terms: “SAVE $220” and “From”. Because
“From” is a term that appears frequently in this domain, it would
be selected by the mapping reconciliation step.

The effectiveness of the reconciliation process is highly depen-
dent on the quality of the constructed vocabulary, and to construct
such a vocabulary, we need to identify the important terms. Generic
terms such as “Select” are likely to have high frequency, since they
often appear in composite labels (e.g., “Select a City”, “Select a
State”). However, they are unlikely to be good labels for an ele-
ment. We use a simple, yet effective strategy to select important
terms. We distinguish between terms that appear alone and terms
that appear in a composite candidate label. We create two separate
tables: after stemming the terms that appear in the labels of suc-
cessful mappings, we store all terms along with their frequencies
into the term frequency table (T Ftable); terms that appear in atomic
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Algorithm 1 Mapping Reconciliation Algorithm
1: for each form F do
2: for each element e j ∈ F do
3: if e j is present in multiple mappings then
4: candidateMappingSet =

⋃
(e j, li)

5: else
6: if e j is dangling then
7: candidateMappingSet = GenerateCandidateMapping(e j)
8: end if
9: end if

10: for each (e j, li) ∈ candidateMappingSet do
11: distancei = compute Euclidean distance between e j and li
12: mappingscore(e j, li) =

∑
t∈l j

√
T Ft ×ST Ft

|l j|×distance
+

1
distance+1

13: correctMapping = mapping with highest score
14: update T Ftable and ST Ftable
15: end for
16: end for
17: end for

labels (i.e., labels that consist of a single term) are placed in the
singleton frequency table (ST Ftable) along with their frequencies.

Algorithm 1 describes the mapping reconciliation process which
uses the information in these tables. It iterates over all forms and
their elements. If an element is present in multiple mappings re-
turned by the classifier ensemble, these mappings are added to the
candidate set (line 3-5). For some elements, the classifier ensem-
ble may fail to identify a label. For these dangling elements (lines
6-8), the set of candidate mappings is obtained by the Candidate
Mapping Generation module (Section 3).4 The next step is to se-
lect from the candidate set the most likely match (lines 10-15). To
do so, we generate a score for each mapping according to the fol-
lowing formula:

mappingScore(ei, l j) = ∑
t∈l j

√
T Ft ×ST Ft

|l j|×distance
+

1
distance+1

(2)

This score ensures that the (relevant) terms that have high frequency
are the most likely labels, but only if they are close to the un-
matched element. The denominator in the first term of Equation 2
gives a penalty to terms that are far from the element. Note that for
terms that are not in the vocabulary tables (T Ftable and ST Ftable),
the score is determined solely by the distance. After the scores
are calculated, the algorithm selects the mapping with the highest
score.

An alternative way to leverage term frequencies would be to use
them as a feature for the Classifier Ensemble. However, since the
classifiers are trained with a small number of samples, term fre-
quencies in the sample set may not be representative of the whole
domain, in which case they may negatively affect classification ac-
curacy. After a representative set of labels is extracted (based on the
layout features), it is conceivable that the term frequencies could
be effective for domain-specific classifier, but it is unlikely they it
would improve the generic classifier. Furthermore, mapping recon-
ciliation can also be useful for deriving 1 : M mappings and possi-
bly N : M mappings (Section 9).

7. EXPERIMENTAL EVALUATION
In order to assess the effectiveness of our approach, we evalu-

ate it against a large set of Web forms in multiple domains. We

4We can re-use the set of candidate mappings M1, shown in Fig-
ure 2.

Domain FFC dataset TEL-8 dataset
Forms Elements Sample

Size Forms Elements

Airfare 678 7224 245 53 614
Auto 1254 7146 294 95 815
Book 747 7104 254 68 595
Movie 243 1284 149 80 645

Table 6: Number of forms and form elements from different
domains for the datasets used in our experiments.

also study how the different components (i.e., the classifier ensem-
ble and mapping reconciliation) of our solution contribute to the
overall extraction accuracy. Last, but not least, we compare our ap-
proach against state-of-the-art techniques for label extraction. To
the best of our knowledge, this is the first time such a comparison
is performed.
Datasets and Gold Data. We have evaluated LABELEX over four
online database domains: “Airfare”, “Auto”, “Books” and “Movies”
in two datasets. The first dataset contains 2,884 web forms auto-
matically collected by the Form-Focused Crawler (FFC) [1, 2], a
crawler that is specialized to search for forms on the Web. The
second set consists of forms in the TEL-8 dataset from the UIUC
Web Integration Repository5 and contains 296 web forms. In the
remainder of the paper, we refer to the first dataset as the FFC
dataset and to the second as the TEL-8 dataset. Table 6 summarizes
some of the characteristics of these datasets.

We should note that our datasets are representative and reflect the
characteristics and layout variability of Web forms, thus, enabling
us to evaluate the robustness of our approach. Table 7 shows statis-
tics of label placement in the four domains for the FFC dataset.
Note that there is a wide variation in form layout patterns both
within and across the selected domains. Although labels are of-
ten aligned with their corresponding elements (see the first three
columns), sometimes they are located inside the element. An exam-
ple of an internal label is the Select a Make label in Figure 1(a)
(right). This table also shows that the distribution of label place-
ment in relation to form elements is different for the different do-
mains. For example, whereas for Airfare and Auto labels are often
placed to the left of elements, for Book and Movie they are most
often placed to the right.

Manually-derived mappings are available in the UIUC Web Inte-
gration Repository for the TEL-8 dataset, and we used these to ver-
ify the correctness of the mappings identified by LABELEX over
this dataset. For the FFC dataset, however, correct mappings are
not available. Since it would not be feasible to manually extract
all the labels for over 22,000 elements in this dataset, we sampled
the FFC dataset to create the gold data used in our experiments. We
applied the central limit theorem and interval estimation theories to
approximate the original dataset distribution with a sample set [13].
We chose the confidence level as 95% and confidence interval as 5,
which means we are 95% certain that the results over entire dataset
are within the interval ± 5% of the results on our sample. To ob-
tain the desired confidence, we used the sample set with sizes (i.e.,
number of forms) shown in the fourth column of Table 6.
Effectiveness Metrics. We use the standard measures defined be-
low to evaluate the effectiveness. Given a set of forms F , let M be
the set of manually generated mappings and E the set of mappings
derived by LABELEX for the forms in F :

Recall =
|M∩E|
|M|

(3)

5http://metaquerier.cs.uiuc.edu/repository
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Domain Right
&
Align

Left
&
Align

Top &
Align

Top &
Left

Internal Others

Airfare 8% 46% 26% 1% 13% 4%
Auto 14% 52% 15% 2% 15% 2%
Book 48% 24% 1% 1% 25% 1%
Movie 44% 26% 1% 5% 21% 3%

Table 7: Label placement statistics in the FFC dataset.
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Figure 6: Precision, Recall, and F-measure scores of domain-
specific classifier ensemble.

Precision =
|M∩E|
|E|

(4)

F−measure =
2∗Precision∗Recall

Precision+Recall
(5)

Recall represents the number of correct mappings identified as frac-
tion of all mappings considered; precision represents the number of
correct mappings as a fraction of all mappings predicted as positive
by LABELEX. The F-measure is the harmonic mean between pre-
cision and recall. A high F-measure means that both recall and
precision have high values—a perfect classification would result in
an F-measure with value equal 1.

7.1 Effectiveness of Label Extraction
Overall Approach. Table 8 lists the F-measure scores of the best
configuration of our approach over the FFC and TEL-8 datasets.
These numbers show that the combination of the classifier ensem-
ble with the mapping reconciliation step leads to very high accuracy
in label extraction. To better understand the contribution of the in-
dividual components, below we study each of them in isolation.
Classifier Ensemble. We first evaluate the performance of clas-
sifier ensembles trained for each domain separately: for each do-
main D, we collect a set of interfaces as the training data to build
a classifier ensemble (consisting of a pruning classifier and a map-
ping selector) specifically for D. We refer to these ensembles as
domain-specific classifier ensembles, or DSCE. In Section 7.2, we
also consider a generic ensemble, where a single classifier ensem-
ble is built for all domains.

Figure 6 shows the precision, recall and F-measure of the DSCE
for the FFC and TEL-8 datasets. The F-measure scores obtained
vary between 80% and 91% for the FFC dataset and between 83%
and 93% for TEL-8 dataset, respectively. This indicates that the
classifier ensemble is effective: it is able to automatically learn lay-
out patterns and accurately identify label-element mappings.

Domain FFC dataset TEL-8 dataset
Airfare 0.88 0.89
Auto 0.94 0.95

Books 0.93 0.95
Movies 0.86 0.90

Table 8: F-measure scores for our approach over the FFC and
TEL-8 datasets.

Figure 7: This form illustrates that there can be significant
variation in the distance between labels and elements. It also
shows labels that are related to multiple form elements.

This figure also shows that the classifier ensemble is more ef-
fective for TEL-8 than for the FFC dataset. This same pattern is
observed for other approaches to label extraction (see Figure 11).
The TEL-8 dataset is smaller and it was also manually collected.
As a result, it is cleaner and presents less variability than the FFC
dataset, which was automatically gathered by a Web crawler.

For the FFC dataset, the lowest F-measure score obtained by the
classification process was for the Airfare domain (0.80), and the
highest was for the Book domain (0.91). A possible explanation
for this difference can be attributed to the layout heterogeneity in
the Airfare domain. Examining the structure of the forms in these
two domains, we observe that in Airfare, there is a large variation
in distance between labels and elements, even within a single form.
This is illustrated in the form shown in Figure 7: whereas some
labels are placed very close to the corresponding elements (e.g.,
Departure date), others are relatively further (e.g., Fly from).
In contrast, for Book, the labels are more consistently placed close
to the corresponding elements. Because element-label distance is
one of the features used by the classifier ensemble, it is harder for
it to correctly predict labels for the more heterogeneous Airfare
domain than for the Book domain.
Mapping Reconciliation. To assess the effectiveness mapping
reconciliation (MR), we compute the relative improvement obtained
when mapping reconciliation is applied to the mappings derived by
domain-specific classifier ensemble. As Figure 8 shows, mapping
reconciliation always leads to improvements, which range between
2.1% and 8.9%. These results reflect the fact that mapping reconcil-
iation relies on the existence of labels that appear frequently across
forms. Note that the accuracy boost is higher for domains that have
a more homogeneous vocabulary, such as Airfare and Auto, than
for heterogeneous domains (e.g., Book and Movie). Figure 9 gives
some intuition for this observation: it shows the Simpson Index for
the labels in the four domains we consider [17].6 The value of this
index represents the probability that two element labels selected at
random from distinct forms in a domain are the same—thus, the
higher the value, the more homogeneous the vocabulary is.

6The Simpson Index provides a better measure for vocabulary di-
versity than other measures such as vocabulary size.
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Figure 8: Improvement of mapping reconciliation (MR) over
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Figure 9: Simpson index for the labels in different domains.
Lower values indicate higher heterogeneity.

7.2 Domain-Specific versus Generic Classifier
Ensembles

The results shown in Table 8 and in Figure 6 relied on the con-
struction of four classifier ensembles—one for each domain. An
interesting question is whether it is possible to construct a single
generic classifier that obtains high accuracy for forms across dif-
ferent domains.

Following the procedure described in Section 5, we built the
generic classifier ensemble (GCE) as follows. First, we trained a
classifier ensemble using a mix of forms from the four domains to
obtain the generic classifier. The training set was generated by ran-
domly selecting 10% forms from the sample set of each domain. In
the testing phase, we ran the generic classifier and mapping recon-
ciliation process for all the forms in each domain.

Figure 10 shows the relative improvement in F-measure score
for LABELEX using the generic and the domain-specific configura-
tions of the classifier ensembles over the TEL-8 and FFC data sets.
For most domains (except for Airfare), the domain-specific classi-
fier outperforms the generic one by a small margin (less than 4%).
This shows that some layout patterns are indeed present in multi-
ple domains, and that a generic classifier can be effective. Thus,
the cost of training the combined classifier can be amortized by us-
ing it on multiple domains. For Airfare, however, the improvement
is more significant, around 8%. This suggests that the choice be-
tween generic versus domain-specific depends both on the require-
ments of the application with respect to accuracy and on the form
domains.

Note that in all four domains, the performance difference be-
tween the domain-specific and generic ensembles (without Map-
ping Reconciliation) is larger than that of the same ensembles com-
bined with mapping reconciliation. That is, the improvement ob-
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Figure 10: Generic versus domain-specific configuration. The
domain-specific configuration has slightly higher accuracy than
its generic counterpart.

Figure 11: Comparison of our approach against HSP and
IEXP. Our approach outperforms both HSP and IEXP with re-
spect to F-measure score; and it is more robust to variability in
data.

tained by mapping reconciliation over the generic classifier is larger
than over the domain-specific classifier. This is not surprising,
since generic ensemble is more likely to fail for layout patterns that
are more common for one particular domain; and in these cases,
mapping reconciliation will be able to identify typical labels (i.e.,
labels with high frequency in the domain) associated with those
patterns. This reinforces the importance of mapping reconciliation
and shows that it contributes to the robustness of LABELEX.

7.3 Comparison against other Approaches
To further assess the effectiveness of our learning-based approach,

we compare it against the current state of the art: the grammar-
based HSP approach proposed by Zhang et at. [23] and the heuristics-
based IEXP approach proposed by He et al. [10]. For this set of
experiments, we consider the following configurations:

• IEXP: our implementation of the IEXP technique following the
description in [10];

• HSP: the binary code for HSP provided to us by the authors of [23];

• Generic classifier + MR (GMR): the combination of the generic
ensemble and mapping reconciliation;

• Domain-specific classifier + MR (DSMR): the combination of the
domain-specific ensemble and mapping reconciliation.

We ran these four configurations over the FFC and TEL-8 datasets.
The results, shown in Figure 11, show that the two LABELEX con-
figurations outperform both HSP and IEXP in all four domains.
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Figure 12: Relative F-measure improvement obtained by two
LABELEX configurations over the Hidden Syntax Parser.

Because HSP uses a manually crafted grammar and IEXP uses a
fixed set of rules, they will invariably fail for domains that do not
conform with those rules, or whose layout patterns are not captured
by the rules. Consider the Book domain. As shown in Table 7, Book
is the domain with the largest percentage of internal labels: 25% of
the FFC forms in this domain contain elements with internal la-
bels. However, neither the IEXP heuristics nor the HSP grammar
handles the case where a label is placed inside a form element. This
explains, in part, why our approach performs significantly better in
the Book domain. Note that in order to handle internal labels, all we
had to do was to include examples of such elements in our training
sample. In contrast, manual modifications would be required to ex-
tend IEXP and HSP to handle this case—the grammar and heuristic
rules need to be updated.

The smallest accuracy difference between our approach and the
others occurs in the Airfare domain. The IEXP heuristics and the
HSP grammar work better for this domain than others, where 72%
of the correct labels are placed to the left or above form elements
(see Table 7).
Sensitivity to Input Data. Figure 11 also shows that the two LA-
BELEX configurations are more robust to variations in form layout.
The F-measure scores obtained by both GMR and DSMR for the
FFC and TEL-8 datasets are very similar—notice the small slope
angle for the lines corresponding to these configurations. In con-
trast, for both IEXP and HSP, the differences in the scores are much
larger: they perform significantly better for the manually-collected
TEL-8 dataset. Specifically, with IEXP, the difference between two
datasets varies between 5.8% to 17%, and between 7.5% to 14%
with HSP. While for both of our configurations, the variation is
only between 1.1% to 2.2%. This fact shows that our approach
is less sensitive to the data than the other approaches, or in other
words, it is more robust to noise.
LABELEX vs. HSP. Let us now examine in more detail the dif-
ferences between LABELEX and HSP. Figure 12 presents the rela-
tive improvement of the GMR and DSMR configurations over the
grammar-based HSP. The improvement obtained by GMR varies
between 7.5% and 15%, while for DSMR they range between 13%
and 17.8%. Note that the smallest improvement happens for GMR
over the Airfare domain. This is not surprising. As we noted above,
the HSP grammar performs well for this domain. Furthermore, be-
cause the layout variability is high for Airfare and the element-label
mappings are more complex, the generic ensemble is more likely
to make incorrect predictions. Consider for example the form in
Figure 7. Not only does it present a wide variation in the distance
between labels and their corresponding elements, but it also shows

that some labels can be associated with multiple elements. Be-
cause the DSMR configuration is trained with samples forms from
the Airfare domain, it is better able to capture these features that are
prevalent in this domain. This is reflected in the 15% improvement
it obtains over HSP.

8. RELATED WORK
The general idea of using learning classifiers for label extrac-

tion was first described in a poster presentation [15], where we dis-
cussed preliminary results obtained with our first prototype. This
paper provides a detailed description of our complete solution, in-
cluding several improvements to the original prototype (e.g., a more
principled approach to feature extraction). Furthermore, we present
a detailed experimental analysis, where we evaluate the different
components of our solution and compare it against other approaches
to label extraction.

Other works have addressed the problem of extracting form ele-
ment labels [16, 23, 10]. The form analysis component of HiWE,
the hidden-Web crawler proposed by Raghavan and Molina [16],
uses a layout engine to calculate the pixel distance between the el-
ement and candidate labels. They then generate a set of candidate
mappings which are ranked using a set of heuristic rules based on
position, number of words, font size, etc.

Instead of relying on the visual layout of form elements, He et
al. [10] examine the HTML structure of the form. They capture
the textual layout of labels and elements as an interface expres-
sion (IEXP). The IEXP of a given search interface consists of three
basic items: t, e and |, where t denotes a label/text, e denotes a
form element, and | denotes a row delimiter, which corresponds to
HTML tags such as <p> and <br>. They define rules which de-
termine the association between label/text and elements based on
their positions in the IEXP expression.

Zhang et al. [23] cast the problem of label extraction as parsing.
They hypothesized the existence of a hidden syntax and developed
a soft parser and a novel grammar that allows users to declaratively
specify extraction rules. These rules, like our feature set, capture
both topological patterns (e.g., alignment and adjacency) and prox-
imity information. However, they do not take into account the ele-
ment characteristics (e.g., element type and name). They deal with
the problem of ambiguities in label-element assignments as well as
with incomplete grammars, by encoding not only patterns but also
their precedence in the grammar. The precedence helps to resolve
ambiguities by determining priorities for the grammar rules. De-
signing a good grammar is thus a challenging task. It requires the
designer to decide which patterns to capture among a potentially
large number forms, and to determine the precedence and impor-
tance levels of rules. In contrast, because LABELEX makes use
of learning classifiers to automatically capture these patterns, a de-
signer only needs to provide training data—which can be easily
created using our visual interface (Section 3). An issue that can
negatively impact the effectiveness of the soft parser is the pres-
ence of ambiguities. The parser must exhaustively enumerate all
possible interpretations before it prunes the conflicting partial trees.
Therefore, it is hard for it to achieve both accuracy and scalability
because the more accurate the parser, the larger the number of rules,
and the more significant the number of ambiguities and possible in-
terpretations.

A common feature across these approaches is the fact that they
rely on manually specified rules to determine element-label as-
sociations. Ours is the first work to make use of learning-based
techniques to automatically infer the extraction patterns. And as
we have shown in our experimental evaluation, the combination
of learning classifiers with mapping reconciliation is very effec-
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tive and outperforms both IEXP and the soft parser by a significant
margin. Another limitation of these approaches is their inability
to handle a significant number of Web forms that use client-side
scripting (e.g., JavaScript) to dynamically render their elements.
LABELEX, in contrast, utilizes a JavaScript-aware parser and an
HTML rendering engine, which enables it to extract dynamically
rendered elements.

9. CONCLUSION AND FUTURE WORK
We described LABELEX, a learning-based approach for auto-

matically extracting labels for form elements. LABELEX has two
key features that set it apart from previous approaches to label ex-
traction: it uses learning classifiers to automatically capture form
layout patterns; and it introduces the idea of mapping reconcilia-
tion, which both improves the extraction accuracy and robustness
in the presence of layout variability. Our experiments, over a large
set of forms from different domains, have shown that LABELEX
is effective and obtains high precision and recall for label extrac-
tion. In addition, LABELEX outperforms previous approaches by a
significant margin.

An important advantage of LABELEX over previously-proposed
heuristics and grammar-based approaches is that is does not require
human input to define rules or for the selection of layout patterns.
But LABELEX does require human input for training its classifiers.
We should note, however, that our experience in creating the train-
ing samples using our interactive label selection tool has shown that
these sample can be quickly constructed.

There are several avenues we plan to explore in future work. The
mapping reconciliation module (Section 6) derives 1 : M mappings,
i.e., one element can be mapped to one label, and one label can be
associated to multiple elements. Our experiments have shown that
this simpler approach can be effective for a large number of auto-
matically retrieved forms. Whereas 1 : 1 or 1 : M mappings can be
sufficient for some applications (e.g., the categorical clustering ap-
proach proposed by He et al. [9]), for others more relaxed mappings
can be desirable (or required). In future work, we intend to extend
our system to derive N : M mappings. This could be achieved, for
example, by modifying the Mapping Reconciliation step to return
the top N mappings (instead of the top mapping it currently re-
turns).

Another limitation of our current prototype is that the classifier
ensemble and mapping reconciliation modules treat each element-
label mapping in isolation: they decide that a mapping is correct
based solely on the features associated with the label and the ele-
ment. In future work, we plan to investigate alternative strategies
for mapping selection which take a more global view, i.e., consider
the form as a whole. Because a label may be associated with mul-
tiple elements, the straightforward approach of removing a label
from the candidate set when it is used in a mapping would lead to
a potentially large number of dangling elements. Thus, to improve
the effectiveness of LABELEX, a global mapping generator must be
able to handle 1 : M mappings between labels and form elements.
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