
Social Hash Partitioner:
A Scalable Distributed Hypergraph Partitioner

Igor Kabiljo
Facebook

ikabiljo@fb.com

Brian Karrer
Facebook

briankarrer@fb.com

Mayank Pundir
Facebook

mpundir@fb.com
Sergey Pupyrev

Facebook
spupyrev@fb.com

Alon Shalita
Facebook

alon@fb.com

ABSTRACT
We design and implement a distributed algorithm for bal-
anced k-way hypergraph partitioning that minimizes fanout,
a fundamental hypergraph quantity also known as the com-
munication volume and (k − 1)-cut metric, by optimizing a
novel objective called probabilistic fanout. This choice allows
a simple local search heuristic to achieve comparable solu-
tion quality to the best existing hypergraph partitioners.
Our algorithm is arbitrarily scalable due to a careful de-

sign that controls computational complexity, space complex-
ity, and communication. In practice, we commonly process
hypergraphs with billions of vertices and hyperedges in a few
hours. We explain how the algorithm’s scalability, both in
terms of hypergraph size and bucket count, is limited only by
the number of machines available. We perform an extensive
comparison to existing distributed hypergraph partitioners
and find that our approach is able to optimize hypergraphs
roughly 100 times bigger on the same set of machines.
We call the resulting tool Social Hash Partitioner, and

accompanying this paper, we open-source the most scalable
version based on recursive bisection.

1. INTRODUCTION
The goal of graph partitioning is to divide the vertices

of a graph into a number of equal size components, so as
to minimize the number of edges that cross components.
It is a classical and well-studied problem with origins in
parallel scientific computing and VLSI design placement [8,
9]. Hypergraph partitioning is relatively less studied than
graph partitioning. Unlike a graph, in a hypergraph, an edge,
referred to as a hyperedge, can connect to any number of
vertices, as opposed to just two. The revised goal is to divide
the vertices of a hypergraph into a number of equal size
components, while minimizing the number of components
hyperedges span.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

While graph partitioning is utilized in a variety of ap-
plications, hypergraph partitioning can be a more accurate
model of many real-world problems [10,11,14]. For example,
it has been successfully applied for optimizing distributed
systems [19,26,29] as well as distributed scientific computa-
tion [10, 14]. For another example, hypergraph partitioning
accurately models the problem of minimizing the number of
transactions in distributed data placement [11].
Our primary motivation for studying hypergraph parti-

tioning comes from the problem of storage sharding common
in distributed databases. Consider a scenario with a large
dataset whose data records are distributed across several
storage servers. A query to the database may consume sev-
eral data records. If the data records are located on multiple
servers, the query is answered by sending requests to each
server. Hence, the assignment of data records to servers de-
termines the number of requests needed to process a query;
this number is often called the fanout of the query. Queries
with low fanout can be answered more quickly, as there is
less chance of contacting a slow server [12,29]. Thus, a com-
mon optimization is to choose an assignment of data records
that collocates the data required by different queries.
Storage sharding is naturally modeled by the hypergraph

partitioning problem; see Figure 1. For convenience, and en-
tirely equivalent to the hypergraph formulation, we follow
the notation of [15, 19] and define the problem using a bi-
partite graph. Let G = (Q∪D, E) be an undirected bipartite
graph with disjoint sets of query vertices, Q, and data ver-
tices, D. The goal is to partition D into k parts, that is, find
a collection of k disjoint subsets V1, . . . , Vk covering D that
minimizes an objective function. The resulting subsets, also
called buckets, should be balanced, that is, |Vi| ≤ (1 + ε)n

k
for all 1 ≤ i ≤ k and some ε ≥ 0, where n = |D|.
This optimization is exactly equivalent to balanced hyper-

graph partitioning with the set of vertices D and hyperedges
{v1, . . . , vr}, vi ∈ D for every q ∈ Q with {q, vi} ∈ E. The
data vertices are shared between the bipartite graph and
its hypergraph representation, and each query vertex cor-
responds to a single hyperedge that spans all data vertices
connected to that query vertex in the bipartite graph. Fig-
ures 1b and 1c show this equivalent representation.
For a given partitioning P = {V1, . . . , Vk} and a query

vertex q ∈ Q, we define the fanout of q as the number of
distinct buckets having a data vertex incident to q:

fanout(P, q) = |{Vi : ∃{q, v} ∈ E, v ∈ Vi}|.

1418

server 2server 1

4

5

6

3

1

2

application

database

(a) Storage sharding

queries Q

data D
1 2 3 4 5 6

bucket V1 bucket V2

(b) Model with bipartite graph

1

2
3

4

5

6

bucket V1

bucket V2

(c) Model with hypergraph

Figure 1: The storage sharding problem modeled with the (b) bipartite graph and (c) hypergraph partitioning. Given three
queries (red), {1, 2, 6}, {1, 2, 3, 4}, {4, 5, 6}, the goal is to split six data vertices (blue) into two buckets, V1 and V2, so that
the average query fanout is minimized. For V1 = {1, 2, 3}, V2 = {4, 5, 6}, fanout of the queries is 2, 2, and 1, respectively.

The quality of partitioning P is the average query fanout:

fanout(P) =
1

|Q|
∑
q∈Q

fanout(P, q).

The fanout minimization problem is, given a graph G, an
integer k > 1, and a real number ε ≥ 0, find a partitioning
of G into k subsets with the minimum average fanout.
Modulo irrelevant constant factors, the fanout is also

called the communication volume [13] and the (k - 1) cut
metric. Arguably this is the most widely used objective for
hypergraph partitioning [7, 13].1 Fanout is also closely re-
lated to the sum of external degrees, but not identical [22].2

Not surprisingly, the hypergraph partitioning problem is
NP-hard [6]. Hence, exact algorithms are only capable of deal-
ing with fairly small problem sizes. Practical approaches all
use heuristics. Even then, a significant problem with the
majority of proposed algorithms is scalability. Scalability is
desirable because modern graphs can be massive; for exam-
ple, the Facebook Social Graph contains billions of vertices
and trillions of edges, consuming many hundred of petabytes
of storage space [29].
Scalability can be achieved through distributed computa-

tion, where the algorithm is distributed across many work-
ers that compute a solution in parallel. Earlier works on
distributed hypergraph partitioning have proposed and im-
plemented such algorithms, but as we argue in Section 2 and
experimentally demonstrate in Section 4, none of the exist-
ing tools are capable of solving the problem at large scale. No
existing partitioner was able to partition a hypergraph with
a billion hyperedges using four machines, and hypergraphs
relevant to storage sharding at Facebook can be two or three
orders of magnitude larger.
With this in mind, we design, implement, and open source

a scalable distributed algorithm for fanout minimization. We
denote the resulting implementation Social Hash Partitioner
(SHP) because it can be used as the hypergraph partitioning
component of the Social Hash framework introduced in [29].
The greater framework has several other major components
and the specific choice of hypergraph partitioner was only
briefly mentioned previously, and this entirely self-contained
paper delves into our partitioner in detail. The contributions
of the paper are the following:
1Although communication volume seems a more popular
term for the measure in hypergraph partitioning commu-
nity, we utilize fanout here to be consistent with database
sharding terminology.
2The sum of external degrees (SOED) objective is equiva-
lent to unnormalized fanout plus the number of query ver-
tices with fanout greater than one; that is, SOED is the
communication volume plus the hyperedge cut.

• We design an iterative algorithm for hypergraph par-
titioning aimed at optimizing fanout through a clas-
sical local search heuristic [23] with two substantive
modifications. The first is a novel objective function
that generalizes fanout called probabilistic fanout ; us-
ing this objective for fanout minimization improves re-
sult quality and algorithm convergence. Our second
modification facilitates a distributed implementation
of the algorithm.
• We describe SHP and provide a detailed implementa-
tion of the algorithm that runs in a parallel manner,
carefully explaining how it limits memory usage, com-
putation, and communication. SHP relies on the vertex-
centric programming model and scales to hypergraphs
with billions of vertices and hyperedges with a reason-
able number of machines. In addition to optimizing
fanout, we also show that SHP can optimize other hy-
pergraph objectives at scale. We have open sourced the
simple code for this implementation.
• We present results of extensive experiments on a col-
lection of real-world and synthetic hypergraphs. These
results show that SHP is arbitrarily scalable while pro-
ducing partitions of comparable quality to existing
partitioners. SHP is able to partition hypergraphs 100x
larger than existing distributed partitioners, making it
the only solution capable of partitioning billion-vertex
bipartite graphs using a cluster of machines.

We emphasize that the paper describes an algorithmic so-
lution utilized in our Social Hash framework. We refer the
reader to [29] for the details of the framework, additional
applications, and real-world experiments.

2. RELATED WORK
There exists a rich literature on graph partitioning from

both theoretical and practical points of view. We refer the
reader to surveys by Bichot and Siarry [8] and by Bu-
luç et al. [9]. Next we discuss existing approaches for storage
sharding that utilize graph partitioning and review theoret-
ical results on the problem. Then we describe existing li-
braries for hypergraph partitioning, focusing on the publicly
available ones. Finally, we analyze limitations of the tools,
which motivate the development of our new solution, SHP.

Storage sharding. Data partitioning is a core compo-
nent of many existing distributed data management sys-
tems [11, 19, 24, 26, 29]. The basic idea is to co-locate re-
lated data so as to minimize communication overhead. In
many systems, the data partitioning problem is reduced to
a variant of graph partitioning [11,19,24]; a solution is then

1419

found using a publicly available library such as Metis [21].
However, hypergraph partitioning is a better model in sev-
eral scenarios of storage sharding [26,29]. There exists much
fewer tools for partitioning of hypergraphs, as the problem
tends to be harder and more computationally expensive than
graph partitioning.

Theoretical aspects. The fanout minimization problem is
a generalization of balanced k-way graph partitioning (also
called minimum bisection when k = 2), which is a central
problem in design and analysis of approximation algorithms.
Andreev and Räcke [6] show that, unless P=NP, there is no
algorithm with a finite approximation factor for the problem
when one requires a perfect balance, that is, ε = 0. Hence,
most works focus on the case ε > 0. Leighton et al. [27] and
Simon and Teng [30] achieved an O(log k logn) approxima-
tion algorithm for ε = 1, that is, when the maximum size of
the resulting buckets is 2n

k
. The bound has been improved

to O(
√

log k logn) for ε = 1 by Krauthgamer et al. [25] and
to O(logn) for ε > 0 by Feldmann and Foschini [17].
We stress that being of high theoretical importance, the

above approximation algorithms are too slow to be used for
large graphs, as they require solving linear programs. Hence,
most of the existing methods for graph and hypergraph par-
titioning are heuristics based on a simple local search op-
timization [9]. We follow the same direction and utilize a
heuristic that can be implemented in an efficient way. It is
unlikely that one can provide strong theoretical guarantees
on a local search algorithm for our problem. Since fanout
minimization is a generalization of minimum bisection, it
would imply a breakthrough result.

Existing tools for hypergraph partitioning. As a gen-
eralization of graph partitioning, hypergraph partitioning
is a more complicated topic and the corresponding algo-
rithms are typically more compute and memory intensive.
Here we focus on existing solutions designed for hypergraph
partitioning. PaToH [10], hMetis [20], and Mondriaan [32]
are software packages providing single-machine algorithms.
The tools implement different variants of local refine-
ment algorithms, such as Kernighan-Lin [23] or Feduccia-
Mattheyses [18], that incrementally swap vertices among
partitions to reduce an optimization objective, until the pro-
cess reaches a local minimum. Since such local search al-
gorithms can suffer from getting stuck in local minima, a
multi-level paradigm is often used. The idea is to create a
sequence of “coarsened” hypergraphs that approximate the
original hypergraph but have a smaller size. Then the refine-
ment heuristic is applied on the smaller hypergraph, and the
process is reverted by an uncoarsening procedure. Note that
the above software packages all require random-access to the
hypergraph located in memory; as a result these packages
can only handle smaller hypergraphs.
Parkway [31] and Zoltan [14] are distributed hypergraph

partitioners that are based on a parallel version of the multi-
level technique. Unfortunately, as we argue below and show
in our experiments, the provided implementations do not
scale well. We also mention a number of more recent tools
for hypergraph partitioning. UMPa [13] is a serial partitioner
with a novel refinement heuristic. It aims at minimizing sev-
eral objective functions simultaneously. HyperSwap [33] is
a distributed algorithm that partitions hyperedges, rather
than vertices. rFM [28], allows replication of vertices in ad-

dition to vertex moves. We do not include these algorithms
in our experimental study as they are not open-source and
they are rather complex to be re-implemented in a fair way.

Limitations of existing solutions. Parkway and Zoltan
are two hypergraph partitioners that are designed to work
in a distributed environment. Both of the tools implement a
multi-level coarse/refine technique [20]. We analyzed the al-
gorithms and identified the following scalability limitations.
• First, multi-level schemes rely on an intermediate step
in which the coarsest graph is partitioned on a sin-
gle machine before it gets uncoarsened. While the ap-
proach is applicable for graph partitioning (when the
coarsest graph is typically fairly small), it does not al-
ways work for hypergraphs. For large instances, the
number of distinct hyperedges can be substantial, and
even the coarsest hypergraph might not fit the memory
of a single machine.
• Second, the refinement phase itself is often equivalent
to the local refinement scheme presented in our work,
which if not done carefully can lead to scalability is-
sues. For example, Parkway is using a single coordina-
tor to approve vertex swaps while retaining balance.
This coordinator holds the concrete lists of vertices
and their desired movements, which leads to yet an-
other single machine bottleneck.
• Third, the amount of communication messages be-
tween different machines/processors is an important
aspect for a distributed algorithm. Neither Zoltan
nor Parkway provide strong guarantees on communi-
cation complexity. For example, the authors of Zoltan
present their evaluation for mesh-like graphs (com-
monly used in scientific computing) and report rel-
atively low communication overhead. Their results
might not hold for general non-planar graphs.

In contrast, our algorithm is designed (as explained in the
next section) to avoid these single machine bottlenecks and
communication overheads.

3. SOCIAL HASH PARTITIONER
Our algorithm for the fanout minimization problem, as

mentioned in Section 1, assumes that the input is repre-
sented as a bipartite graph G = (Q ∪ D, E) with vertices
representing queries and data objects, and edges represent-
ing which data objects are needed to answer the queries. The
input also specifies the number of servers that are available
to serve the queries, k > 1, and the allowed imbalance, ε > 0.

3.1 Algorithm
For ease of presentation, we start with a high-level

overview of our algorithm. The basic idea is inspired by
the Kernighan-Lin heuristic [23] for graph partitioning; see
Algorithm 1. The algorithm begins with an initial random
partitioning of data vertices into k buckets. For every ver-
tex, we independently pick a random bucket, which for large
graphs guarantees an initial perfect balance. The algorithm
then proceeds in multiple steps by performing vertex swaps
between the buckets in order to improve an objective func-
tion. The process is repeated until a convergence criterion is
met (e.g., no swapped vertices) or the maximum number of
iterations is reached.
Although the algorithm is similar to the classical one [23],

we introduce two critical modifications. The first concerns

1420

Algorithm 1: Fanout Optimization
Input : graph G = (Q∪D, E), the number of buckets

k, imbalance ratio ε
Output: buckets V1, V2, . . . , Vk

for v ∈ D do /* initial partitioning */
bucket[v]← random(1, k);

repeat /* local refinement */
for v ∈ D do

for i = 1 to k do
gaini[v]← ComputeMoveGain(v, i);

/* find best bucket */
target[v]← arg maxi gaini[v];
/* update matrix */
if gaintarget[v][v] > 0 then

Sbucket[v],target[v] ← Sbucket[v],target[v] + 1;

/* compute move probabilities */
for i, j = 1 to k do

probability[i, j]← min(Si,j ,Sj,i)

Si,j
;

/* change buckets */
for v ∈ D do

if gains[v] > 0 and
random(0, 1) < probability[bucket[v], target[v]]
then

bucket[v]← target[v];

until converged or iteration limit exceeded ;

the objective function and is intended to improve the qual-
ity of the final result. The second is related to how we
choose and swap vertices between buckets; this modification
is needed to make distributed implementations efficient.

Optimization objective. Empirically, we found that fanout
is rather hard to minimize with a local search heuristic.
Such a heuristic can easily get stuck in a local minimum
for fanout minimization. Figure 2 illustrates this with an
example which lacks a single move of a data vertex that
improves fanout. All move gains are non-positive, and the
local search algorithm stops in the non-optimal state. To
alleviate this problem, we propose a modified optimization
objective and assume that a query q ∈ Q only requires an
adjacent data vertex v ∈ D, {q, v} ∈ E for some probability
p ∈ (0, 1) fixed for all queries. This leads to so-called proba-
bilistic fanout. The probabilistic fanout of a given query q,
denoted by p-fanout(q), is the expected number of servers
that need to be contacted to answer the query given that
each adjacent server needs to be contacted with indepen-
dent probability p.
Formally, let P = {V1, . . . , Vk} be a given partitioning of
D, and let the number of data vertices in bucket Vi adjacent
to query vertex q be ni(q) = |{v : v ∈ Vi and {q, v} ∈ E}|.
Then server i is expected to be queried with probability 1−
(1−p)ni(q). Thus, the p-fanout of q is

∑k
i=1(1−(1−p)ni(q)),

and our probabilistic fanout objective, denoted p-fanout, for
Algorithm 1 is, given p ∈ (0, 1), minimize

1

|Q|
∑
q∈Q

p-fanout(q) =
1

|Q|
∑
q∈Q

k∑
i=1

(
1− (1− p)ni(q)

)
.

q1

V1 V2

q2 q3

1 2 3 5 6 74 8

Figure 2: An example in which no single move/swap of
data vertices improves query fanout. Probabilistic fanout
(for every 0 < p < 1) can be improved by exchanging buckets
of vertices 4 and 5 or by exchanging buckets of vertices 3 and
6. Applying both of the swaps reduces (non-probabilistic)
fanout of q1 and q3, which yields an optimal solution.

This revised objective is a smoother version of the (non-
probabilistic) fanout. It is simple to observe that p-fanout(q)
is less than or equal to fanout(q) for all q ∈ Q. If the number
of data adjacencies of q in bucket i is large enough, that is,
ni(q) � 1, then the bucket contributes to the objective a
value close to 1. If ni(q) = 1, then the contribution is p,
which is smaller for p < 1. In contrast, the non-probabilistic
fanout contribution is simply 1, the same for all cases with
ni(q) ≥ 1.
From a theoretical perspective, the way probabilistic

fanout smooths fanout is by averaging the fanout objective
over an ensemble of random graphs similar to the bipartite
graph being partitioned. A bipartite graph from this random
graph ensemble is created by independently selecting edges
of the original bipartite graph with probability p. Then the
probabilistic fanout is precisely the expectation of fanout
across this random graph ensemble. In essence, p-fanout
minimization is forced to select a partition that performs
robustly across a collection of similar hypergraphs, reducing
the impact of local minima. With the new objective the state
in Figure 2 is no longer a local minimum, as data vertices 1
and 2 could be swapped to improve the p-fanout of both q1
and q3.
An interesting aspect of p-fanout is how it behaves in ex-

treme cases. As we show next, when p → 1, p-fanout be-
comes the (non-probabilistic) fanout. When p→ 0, the new
measure is equivalent to optimizing a weighted edge-cut, an
objective suggested in prior literature [4, 5, 10]. In practice
it means that p-fanout is a generalization of these measures
and Algorithm 1 can be utilized to optimize either by setting
small or large values of p.

Lemma 1. Minimizing p-fanout in the limit as p → 1 is
equivalent to minimizing fanout.

Proof. We write p-fanout(q) for a query q ∈ Q as

k∑
i=1

(
1− (1− p)ni(q)

)
=

k∑
i=1

(
1− eni(q)log(1−p)

)
.

Now as p → 1, log(1 − p) goes to negative infinity and the
exponential term is zero unless ni(q) = 0 in which case it
equals one. Let δ(x) = 1 if x is true and δ(x) = 0, otherwise.
In the limit, the above expression equals

k∑
i=1

(
1− δ(ni(q) = 0)

)
=

k∑
i=1

δ(ni(q) > 0),

which is fanout of q.

1421

Next we show that optimizing p-fanout as p→ 0 is equiv-
alent to a graph partitioning problem on an edge-weighted
graph constructed from data vertices. For a pair of data ver-
tices, u, v ∈ D, let w(u, v) be the number of common queries
shared by these data vertices, that is, w(u, v) = |{q ∈ Q :
{q, u} ∈ E and {q, v} ∈ E}|. Consider a (complete) graph
with vertex set D and let w(u, v) be the weight of an edge
between u, v ∈ D. For a given graph and a partition of its
vertices, an edge-cut is the sum of edge weights between
vertices in different buckets.

Lemma 2. Minimizing p-fanout in the limit as p → 0 is
equivalent to graph partitioning amongst the data vertices
while minimizing weighted edge-cut, where the edge weight
between u ∈ D and v ∈ D is given by w(u, v).

Proof. We begin from the definition of p-fanout and
consider the Taylor expansion around p = 0:

p-fanout =
∑
q∈Q

k∑
i=1

(
1− (1− p)ni(q)

)

=
∑
q∈Q

k∑
i=1

−
(
ni(q)p+ ni(q)(ni(q)− 1)

p2

2
+O(p3)

)

=C − p2

2

∑
q∈Q

k∑
i=1

ni(q)
2 +O(p3).

The first term, C =
∑

q∈Q
∑k

i=1 ni(q)(
p2

2
− p), is a con-

stant proportional to the number of edges in the graph.
Thus, it is irrelevant to the minimization. The last term,
O(p3), can also be ignored for optimization when p → 0.
We simplify the second term further.

−p
2

2

∑
q∈Q

k∑
i=1

ni(q)
2 = −p

2

2

k∑
i=1

∑
q∈Q

ni(q)
2

= −p
2

2

k∑
i=1

∑
u∈Vi

∑
v∈Vi

w(u, v)

 .

Therefore, minimizing probabilistic fanout in the limit as
p → 0 is equivalent to maximizing the sum, taken over all
buckets, of edge weights between data vertices within the
same bucket, or maximizing within-bucket edge weights. Al-
ternatively, this is also equivalent to minimizing intra-bucket
edge weights, that is, minimizing weighted edge-cut between
buckets with edge weights given by w(u, v).

This p→ 0 limit is interesting because the resulting opti-
mization is an instance of the clique-net model suggested as
a heuristic for hypergraph partitioning [4,5,10]. The idea is
to convert the hypergraph partitioning problem to the (sim-
pler) graph partitioning problem. To this end, a hypergraph
is transformed to an edge-weighted unipartite graph, Gc,
on the same set of vertices, by adding a clique amongst all
pairs of vertices connected to a hyperedge. Multiple edges
between a vertex pair in the resulting graph are combined
by summing their respective weights. The buckets produced
by a graph partitioning algorithm on the new graph are then
used as a solution for hypergraph partitioning.
An obstacle for utilizing the clique-net model is the size of

the resulting (unipartite) graph Gc. If there is a hyperedge

connecting Ω(n) vertices, then Gc contains Ω(n2) edges,
even if the original hypergraph is sparse. Hence a common
strategy is to use some variant of edge sampling to filter out
edges with low weight in Gc [4, 5, 10]. Lemma 2 shows that
this is unnecessary: One can apply Algorithm 1 with a small
value of fanout probability, p, for solving the hypergraph
partitioning problem in the clique-net model.

Performing swaps. In order to iteratively swap vertices
between buckets, we compute move gains for the vertices,
that is, the difference of the objective function after moving
a vertex from its current bucket to another one. For every
vertex v ∈ D, we compute k values, referred to as gaini[v],
indicating the move gains to every bucket 1 ≤ i ≤ k. Then
every vertex chooses a target bucket that corresponds to the
highest move gain. (For minimization, we select the bucket
with the lowest move gain, or equivalently the highest neg-
ative move gain.) This information is used to calculate the
number of vertices in bucket i that chose target bucket j,
denoted Si,j , for all pairs of buckets 1 ≤ i, j ≤ k. Ideally,
we would move all these vertices from i to j to maximally
improve the objective. However, to preserve balance across
buckets, we exchange only min(Si,j , Sj,i) pairs of vertices
between buckets i and j.
In a distributed environment, we cannot pair vertices to-

gether for swaps easily, and so we instead perform the swaps
in an approximate manner. Our implementation defines a
probability for each vertex in bucket i with target bucket j
to be moved as min(Si,j ,Sj,i)

Si,j
. All vertices are then simultane-

ously moved to their target buckets respecting the computed
probabilities, for all pairs of buckets. With this choice of
probabilities, the expected number of vertices moved from
i to j and from j to i is the same; that is, the balance
constraint is preserved in expectation. After that swap, we
recompute move gains for all data vertices and proceed with
the next iteration.
We compute the move gains as follows. Assume that a

vertex v ∈ D is moved from bucket i to bucket j. Our objec-
tive function, p-fanout, might change only for queries adja-
cent to v and for the terms corresponding to Vi and Vj . Let
N (v) ⊆ Q be the subset of queries adjacent to v. The move
gain is then

gainj(v) =
∑

q∈N (v)

(
2− (1− p)ni(q)−1 − (1− p)nj(q)+1

)
−

∑
q∈N (v)

(
2− (1− p)ni(q) − (1− p)nj(q)

))
= p ·

∑
q∈N (v)

(
(1− p)nj(q) − (1− p)ni(q)−1

)
. (1)

Next we provide details of the implementation.

3.2 Implementation
Our implementation relies on the vertex-centric program-

ming model and runs in the Giraph framework [2]. In Gi-
raph, the input graph is stored as a collection of vertices
that maintain some local data (e.g., a list of adjacent ver-
tices). The vertices are distributed to multiple machines in
a cluster and communicate with each other via sending mes-
sages. A computation in Giraph is split into supersteps that
each consist of the following processing steps: (i) a vertex
executes a user-defined function based on local vertex data

1422

queries

data

superstep 1

c
u
rr
e
n
t
b
u
ck

e
ts

data

n
e
ig
h
b
o
r
d
a
ta

data

ta
rg

e
t
b
u
ck

e
ts master

queries

data

m
o
v
e

p
r
o
b
a
b
il
it
ie

s

master

superstep 3 superstep 4superstep 2

Figure 3: Distributed implementation of the fanout minimization algorithm in the vertex-centric framework with four super-
steps and synchronization barriers between them: (1) collecting query neighbor data, (2) computing move gains, (3) proposal
of target buckets, (4) sending move probabilities and performing moves.

and on received messages, (ii) the resulting output is sent
along outgoing edges. Note that since vertices operate only
with local data, such processing can easily be executed in
parallel and in a distributed environment. Supersteps end
with a synchronization barrier, which guarantees that mes-
sages sent in a given superstep are received at the beginning
of the next superstep. The whole computation is executed
iteratively for a certain number of rounds, or until a conver-
gence property is met.
Algorithm 1 is implemented in the vertex-centric model

in the following way; see Figure 3. The first two supersteps
compute move gains for all data vertices. As can be seen
from Equation 1, a move gain of v ∈ D depends on the state
of adjacent query vertices. Specifically, we need to know the
values ni(q) for every q ∈ Q and all buckets 1 ≤ i ≤ k;
we call this information the neighbor data of query q. The
first superstep is used to collect the neighbor data; to this
end, every data vertex sends its current bucket to the ad-
jacent queries, which aggregate the received messages into
the neighbor data. On the second superstep, the query ver-
tices send their neighbor data back to adjacent data vertices,
which use this information to compute their move gains ac-
cording to Equation 1.
Once data vertices have computed move gains, we choose

their target buckets and the next superstep aggregates this
information in matrix S, that stores the number of candidate
data vertices moving between pairs of buckets. The matrix
is collected on a dedicated machine, called master, which
computes move probabilities for the vertices. On the last su-
perstep, the probabilities are propagated from master to all
data vertices and the corresponding moves take effect. This
sequence of four supersteps continues until convergence.

3.3 Complexity
Our primary consideration in designing the algorithm is

to keep the implementation scalable to large instances. To
this end, we limit space, computational, and communication
complexity such that each is bounded by O(k|E|), where k
is the number of buckets.

Space complexity. We ensure every vertex v of G con-
sumes only O(|N (v)| + k) memory, where |N (v)| is the
number of neighbors of vertex v, so the total memory con-
sumption is O(|E|+k|V |). Every vertex keeps its adjacency
list, which is within the claimed limits. Additionally, ev-
ery query vertex q ∈ Q stores its neighbor data containing
|fanout(q)| = O(|N (q)|) entries. Every data vertex v ∈ D
stores move gains from its current bucket to all other buck-

ets, which includes up to O(k) values per vertex. The mas-
ter machine stores the information of move proposals for
every pair of buckets, that is, its memory consumption is
O(k2) = O(k|V |), which is again within the claimed memory
bound. Notice that since Giraph distributes vertices among
machines in a Giraph cluster randomly, the scheme does
not have a single memory bottleneck. All the machines are
equally loaded, and in order to have enough memory for
large graphs at a fixed number of buckets k, it is sufficient
to increase the cluster size, while keeping the implementa-
tion unchanged.

Computational complexity. Our algorithm is within a
bound of O(k|E|), assuming a constant number of refine-
ment iterations. The computationally resource intensive
steps are calculating the query neighbor data, which is per-
formed in O(|E|) time, and processing this information by
data vertices. The latter step is bounded by O(k|N (v)|)
steps for every v ∈ D, as this is the amount of informa-
tion being sent to v in superstep 2. Finally, computing and
processing matrix S requires O(|V |+ k2) = O(k|V |) time.

Communication complexity. Another important aspect of
a distributed algorithm is its communication complexity,
that is, the amount of messages sent between machines dur-
ing its execution. The supersteps 1, 3, and 4 are relatively
“lightweight” and require only |E|, |V |, and |V | messages of
constant size, respectively. The “heavy” one is superstep 2
in which every query vertex sends its neighbor data to all
its neighbors. We can upper bound the amount of sent in-
formation by k|E|, as neighbor data for every q ∈ Q con-
tains k entries. In practice, however, this is bounded by∑

q∈Q fanout(q)·|N (q)|, as the zero entries of neighbor data
(having ni(q) = 0) need not be sent as messages. Hence,
a reasonable estimation of the amount of sent messages is
fanout · |E| per iteration of Algorithm 1, where fanout is
the average fanout of queries on the current iteration.
We stress here that Giraph has several built-in optimiza-

tions that can further reduce the amount of sent and received
messages. For example, if exactly the same message is sent
between a pair of machines several times (which might hap-
pen, for example, on superstep 2), then the messages are
combined into a single one. Similarly, if a message is sent
between two vertices residing on the same machine, then the
message can be replaced with a read from the local memory
of the machine.
Another straightforward optimization is to maintain some

state of the vertices and only recompute the state between

1423

iterations of the algorithm when necessary. A natural can-
didate is the query neighbor data, which is recomputed only
when an adjacent data vertex is moved; if the data vertex
stays in the same bucket on an iteration, then it does not
send messages on superstep 1 for the next iteration.

Recursive partitioning. The discussion above suggests
that Algorithm 1 is practical for small values of k, e.g.,
when k = O(1). In this case the complexity of the algo-
rithm is linear in the size of the input hypergraph. How-
ever in some applications, substantially more buckets are
needed. In the extreme with k = Ω(|V |), the implementa-
tion requires quadratic time and memory, and the run-time
for large instances could be unreasonable even on a large
Giraph cluster.
A common solution to this problem in the hypergraph par-

titioning literature is to observe that the partitioning can be
constructed recursively. In recursive partitioning, the algo-
rithm splits data vertices into r > 1 parts V1, . . . , Vr. This
splitting algorithm is recursively applied to all the graphs
induced by vertices Q ∪ V1, . . . ,Q ∪ Vr independently. The
process continues until we achieve k buckets, which requires
dlogr ke levels of recursion. A typical strategy is to employ
r = 2; that is, recursive bisection [15,30].
Notice that Algorithm 1 can be utilized for recursive par-

titioning with just a single modification. At every recursion
step, data vertices are constrained as to which buckets they
are allowed to be moved to. For example, at the first level of
recursive bisection, all data vertices are split into V1 and V2.
At the second level, the vertices are split into four buckets
V3, V4, V5, V6 so that the vertices v ∈ V1 are allowed to move
between buckets V3 and V4, and the vertices v ∈ V2 are al-
lowed to moved between V5 and V6. In general, the vertices
of Vi for 1 ≤ i ≤ k/2 are split into V2i+1 and V2i+2.
An immediate implication of the constraint is that every

data vertex only needs to compute r move gains on each it-
eration. Similarly, a query vertex needs to send only a sub-
set of its neighbor data to data vertices that contains at
most r values. Therefore, the memory requirement as well
as the computational complexity of recursive partitioning
is O(r|E|) per iteration, while the amount of messages sent
on each iteration does not exceed O(r|E|), which is a signifi-
cant reduction over direct (non-recursive) partitioning when
r � k. This improvement sometimes comes with the price
of reduced quality; see Section 4 for a discussion. Accom-
panying the paper, we open-source a version that performs
recursive bisection, as it is the most scalable.

3.4 Advanced implementation
While the basic algorithm described above performs well,

this subsection describes additional improvements that we
have included in our implementation, motivated by our prac-
tical experience.
First, randomly selecting vertices to swap between a pair

of buckets i and j may not select those with the highest move
gains to swap. In the ideal serial implementation, we would
have two queues of gains, one corresponding to vertices in
bucket i that want to move to j, and the other for vertices
in bucket j that want to move to i, sorted by move gain
from highest to lowest. We would then pair vertices off for
swapping from highest to lowest.
This is difficult to implement exactly in a distributed en-

vironment. Instead of maintaining two queues for each pair

of buckets, we maintain two histograms that contain the
number of vertices with move gains in exponentially sized
bins. We then match bins in the two histograms for max-
imal swapping with probability one, and then probabilisti-
cally pair the remaining vertices in the final matched bins.
In superstep 4, the master distributes move probabilities for
each bin, most of which are either one or zero. This change
allows our implementation to focus on moving the most im-
portant gains first. A further benefit is that we can allow
non-positive move gains for target buckets. A pair of posi-
tive and negative histogram bins can swap if the sum of the
gains is expected to be positive, which frees up additional
movement in the local search.
Additionally, we utilize the imbalance allowed by ε to con-

sider imbalanced swaps. For recursive partitioning, we typ-
ically do not want to allow ε imbalance for the early recur-
sive splits since that will substantially constrain movement
at later steps of the recursion. Instead, using ε multiplied by
the ratio of the current number of recursive splits to the final
number of recursive splits works reasonably well in practice.

4. EXPERIMENTS
Here we describe our experiments that are designed to

answer the following questions:

• What is the impact of reducing fanout on query pro-
cessing in a sharded database (Section 4.2.1)?

• How well does our algorithm perform in terms of qual-
ity and scalability compared to existing hypergraph
partitioners (Sections 4.2.2 and 4.2.3)?

• How do various parameters of our algorithm contribute
to its performance and final result (Section 4.2.4)?

4.1 Datasets
We use a collection of hypergraphs derived from large so-

cial networks and web graphs; see Table 1. We transform the
input hypergraph into a bipartite graph, G = (Q∪D, E), as
described in Section 1.
In addition, we use five large synthetically generated

graphs that have similar characteristics as the Facebook
friendship graph [16]. These generated graphs are a natu-
ral source of hypergraphs; in our storage sharding applica-
tion, to render a profile-page of a Facebook user, one might
want to fetch information about a user’s friends. Hence, ev-
ery user of a social network serves both as query and as data
in a bipartite graph.
In all experiments, isolated queries and queries of degree

one (single-vertex hyperedges) are removed, since they do
not contribute to the objective, having fanout equal to one
in every partition.

4.2 Evaluation
We evaluate two versions of our algorithm, direct parti-

tioning into k buckets, SHP-k, and recursive bisection with
log2 k levels, SHP-2. The algorithms are implemented in Java
and SHP-2 is available at [1]. Both versions can be run in a
single-machine environment using one or several threads ex-
ecuted in parallel, or in a distributed environment using a
Giraph cluster. Throughout the section, we use imbalance
ratio ε = 0.05.

1424

Table 1: Properties of hypergraphs used in our experiments

hypergraph source |Q| |D| |E|
email-Enron [3] 25,481 36,692 356,451
soc-Epinions [3] 31,149 75,879 479,645
web-Stanford [3] 253,097 281,903 2,283,863
web-BerkStan [3] 609,527 685,230 7,529,636
soc-Pokec [3] 1,277,002 1,632,803 30,466,873
soc-LJ [3] 3,392,317 4,847,571 68,077,638
FB-10M [16] 32,296 32,770 10,099,740
FB-50M [16] 152,263 154,551 49,998,426
FB-2B [16] 6,063,442 6,153,846 2× 109

FB-5B [16] 15,150,402 15,376,099 5× 109

FB-10B [16] 30,302,615 40,361,708 10× 109

4.2.1 Storage Sharding
Here we argue and experimentally demonstrate that

fanout is a suitable objective function for our primary ap-
plication, storage sharding. We refer the reader to the de-
scription of the Social Hash framework [29] for more detailed
evaluation of the system and other applications of SHP.
In many applications, queries issue requests to multiple

storage servers, and they do so in parallel. As such, the
latency of a multi-get query is determined by the slowest
request. By reducing fanout, the probability of encounter-
ing a request that is unexpectedly slower than the others
is reduced, thus reducing the latency of the query. This is
the fundamental argument for using fanout as the objective
function for the assignment problem in the context of storage
sharding. We ran a simple experiment to confirm our under-
standing of the relationship between fanout and latency. We
issued trivial remote requests and measured (i) the latency
of a single request (fanout = 1) and (ii) the latency of several
requests sent in parallel (fanout > 1) (that is, the maximum
over the latencies of single requests). Figure 4a shows the
results of this experiment and illustrates the dependency
between various percentiles of multi-get query latency and
fanout of the query. The observed latencies match our ex-
pectations and indicate that reducing fanout is important
for database sharding; for example, one can almost half the
average latency by reducing fanout from 40 to 10.
There are several possible caveats to our analysis of the

relationship between fanout and latency in the simplistic ex-
periment. For example, reducing fanout generally increases
the size of the largest request to a server, which could in-
crease latency. With this in mind, we conduct a more re-
alistic experiment with 40 servers storing a subset of the
Facebook friendship graph. For the experiment, the data
is stored in a memory-based, key-value store, and there
is one data record per user. In order to shard the data,
we minimize fanout using our SHP algorithm applied for
the graph. We sample a live traffic pattern, and issued the
same set of queries, while measuring fanout and latency of
each query. The dependency between fanout and latency
are shown in Figure 4b. Here the queries needed to issue
requests to only 9.9 servers on average. Notice that we do
not include measurements for fanout > 35, as there are very
few such queries; this also explain several “bumps” in la-
tency for queries with large fanout. The results demonstrate
that decreasing fanout from 40 (corresponding to a “random”
sharding) to 10 (“social” sharding) yields a 2x lower average
latency for the queries, which agrees with the results of the
earlier experiment.

1t

5t

10t

15t

20t

25t

30t

35t

la
te
nc
y

403530252015105
fanout

Percentile:
99%
95%
90%
50%

(a) Synthetic queries

1t

2t

3t

4t

5t

6t

7t

8t

la
te
nc
y

403530252015105
fanout

Percentile:
99%
95%
90%
50%

(b) Real-world queries

Figure 4: Distribution of latency for multi-get queries with
various fanout, where t is the average latency of a single call.

Finally, we mention that after we deployed storage shard-
ing optimized with SHP to one of the graph databases at
Facebook, containing thousands of storage servers, we found
that measured latencies of queries decreased by over 50% on
average, and CPU utilization also decreased by over 50%;
see [29] for more details.

4.2.2 Quality
Next we compare the quality of our algorithm as mea-

sured by the optimized fanout with existing hypergraph par-
titioners. We identified the following tools for hypergraph
partitioning whose implementations are publicly available:
hMetis [20], Mondriaan [32], Parkway [31], PaToH [10], and
Zoltan [14]. These are tools that can process hypergraphs
and can optimize fanout (or the closely related sum of ex-
ternal degrees) as the objective function.
For a fair comparison, we set allowed imbalance ε = 0.05

and used default optimization flags for all partitioners. We
also require that partitions can be computed with 10 hours
without errors. We computed the fanout of partitions pro-
duced with these algorithms for various numbers of buck-
ets, k, and found that hMetis and PaToH generally pro-
duced higher fanout than the other partitioners on our hy-
pergraphs. So for clarity, we focus on results from SHP-2 and
SHP-k, along with Mondriaan, Parkway, and Zoltan.
Figure 5 compares the fanout of partitions produced by

these algorithms for various bucket count against the min-
imum fanout partition produced across all algorithms. No
partitioner is consistently the best across all hypergraphs
and bucket count. However, Zoltan and Mondriaan gener-
ally produce high quality partitions in all circumstances.

1425

e
m

a
il−

E
n

ro
n

s
o

c
−

E
p

in
io

n
s

w
e

b
−

S
ta

n
fo

rd
w

e
b
−

B
e

rk
S

ta
n

s
o

c
−

P
o

ke
c

s
o

c
−

L
J

F
B
−

1
0

M
F

B
−

5
0

M

0 10 20 30

512

128

32

8

2

512

128

32

8

2

512

128

32

8

2

512

128

32

8

2

512

128

32

8

2

512

128

32

8

2

512

128

32

8

2

512

128

32

8

2

(Fanout − Min Fanout) / Min Fanout (%)

B
u

c
ke

t
c
o

u
n

t,
 k

algorithm ● SHP−2 SHP−k Zoltan Parkway Mondriaan

Figure 5: Fanout optimization of different single-machine
partitioners across hypergraphs from Table 1 for k ∈
{2, 8, 32, 128, 512}.

SHP-2, SHP-k and to a lesser extent Parkway are more in-
consistent. For example, both versions of SHP have around a
10− 30% increased fanout, depending on the bucket count,
over the minimum fanout on the web hypergraphs. On the
other hand, SHP generally performs well on FB-10M and
FB-50M, likely the hypergraphs closest to our storage shard-
ing application. We also note a trade-off between quality
and speed for recursive bisection compared to direct k-way
optimization. The fanout from SHP-2 is typically, but not
always, 5− 10% larger than SHP-k.

16

64

256

1024

4096

to
ta

l t
im

e
(m

in
ut

es
)

5x10^8 2x10^9 5x10^9 10x10^9
number of edges, |E|

Bucket count, k:
2 32 512
8192 131072

(a) Total time of SHP-2 across four largest hypergraphs from
Table 1 for various number of buckets and 4 machines.

16000

12000

8000

4000

0

to
ta

l t
im

e
(m

in
ut

es
)

4 8 16
#machines

2000

1500

1000

500

0

ru
n-

tim
e

(m
in

ut
es

)

4 8 16
#machines

(b) Run-time and total time of SHP-2 on FB-10B for various num-
ber buckets and machines in a cluster.

Figure 6: Run-time and total time (run-time of a single
machine multiplied by the number of machines) of SHP-2
across largest hypergraphs from Table 1 in a distributed
setting.

Because no partitioner consistently provides the lowest
fanout, we conclude that using all partitioners and taking
the lowest fanout across all partitions is an attractive option
if possible. However, as we shall see in the next section,
SHP-2 may be the only option for truly large hypergraphs
due to its superior scalability.

4.2.3 Scalability
In this section, we evaluate SHP’s performance in a dis-

tributed setting using the four largest hypergraphs in Ta-
ble 1. We use 4 machines for our experiments each hav-
ing the same configuration: Intel(R) Xeon(R) CPU E5-
2660 @ 2.20GHz with 144GB RAM.
First, we numerically verify the computational complex-

ity estimates from Section 3.3. Figure 6a shows SHP-2’s total
wall time as a function of the number of hyperedges across
the four largest hypergraphs. Notice that the y-axis is on a
log-scale in the figure. The data verifies that SHP-2’s com-
putational complexity is O(log k|E|), as predicted.
Next we analyze scalability of our approach with vari-

ous number of worker machines in a cluster. Figure 6b(left)
illustrates the run-time of SHP-2 using 4, 8, and 16 ma-
chines; Figure 6b(right) illustrates the total wall time using
the same configuration. While there is a reduction in the run-
time, the speedup is not proportional to the ratio of added
machines. We explain this by an increased communication
between the machines, which contributes to the performance
of our algorithm.
Now we compare SHP’s performance to the two existing

distributed partitioning packages, Parkway and Zoltan. The

1426

s
o

c
−

P
o

ke
c

s
o

c
−

L
J

F
B
−

5
0

M
F

B
−

2
B

F
B
−

5
B

F
B
−

1
0

B

100 10000

8192

512

32

8192

512

32

8192

512

32

8192

512

32

8192

512

32

8192

512

32

Time (minutes)

B
u

c
ke

t
c
o

u
n

t,
 k

algorithm ● SHP−2 SHP−k Zoltan Parkway

Figure 7: Run-time in minutes of distributed hypergraph
partitioners across hypergraphs from Table 1 for k ∈
{32, 512, 8192}. All tests run on 4 machines. Partitioners
that fail process an instance or if their run-time exceeds 10
hours are shown with the maximum value.

comparison with Zoltan is particularly relevant since it pro-
vides generally lower fanout in the quality comparison.
Figure 7 shows the run-time of these partitioners in min-

utes across the hypergraphs and various bucket count. If the
result was not computed within 10 hours without errors, we
display the maximum value in the figure. Parkway only suc-
cessfully ran on one of these graphs within the time allotted,
because it runs out of memory on the other hypergraphs in
the 4-machine setting. Similarly, Zoltan also failed to par-
tition hypergraphs larger than soc-LJ. On the other hand,
SHP-k ran on FB-10B for 32 buckets, and only SHP-2 was
able to successfully run on all tests.
Further, note that the x-axis is on a log-scale in Figure 7.

So SHP can not only run on larger graphs with more buckets
than Zoltan and Parkway on these 4 machines, the run-time
is generally substantially faster. SHP-2 finished partitioning
every hypergraph in less than 5 hours, and for the hyper-
graphs on which SHP-k succeeded, it ran less than 8 hours.
While not observable in Figure 7, Zoltan’s run-time was

largely independent of the bucket count, such that for 8192
buckets on FB-50M it was faster than SHP-k. This is a rela-
tively rare case; typically SHP-k, despite having a run-time
that scales linearly with bucket count, was faster in our ex-
periments. While in all examples Zoltan was much slower
than SHP-2, for a division of a small hypergraph into a very
large number of buckets, Zoltan could conceivably be faster,
as SHP-2’s run-time scales logarithmically with bucket count.

-40

-30

-20

-10

0

1.00.90.80.70.60.50.40.30.20.10.0

fanout probability, p

Bucket count, k:
2 8 32
128 512

fa
no

ut
 r

ed
uc

tio
n

 (%
)

Figure 8: Fanout optimization with SHP-2 on soc-Pokec
as a function of p for different bucket counts.

5

4

3

2

1

0
av

er
ag

e
fa

no
ut

45403530252015105

fanout probability:
p=0.5
p=1.0

60

40

20

0m
ov

ed
 v

er
tic

es
, %

45403530252015105

iteration

Figure 9: Progress of fanout optimization with SHP-k for
p = 0.5 and p = 1.0 on soc-LJ using k = 8.

4.2.4 Parameters of SHP
There are two parameters affecting Algorithm 1: the

fanout probability and the number of refinement iterations.
To investigate the effect of these parameters, we apply SHP-2
for various values of 0 < p < 1; see Figure 8 illustrating the
resulting percentage reduction in (non-probabilistic) fanout
on soc-Pokec. Values between 0.4 ≤ p ≤ 0.6 tend to pro-
duce the lowest fanout, with p = 0.5 being a reasonable
default choice for all tested values of bucket count k. The
point p = 1 in the figure corresponds to optimizing fanout
directly with SHP-2, and yields worse results than p = 0.5.
One explanation, as mentioned in Section 3.1, is that the

local search is more likely to land in a local minimum with
p = 1. This is illustrated in Figure 9 for SHP-k, where the
number of moved vertices per iteration on soc-LJ is signifi-
cantly lower for p = 1 than for p = 0.5 at earlier iterations.
The number of moved vertices for p = 0.5 is below 0.1%
after iteration 35; this number is below 0.01% after itera-
tion 49. This behavior on soc-Pokec and soc-LJ for SHP
was observed typical across many hypergraphs, and moti-
vates our default parameters. We set p = 0.5 as the default

1427

0

20

40

60

80

fa
no

ut
 in

cr
ea

se
 o

ve
r

S
H

P
-2

 w
ith

 p
=

0.
5

(%
)

2 8 32
bucket count, k

2 8 32
bucket count, k

email-Enron
soc-Epinions
web-BerkStan
web-Stanford
soc-Pokec
soc-LJ

p=1.0 p=0.0

Figure 10: Probabilistic fanout with p = 0.5 vs direct
fanout optimization (p = 1.0) and the clique-net objective
(p = 0.0) for k ∈ {2, 8, 32}.

for p-fanout, 60 for the maximum number of refinement it-
erations of SHP-k, and 20 iterations per bisection for SHP-2.
Figure 10 quantifies the impact of using probabilistic

fanout for SHP-2 across a variety of hypergraphs for 2, 8,
and 32 buckets. The left-hand plot displays the substantial
percentage increases in fanout caused by using direct fanout
optimization over the p = 0.5 probabilistic fanout optimiza-
tion. Similar behavior is seen with SHP-k, and these results
demonstrate the importance of using probabilistic fanout
for SHP. On average across these hypergraphs, direct fanout
optimization would produce fanout values 45% larger than
probabilistic fanout with p = 0.5.
The right-hand plot of Figure 10 compares p-fanout with

the clique-net model defined in Section 3.1, where the clique-
net objective is optimized using SHP-2. The comparison to
p = 0.5 reveals that clique-net optimization is often worse,
but typically similar, depending on the graph and the num-
ber of buckets. In practice, we suggest optimizing for both
p-fanout and clique-net, as which surrogate objective per-
forms better for fanout minimization depends on the graph.

5. DISCUSSION
Storage sharding for production systems has many addi-

tional practical challenges [29]. Two requirements that arise
from these challenges are (i) incremental updates of an ex-
isting partition and (ii) balance across multiple dimensions.
(i) Incremental updates can be needed to avoid overhead

from substantially changing a partition. Our algorithm sim-
ply adapts to incremental updates by initializing with a pre-
vious partition and running a local search. If a limited search
moves too many data vertices, we can modify the move gain
calculation to punish movement from the existing partition
or artificially lower the movement probabilities returned via
master in superstep four.
(ii) Basic k-way hypergraph partitioning balances the

number of data vertices per bucket. Trivially, we can con-
sider weighted data vertices, but additionally, a data ver-
tex might have multiple associated dimensions (e.g., CPU
cost, memory, disk resources etc.) that each require balance.
In practice, we have found that requiring strict balance on
many dimensions substantially harms solution quality. In-
stead, we favor a simple heuristic that produces c ·k buckets
for some c > 1 that have loose balance requirements on all
but one dimension, and merges them into k buckets to sat-
isfy load balance across all dimensions.

We stress that the storage sharding problem might have
additional requirements that are not captured by our model.
For example, one could introduce some replication by al-
lowing data records to be present on multiple servers, as it
is done in [11, 26]. However, that would bring in new op-
erational complications (e.g., synchronization between the
servers when a data record is modified), which are not always
possible in an existing framework. Another potential exten-
sion of our model is to consider a better optimization goal
that more accurately captures the relation between query
latency and distribution of data records among servers. We
recently observed that the query fanout is not the only ob-
jective affecting its latency; the size of a request to a server
also plays a role. For example, a query with fanout = 2
that needs 100 data records can be answered faster if the
two servers contain an even number of records, 50 and 50,
in comparison with a distribution of 99 and 1. We leave a
deeper investigation of this and other potential extensions
of the model as an interesting future direction.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented Social Hash Partitioner,

SHP, a distributed hypergraph partitioner that can optimize
p-fanout, as well as the clique-net objective among others,
through local search, and scales to far larger hypergraphs
than existing hypergraph partitioning packages. Because the
careful design of SHP limits space, computational, and com-
munication complexity, the applicability of our implementa-
tion to a hypergraph is only constrained by the number of
Giraph machines available. We regularly apply SHP to hy-
pergraphs that contain billions of vertices and hundreds of
millions to even billions of hyperedges. These hypergraphs
correspond to bipartite graphs with billions of vertices and
trillions of edges.
Despite the improved scalability and simplicity of the al-

gorithm, our experiments demonstrate that SHP achieves
comparable solutions to both single-machine and distributed
hypergraph partitioners. We note these results and con-
clusions might be different for other input hypergraphs
(e.g. matrices from scientific computing, planar networks or
meshes, etc.), and in cases where the hypergraph is small
enough and solution quality is essential, running all available
tools is recommended. While SHP occasionally produced the
best solution in our experiments, other packages, especially
Zoltan and Mondriaan, often claimed the lowest fanout.
Although our motivation for designing SHP is practical,

it would be interesting to study fanout minimization from
a theoretical point of view. For example, the classical bal-
anced partitioning problem on unipartite graphs admits an
O(
√

log k logn)-approximation for ε = 2 [25] but it is un-
clear if a similar bound holds for our problem. Alternatively,
it would be interesting to know whether there is an optimal
algorithm for some classes of hypergraphs, or an algorithm
that provably finds a correct solution for certain random hy-
pergraphs (e.g., generated with a planted partition model).
Finally, it would be interesting to understand when and how
minimizing p-fanout speeds up algorithm convergence and
improves solution quality over direct fanout minimization.

Acknowledgments. We thank H. Kllapi for contributing to
an earlier graph partitioner that evolved into SHP. We also
thank M. Stumm for providing comments on this work.

1428

7. ADDITIONAL AUTHORS
Alessandro Presta (Google, apresta@google.com) and

Yaroslav Akhremtsev (Karlsruhe Institute of Technology,
yaroslav.akhremtsev@kit.edu) – work done at Facebook.

8. REFERENCES
[1] Social Hash Partitioner. https:

//issues.apache.org/jira/browse/GIRAPH-1131.
[2] Apache Giraph. http://giraph.apache.org/.
[3] Stanford large network dataset collection.

https://snap.stanford.edu/data.
[4] C. J. Alpert, L. W. Hagen, and A. B. Kahng. A

hybrid multilevel/genetic approach for circuit
partitioning. In Asia Pacific Conference on Circuits
and Systems, pages 298–301. IEEE, 1996.

[5] C. J. Alpert and A. B. Kahng. Recent directions in
netlist partitioning: A survey. Integration, the VLSI
journal, 19(1–2):1–81, 1995.

[6] K. Andreev and H. Räcke. Balanced graph
partitioning. Theory of Computing Systems,
39(6):929–939, 2006.

[7] D. A. Bader, H. Meyerhenke, P. Sanders, and
D. Wagner. Graph partitioning and graph clustering,
10th DIMACS implementation challenge workshop.
Contemporary Mathematics, 588, 2013.

[8] C.-E. Bichot and P. Siarry. Graph partitioning. John
Wiley & Sons, 2013.

[9] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent advances in graph partitioning. In
Algorithm Engineering, pages 117–158. Springer, 2016.

[10] Ü. V. Çatalyürek and C. Aykanat.
Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE
Transactions on Parallel and Distributed Systems,
10(7):673–693, 1999.

[11] C. Curino, E. Jones, Y. Zhang, and S. Madden.
Schism: a workload-driven approach to database
replication and partitioning. VLDB Endowment,
3(1-2):48–57, 2010.

[12] J. Dean and L. A. Barroso. The tail at scale.
Communications of the ACM, 56:74–80, 2013.

[13] M. Deveci, K. Kaya, B. Uçar, and Ü. V. Çatalyürek.
Hypergraph partitioning for multiple communication
cost metrics: Model and methods. Journal of Parallel
and Distributed Computing, 77:69–83, 2015.

[14] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H.
Bisseling, and Ü. V. Çatalyürek. Parallel hypergraph
partitioning for scientific computing. In International
Parallel & Distributed Processing Symposium, pages
10–pp. IEEE, 2006.

[15] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano,
S. Pupyrev, and A. Shalita. Compressing graphs and
indexes with recursive graph bisection. In
International Conference on Knowledge Discovery and
Data Mining, pages 1535–1544. ACM, 2016.

[16] S. Edunov, D. Logothetis, C. Wang, A. Ching, and
M. Kabiljo. Darwini: Generating realistic large-scale
social graphs. arXiv:1610.00664, 2016.

[17] A. E. Feldmann and L. Foschini. Balanced partitions
of trees and applications. Algorithmica, 71(2):354–376,
2015.

[18] C. M. Fiduccia and R. M. Mattheyses. A linear-time
heuristic for improving network partitions. In 19th
Conference on Design Automation, pages 175–181.
IEEE, 1982.

[19] L. Golab, M. Hadjieleftheriou, H. Karloff, and
B. Saha. Distributed data placement to minimize
communication costs via graph partitioning. In
International Conference on Scientific and Statistical
Database Management, pages 20:1–20:12. ACM, 2014.

[20] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: applications in
VLSI domain. IEEE Transactions on Very Large Scale
Integration Systems, 7(1):69–79, 1999.

[21] G. Karypis and V. Kumar. A fast and highly quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing,
20(1):359–392, 1999.

[22] G. Karypis and V. Kumar. Multilevel k-way
hypergraph partitioning. VLSI design, 11(3):285–300,
2000.

[23] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. Bell system
technical journal, 49(2):291–307, 1970.

[24] T. Kiefer. Allocation Strategies for Data-Oriented
Architectures. PhD thesis, Dresden, Technische
Universität Dresden, 2016.

[25] R. Krauthgamer, J. S. Naor, and R. Schwartz.
Partitioning graphs into balanced components. In
Symposium on Discrete Algorithms, pages 942–949.
SIAM, 2009.

[26] K. A. Kumar, A. Quamar, A. Deshpande, and
S. Khuller. SWORD: workload-aware data placement
and replica selection for cloud data management
systems. The VLDB Journal, 23(6):845–870, 2014.

[27] T. Leighton, F. Makedon, and S. Tragoudas.
Approximation algorithms for VLSI partition
problems. In Circuits and Systems, pages 2865–2868.
IEEE, 1990.

[28] R. O. Selvitopi, A. Turk, and C. Aykanat. Replicated
partitioning for undirected hypergraphs. Journal of
Parallel and Distributed Computing, 72(4):547–563,
2012.

[29] A. Shalita, B. Karrer, I. Kabiljo, A. Sharma,
A. Presta, A. Adcock, H. Kllapi, and M. Stumm.
Social Hash: An assignment framework for optimizing
distributed systems operations on social networks. In
NSDI, pages 455–468, 2016.

[30] H. D. Simon and S.-H. Teng. How good is recursive
bisection? Journal on Scientific Computing,
18(5):1436–1445, 1997.

[31] A. Trifunović and W. J. Knottenbelt. Parallel
multilevel algorithms for hypergraph partitioning.
Journal of Parallel and Distributed Computing,
68(5):563–581, 2008.

[32] B. Vastenhouw and R. H. Bisseling. A
two-dimensional data distribution method for parallel
sparse matrix-vector multiplication. SIAM Review,
47(1):67–95, 2005.

[33] W. Yang, G. Wang, L. Ma, and S. Wu. A distributed
algorithm for balanced hypergraph partitioning. In
Advances in Services Computing, pages 477–490.
Springer, 2016.

1429

https://issues.apache.org/jira/browse/GIRAPH-1131
https://issues.apache.org/jira/browse/GIRAPH-1131
http://giraph.apache.org/
https://snap.stanford.edu/data

	Introduction
	Related Work
	Social Hash Partitioner
	Algorithm
	Implementation
	Complexity
	Advanced implementation

	Experiments
	Datasets
	Evaluation
	Storage Sharding
	Quality
	Scalability
	Parameters of SHP

	Discussion
	Conclusion and Future Work
	Additional Authors
	References

