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ABSTRACT 

Database Management Systems (DBMS) continue to be the 

foundation of mission critical applications, both OLTP and 

Analytics. They provide a safe, reliable and efficient platform to 

store and retrieve data. SQL is the lingua franca of the database 

world. A database developer writes a SQL statement to specify 

data sources and express the desired result and the DBMS will 

figure out the most efficient way to implement it. The query 

optimizer is the component in a DBMS responsible for finding the 

best execution plan for a given SQL statement based on statistics, 

access structures, location, and format. At the center of a query 

optimizer is a cost model that consumes the above information 

and helps the optimizer make decisions related to query 

transformations, join order, join methods, access paths, and data 

movement. 

The final execution plan produced by the query optimizer depends 

on the quality of information used by the cost model, as well as 

the sophistication of the cost model. In addition to statistics about 

the data, the cost model also relies on statistics generated 

internally for intermediate results, e.g. size of the output of a join 

operation. This paper presents the problems caused by incorrect 

statistics of intermediate results, survey the existing solutions and 

present our solution introduced in Oracle 12c. The solution 

includes validating the generated statistics using table data and via 

the automatic creation of auxiliary statistics structures. We limit 

the overhead of the additional work by confining their use to cases 

where it matters the most, caching the computed statistics, and 

using table samples. The statistics management is automated. We 

demonstrate the benefits of our approach based on experiments 

using two SQL workloads, a benchmark that uses data from the 

Internal Movie Data Base (IMDB) and a real customer workload. 

1. INTRODUCTION 
Database query processing refers to the process of compiling and 

executing SQL statements within a Database Management System 

(DBMS). The process consists of the SQL Compiler taking a SQL 

statement text with optional bind variables as input and producing 

an execution plan. The execution process (performed by the SQL 

Execution component) takes the execution plan and returns the 

result of the execution. An execution plan contains the detailed 

steps necessary to execute the SQL statement. These steps are 

expressed as a set of database operators that consumes and 

produces rows. The processing order and implementation of the 

operators are decided by the query optimizer, using a combination 

of query transformations and physical optimization techniques. 

 Figure 1 illustrates the lifecycle of a SQL statement inside the 

SQL compiler. A SQL statement goes through the Parser, 

Semantic Analysis (SA), and Type-Check (TC) first before 

reaching the optimizer. The Oracle optimizer performs a 

combination of logical and physical optimization techniques [1] 

and is composed of three parts: 

Dictionary

Parser, SA, 

TC, …

Query 

Transformer

Plan 

Generator

Code 

Generator

Cost 

Estimator

Cursor

Cache

C1 CnC2

SQL

Execution

SQL Compiler

SQL 

statement
User or DB

Application

1

2

 

a) The Query Transformer (QT) is responsible for selecting the 

best combination of transformations. Subquery unnesting 

and view merging are some examples of Query 

transformations.  

b) Plan Generator (PG) selects best access paths, join methods, 

and join orders. The QT calls the PG for every candidate set 

of transformations and retains the one that yields the lowest 

cost.  

c) The PG calls the Cost Estimator (CE) for every alternative 

access path, join method, and join order and keeps the one 

that has the lowest cost.  

The Code Generator (CG) stores the optimizer decisions into a 

structure called a cursor. All cursors are stored in a shared 

memory area of the database server called the Cursor Cache (CC). 

The goal of caching cursors in the cursor cache is to avoid 

compiling the same SQL statement every time it is executed by 

using the cached cursor for subsequent executions of the same 

statement. The Dictionary contains the database metadata 

(definitions of tables, indexes, views, constraints, etc) as well as 

object and system statistics. When processing a SQL statement, 

the SQL compiler components accesses the Dictionary for 
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Figure 1. Architecture of SQL Engine  

 

. 

 

 

1813



information about the objects referenced in the statement, e.g. the 

optimizer reads the statistics about a column referenced in the 

WHERE clause. At run-time, the cursor corresponding to a SQL 

statement is identified based on several criteria, such as the SQL 

text, the compilation environment, and authentication rules. If a 

matching cursor is found then it is used to execute the statement, 

otherwise the SQL compiler builds a new one. Several cursors 

may exist for the same SQL text, e.g. if the same SQL text is 

submitted by two users that have different authentication rules. 

All the factors that affect the execution plan, such as whether a 

certain optimization is enabled by the user running the SQL 

statement, are used in the algorithm used to match a cursor from 

the CC. 

The execution plan generated for the SQL statement is just one of 

the many alternative execution plans considered by the query 

optimizer. The query optimizer selects the execution plan with the 

lowest cost. Cost is a proxy for performance; the lower the cost, 

the better the performance (e.g. response time) of the query is 

expected to be. The cost model used by the query optimizer 

considers the IO, CPU and network utilization of executing the 

query. The cost model relies on object statistics (e.g. number of 

rows, number of blocks, and distribution of column values) and 

system statistics (e.g. IO bandwidth of the storage subsystem). 

The quality of the final execution plan produced by the query 

optimizer depends on the quality of the information used by the 

cost model and the cost model itself. In the following sections we 

focus on one important input to the cost model, cardinality. 

1.1 Effect of Cardinality on Plan Generation 
Plan Generator (PG) is responsible for evaluating various access 

paths, join methods, and join orders and choosing the plan with 

the lowest cost. This section describes the PG module and the 

important role cardinality estimate plays in picking the most 

efficient plan. Consider the following query, Q1 that retrieves the 

amount of all ‘Y Box Games’ products under the ‘Electronics’ 

category sold in California.  

Q1: 

SELECT prod_name, sum(amount_sold) amount_sold 
FROM products p, customers c, sales s  
WHERE p.prod_category = 'Electronics'  
  AND p.prod_subcategory = 'Y Box Games'  
  AND p.prod_id = s.prod_id 
  AND c.cust_state_province = 'CA'  
  AND c.cust_id = s.cust_id 
GROUP BY prod_name; 

1.1.1 Access Path Selection 
PG considers different access path for the tables in a query, e.g.  

some of the access paths considered for products table are 

 Full Table Scan – Reads all rows in the table and produces 

rows that qualify for the specified filter condition. 

 Index scan – It is used to limit access to rows in the table that 

qualify for the condition on the index key columns. Filters on 

non-index columns can be used to further filter rows once 

they are accessed. In the above example, PG evaluates using 

an index scan on an index defined with key prod_category 

or key prod_subcategory. 

The access path with the least cost is selected. The cost is greatly 

dependent on the cardinality produced after applying the 

predicate(s). For example, if the number of rows produced with 

predicate p.prod_subcategory = ‘Y Box Games’ is very 

small compared to the total number of rows, using Index Scan on 

prod_subcategory is more efficient that using Full Table Scan. 

1.1.2 Join order Selection 
PG explores different join orders and chooses the join order with 

the least cost. For query Q1, the following join orders are possible 

- (C->P->S), (C->S->P), (S->C->P), (S->P->C), (P->S->C), (P-

>C->S), where the letters correspond to the aliases of the tables 

used in the query. The number of rows of each of the tables and 

intermediate joins is an important input in computing the cost of 

the join orders.  If C and P are joined first (a Cartesian product), 

the intermediate size, and the resulting cost, will be high, 

compared to joining P and S first. 

Note that given a join between N tables, there are at most N! 

possible join permutations. Large values of N can cause an 

exhaustive optimization to be prohibitive. PG employs several 

heuristics to cut down the optimization time. 

1.1.3 Join Method Selection 
PG also selects the most efficient join method for every join order 

based on the cost of feasible join methods. For example, tables P 

and S can be joined using Nested Loop Join or Hash Join. Their 

cost depends on the cardinalities of both inputs to the join. 

Typically, Nested Loop join is the cheapest option if the left input 

produces a low number of rows. 

1.1.4 Query Transformations 
The Query Transformer (QT) module transforms SQL statements 

into a semantically equivalent form if the newly transformed form 

is cheaper than the original form. For example, the query Q1 can 

be transformed into query Q2 as follows. 

Q2: 

SELECT vw_gbc_3.item_3 prod_name,  
       sum(vw_gbc_3.item_2) amount_sold  
FROM sh.customers c, 
  (SELECT s.cust_id item_1, 
          sum(s.amount_sold) item_2, 
          p.prod_name item_3  
   FROM sh.sales s, sh.products p  
   WHERE p.prod_id = s.prod_id  
     AND p.prod_subcategory = 'Y Box Games'  
     AND p.prod_category = 'Electronics'  
   GROUP BY s.cust_id, p.prod_name) vw_gbc_3 
WHERE c.cust_state_province='CA'  
  AND c.cust_id=vw_gbc_3.item_1  
GROUP BY vw_gbc_3.item_3; 

In this transformation, the group-by is placed before the join to 

the Customers table. In general, the transformed plan will be more 

efficient than the original plan if performing a group-by earlier 

reduces the number of rows that joins with the Customers table. 

The query transformation layer calls PG to get the cost for both 

forms of the statement and chooses the one with the least cost [1]. 

The group-by cardinality is a major factor in determining the cost 

of these plans. Therefore, the quality of the cardinality estimate is 

important for selecting the optimal transformations. 

Besides the above major four decisions, the plan generator also 

makes decisions that depend on the cardinality of the intermediate 

results. For example, if the SQL statements executes in parallel, 

the query optimizer decides how the data is reshuffled between 
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processes that perform adjacent steps of the execution plan. 

Incorrect cardinality estimates can lead to selecting the wrong 

reshuffling method, which in turn negatively affect the 

performance of the SQL statement.  

It is evident from the above discussion, that improving the 

accuracy of the cardinality estimation will greatly improve the 

ability of the plan generator to select the most efficient plan. 

1.2 Cardinality Estimation errors 
Estimating the number of rows is one of the thorniest subjects in 

query optimization. It is the Achilles heel of every query 

optimizer. The formula used to estimate cardinality based on 

predicates easily breaks when the predicates involve skewed 

columns, expressions on columns, or complex predicates 

connected using AND/OR operators. Over time, sophisticated 

statistics have been added to account for skew (histograms) and 

correlation (extended statistics [13]). However, pre-computed 

statistics have limitations that cannot be ignored. For example, in 

the Oracle database, extended statistics are limited to equality 

predicates. Furthermore, there will always be query expressions 

that cannot be represented as first class statistics and that will not 

be available during the optimization of the SQL statement. 

Consider the example query Q1 mentioned in section 1.1. Figure 

2 shows the execution plan with estimated and actual cardinality 

for query Q1.  

 

 

The cardinality estimate for access to the products table (line 6) is 

under estimated by a factor of 8. The cardinality for this operation 

takes into consideration the predicates applied at line 6 and 7, i.e.  

prod_subcategory = 'Y Box Games' AND prod_category = 

'Electronics'. The underestimation is due to the strong correlation 

between the columns involved in these two predicates. Cost 

estimator estimates the cardinality based on statistics available on 

these columns individually as if they are independent which leads 

to incorrect estimates. The mis-estimate at line 6 cascades to 

operations higher up in the plan, e.g. 5, 4. Such mis-estimates can 

cause the Plan Generator to pick a suboptimal plan. 

1.3 Contributions 
In this paper, we discuss our approach towards improving the 

quality of statistics used during query optimization. It includes 

automatic creation of auxiliary statistics structures (called 

extended statistics) based on workload analysis and validation of 

optimizer statistics (including that of intermediate results) using 

actual table data. We mitigate the cost of accessing table data 

using the following techniques: 

 Adaptive sampling. When accessing table data to validate 

optimizer statistics we use sampling. We may read several 

samples in case earlier samples fail a quality metric. 

Furthermore, the statistics derived from the samples are 

cached for later reuse and are automatically refreshed when 

table’s data change. 

 SQL Plan Directives (SPD). They are used to limit reading 

table data for the purpose of validating optimizer statistics, to 

cases where it matters the most. The latter is implemented by 

comparing the statistics estimated by the optimizer to the 

actual values seen during query execution. If there is a 

significant difference between estimates and actual statistics, 

then we create an SPD. The optimizer relies on SPDs to 

decide whether to validate statistics by accessing table data. 

In addition, SPDs are the basis for identifying extended 

statistics (e.g. column group statistics) as part of a separate 

statistics gathering process. Extended statistics will reduce 

the reliance on reading data for validating optimizer 

statistics. SPDs are generic database objects that are designed 

to store other information that can improve the quality of 

execution plans.   

SPDs are created while executing statements and subsequent 

queries use them. There can be cases where only a partial set 

of directives are available for a query, especially in the ramp 

up stage of an application. For example, a subset of join 

orders will have directives and optimizer will have the 

correct estimate for only those join orders. This may create a 

bias on costs for some join orders and can lead to a 

suboptimal plan. To avoid this, SQL Plan Management 

techniques mentioned in [23] can be used. 

 

The organization of the rest of the paper is as follows. Section 2 

presents the related work and contributions. Section 3 discusses 

the techniques proposed in this paper. Experimental results are 

presented section 4 and finally section 5 concludes the paper. 

2. RELATED WORK 
Several solutions have been proposed to improve the quality of 

cardinality estimation, in both the academic world and 

commercial products. The solutions can be classified into four 

categories. 

1. Provide better statistics to the optimizer. For example [18] 

talks about maintaining histograms using feedback from 

previously executed SQL statements that gives better 

cardinality estimates. [5] proposes creating an approximate 

“synopsis” of data-value distributions based on the feedback 

obtained from observations on the executed query workload. 

It combines the technique of histograms with parametric 

curve fitting leading to a specific class of linear splines. 

2. New type of statistics. Statistics on individual columns is not 

sufficient when dealing with the complexity of expressions 

allowed by the SQL language. The following are some of the 

new type of statistics used by commercial databases and 

referenced in the literature.   

Figure 2. Execution Plan for Q1 

 

. 
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a. Oracle supports collecting statistics on group of 

columns to deal with correlation between columns 

[13]. It also allows finding the group of columns in 

a given workload [14]. Other database vendors 

[11][12] also support collecting statistics on a 

group of columns.  

b. Filtered statistics [12] use a filter predicate to 

select the subset of data that is included in the 

statistics. It can improve query performance for 

queries that select from well-defined subsets of 

data.  An experienced database administrator 

knowledgeable about the workload has to create 

the statistics that are relevant for the workload. 

c. [4] Proposes collecting statistics on views and 

some commercial systems support collecting 

statistics on views [10].  Typically, the process of 

collecting statistics on views is manual in these 

implementations. However, [3] discusses a 

statistics advisor that can recommend views for 

which statistics need to be collected for a given 

workload.  

d. [8] argues for the construction of specialized 

histograms, where the buckets are constructed to 

bound the q-error [8] , an error measure (instead of 

the variance, as is often the case). A rigorous 

relationship can be established between q-error and 

the cost of the final plan. 

Detecting new statistics that are needed for a workload is a 

difficult task in general. This poses a serious manageability 

challenge, especially when the new statistics have to be 

continuously detected as new SQL statements are added to 

the workload or new applications are installed in the system. 

Once the new statistics are identified, gathering and 

maintaining the statistics poses another challenge. This paper 

proposes ways to gather and maintain the statistics 

automatically and continuously for query constructs 

(including joins) that are necessary for getting good 

cardinality estimates for the queries. This does not require 

any input from database administrators. 

3. SQL tuning. Tuning can be done in several domains: query 

optimization, to improve the execution plans selected by 

query optimizer; access design, to identify useful access 

structures; SQL design, to restructure and simplify the text of 

a badly written statement. Oracle’s Automatic SQL Tuning 

feature [2] helps to automate the above tuning activities. 

Some of the techniques proposed in [2] for verifying the 

cardinality estimate using sampling queries, are used in this 

paper as well. However, SQL tuning is designed in such a 

way that it runs offline and is not part of running the 

workload. Hence reducing the time taken to get accurate 

cardinality estimates is not one of the primary goals. In 

contrast, the ideas proposed in this paper are meant to run 

while optimizing the SQL statement and make sure that it 

runs in a reasonable amount of time using sampling, time 

budget, SQL Plan directives, extended statistics. etc. 

4. Feedback systems. Oracle 11 Release 2 introduced the use of 

a feedback mechanism [6] for cases where the optimizer 

cardinality estimates are incorrect. This technique corrects 

the cardinality estimates for subsequent executions of the 

same SQL statement using the actual cardinality observed 

during prior executions of the statement. The actual 

cardinality is stored in the shared cursor and is used only 

when the same statement is executed. In addition, the 

information stored in the cursor is not persistent and hence is 

lost when restarting the DBMS. The techniques proposed in 

this paper allow information learned in previous executions 

to persist and can be used by other statements that share 

similar SQL constructs.    

Feedback mechanisms were also proposed earlier in LEO-

DB2’s learning optimizer [19]. This paper proposes 

computing adjustments based on the deviation between the 

estimated and actual cardinalities and storing them in 

dictionary tables. These adjustments are readjusted when 

new statistics are collected and can be incorrect. [22] 

proposes a sampling based re-optimization method in which 

after the query optimizer returns its best estimate plan, an 

additional step is invoked in which the plan is re-optimized 

by feeding the optimizer with refined cardinality estimates 

obtained via sampling. If the re-optimized plan is different 

from the optimizer plan then the original plan is considered 

to be based on erroneous cardinality estimates and the re-

optimized plan is used for execution. This process of re-

optimization is repeated iteratively until the new plan is same 

as that of the previous iteration.  

The techniques we propose in this paper do not store the 

adjustments. Instead, we store logical findings like 

“misestimate has occurred for a SQL construct”. Actual 

adjustments are computed during the compilation of the 

statement. This accounts for any DML, statistics collection 

etc., that happened since the misestimate has occurred.  

3. ADAPTIVE STATISTICS 

3.1 Architectural Overview 
Adaptive statistics solve the cardinality misestimate issues that 

manifest due to the limitations of pre-computed statistics. This 

technique consists of computing the statistics 

(selectivity/cardinality, even first class statistics like number of 

distinct values) during optimization of the SQL statement. This 

process happens in the Cost Estimator module. The statistics are 

computed by executing a SQL statement against the table with 

relevant predicates. This technique can be used to estimate 

cardinality of operations that involve only single table as well as 

more complex operations that involve join, group by etc. These 

kinds of queries are referred to as statistics queries.  Statistics 

queries are executed in most stages of plan generation. Some 

example statistics queries executed while optimizing the query Q1 

in section 1.1, are:  

1. Query Q3 below estimates the cardinality when costing full 

table scan of products. It provides the cardinality after 

applying both predicates on this table.  

Q3: 

SELECT sum(c1)  
FROM  
(SELECT 1 AS c1  
 FROM products p  
 WHERE (p.prod_subcategory = 'Y Box Games')  
   AND (p.prod_category = 'Electronics'));  
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2. Query Q4 estimates the cardinality when costing the access 

using the index on PROD_SUBCATEOGORY column. 

Q4: 

SELECT c1 
FROM  
(SELECT /*+ index(p products_prod_cat_ix) */  
   count(*) as c1   
 FROM products p  
 WHERE (p.prod_category = 'Electronics')); 

3. Query Q5 estimates the cardinality of the join between sales 

and products.  

Q5: 

SELECT 
/*+opt_estimate(@innerquery,table,p#2,rows=8) 
*/  
sum(c1) 
FROM  
(SELECT /*+ qb_name(innerQuery) */ 1 as c1 
 FROM sales SAMPLE BLOCK(47,8) SEED(1) s#0, 
      products p#2 
 WHERE (p#2.prod_subcategory = 'Y Box Games') 
   AND (p#2.prod_category = 'Electronics') 
   AND (p#2.prod_id = s#0.prod_id)) innerQuery 

The index, opt_estimate hints and sample clause in these queries 

are described in later sections. Figure 3 shows the execution plan 

generated by the optimizer using statistics queries. Note that 

cardinality estimates for all the operations are accurate.  Also, the 

plan is different from Figure 2. The new plan uses a Hash Join to 

join Products and Sales since the cardinality is estimated correctly 

for scan of Products table (operation id 5). 

 

Figure 3. Plan for Q1 using statistics queries 

Executing statistics queries as part of optimizing user SQL 

statements incur additional optimization time. Oracle employs 

several techniques to reduce this overhead. We describe two of 

these, adaptive sampling, and SQL plan directives (SPDs), below. 

Adaptive Sampling: Use sample of the table in statistics queries 

to estimate the cardinality. Sampling is done by Statistics Query 

Engine as shown in Figure 4. This module is responsible for 

computing the optimal sample size, executing the statistics queries 

within a specified time budget, using the full or partial results 

from statistics queries to derive the cardinality estimate, and 

storing the result of statistics queries in SPDs. 

SQL Plan Directives: SPDs are persistent objects that have run 

time information of SQL or SQL constructs. They are used for the 

following purposes. 

 For tracking the SQL constructs that caused misestimates: 

This happens in the Execution Engine when the cardinality 

estimate for a particular construct in an operation is 

significantly different from the actual rows produced by the 

operation. Cost Estimator requests estimates from the 

Statistics Query Engine only for the constructs for which 

misestimates are recorded as SPDs. This is to avoid 

executing statistics queries for each and every construct. To 

avoid the overhead of tracking in the Execution Engine, the 

directives are first recorded in Directive Cache in memory 

(SGA) before it is flushed to disk by background process 

(MMON). 

 Statistics collector (DBMS_STATS) also looks at the SPDs 

for constructs with a misestimate in the Dictionary and 

gathers statistics for them. For example, if the SQL construct 

has multiple equality predicates, statistics collector will 

collect statistics for the group of columns in the predicates. 

This allows the statistics collector to collect statistics only for 

group of columns that caused the misestimate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Adaptive Statistics Flow 

 For persistently storing the result of statistics queries to 

avoid repeated execution of the same statistics queries: 

Statistics Query Engine first checks if there is a SPD that has 

the result of the statistics query in Dictionary and uses it if 

the result is still valid. If the result is stale, it executes the 

statistics query to get the correct result and stores the new 

result in directive. 

The sections below discuss these techniques in detail.   

3.2 Adaptive Sampling Methodology 
We rely on sampling to limit the overhead when reading data from 

tables to validate optimizer statistics. If an access structure (e.g. 

index) is efficient then we skip sampling. For the latter case, the 

index is forced using a hint as in example Q4. This section 

describes the algorithms used to compute an appropriate sample 

size, and extrapolating the statistics value to the full data . 

Formally, the adaptive sampling addresses the following problem: 

given a table T and a set of operators applied to T, provide an 

estimate of the cardinality of the resulting dataset, based on a 

sample. The operators applied to T include table filters, joins, 

group by etc. The adaptive sampling algorithm consists of 
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iterating through the following four steps, until the quality test at 

step 3 is successful: 

Given n, number of blocks in the initial sample, and a query Q: 

1. Sample: Randomly sample n blocks from T. Apply the 

operators on the sample. 

 

2. Cardinality Estimate: Estimate the cardinality of query Q for 

the entire dataset, based on the resulting cardinality after 

applying the operators on this sample and samples from 

previous iterations (if any). 

 

3. Quality Test: Calculate a confidence interval around the 

cardinality estimate, and perform a quality test on the 

confidence interval. 

 

4. Next Sample Size Estimate: If the quality test succeeds, stop. 

If the test fails, calculate nnext, the number of additional 

blocks required to be sampled, so that the resultant sample 

size meets the quality test (with a certain probability). Set 

nextnn  . Go to step 1. 

As mentioned earlier, we sample a random set of blocks from T, 

as opposed to a random set of rows. This means that internal 

correlation within rows in a block have to be taken into account 

during the variance calculation, possibly resulting in larger 

required sample sizes. However, block sampling is far cheaper 

than row sampling, which makes this a reasonable trade-off.  

Sampling at the block level introduces another complication: it is 

expensive to remember for each row which block it originated 

from, making a straightforward estimate of the block-level 

variance impossible. To address this problem, we rely on two 

statistical properties: 

1. Central Limit Theorem [21]. The mean of a sequence of 

independently and identically distributed (iid) random 

variables follows a Normal distribution. This sample mean is 

an unbiased estimate of the distribution mean. The variance 

of the mean is
2 /n, where  

2  is the distribution’s 

variance, and n is the sample size. 

2. The sum of square of K independent standard Normal 

random variables follows a chi-squared distribution with K 

degrees of freedom [21]. 

The basic approach, then, is, to 

 Take multiple block samples of sufficient size, so that each 

can be modeled as a sample from a Normal distribution, and  

 Model the variance across samples as a chi-squared 

distribution, to establish confidence intervals on the variance, 

and derive the bounds on across-block variance from the 

bounds on across-sample variance.  

We present the details of the approach in the next sub-section. 

3.2.1 Mathematical Details 

3.2.1.1 Problem Formulation 
Successful execution of the adaptive sampling algorithm requires 

the solution of the following three problems: 

a) Cardinality Estimate and Confidence Interval: Arrive at 

an unbiased estimate M


of the true cardinality M of query 

Q. Establish a 95% lower bound LM


 and a 95% upper 

bound UM


  on M such that, UL MMM


 ˆ  with 

95% probability. 

b) Quality Test: For a pre-determined λ, check if 

MMU


)1(  . For example, if λ=1, we can be 95% 

confident that MMU


2 . That is, with 95% confidence, 

the true value of M is not more than twice the estimated 

value of M. 

c) Next Sample Size Estimation: Given the current cardinality 

estimate, and information about the samples taken till date, 

estimate nk, the size of the next sample to take, so that the 

condition MMU


)1(  is likely to be met (with a 

certain confidence). 

The following three sections address each of these problems 

respectively. 

3.2.1.2 Solution Outline  
Let µ be the ground truth mean number of rows matching the 

query per block (referred to as the per block query cardinality). 

Assuming that the number of blocks B constituting the table is 

known, it is sufficient to estimate µ, as M = µ * B.  

After K rounds of adaptive sampling, let the total number of 

blocks sampled so far be N, and let the number of rows matching 

Q in the ith block be xi. Then µ is estimated as: 

N

x
N

i

i
 1

                                        (1) 

The confidence interval around 


can be calculated using the 

well-known Central Limit Theorem [9] (ch. 4), which states that, 

for a simple random sample x1,x2,..,xN from a population with 

mean µ and finite variance σ2, the sample mean (calculated as 

equation (1) above is an unbiased estimator of the population 

mean µ, and is normally distributed as: 

),(ˆ
2

N
N


                                (2) 

Using properties of the Normal distribution [9] (ch. 4), after N 

samples, the 100(1-α)% upper confidence bound on µ is given by: 

N
zUB


  *ˆ   

Here zα is the 100(1-α)% percentile standard score (or z-score) of 

the standard normal distribution [9], ch. 5]. We use α=0.025, so 

that zα = 1.96. To establish this confidence interval, we need to 

estimate σ, the query cardinality standard deviation across blocks.  

A straightforward estimate of the population variance of per block 

query cardinality is given by the sample variance of the sampled 

blocks. However, since maintaining per block information is too 

expensive, we use an alternative approach, described next, to 

estimate σ. 

3.2.1.3 Variance Estimation of Per Block Query 

Cardinality 

An alternate way to calculate


 is in terms of the number of 

matching rows observed per round of sampling. Let the number of 
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rounds of sampling completed be K, K ≥2. Let ni be the number of 

blocks sampled in the ith round of adaptive sampling, and let si be 

the number of rows matching Q found in the sample taken in the 

ith round. Then: 








K

i i

K

i i

n

s

1

1̂                                      (3) 

An unbiased estimate M̂  of M is then given by BM *ˆˆ  . 

While we do not have access to the across-block variance σ, we 

can compare how the estimate of the same mean changes from 

round to round. We use these values to arrive at an estimate of σ. 

Let xi be the observed per block query cardinality for the ith 

sample, defined as
n

s
x i

i  . By the Central Limit theorem, xi can 

be modeled as being sampled from a normal random variable, 

),( 2

ii NX   where

i

i
n


  . In other words, 

i

iX




follows a standard normal distribution. As the sum of 

square of K standard normal random variables follows a Chi-

squared distribution with K degrees of freedom (χK), the following 

holds true after K rounds: 











 K

i i

iX

1

2




~ K  











 


K

i

i
i

X
n

1

2




~ K  

 



K

i

ii Xn
1

2

2

1



~ K  

After K rounds, the β = 97.5% upper bound on σ2, written 

as
2ˆ
UB , can be calculated as: 

  


,

1

2

2ˆ

1
K

K

i

ii

UB

Xn  


 

 






,

1

2

2ˆ
K

K

i

ii

UB

Xn




                               (4) 

We know that with 95% probability, σ2 is less than
2ˆ
UB . Here 

95.0,K (since β=0.95) is the value v such that, 

)( 95.0, vP K  .  That is, 95.0,K is the 0.95 p-value, or the 

0.05 inverse CDF.  For example, based on the chi-squared table 

at[16], for K=2, 95.0,K 0.103.  

The 92.5% upper bound on the per block cardinality is then given 

by the formula: 

UBUB  ˆ*96.1ˆˆ                              (5) 

Similarly, the lower bound UBLB  ˆ*96.1ˆˆ  .  can be 

calculated using either eq. (1). 

The reason we arrive at a 92.5% upper bound on the cardinality 

estimate, is due to the probabilistic approximation we do at two 

stages: while estimating the standard deviation, and while 

estimating the mean. Combining the two probabilistic estimates 

using the union bound [17], we get: 

)ˆˆ( UBUBP    

075.0)ˆ()ˆ(  UBUB PP   

Therefore, since the overall probability of error is less than 7.5%, 

the result has at least a 92.5% confidence. Similary, it can be 

shown that: 

1.0)ˆˆˆ(  UBLBUBP   

In other words, setting α=0.025, β=0.95 gives us a 90% 

confidence interval on the cardinality estimate. 

While the above approach requires at least two rounds of 

sampling before arriving at a confidence interval, it has the 

following advantage: it can calculate an accurate confidence 

interval from a block sample, without requiring any block-level 

information. This is very useful, as storing block level information 

per row is expensive computationally and in terms of memory 

usage. 

Given the upper and lower bound estimates on µ, it is 

straightforward to calculate M, and perform the quality test 

described in Section 3.2.1.1. The next section addresses how the 

next sample size is calculated, if the quality test fails. 

3.2.1.4 Next Sample Size Calculation 
Let the number of rounds of sampling completed be K-1, with a 

total of NK-1 blocks sampled. At the end of the Kth round of 

sampling, we would like the following condition to hold, so that 

no more rounds are required: 

 


 
ˆ1ˆ 

N
z  

Note that our default value for α=0.05. Writing zα for brevity, the 

above equation can be rewritten as: 

2

22
2 ˆ

z

N
                                               (6) 

Using the transitivity of inequality, and using eq. (4) for the left-

hand side, we see that (6) will be true if: 

 

2

22
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1

2

ˆ

z

N
Xn

K

K

i

ii 












                     (7) 

Solving for N: 









 





2
1

1

2

,

22

2

)ˆ()ˆ(
ˆ


 

KK

K

i

ii

K

xnxn
z

N     (8) 

Since 
2)ˆ( Kx is not known until after the Kth sample, we use 

an estimate. By the Central Limit Theorem: 
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K

K
n

xE
2

2 ])ˆ[(


   

Replacing this in eq. (8): 


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Setting an upper-bound on σ2 using eq. (4), and pulling out the 

common factor from the terms within the parenthesis: 
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xn
z

N     (9) 

Eq. (9) gives us N, the total sample size in number of blocks that 

would be sufficient to meet the quality test. Using this, the 

optimal sample size for the Kth round can be calculated as n = N – 

NK-1. 

3.2.1.5 Special Case: No Matching Rows 
In the case where no matching rows are found in the two initial 

samples, we follow the following strategy: a sample of double the 

size in the previous iteration is taken, till at least one matching 

row is found, or till the total number of blocks sampled reaches a 

pre-determined threshold. If no matching rows are found till the 

threshold is reached, the query cardinality is estimated as zero. If 

matching rows are found in the j-th iteration, the next sample is 

calculated using eq. (9), where j = K-1 and xi=0 for iteration i < j. 

3.2.1.6 Sampling for complex operators 
Statistics queries can be complex, involving joins, group bys, etc. 

To get optimal plans for complex statistics queries, Oracle sends 

estimates generated for the parts of the statement earlier.  This is 

done using opt_estimate hints. An example hint can be seen in 

Q5. 

Currently Oracle uses sampling only for the largest table in the 

complex statistics query and estimates the result using the 

formulas mentioned in sections 3.2.1.2 – 3.2.1.5. This can be 

improved using the techniques for join cardinality estimation 

proposed in [20]. 

3.2.1.7 Sampling without Quality Metric (older 

approach) 
Before the introduction of the quality-metric based approach 

described previously, the standard approach used by adaptive 

sampling was to take a single sample of a pre-determined size, and 

use the cardinality estimate arrived via this sample as the ground 

truth, without further statistical validation or extra rounds of 

sampling.  

Further rounds of sampling were performed only in the case of the 

cardinality estimate yielding a value of zero. In this case, the 

sample size was successively doubled until a non-zero cardinality 

estimate was arrived at, or the entire table had been read. 

3.2.2 Time budget and enforcement for statistics 

queries 
Oracle keeps track of performance data for previously executed 

statements. Historical execution information is also available in 

Automatic Workload Repository [15]. This information is used 

for budgeting the time used for statistics queries. Oracle allots a 

fraction of the time it spends in actually executing the query in the 

past for executing the statistics queries. Once the limit allotted for 

a statistics query is reached, the query execution is stopped and 

the results generated so far are retrieved. The result will not be as 

accurate as when the statement executes to completion, but can be 

sufficient for the purpose of query optimization.  

3.3 SQL Plan Directives 
SPDs are persistent objects that have run time information of SQL 

or SQL constructs. These objects are stored in the Dictionary, 

which can be used to improve statistics gathering and query 

optimization on future executions. Currently Oracle has two types 

of directives – “Adaptive Sampling” and “Adaptive Sampling 

Result” directives. They are described next. 

3.3.1 Adaptive Sampling Directives 
Adaptive sampling directives are created if execution-time 

cardinalities are found to deviate from optimizer estimates.  They 

are used by the optimizer to determine if statistics queries (using 

sampling) should be used on portions of a query.  Also, these 

types of directives are used by the statistics gathering module to 

determine if additional statistics should be created (e.g. extended 

statistics).  The directives are stored based on the constructs of a 

query rather than a specific query, so that similar queries can 

benefit from the improved estimates.  

Creation of directives is completely automated. The execution 

plan can be thought of as a tree with nodes that evaluates different 

SQL constructs of the query. During compilation of the query 

(more precisely in Code Generator), the constructs evaluated in 

these nodes are recorded in a compact form in the system global 

memory area (SGA), and can be looked up later using a signature. 

The signature enables sharing of a construct between queries.  

For example consider Figure 2, node 6 of the query plan for Q1 

scans the Products table with predicates on columns 

PROD_CATEGORY, PROD_SUBCATEGORY. The signature in this 

case will be built using PRODUCTS, PROD_CATEGORY, 

PROD_SUBCATEGORY. That is, the signature does not use the 

values used in the predicates. So if another query has predicates 

on the same set of columns but with different values, the construct 

in the SGA can be shared.   

At the end of execution of every query, the Execution Engine goes 

over all nodes in the execution plan starting from the leaf nodes 

and marks those SQL constructs corresponding to node in SGA, 

whose cardinality estimate is significantly different from the 

actual value. The nodes whose children have misestimates are not 

marked, as the misestimate can be caused by a misestimate in the 

children. For example, in Q1, the optimizer has misestimated the 

cardinality for products table in node 6. The construct in this node 

(PRODUCTS table with PROD_CATEGORY and 

PROD_SUBCATEGORY) is marked while that of the parent nodes 

5, 4 etc are not. The SQL constructs that are marked (because they 

caused a misestimate) are used for creating the directive. The 

creation is done periodically by a separate background process, 

called MMON. The directives are stored persistently in Dictionary 

along with the objects that constitute constructs. They are called 

directive objects. In our example, PRODUCTS, 

PROD_CATEGORY, PROD_SUBCATEGORY are the directive 

objects created for the misestimate in node 6 of Q1. The directive 

can be used for other queries where these directive objects are 

present.  
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Cost Estimator estimates the cardinality for SQL constructs using 

the available pre-computed statistics in Dictionary in the normal 

way. Once this is done, it will look for any directive that exists for 

the construct. It will request Statistics Query Engine to execute 

statistics adaptive sampling query and get the more accurate 

estimate if a directive exists for the construct. 

One straight forward way to check if a directive exists for a 

construct is to build the signature of the construct and see if there 

exists a directive with the same signature. To maximize the usage 

of directives and reduce the number of directives created, instead 

of doing an exact match on the signature, we check if there is a 

directive that has a subset of objects of the current construct being 

estimated. If we find such a directive, we execute the statistics 

adaptive sampling query. For example, the directives created for 

products table during execution of Q1 can be used by another 

query with an additional predicate on products table.  

As mentioned earlier, we do not create directives for a node if 

there is misestimate for its children. Instead a directive for the 

children is created. If the misestimate in the parent node still 

manifests without any misestimates in child nodes after using the 

directives for children, a directive for the parent node is created. 

In this case the misestimate in parent is not caused by children. 

The overall process is shown in Figure 4. 

3.3.2 Adaptive Sampling Result Directives 
Adaptive sampling directives reduces the number of statistics 

queries executed in the system by executing statistics queries only 

if there is a directive created for the construct it is estimating 

cardinality for. For the statistics queries executed, it still adds an 

overhead to compilation. The same statistics queries may get 

executed for several top level SQL statements. We use directive 

infrastructure to avoid the overhead of this repeated execution.  

The result of the statistics query is stored in a directive of type 

Adaptive Sampling Result.  This type directive has the following 

directive objects: 

 The tables along with its current number of rows referenced 

in the statistics query. 

 The SQL identifier (sqlid). It is-a hash value created based 

on the SQL text. 

 A signature of the environment (bind variables etc) in which 

the statistics query is executed. 

 

This type of directive is created immediately after executing a 

statistics query in Statistics Query Engine. The usage of the result 

stored in these type of directives is as follows: 

 The statistics query engine first checks if a directive is 

created for the statistics query before executing the 

statement. The lookup is done based on the sqlid of the 

statistics query.  

 If there is a directive, we check if the result stored in the 

directive is stale. The result can be stale if some DML has 

happened for any of the tables involved in the statistics 

query. If the current number of rows (maintained in SGA) for 

any of the tables is significantly different from what is stored 

in the directive, we consider the directive as stale.  

 If a directive is stale, we mark it as such and execute the 

statistics query to populate the new result in the directive. 

3.3.3 Automatic extended statistics 
In real-world data, there is often a relationship or correlation 

between the data stored in different columns of the same table. 

For example, in the products table, the values in 

PROD_SUBCATEGORY column are influenced by the values 

PROD_CATEGORY. The optimizer could potentially miscalculate 

the cardinality estimate if multiple correlated columns from the 

same table are used in the where clause of a statement. Extended 

statistics allows capturing the statistics for group of columns and 

helps the optimizer to estimate cardinality more accurately [13]. 

Creation of extended statistics was manual when it was introduced 

in Oracle 11g.  Oracle had also introduced APIs to find all column 

groups in a given workload and to create extended statistics for all 

of them [13]. 

In Oracle 12c, the extended statistics are automatically created for 

all the column groups found in the SQL constructs that caused the 

misestimate. This avoids the creation of extended statistics for 

unnecessary group of columns that are not causing a misestimate 

in cardinality and suboptimal plans. The automatic creation of 

extended statistics relies on the SPD infrastructure explained in 

section 3.3.1. The adaptive sampling directives maintain different 

states depending on whether the corresponding construct has the 

relevant extended statistics or not. It goes through the following 

state changes, as shown in Figure 5.  

 NEW: When a directive is created as described in section 

3.3.1 it will be in the NEW state.  

 MISSING_EXT_STATS: When optimizer finds directives 

corresponding to the constructs in the query it will check if 

there  is a column group in the construct. If no extended 

statistics are created yet for the group then those column 

groups will be recorded in the dictionary tables. The state of 

the directive will be changed to MISSING_EXT_STATS.  

 HAS_EXT_STATS: The  statistics gathering process (either 

manual, or automatic job) creates extended statistics for the 

groups that are monitored. If optimizer finds the extended 

statististics for the column group corresponding to the 

directive, it will change the state to HAS_EXT_STATS. 

Statistics queries are not executed for the directives with 

HAS_EXT_STATS state. If the extended statistics produce 

more accurate estimate, it avoids the overhead of executing 

statistics queries. 

 

 

 

 

 

 

Figure 5. SPD State Transition Diagram 

 

 PERMANENT: If Execution engine finds misestimate for a 

construct and if the construct has a directive with state 

HAS_EXT_STATS, it goes throgh a state transition to 

PERMANENT and will use statistics queries from then 

onwards for the directive. This is because the extended 

statistics in previous state did not help to correct the 

misestimate for some queries. 

All the states except HAS_EXT_STATS execute statistics queries. 

NEW 

MISSING_EXT_STATS HAS_EXT_STATS 

PERMANENT 
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4. PERFORMANCEEVALUATION 
Adaptive statistics feature is available in Oracle 12c which has 

been in production for over 4 years and this section presents a 

performance study of the feature in Oracle 12c Release 2. The 

various aspects of adaptive statistics are evaluated on a publicly 

available workload as well as using a real customer workload. 

4.1 Workloads 
We ran our experiments on two workloads. 

 IMDB Workload [7]: We used the IMDB dataset benchmark 

that uses data from the Internal Movie Data Base (IMDB). 

We ran our tests on the 113 queries in the benchmark. 

 Customer X Workload. This is a real-world workload from a 

large market research company. We ran our tests on a sample 

of 29 queries with a diverse profile based on the execution 

time: short, medium and long. 

4.2 Experiment Setup 
The experiments were run on a 48 CPU, X86 machine running 

Linux 3.8. The machine has 512GB of physical memory.  

For each of the workloads, we ran six different experiments: 

1. Baseline. Adaptive statistics feature is not used. 

2. Adaptive statistics without quality metrics (AS w/o QM). The 

quality of the results from the statistics queries is not 

measured in this experiment as described in section 3.2.1.7. 

3. Adaptive statistics with quality metrics (AS w/ QM). Quality 

test is performed on the results of the statistics queries and 

statistics queries are re-executed with higher sample size as 

described in section 3.2. 

4. Adaptive statistics with quality metrics and with cache (AS 

w/ QM+Cache). The results of the statistics queries are 

cached persistently (section 3.3.2) and they are fetched from 

the cache instead of executing them. 

5. Adaptive statistics with directives (AS w/ SPD). Statistics 

queries are executed only if there is a corresponding SPD 

(section 3.3.1). 

6. Adaptive statistics with directives and extensions (AS w/ 

SPD+EXT). If there is extended statistics corresponding to a 

SPD, the corresponding statistics queries are not executed 

(section 3.3.3) in this setup. 

In each experiment, we measure the parse time (time to generate 

the execution plan), the total execution time (aggregate time spent 

by all the processes that participated in the execution) and the 

wall clock run time (the difference between the start and end of 

the execution of the query). Note that if the query executes in 

serial then the total execution time is same as the wall clock run 

time. However, for a parallel query execution, the wall clock time 

is less than or equal than the total execution time. All the 

experiments used a degree of parallelism of 16. 

4.3 Results 

4.3.1 IMDB Workload 
Out of 113 queries, 107 queries changed plans with “AS w/ QM”.  

We analyzed the plan changes for a sample of 23 queries. 20 

queries had a join order change.  Join method changed from 

nested-loops to hash join in 12 queries and 2 queries had the 

reverse change, i.e. from hash join to nested-loops join. 

Figure 6 shows the wall clock run time and the average hard parse 

time and Figure 7 shows the total execution time and average hard 

parse time for the workload. 

From Figure 6, it can be seen that compared to baseline, with AS 

w/o QM, the wall clock run time improves by about 70% at the 

expense of long parse time. The average parse time worsens 

further by about 56% if quality metrics are not used for statistics 

queries. For this workload, the wall clock run time remains almost 

the same with and without quality metrics. We verified that the 

cardinality estimated is more accurate when using the Quality 

Metric. However, this improved cardinality estimate does not 

result in different plans in this workload.  

On the other hand, as can be observed from Figure 7, the total 

execution time increases when adaptive statistics are used though 

the wall clock run time decreases. This shows that using adaptive 

statistics, the optimizer is able to find plans that are more 

parallelizable. These plans use more resources and finish 

execution faster.  

Note that “AS w/ QM+Cache” experiment has a parse time that is 

close to that of Baseline. This means that, if the workload is 

executed multiple times, only the first execution incurs the higher 

parse time, which is then amortized over later executions. In 

addition, usage of SPDs reduces the parse time considerably even 

for the first execution by selecting only the statistics queries that 

correct cardinality misestimates. Using directives (AS w/ SPD) 

decreased the wall clock time by about 6.8%. However, the 

improvement is significantly lower than that of AS w/ QM (no 

directives) in this workload.  This is because, SPDs are created 

only for the misestimates seen in the final plan. It takes several 

executions with different plans (e.g. different join orders) to 

generate more directives. Also there is no guarantee that we will 

see the join orders that has misestimate in the final plan even if 

the query is run several times. Hence, we created directives only 

from the first three executions in this experiment.  

 

Finally, Adaptive Statistics w/Directives & Extension parse time 

is better than without using Extensions, since statistics queries are 

not executed if there are extended statistics to help to produce 

better quality estimates. 

 

Figure 10 shows a scatter graph with the relationship between the 

run-time of a query and the absolute improvement in the run-time, 

as a result of AS w/ QM. In the graph, the queries can be divided 

into two categories based on the difference in the impact of 

adaptive sampling: the short queries (<30 seconds run-time), and 

the long queries (>30 seconds run-time). For the long queries, the 

absolute improvement grows roughly linearly with the run-time, 

so that the percentage improvement is roughly constant. This is a 

desirable property, as the long running queries show the greatest 

improvement. However, the same does not hold for short running 

queries, with many showing a small improvement, or even a 

significant increase in the run-time (in terms of percentage). 

However, with the exception of one query, most queries that show 

an increase in the run-time have wall clock run-time of less than 

30 seconds, and hence do not have a large negative impact on the 

overall wall clock run-time. 
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4.3.2 Customer X Workload 
Out of 29 queries, 21 queries changed plans with “AS w/ QM”.  

The changes fall in the following categories: (1) access path 

changes (different indexes, from index scan to sequential table 

scan) [4 queries], (2) Join order [15 queries], (3) Join method 

(from nested loop to hash join) [3 queries], Transformation: join 

predicate push down and Group by placement is not chosen in 3 

and 1 queries respectively. 

We can see trends similar to the IMDB benchmark in the 

Customer X workload (Figure 8 and Figure 9)  except for the 

following differences. 

 With quality metric, the wall clock time or total execution 

time is better than not using quality metric. So the quality 

test makes a difference in this workload. 

 The total execution time for “AS w/ SPD” is about 50% 

better than baseline, while spending a very small amount of 

extra parse time. However, wall clock time does not show a 

comparable improvement. This is due to two queries that, 

based on better estimates choose a plan that distributes the 

records differently, which causes some parallel processes to 

run idle. If we exclude these two queries, the wall clock time, 

is comparable to the total execution time, in being about 50% 

better than baseline. 

  

Figure 6. IMDB Workload – Wall Clock Run Time Figure 7. IMDB Workload – Total Execution Time 

  

Figure 8. Customer X Workload – Wall Clock Run Time Figure 9. Customer X Workload – Total Execution Time 

 
 

Figure 10. IMDB Workload: Run-time vs Improvement with 

Adaptive Statistics (using QM) 

Figure 11. Customer X Workload: Run-time vs Improvement with 

Adaptive Statistics (using QM) 
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 In this workload, the parse+total execution time is three 

times better than using adaptive statistics even without cache, 

directives and extensions.    

Figure 11 shows a scatter graph, displaying the relationship 

between the query run-time, and the absolute improvement in the 

run-time. It demonstrates similar pattern as in IMDB workload: 

the absolute improvement for a query increases linearly with the 

query runtime. 

5. CONCLUSION 
We presented the problems caused by incorrect statistics of 

intermediate results, surveyed the existing solutions and presented 

the approach we introduced in Oracle 12c. We performed 

experiments using two SQL workloads, IMDB and a real 

customer workload. The experiments show that the approach of 

computing statistics during compilation using statistics queries 

gives significant improvement on execution time. The techniques 

used for reducing compilation overhead of statistics queries were 

effective in these workloads. 
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