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ABSTRACT

In this tutorial, we present the recent work in the database commu-

nity for handling Big Spatial Data. This topic became very hot due

to the recent explosion in the amount of spatial data generated by

smart phones, satellites and medical devices, among others. This

tutorial goes beyond the use of existing systems as-is (e.g., Hadoop,

Spark or Impala), and digs deep into the core components of big

systems (e.g., indexing and query processing) to describe how they

are designed to handle big spatial data. During this 90-minute tu-

torial, we review the state-of-the-art work in the area of Big Spa-

tial Data while classifying the existing research efforts according to

the implementation approach, underlying architecture, and system

components. In addition, we provide case studies of full-fledged

systems and applications that handle Big Spatial Data which allows

the audience to better comprehend the whole tutorial.

1. INTRODUCTION
There has been a recent explosion in the amounts of spatial data

produced by several devices such as smart phones, satellites, space

telescopes, medical devices, among others. This variety of such

spatial data makes it widely used across important applications

such as simulating the brain in the Blue Brain Project [37], identify-

ing cancer clusters [43], tracking infectious disease [7], drug addic-

tion [48], simulating climate changes [25], and event detection and

analysis [45]. While there are several open-source distributed sys-

tems that are designed to handle Big Data in general, e.g., Hadoop,

Hive [49], HBase, Spark [59], and Impala [30], they all fall short

in supporting spatial data efficiently. As a result, there are great

research efforts in either extending the ideas of these systems or

building new systems to efficiently support Big Spatial Data.

In this tutorial, we will comprehensively go through all ongoing

efforts for supporting Big Spatial Data which the authors have re-

cently covered in a comprehensive survey [23]. We will also point

out to the research challenges and opportunities in supporting big

spatial data. The tutorial will act as an invitation to the database

community to join arms to fill up the emerging needs of spatial

big data applications. The tutorial is divided into six parts. The

first part will motivate for the need to support big spatial data. The
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second part will discuss various architectural approaches to build-

ing big spatial data systems. The third, fourth, and fifth parts will

discuss ongoing efforts and challenges in indexing, querying, and

visualizing big spatial data, respectively. The tutorial is concluded

by the sixth part that goes through various cases studies of systems

and applications for big spatial data.

2. TUTORIAL OUTLINE
Figure 1 gives our 90-minutes tutorial outline, which is com-

posed of six parts, as detailed in the rest of this section. Table 1

gives a comprehensive comparison of the partial list of the papers

that we will be covering during the tutorial.

Part I: Big Spatial Data: Why?

As given in Figure 1, this first part takes 10 minutes where we

motivate for the need to support Big Spatial Data. We start by

giving a historical background and perspective on the explosion

of Big Spatial data. We then explain how existing Big Data dis-

tributed systems (e.g., Hadoop, Hive [49], HBase, Spark [59], and

Impala [30]), support spatial data, and why such support is limited.

To justify this lack of spatial support, we show the performance of

these systems when used as-is to process spatial data as reported

in various research efforts in the literature [1, 22, 28, 53, 61, 62, 64].

As a further motivation, we highlight some simple and efficient im-

provements that can be applied to better support spatial data.

Part II: Building a Big Spatial Data System

The second part of the tutorial takes another 10 minutes, as given

in Figure 1. This part mainly covers the second, third, and fourth

columns of Table 1.

We first start by categorizing all existing work into three cate-

gories based on the underlying approach for building a Big Spa-

tial Data system, namely, on-top, from-scratch and built-in, while

explaining each of them by examples. In the on-top approach, the

spatial functionality is implemented through user-defined functions

(UDFs), which is simple to implement but inefficient as the sys-

tem core is still unaware of spatial functionality [14, 27, 28, 51, 53,

61, 62, 64]. The from-scratch approach builds a new system from

scratch to support distributed spatial processing, which is very ef-

ficient but too complex to build and maintain [5, 15, 52, 63]. The

built-in approach tries to balance both simplicity and efficiency by

injecting spatial data awareness inside an existing distributed sys-

tem [1, 22, 26, 32, 38, 54].

We will then classify existing work based on the underlying

architectures as parallel databases [15, 32], array databases [44,

46, 47, 50], Key-value stores [26, 38], MPI [41, 63], MapRe-

duce [1,2,14,19,20,22,24,54,62], and Resilient DD (RDD) [29,57].

Then, give a quick overview of high level languages for Big Spatial
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• Part I: Big Spatial Data: Why? (10 minutes)

– A historical perspective on the explosion of Big Spatial Data
– The lack of systems to support Big Spatial Data

• Part II: Building a Big Spatial Data System (10 minutes)

– Approaches for building a Big Spatial Data System
– Spatial High Level Language
– System Components

• Part III: Indexing Big Spatial Data (20 minutes)

– Spatial HDFS
– Indexing layout
– Index Types

• Part IV: Querying Big Spatial Data (15 minutes)

– Basic queries
– Spatial Join
– Computational Geometry

• Part V: Visualizing Big Spatial Data (15 minutes)

– Single-level Images
– Multi-level Images

• Part VI: Case Studies (20 minutes)

– System cases studies
– Application case studies

Figure 1: Tutorial Outline (90 minutes)

Data [1, 15, 21, 24, 32, 47, 52]. Although there is no much research

challenges involved with this component, it is still very important

as it defines how users, specially non-technical ones, are going to

interact with the system. We highlight two aspects that make a pro-

posed language more appealing to users. First, it might extend an

existing language for distributed systems which makes it easier to

adopt and learn by existing users [1, 21, 24]. Second, users will

quickly understand and learn a language if it follows industry stan-

dards [21, 24], such as Open Geospatial Consortium (OGC) [39],

which is already adopted in popular systems, e.g., PostGIS, Oracle

Spatial, and ArcGIS.

This part is concluded by a quick overview of the system compo-

nents, namely, indexing, query processing, and visualization, which

will be detailed in the next three pats of the tutorial.

Part III: Indexing Big Spatial Data

As given in Figure 1, the third part lasts for 20 minutes and de-

scribes big spatial indexes (the fifth column of Table 1). We start by

describing how spatial indexing is done in Hadoop Distributed File

System (HDFS), since it is the standard distributed file system used

in most big data systems including Hadoop, Pig [40], Hive [49],

HBase, Accumulo, Spark [59], and Impala [30].

We then show that existing spatial indexes in HDFS follow a

general two-level design of one global index that partitions data

across nodes and multiple local indexes that organize records in

each node [63]. To affirm its generality, we show how it is used

to construct many index types including uniform grid [1, 22], R-

tree [14,22], R+-tree [22], Quad tree [35], PMR Quad tree [54], K-

d tree [38, 47], Geohash [26], and other GiST-based indexes [33].

In addition, depending on the capabilities of the underlying system

in which the index is added, we show that some of them support

only static indexes [1, 22, 35, 54] in raw HDFS files, while others

provide dynamic indexes [26,38] in key-value stores. After that, we

show that the huge overhead of random access in HDFS [31] pushes

system designers to build primary or clustered indexes [1, 22, 26,

38, 54] where the actual records are stored in the same order as

the index, while there is only a little effort to implement secondary

or non-clustered indexes [31, 33, 54]. This highlights an important

open research problem that researchers can tackle.

Part IV: Querying Big Spatial Data

In this part, as given in Figure 1, we will spend 15 minutes in de-

scribing the different approaches in implementing different spatial

queries using the spatial indexes described earlier (the sixth column

in Table 1). We start by describing existing efforts for support-

ing basic queries for Big Spatial Data. Such queries include range

query [1, 22, 35, 38, 54], and the family of nearest neighbor queries

including k-nearest neighbor (KNN) [2, 22, 54, 61], reverse nearest

neighbor (RNN) [2], and all nearest neighbor (ANN) [53]. While

describing these queries, we emphasize the value of spatial indexes

by showing orders of magnitude performance improvement when

spatial indexes are used for the same query type.

Then, we describe existing efforts for supporting spatial join

queries which includes self join [1], binary join [22, 62], multi-

way join [27], and kNN join [34, 60]. Finally, we describe existing

efforts for more advanced computational geometry operations for

Big Spatial data such as polygon union, skyline, convex hull, far-

thest/closest pairs [19], and Voronoi diagram construction [2].

Part V: Visualizing Big Spatial Data

As outlined in Figure 1, we allocate 15 minutes of the tutorial to

this part to talk about visualization of Big Spatial Data (the last

column in Table 1). Visualizing Big Spatial Data has gained an

increased importance with spatial data as opposed to non-spatial

data, where it significantly helps users to explore very large spa-

tial datasets and spot patterns that are otherwise very hard to find.

While non-spatial data is usually visualized as a chart using aggre-

gation or sampling [8, 55], spatial data requires more sophisticated

visualization techniques. We categorize existing visualization tech-

niques for Big Spatial Data into single level and multi-level visual-

ization algorithms. Single level visualization [16,17,44,51] gener-

ates a single image with a limited resolution where the quality of

the image is limited by its resolution. On the other hand, multi-level

images [9, 16, 17] are generated at many zoom levels where users

can zoom in to see more details about the dataset, which makes it

particularly suitable for big spatial data.

Part VI: Case Studies

In this final part, we spend 20 minutes to conclude the tutorial

by giving a comprehensive survey of full-fledged systems and ap-

plications for Big Spatial Data, along with describing how each

system supports spatial language, indexing, querying, and visual-

ization. This part allows the audience to grasp the whole tutorial

by presenting complete systems including Hadoop-GIS [1], Spa-

tialHadoop [22], MD-HBase [38], ESRI Tools for Hadoop [54],

BRACE [52], PRADASE [35], SciDB [47], Parallel Secondo [32],

GeoTrellis on Spark [29], and AsterixDB [5]. In addition, we re-

view a number of applications that are built using these systems to

support Big Spatial Data including SHAHED [17], EarthDB [44],

TAREEG [4], TAGHREED [36], and AscotDB [50]. These appli-

cations show to the audience how end-user applications can utilize

the systems described above to handle Big Spatial Data.

3. TARGET AUDIENCE
This tutorial targets researchers, developers, and practitioners,

who are interested in processing Big Data in general, and Big Spa-

tial Data in particular. The tutorial does not require any particular

background or knowledge about spatial data. Yet, it requires basic
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Table 1: Existing work in the area of big spatial data
Approach Architecture Language Indexes Queries Visualization

Paradise [15, 42] From-scratch Parallel DB SQL Grid RQ, SJ, Raster Single level

Parallel Secondo [32] Built-in Parallel DB SQL-Like Local only RQ, SJ -

Sphinx [18] Built-in Parallel DB SQL R-tree, Quad tree RQ, SJ -

SciDB [9, 44, 47] From-scratch Array DB AQL, AFL Kd tree RQ, KNN Single/Multi

RasDaMan [10–13] From-scratch Array DB RasQL - Raster Single level

MD-HBase [38] Built-in KV store - Quad Tree, Kd tree RQ, KNN -

GeoMesa [26] Built-in KV store CQL Geohash RQ Via GeoServer

EMINC [63] From-scratch MPI - Kd tree, R-tree RQ, K-means, DBSCAN -

SJMR [31, 53, 61, 62] On-top MapReduce - R-tree RQ, KNN, SJ, ANN -

K-Means [64] On-top MapReduce - - K-means -

MR-DBSCAN [28] On-top MapReduce - - DBSCAN -

Voronoi Diagram [2] On-top MapReduce - - VD, NN Queries -

3D Visualization [51] On-top MapReduce - - - Single level

KNN Join [34, 60] On-top MapReduce - - KNN Join -

Multiway SJ [27] On-top MapReduce - - Multiway SJ -

BRACE [52] From-scratch MapReduce BRASIL Grid SJ -

Hadoop GIS [1] Built-in MapReduce QLSP Grid RQ, KNN, SJ -

SpatialHadoop [16, 19, 22] Built-in MapReduce Pigeon R tree/Quad tree RQ, KNN, SJ, CG Single/Multi

ScalaGiST [33] Built-in MapReduce - GiST RQ, KNN -

Esri Tools [54] Built-in MapReduce HiveQL PMR Quad Tree RQ, KNN -

ISP-MC [57] On-top RDD Scala-based On-the-fly SJ -

GeoTrellis [29] On-top RDD Scala-based - Map Algebra -

GeoSpark [58] Built-in RDD Scala-based R-tree, Quad-tree RQ, KNN, SJ -

Simba [56] Built-in RDD SQL R-tree RQ, KNN, SJ, KNN-Join -

Asterix-DB [3, 5, 6] Built-in Hyracks AQL R-tree local index RQ -

database knowledge, which is assumed to be there for VLDB audi-

ence including junior database students. Such knowledge includes

the meaning of indexing and querying terms.
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