
Fast Algorithm for the Lasso based L1-Graph Construction

Yasuhiro Fujiwara†‡∗, Yasutoshi Ida†, Junya Arai†, Mai Nishimura†, Sotetsu Iwamura†

†NTT Software Innovation Center, 3-9-11 Midori-cho Musashino-shi, Tokyo, Japan
‡NTT Communication Science Laboratories, 2-4 Seika-Cho Soraku-gun, Kyoto, Japan

∗Osaka University, 1-5 Yamadaoka, Suita-shi, Osaka, Japan
{fujiwara.yasuhiro, ida.yasutoshi, arai.junya, nishimura.mai,

iwamura.sotetsu}@lab.ntt.co.jp

ABSTRACT
The lasso-based L1-graph is used in many applications since
it can effectively model a set of data points as a graph. The
lasso is a popular regression approach and the L1-graph rep-
resents data points as nodes by using the regression result.
More specifically, by solving the L1-optimization problem of
the lasso, the sparse regression coefficients are used to ob-
tain the weights of the edges in the graph. Conventional
graph structures such as k-NN graph use two steps, adja-
cency searching and weight selection, for constructing the
graph whereas the lasso-based L1-graph derives the adja-
cency structure as well as the edge weights simultaneously by
using a coordinate descent. However, the construction cost
of the lasso-based L1-graph is impractical for large data sets
since the coordinate descent iteratively updates the weights
of all edges until convergence. Our proposal, Castnet, can
efficiently construct the lasso-based L1-graph. In order to
avoid updating the weights of all edges, we prune edges that
cannot have nonzero weights before entering the iterations.
In addition, we update edge weights only if they are nonzero
in the iterations. Experiments show that Castnet is signifi-
cantly faster than existing approaches.

1. INTRODUCTION
We are now living in the big data era. With the rapid de-

velopment of database technologies, high-dimensional data
has become prevalent in many application domains which
demand techniques to process data in an effective manner
[21, 17]. From the data mining perspective, it is important
to detect the hidden structures of high-dimensional data
that can be collectively revealed only by processing large
amounts of data. This is because the hidden structures allow
us to associate, and thus utilize, the semantic information of
data; data belonging to the same cluster share the same se-
mantic information [9]. From a practical perspective, finding
the hidden structures of high-dimensional data is a funda-
mental process in computational biology, human-computer

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 3
Copyright 2016 VLDB Endowment 2150-8097/16/11.

interaction, medical analysis, scientific data exploration, and
information retrieval [10].

Graph is a fundamental data model in finding the hid-
den structures of high-dimensional data. The nodes and
edges of a graph represent data points and the relationships
among them, respectively. Since graphs are useful, various
approaches to exploit graphs have been proposed in many
communities [8, 9, 11, 19]. However, the database commu-
nity has paid relatively little attention to developing graph
construction approaches although it is a quite important re-
search problem in real-world applications. Conceptually, a
graph should capture the intrinsic complex structures in-
duced by high dimensionality of the data. A primitive ap-
proach for graph construction is k-nearest neighbor (k-NN).
In a k-NN graph, each node is connected to its k-nearest
neighbor nodes by exploiting Euclidean distance. However,
Euclidean distance is sensitive to data noise, a problem that
is inherent in real-world applications [4].

In order to address this problem, Meinshausen et al. pro-
posed to construct the L1-graph by solving the L1-optimization
problem of the lasso [16]. The lasso is a popular least squares
regression approach that represents each data point as the
linear combination of the remaining data points along with
coefficients [13]. By adding an L1-norm regularization term,
the lasso achieves the sparsity of the solution; it assigns ex-
actly zero coefficients to the most irrelevant data points in
the regression. The idea of Meinshausen et al. is to ex-
ploit the lasso to construct graphs; they applied the lasso to
each node, where the regression coefficients are used as edge
weights in the graph. In the approach, the neighborhood re-
lationships and edge weights are simultaneously obtained by
solving the L1-optimization problem of the lasso. Thus, the
resulting graph is referred as the L1-graph. The L1-graph is
fundamentally different from traditional k-NN graphs. Since
the L1-graph utilizes the higher order relationships among
data points, it is robust to data noise unlike k-NN graphs
[4]. In addition, the L1-graph has small memory consump-
tion since the lasso can sparsely represent each node by using
the small number of remaining nodes [16].

Even though the lasso-based L1-graph is used in many
applications, its construction incurs high computation cost
[4, 14, 15]. The graph construction approach proposed by
Meinshausen et al. picks up nodes one by one and computes
the lasso for each node. In terms of processing speed, the
coordinate descent [5] is an efficient approach to the lasso
that iteratively updates edge weights one at a time to com-
pute the regression result. However, it is infeasible to apply
the coordinate descent to large-scale data sets. This is be-

229

cause it iteratively computes the weights of all edges until
convergence even if weights of almost all edges are zero due
to the L1-norm regularization term of the lasso.

1.1 Problem Statement
If N and M are the numbers of nodes and dimensions,

respectively, a set of high-dimensional data is represented as
matrix X of N ×M size. We address the following problem:

Problem (L1-graph construction).
Given: Matrix X of the high-dimensional data and tun-

ing parameter λ.
Construct: the L1-graph of N nodes with edge weights

computed by the lasso, efficiently.

In this problem, tuning parameter λ is a positive regular-
ization parameter that balances the trade-off between the
loss function and the L1-norm regularization of the lasso.
Our approach can be used in various applications as shown
below due to the generality of the problem.

Brain Analysis. Recent advances in computational neuro-
science allow researchers to use large-scale gene expression
databases in analyzing genes and anatomies. It is crucial
to detect gene-anatomy association for understanding brain
function from molecular and genetic information. The lasso-
based L1-graph has been used to model the anatomical or-
ganization of brain structure [14]. In the graph, each node
represents the spatial location of a gene, and the edges be-
tween nodes encode the correlations between locations in
the brain. Since spatially adjacent regions tend to exhibit
correlated expression patterns, most of the edges connect
to spatially adjacent regions in the graph. However, the
graph revealed an apparent exception; the nodes annotated
as dentate gyrus (DG) were found to be highly correlated to
many other nodes in distant regions of the brain. DG is an
important area for learning and memory to process spatial
information. According to neuroanatomy, DG receives mul-
tiple sensory inputs including visual and auditory. Thus,
DG plays an important role in blocking and filtering excita-
tory activity from the inputs.

Motion Segmentation. In the field of computer vision, mo-
tion segmentation is a fundamental process in decomposing
a video into moving objects and a background. Motion seg-
mentation is a pre-processing step in surveillance, tracking,
and action recognition. It is important to develop a mo-
tion segmentation approach that is robust against noise since
data is never clean in real world applications. For example,
in human image recognition, the data exhibits different de-
grees of noise depending on rotation, lighting, scale, and so
on. Although many approaches have been proposed in the
literature, the approach based on the affine camera model
is arguably the most popular for motion segmentation. An
important intuition behind the approach is to use motion;
we can easily discern independently moving objects by sim-
ply seeing their motion. In the approach, all the trajectories
associated with a single rigid object lie in a linear subspace.
Therefore, motion segmentation can be achieved by cluster-
ing trajectories into different motion subspaces [4]. More
specifically, the approach constructs the L1-graph from the
trajectory data to apply spectral clustering since the L1-
graph is robust against noise unlike other types of graphs.
The approach is more effective than existing approaches.

Lesion Detection. Automatic lesion detection is an impor-
tant process in early medical screening or providing second

opinions for decision making. In computer-aided diagno-
sis, analyzing CT images is an essential step in generating
3D models. Although it is conceptually simple that lesions
are just regions whose features differ from those of normal
anatomical structures, it is technically challenging to detect
lesions in CT images due to the poor contrast between the
lesion and surrounding tissues, and the high variability of le-
sion shape. The lasso-based L1-graph is a robust approach
to lesion detection where a voxel in a CT image corresponds
to a node in the graph [15]. The approach identifies lesion
regions in CT images by applying a semi-supervised learning
approach that propagates labels of manually-labeled nodes
to unlabeled nodes in the graph. The approach is motivated
by the superior discriminant power of the sparse represen-
tations yielded by the lasso. Due to the sparsity constraint
imposed by the L1-norm regularization term, the L1-graph
have a sparse structure where only nodes of similar features
are connected to each other. As a result, the approach can
effectively determine the lesion regions from noisy data. The
approach experimentally shows that it can distinctly iden-
tify prostate cancer; one of the leading causes of male cancer
death in the United States.

1.2 Contributions
In this paper, we propose Castnet, a novel and efficient

approach to constructing the lasso-based L1-graph. Be-
fore entering the iterations, we prune those edges whose
weights cannot be nonzero. In addition, we efficiently up-
date nonzero weights in each iteration by pruning edges
whose weights are zero. Although our approach skips un-
necessary weight updates similarly to the state-of-the-art
approach of the lasso [7], we substantially improve the ef-
ficiency compared to the previous approach by effectively
pruning the inner product computations used for graph con-
struction. As a result, our approach is 130 times faster than
the state-of-the-art approach. Even though the lasso-based
L1-graph was designed to overcome the sensitivity of k-NN
graphs to data noise, it is seldom applied to large-scale data
sets due to the high computation cost. However, our ap-
proach can efficiently construct graphs, which will improve
the usefulness of many applications such as brain analysis,
motion segmentation, and lesion detection.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work. Section 3 gives an overview
of the background. Section 4 introduces our approach. Sec-
tion 5 reviews our experiments and the results. Section 6
details case-studies. Section 7 provides our conclusions.

2. RELATED WORK
Meinshausen et al. proposed the lasso-based L1-graph

as more robust approach against noise than traditional k-
NN graphs [16]. Their approach picks up nodes one by
one and uses the lasso to compute weights for the node.
A popular approach to solving the L1-optimization problem
of the lasso is the coordinate descent [5]. To resolve the L1-
optimization problem, it iteratively updates edge weights
one at a time. In terms of the efficiency, Sling is a state-of-
the-art approach based on the coordinate descent although
it is not so useful to construct the L1-graph [7]. Sling uses
the sequential strong rule to discard unnecessary edges. It
is based on the assumption that a grid of tuning parame-
ters (λ1 > λ2 > λ3 > . . .) is used in solving the lasso the

230

Table 1: Definitions of main symbols.
Symbol Definition

N Number of nodes in the graph
M Number of dimensions of each data point
m Target rank of SVD
λ Tuning parameter
p Node for weight computation

ep[u] Edge from node u to p
wp[u] Weight of edge ep[u]
dp Number of edges to node p

K[u|wp] KKT condition score of node u for weight vector wp

K[u|wp] Upper bound of KKT condition score K[u|wp]
K[u|wp] Lower bound of KKT condition score K[u|wp]

xp p-th row vector of matrix X
wp 1 × N weight vector of node p
X N × M matrix of high-dimensional data
V Set of nodes in the graph

M[wp] Set of edges that must have nonzero weights for wp

C[wp] Set of edges that can have nonzero weights for wp

same as the other screening techniques [24]; the tuning pa-
rameter controls the sparsity of the solution. In each it-
eration, Sling estimates parameters of the soft-thresholding
operator used in updating weights. In addition, Sling em-
ploys the covariance-based approach to efficiently update
weights by computing the inner products of all nodes before
entering each iteration [6]. After convergence, Sling checks
the Karush-Kuhn-Tucker (KKT) condition of all discarded
edges since the sequential strong rule may erroneously dis-
card edges of nonzero weights [24]. Although Sling is faster
than the original coordinate descent approach for the lasso,
it is not practical to construct the L1-graph by directly us-
ing Sling. This is because the tuning parameter is constant
when constructing a graph; the sequential strong rule is not
effective in pruning unnecessary edges since λ does not dy-
namically change when constructing a graph. In addition,
Sling computes the inner products of all nodes even if almost
all edges are zero as a result of the lasso. To the best of our
knowledge, Castnet is the first approach that can efficiently
construct the lasso-based L1-graph.

3. PRELIMINARY
We formally define the notations and introduce the back-

ground of this paper. Table 1 lists the main symbols and
their definitions. In the lasso-based L1-graph, nodes and
edges correspond to data points and their relationships, re-
spectively. Let p be a node in the graph and V be the
set of nodes in the graph, the lasso is used to compute the
weights of edges by picking up each node such that p ∈ V.
Since the lasso sets zero coefficients to almost all edges, the
graph has a sparse structure. Let X ∈ RN×M be the ma-
trix of N data points that have M dimensional features and
xp = (xp[1], xp[2], . . . , xp[M]) be the p-th row vector in ma-
trix X, vector xp corresponds to the p-th data point or node
p. We assume the each row vector is centered and normal-
ized [6]; each vector has average and variance of 0 and 1,
respectively. Let wp be a 1 × N weight vector whose u-
th element wp[u] is the weight of the edge from node u to
p. In the lasso-based L1-graph, each node is represented
as the sparse linear superposition of other nodes by solving
the lasso optimization problem. Specifically, we compute
weights of edges to node p by minimizing the following ob-
jective function of the regression where wp[p] = 0 [16]:

minwp∈RN
1

2M ‖xp −wpX‖22 + λ‖wp‖1 (1)

where ‖ · ‖1 and ‖ · ‖2 are the L1-norm and L2-norm of a
vector, respectively, and λ > 0 is a tuning parameter. Note
that the graph does not have self-loop edges since wp[p] = 0
for each picked up node. In Equation (1), the first term cor-
responds to the squared loss by regression; the second term
corresponds to an L1-norm constraint for the coefficients.
Therefore, Equation (1) implements the regularization of
weight vector wp by trading off the accuracy of the regres-
sion for a reduction in the sparsity of coefficients; it has the
effect of giving a solution to the objective function with few
edges of nonzero weights [23]. It is clear from Equation (1)
that the graph has improved sparsity as we raise tuning pa-
rameter λ. As described in the previous paper [6], if some
nodes are strongly correlated, a single node would be used to
represent node p; only an edge from the single node is likely
to have nonzero weight in that case. If matrix X has full row
rank, we have a unique solution for the optimization prob-
lem of Equation (1) [13]. Otherwise, which is necessarily the
case when N > M , there may not be a unique solution.

In order to efficiently solve the lasso, Friedman et al. pro-
posed the coordinate descent that updates weights of edges
one at a time until they reach convergence [5]. The coor-
dinate descent partially conducts optimization with respect
to weight wp[u] by supposing that it has already estimated
other weights for all nodes u such that u ∈ V\p. Specifically,
the coordinate descent updates weights as follows:

wp[u]← S[zp[u|wp],λ] (2)

where S[·, ·] is the following soft-thresholding operator [5]:

S[zp[u|wp], λ]

=

{
zp[u|wp]− λ (zp[u|wp] > 0 and |zp[u|wp]| > λ)
zp[u|wp] + λ (zp[u|wp] < 0 and |zp[u|wp]| > λ)
0 (|zp[u|wp]| ≤ λ)

(3)

In addition, zp[u|wp], a parameter of node u for weight vec-
tor wp, is computed as follows:

zp[u|wp] = 1
M

∑M
i=1 xu[i](xp[i]− x̃(u)

p [i]) (4)

where x̃(u)
p [i] is the regression result for element xp[i] without

using node u computed as follows:

x̃(u)
p [i] =

∑
v∈V\{p,u}wp[v]xv [i] (5)

As shown by the above equations, zp[u|wp] and x̃(u)
p [i] are

required to update a weight by Equation (2). Since x̃(u)
p [i] is

different from each weight, above equations indicate that the
original coordinate descent approach needs different regres-
sion results for each weight. It takes O(M) time to compute
zp[u|wp] from Equation (4). In addition, Equation (4) ad-

ditionally requires O(dp) time to compute x̃(u)
p [i] for each

dimension by Equation (5) if dp is the number of nonzero
weight edges to node p; dp is degree of node p. As a result,
if T is the number of updates until convergences, it takes
O(dpMT) time to compute edge weights to node p by using
Equation (2). As a result, the computation cost of construct
the L1-graph can be prohibitive for large datasets.

4. PROPOSED METHOD
This section presents Castnet, which can efficiently con-

struct the lasso-based L1-graph. Section 4.1 overviews the
ideas that underlie our approach. Section 4.2 describes our
approach to determine the edge sets to update weights by

231

using upper and lower bounds of KKT condition score. In
Section 4.3, we introduce the approach that computes the
bounds of KKT condition score. Section 4.4 shows the graph
construction algorithm along with its theoretical properties.

4.1 Main Ideas
In constructing the lasso-based L1-graph, the original co-

ordinate descent approach incurs high computation cost.
This is because (1) it updates the weights of all edges until
the convergence although almost all edges have zero weights
due to the L1-norm constraint of the lasso and (2) it up-
dates each weight by computing a different regression result
for each weight as described in Section 3.

For efficient graph construction, our approach is to prune
unnecessary edges that cannot have nonzero weights so as to
determine a set of edges for weight updating. More specifi-
cally, we first limit weight updates to the set of edges that
must have nonzero weight until convergence. After that,
we update weights of the set of edges that can have nonzero
weight. As a result, we can efficiently obtain weights for each
node. Theoretically, we efficiently determine edge sets that
must/can have nonzero weight by computing the upper and
lower bounds of KKT condition scores; KKT condition was
originally used to find edges that are erroneously discarded
by the sequential screening rule as described in Section 2
[24]. In addition, we exploit two types of efficient update
computations for weights. The first type of update compu-
tation is based on the residual of the lasso that is the same
for each weight. Since we do not need to compute differ-
ent regression results in each weight update, we can greatly
enhance computation speed comparing to the original co-
ordinate descent approach. We use this type of computa-
tion for edges that have zero weight. Otherwise, we update
the weight using the covariance-based approach [6]; this is
the second type of update computation. Our approach can
more efficiently update weights than the previous approach
even though we exploit the same covariance-based approach
[7]. This is because we use the residual-based update com-
putation if the weight of an edge is zero. As described in
Section 2, the covariance-based approach requires the com-
putations of inner products for all edges to update weights
before entering the iterations. Since we do not update all
edge weights by the covariance-based approach, we can ef-
fectively prune the inner product computations unlike the
previous approach. Furthermore, we skip update computa-
tions for edges if they do not have nonzero weight. This
is because the edge sets to update may include zero weight
edges. By skipping the update computations for such edges,
we improve the efficiency with which nonzero weights are
updated in the iterations.

Even though we adopt a different strategy from the pre-
vious approach in constructing the L1-graph, we can prov-
ably guarantee to output the same graph as the previous
approach if matrix X has full row rank. This is because
our approach converges on the unique lasso solution in that
case. Therefore, our approach is effective and efficient in
constructing the lasso-based L1-graph.

4.2 Weight Updates
This section describes the approach to updating weights.

We first introduce the definitions of edge sets as well as their
properties in Section 4.2.1. We then describe the weight
update computations in Section 4.2.2. We finally show our

approach of skipping update computations for zero weight
edges in Section 4.2.3.

4.2.1 Definitions
Before entering the iterations, we compute the two edge

sets of M[wp] and C[wp]. M[wp] is the set of edges whose
weights must be nonzero when updated with weight vec-
tor wp. Similarly, C[wp] is the set of edges that can have
nonzero weights when updated with weight vector wp. The-
oretically, edge set M[wp] and C[wp] are based on the KKT
condition [24]. We obtain these edge sets by computing the
upper and lower bounds of KKT condition scores that are
given in Section 4.3. Before defining the edge sets, we show
how the KKT condition can check whether weight wp[u] has
nonzero score or not for weight vector wp as follows:

Definition 1 (KKT condition [24]). IfK[u|wp] is the
KKT score of node u for weight vector wp, we have

K[u|wp] = 1
λwp[u] + 1

λM (xp −wpX)x$
u (6)

where x$
u is the transpose of xu. For all nodes u such that

u ∈ V/p, if the weight of the edge from node u to p is
updated with weight vector wp, K[u|wp] has the following
scores based on weight wp[u] after the update:

K[u|wp] > 1 (iff wp[u] > 0)
K[u|wp] < −1 (iff wp[u] < 0)
−1 ≤ K[u|wp] ≤ 1 (iff wp[u] = 0)

(7)

It is clear that we can obtain a set of edges that have
nonzero weights by directly computing the KKT condition
scores from Equation (6). This, however, incurs high com-
putation cost; it takes O(NM) time for determining each
KKT condition score in the worst case since the sizes of xp,
wp, X, and x$

u in Equation (6) are 1×M , 1×N , N×M , and
M×1, respectively. To overcome this problem, we efficiently
compute the upper and lower bounds of the KKT condition
scores introduced in Section 4.3. If K[u|wp] and K[u|wp]
are the upper and lower bounds of KKT condition score
of K[u|wp], respectively, we have K[u|wp] ≤ K[u|wp] ≤
K[u|wp]. By exploiting the bounds, the two edge sets are
given as follows:

Definition 2 (Edge Set M). For node u such that u (=
p, the definition of edge set M[wp] is given as follows:

M[wp] = {ep[u] : K[u|wp] < −1 or K[u|wp] > 1} (8)

Definition 3 (Edge Set C). Letting u (= p, the fol-
lowing equation defines edge set C[wp]:

C[wp] = {ep[u] : K[u|wp] > 1 or K[u|wp] < −1} (9)

In Equations (8) and (9), ep[u] is the edge from node u to
p. Therefore, an edge is included in M[wp] if K[u|wp] < −1
or K[u|wp] > 1 holds. Similarly, when we have K[u|wp] > 1
or K[u|wp] < −1, an edge is placed in edge set C[wp]. The
KKT condition yields the following properties for edge sets:

Lemma 1 (Edge Set M). Each edge ep[u] such that
ep[u] ∈ M[wp] must have nonzero weight if its weight is
updated with weight vector wp.

Proof For each edge included in edge set M[wp], we
have K[u|wp] < −1 or K[u|wp] > 1 if its weight is up-
dated for weight vector wp from Definition 2. In the case

232

of K[u|wp] < −1, we have K[u|wp] ≤ K[u|wp] < −1 since
K[u|wp] is the upper bound of K[u|wp]. Therefore, weight
wp[u] of edge ep[u] must have negative score from the KKT
condition. If K[u|wp] > 1 holds for edge ep[u], we similarly
have K[u|wp] ≥ K[u|wp] > 1 since K[u|wp] ≥ K[u|wp]
holds. As a result, edge ep[u] must have positive weight in
this case from the KKT condition. !

Lemma 2 (Edge Set C). For each edge ep[u] such that
ep[u] ∈ C[wp], its weight wp[u] can have nonzero score if we
perform the update computation with weight vector wp.

Proof To prove Lemma 2, we show that the weight
of an edge must be zero after being updated with weight
vector wp if K[u|wp] ≤ 1 and K[u|wp] ≥ −1 hold. In the
case of K[u|wp] ≤ 1 and K[u|wp] ≥ −1, we have −1 ≤
K[u|wp] ≤ K[u|wp] ≤ K[u|wp] ≤ 1. Therefore, such an
edge cannot have nonzero weight from the KKT condition.
In addition, it is clear that such an edge cannot be included
in edge set C[wp] from Definition 3. As a result, if we have
K[u|wp] > 1 or K[u|wp] < −1 for an edge, the edge can
have nonzero weight and so is included in C[wp]. !

In terms of the relationship between edge set M[wp] and
C[wp], we have the following property:

Lemma 3 (Edge Set M and C). If an edge is included
in M[wp], the edge must be included in C[wp].

Proof From Definition 2, we have K[u|wp] < −1 or
K[u|wp] > 1 for an edge if the edge is included in M[wp]. If
K[u|wp] < −1 holds, we have K[u|wp] ≤ K[u|wp] < −1 for
the edge. In addition, if we have K[u|wp] > 1, K[u|wp] ≥
K[u|wp] > 1 holds for the edge. Therefore, it is clear that
such the edge is also included in C[wp] from Definition 3. !

Lemma 3 indicates that, if an edge is determined to have
nonzero weight by M[wp], the edge is also determined to
have nonzero weight by C[wp]. Similarly, Lemma 3 indicates
that, if an edge is determined not to have nonzero weight
by C[wp], the edge is also determined not to have nonzero
weight by M[wp]; an edge cannot have nonzero weight if it
is not included in C[wp]. We determine M[wp] and C[wp]
before entering the iterations to efficiently perform update
computations for edges that must/can have nonzero weights.

4.2.2 Efficient Update Computation
The edge sets introduced in the previous section can, be-

fore entering the iterations, reduce the number of edges to
update. This section describes our approach to improving
the speed of a single update computation in the iterations.
As shown in Equation (2), the original coordinate descent
approach updates weights by exploiting soft-thresholding
operator S[zp[u|wp],λ]. Since parameter zp[u|wp] requires
different regression results for each weight as described in
Section 3, the original coordinate descent approach incurs
high computation cost. In our approach, we use two types
of efficient update computations. The first type of com-
putation updates weight by computing parameter zp[u|wp]
without demanding different regression results as follows:

zp[u|wp] = 1
M

∑M
i=1 xu[i]rp[i] + wp[u] (10)

where rp[i] is the residual for element xp[i] in the regression
result by the lasso computed as follows:

rp[i] = xp[i]−
∑

v∈V\p wp[v]xv[i] (11)

Since the residual used in Equation (11) is the same for
each weight, we can efficiently compute parameter zp[u|wp]
if the regression result does not change after the update.
While Equation (4) needs O(dpM) time, Equation (10) re-
quires O(M) time to compute parameter zp[u|wp]. For
Equation (10), we have the following property:

Lemma 4 (Parameter z). Equation (4) and (10) yield
the same result in computing parameter zp[u|wp].

Proof From Equation (5) and (11), we have

x̃(u)
p [i]=

∑
v∈V\{p,u} wp[v]xv[i]=

∑
v∈V\p wp[v]xv [i]−wp[u]xu[i]

=xp[i]−rp[i]−wp[u]xu[i]

Therefore, from Equation (4)

zp[u|wp] = 1
M

∑M
i=1 xu[i](xp[i]− x̃(u)

p [i])

= 1
M

∑M
i=1 xu[i](rp[i] +wp[u]xu[i])

= 1
M

∑M
i=1 xu[i]rp[i] + 1

Mwp[u]
∑M

i=1(xu[i])
2

Since the variance of vector xu is 1 as described in Section 3,
we have

∑M
i=1(xu[i])

2 = M . As a result,

zp[u|wp] = 1
M

∑M
i=1 xu[i]rp[i] + wp[u]

which completes the proof from Equation (10). !

We exploit Equation (10) if an edge has zero weight before
the update. Since such an edge is expected to have zero
weight again after the update [5], the residual is likely to
have the same score after the update. Therefore, we can
effectively utilize residual rp[i] again in the next iteration in
updating other weights. Even if the edge has nonzero weight
after the update, we can incrementally update residual rp[i]
in O(1) time by exploiting Equation (11).

If an edge has nonzero weight before the update, we use
the covariance-based approach to update weights since it can
efficiently compute parameter zp[u|wp] in O(dp) time [6]:

zp[u|wp]=wp[u]+ 1
M

(
〈xp,xu〉−

∑
v:|wp[v]|>0wp[v]〈xv,xu〉

)
(12)

where 〈xp,xu〉 is the inner product of vector xp and xu,
i.e., 〈xp,xu〉 =

∑M
i=1 xp[i]xu[i]. Note that Equation (4) and

(12) give the same result. Although we exploit the same
covariance-based approach, our approach has less computa-
tion cost than the previous approach [7]. Before updating
weights, the covariance-based approach requires inner prod-
uct computations of nonzero weights to all edges undergo-
ing update computations. Since the previous approach up-
dates the weights of all the edges by the covariance-based
approach, it needs O(dpNM) time to compute inner prod-
ucts. On the other hand, we exploit the covariance-based
approach only if the edge has nonzero weight before the
update. As a result, our approach takes O(d2pM) time to
compute the inner products. Note that we have dp , N
since the L1-graph has sparse structure.

4.2.3 Gradual Edge Addition
As shown in Section 4.2.1, we determine edge set M[wp]

and C[wp] before entering the iterations. If U is an edge set
to update weights, we can naively reduce the number of up-
dates by setting U = M[wp] and U = C[wp] to directly apply
the coordinate descent. However, this approach may itera-
tively perform update computations for zero weight edges
since we use the upper and lower bounds to obtain M[wp]

233

and C[wp]; we exploit the approximations to determineM[wp]
and C[wp]. This section describes the approach that skips
unnecessary update computations to improve the efficiency
of the L1-graph construction1.

For efficient graph construction, we add edges one by one
from edge set A to edge set U. In our approach, we first
obtain edge set U as edges of nonzero weight and perform
update computations until convergence for edge set U. Af-
ter convergence, we computeM[wp] and obtain set of adding
edges as A = M[wp]\U. Then, we perform an update com-
putation for each edge in A one by one. If an edge has
nonzero weight after the update computation, we add the
edge to U and update weights of U until convergence. Other-
wise, we do not iteratively perform update computations for
the edge. Similarly, we compute A = C[wp]\U and update
weights. Since we avoid iterative computations if an edge
does not have nonzero weight, we can improve the efficiency
of weight updates. Theoretically, this approach is based on
the following property of converged weights:

Lemma 5 (Converged Weights). Let w′
p be a con-

verged weight vector for edge set U[wp] + u obtained by the
coordinate descent based on weight vector wp. If (1) weight
vector wp reaches convergence by the coordinate descent with
edge set U[wp] and (2) wp[u] = 0 and w′

p[u] = 0 hold for
node u, we have w′

p = wp.

Proof Since wp[u] = 0 and w′
p[u] = 0, the u-th element

of wp and w′
p are obviously the same. If w′

p[u] = 0 holds, it
is clear that weight w′

p[u] does not have any impact on the
update results from Equation (5). In addition, weight vector
wp has already reached convergence by exploiting edge set
U[wp]. Therefore, we have w′

p[u] = wp[u] for all elements in
U[wp] after the update computations to obtain weight vector
w′

p if we use weight vector wp in the coordinate descent. As
a result, we have w′

p = wp. !

Lemma 5 indicates that we can skip the update computa-
tions for the edge from node u to p as its weight is zero in the
iterations without changing the regression results yielded by
the coordinate descent. This skipping of unnecessary com-
putations allows us to efficiently update nonzero weights.
We show the detail algorithm of this approach in Section 4.4
as a part of the graph construction algorithm.

4.3 Upper and Lower Bounds
As described in Section 4.2, we can prune edges that

do not have nonzero weight by computing KKT condition
scores. However, it needs the high cost of O(NM) time to
compute the score for each edge because the size of data
matrix X is N×M . This section introduces our approaches
to efficiently compute the upper and lower bounds of KKT
conditions scores. Section 4.3.1 describes our approach to
compute the bounds by using SVD (singular value decom-
position). Section 4.3.2 shows the incremental approach for
bound computations.

4.3.1 SVD-Based Bound Computations
In this approach, we approximate matrix X by comput-

ing SVD. We adopt SVD since it gives high approximation
quality in terms of squared loss [20]. Let V be a unitary

1
Although all the edges included in M[wp] have nonzero weights after

the update computation with weight vector wp, the weight vector
changes after the updates. Therefore, M[wp] can include edges whose
weights are zero as a result of update computations.

matrix and X̃ be the transformed matrix of X, matrix X
is represented as X = X̃V by SVD. Similarly, let vector x̃u

be the transformed vector of xu, vector xu is represented as
xu = x̃uV. If r̃p = x̃p −wpX̃, the definitions of the upper
and lower bounds are given as follows:

Definition 4 (Upper and Lower Bounds). If K[u|wp]
and K[u|wp] are the upper and lower bounds of K[u|wp], re-
spectively, K[u|wp] and K[u|wp] are given as follows:

K[u|wp]= 1
λwp[u]+ 1

2λM

{
‖r̃p‖22+M−

∑m
i=1(r̃p[i]−x̃u[i])

2
}
(13)

K[u|wp]= 1
λwp[u]− 1

2λM

{
‖r̃p‖22+M−

∑m
i=1(r̃p[i]+x̃u[i])

2
}
(14)

In Definition 4, ‖r̃p‖2 is the L2-norm of vector r̃p, r̃p[i]
is the i-th element of r̃p, and m is the target rank of SVD.
The following lemma shows that K[u|wp] and K[u|wp] give
the upper and lower bounds, respectively:

Lemma 6 (Upper and Lower Bounds). If we update
the weight of the edge from node u to p for weight vector wp,
we have K[u|wp] ≥ K[u|wp] and K[u|wp] ≤ K[u|wp] for the
upper and lower bounds given in Definition 4.

Proof Since VV$ = I where I is the identity matrix,

(xp−wpX)x$
u =(x̃p−wpX̃)VV$x̃$

u = r̃px̃
$
u =

∑M
i=1 r̃p[i]x̃u[i]

Since r̃p[i]x̃u[i] = 1
2{(r̃p[i])

2+(x̃u[i])
2−(r̃p[i]−x̃u[i])

2} holds,

(xp−wpX)x$
u = 1

2

∑M
i=1{(r̃p[i])

2 +(x̃u[i])
2− (r̃p[i]− x̃u[i])

2}

Note that
∑M

i=1(x̃u[i])
2 = M holds since SVD is orthogonal

transformation and each vector is normalized as described
in Section 3. Therefore, we have from Equation (6)

K[u|wp]= 1
λwp[u]+ 1

2λM

{
‖r̃p‖22+M−

∑M
i=1(r̃p[i]− x̃u[i])

2
}

Since (r̃p[i]− x̃u[i])
2 ≥ 0 holds, we have

K[u|wp]≤ 1
λwp[u]+ 1

2λM

{
‖r̃p‖22+M−

∑m
i=1(r̃p[i]− x̃u[i])

2
}

Therefore, we have K[u|wp] ≥ K[u|wp] from Equation (13).
Similarly, we have K[u|wp] ≤ K[u|wp] since r̃p[i]x̃u[i] =
1
2{−(r̃p[i])

2 − (x̃u[i])
2 + (r̃p[i] + x̃u[i])

2} holds. !

From the above proof, it is clear that errors of the upper
and lower bounds are proportional to

∑M
i=m+1(r̃p[i]−x̃u[i])2

and
∑M

i=m+1(r̃p[i] + x̃u[i])
2, respectively. Although SVD

gives the smallest squared error in approximating matrix
X, it is not guaranteed to give the tightest upper and lower
bounds since vector r̃p is distorted by vector wp in the form
of r̃p = x̃p − wpX̃. However, it is expected that we can
improve the quality of the upper and lower bounds by using
SVD. This is because r̃p[i] and x̃u[i] are likely to take small
absolute values as i increases.

It takes O(m) time to compute the bounds from Equa-
tion (13) and (14) if we have norm ‖r̃p‖2. Note that norm
‖r̃p‖2 is computed in O(dpm) time and used for all edges to
node p once we compute the norm. In addition, we can effi-
ciently compute the SVD of matrix X in O(NM logm) time
by using an existing technique [12]. Note that we compute
SVD only once in constructing the graph.

4.3.2 Incremental Computation
As described in Section 4.2.3, we update weights by adding

edges one by one to edge set U to update from edge set A
by computing A = M[wp]\U and A = C[wp]\U. We can re-
duce the computation time to obtain edge set M[wp] and

234

C[wp] by exploiting the SVD-based approach introduced
in the previous section. However, the efficiency of the ap-
proach would only be moderate since it requires O(m) time
to compute the bounds for each edge every time we compute
the edge sets. How can we cut down the computation cost
for determining the bounds? This is the motivation behind
our approach of incremental computation; we incrementally
compute the bounds at O(1) time. This approach is based
on the approach that adds edges one by one as introduced
in Section 4.2.3; we can effectively update the bounds since
the weight vector is not so different before and after the
edge additions. This section first describes the relation be-
tween KKT condition score and parameter zp[u|wp]. Then,
it shows the incremental approach to computing the bounds.

The following lemma confirms that we can compute the
KKT condition score from parameter zp[u|wp]:

Lemma 7 (Equivalence of KKT condition score).
For node u and weight vector wp, we can compute KKT con-
dition score K[u|wp] from parameter zp[u|wp] as follows:

K[u|wp] = 1
λzp[u|wp] (15)

Proof From Equation (6), we have

λK[u|wp] = wp[u]+ 1
M (xp−wpX)x$

u

= 1
M (wp[u]M+〈xu,xp〉−〈xu,wpX〉)

where 〈xp,xu〉 is the inner product of vector xp and xu.
Therefore, we have

λK[u|wp]= 1
M

{
wp[u]M+

∑M
i=1

(
xu[i]xp[i]−xu[i]

∑
v∈Vwp[v]xv[i]

)}

= 1
M

{
wp[u]M+

∑M
i=1xu[i]

(
xp[i]−

∑
v∈Vwp[v]xv [i]

)}

Since
∑M

i=1(xu[i])
2 = M and wp[p] = 0 as described in Sec-

tion 3, we have the following equation from Equation (5):

λK[u|wp]= 1
M

{∑M
i=1xu[i]

(
wp[u]xu[i]+xp[i]−

∑
v∈Vwp[v]xv[i]

)}

= 1
M

{∑M
i=1xu[i]

(
xp[i]−

∑
v∈V\{p,u}wp[v]xv[i]

)}

= 1
M

∑M
i=1xu[i]

(
xp[i]−x̃(u)

p [i]
)

Therefore, λK[u|wp]=zp[u|wp] holds from Equation (4). !

Lemma 7 indicates that we can compute KKT condition
score in O(1) time if (1) an edge is included in the edge
set and (2) we have parameter zp[u|wp] of the edge. We
incrementally compute the upper and lower bounds after
edge addition as follows:

Definition 5 (Incremental computation). Let ν be
the number of edges in edge set A that are added to edge
set U and wi

p = (wi
p[1], w

i
p[2], . . . , w

i
p[n]) be the converged

weight vector after the i-th edge addition (1 ≤ i ≤ ν). In
addition, let rip = (rip[1], r

i
p[2], . . . , r

i
p[n]) be a residual vector

that corresponds to weight vector wi
p given as follows:

rip = xp −wi
pX (16)

Let δip be the score that corresponds to the difference of KKT
condition score before and after the i-th edge addition:

δip = 1
λ{‖r

i
p − ri−1

p ‖22 + ‖wi
p −wi−1

p ‖1} (17)

We compute the upper and lower bounds after the iterations
based on Lemma 7 as follows if an edge is included in edge set
A and added to edge set U in the κ-th addition (1 ≤ κ ≤ ν):

K[u|wν
p] =

1
λzp[u|w

κ
p] +∆p (18)

K[u|wν
p] =

1
λzp[u|w

κ
p]−∆p (19)

In Equation (18) and (19), ∆p =
∑κ

i=1 δ
i
p. If the edge is not

included in edge set A, the bounds are computed as follows:

K[u|wν
p] = K[u|w0

p] +∆p (20)

K[u|wν
p] = K[u|w0

p]−∆p (21)

In Definition 5, K[u|w0
p] and K[u|w0

p] correspond to the
bounds before the edge additions; K[u|wν

p] andK[u|wν
p] cor-

respond to the bounds after the edge additions. Therefore,
we can incrementally update the bounds by using zp[u|wκ

p],
K[u|w0

p], and K[u|w0
p] from Definition 5. We have the fol-

lowing property for the bounds:

Lemma 8 (Incremental computation). After the ν-
th edge addition, we have K[u|wν

p] ≥ K[u|wν
p] and K[u|wν

p] ≤
K[u|wν

p] for the bounds given by Definition 5 if the weights
of edges are updated for weight vector wν

p .
Proof From Equation (6) and (16), we have the follow-

ing equation from the Cauchy-Schwarz inequality [22] for
the i-th edge addition (1 ≤ i ≤ ν):

|K[u|wi
p]−K[u|wi−1

p]|= 1
λ|

1
M (rip−ri−1

p)x$
u +(wi

p[u]−wi−1
p [u])|

≤ 1
λ{

1
M‖r

i
p−ri−1

p ‖22‖x$u‖22+‖wi
p−wi−1

p ‖1}= 1
λ{‖r

i
p−ri−1

p ‖22+‖wi
p−wi−1

p ‖1}

This is because we have ‖x$
u ‖22 = M . Therefore, from Equa-

tion (17), |K[u|wi
p] −K[u|wi−1

p]| ≤ δip. As a result, for an
edge included in the edge set,

|K[u|wν
p]−K[u|wκ

p]| = |
∑ν

i=κ+1(K[u|wi
p]−K[u|wi−1

p])|
≤ |

∑ν
i=κ+1 δ

i
p| ≤ |

∑ν
i=1 δ

i
p| = ∆p

Thus, from Lemma 7, we have

1
λzp[u|w

κ
p]−∆p ≤ K[u|wν

p] ≤ 1
λzp[u|w

κ
p] +∆p

Similarly, for an edge that is not included in the edge set,

K[u|w0
p]−∆p ≤ K[u|wν

p] ≤ K[u|w0
p] +∆p

which completes the proof. !

As described in Section 4.2.2, we compute the residuals for
the added edges every time the edges change the regression
result to efficiently update the weights. Since the coordinate
descent updates weights one at a time, we can incrementally
compute δip and ∆p at O(1) time from Equation (17). As
a result, we can incrementally compute the bounds in O(1)
time by exploiting Definition 5.

In terms of computing the upper and lower bounds, the
incremental approach of Definition 5 is the same as the SVD-
based approach of Definition 4. However, they yield different
bounds since they adopt totally different processes to com-
pute the bounds. In addition, the incremental approach can
compute the bounds more efficiently. Therefore, we first ex-
ploit the incremental approach to obtain the bounds for each
edge. Then, we use the SVD-based approach only for edges
that are determined to update weights by the incremental
approach as described in the next section.

4.4 Graph Construction Algorithm
Algorithm 1 gives a full description of Castnet, which effi-

ciently constructs the lasso-based L1-graph. In Algorithm 1,
W is an N×N matrix whose p-th row corresponds to weight
vector wp, and P is the set of nodes selected for weight com-
putation. Castnet initializes weights based on the observa-
tion that the weight of an edge from node u to v is similar
to that from node v to u; wv[u] ≈ wu[v] [4].

235

Algorithm 1 Castnet
Input: matrix X, tuning parameter λ, target rank of SVD m
Output: matrix W
1: P = ∅;
2: compute rank-m SVD of matrix X;
3: for i = 1 to N do
4: p = argmax(‖wu‖1|u ∈ V\P);
5: U = {ep[u] |wp[u] %= 0};
6: update weights for U by Equation (12);
7: for j = 1 to N do
8: K[uj |wp] = −∞, K[uj |wp] = ∞;

9: step = 1;
10: while step ≤ 2 do
11: for each u ∈ V\p do
12: compute the bounds by Definition 5;
13: if step = 1 then
14: M[wp] = ∅;
15: for each u ∈ V\p do
16: if K[u|wp] < −1 or K[u|wp] > 1 then
17: compute the bounds of node u by Definition 4;
18: if K[u|wp] < −1 or K[u|wp] > 1 then
19: add edge ep[u] to M[wp];

20: A = M[wp]\U;
21: else
22: C[wp] = ∅;
23: for each u ∈ V\p do
24: if K[u|wp] > 1 or K[u|wp] < −1 then
25: compute the bounds of node u by Definition 4;
26: if K[u|wp] > 1 or K[u|wp] < −1 then
27: add edge ep[u] to C[wp];

28: A = C[wp]\U;
29: for each u ∈ A do
30: compute wp[u] for weight vector wp by Equation (10);
31: if wp[u] %= 0 then
32: add edge ep[u] to edge set U;
33: update weights for U by Equation (12);

34: if A = ∅ then
35: step + +;
36: add node p to P;
37: for each u ∈ V\P do
38: wu[p] = wp[u];

return weights of the graph;

Algorithm 1 starts by initializing node set P and comput-
ing SVD of data matrix X to allow the upper and lower
bounds to be determined in the iterations (lines 1-2). It
picks up the node that has the maximum L1 norm for the
weight vector since we can accurately perform the regression
for the node from the observation (line 4). It then performs
update computations for edges that have nonzero weights
by using Equation (12) and initializes the bounds (lines 5-
8). Our approach has two steps in computing the weights of
selected nodes; the first step is based on edge set M[wp] and
the second step exploits edge set C[wp]. In order to prune
unnecessary updates, it computes the bounds determined
by the incremental approach as described in Section 4.3.2
(lines 11-12) and checks the conditions of edge set M[wp]
and C[wp] (line 16 and line 24). If an edge can meet the
conditions of the edge sets (Definition 2 and 3), it com-
putes the bounds again by using the SVD-based approach
to determine the edge sets (lines 17-19 and lines 25-27). As
described in Section 4.2.3, it adds edges one by one to edge
set U so as to increase the efficiency. Therefore, it computes
edge set A after determining edge sets M[wp] and C[wp]
(line 20 and line 28). If the weight of an edge is zero, we
can efficiently compute its weight by using Equation (10)
(line 30); such edges have no impact on the regression result
as shown in Lemma 5. Therefore, it updates weights until
convergence only if the added edge has nonzero weight (lines
31-33). The weight vector clearly reaches convergence if we

have no edge to add. Therefore, it proceeds the step of con-
structing the graph if we have A = ∅ (lines 34-35). After the
iterations, it sets the weights of edges to unselected nodes
based on the observation (lines 37-38).

In Algorithm 1, we implicitly assumed a single thread
where we pick up nodes one by one from the entire set of
nodes. However, Algorithm 1 is easily parallelized; we di-
vide the set of nodes into several sets and parallelly perform
Algorithm 1 for each obtained set. Since we compute edges
from all the nodes for each obtained set, we can obtain the
same graph as the single-thread approach even if we use the
parallelization approach. We use the k-means clustering to
effectively divide the set according to the hidden structure
of data points. Although the k-means clustering performed
in a single thread, we can efficiently divide the entire set of
nodes since (1) we use SVD to reduce the number of dimen-
sions and (2) we apply k-means++ to increase the processing
speed of the k-means clustering [1].

For Algorithm 1, we have the following properties:

Theorem 1 (Computation Cost). Let t be the num-
ber of update computations in our approach, Castnet takes
O(dpt+M(N+logm+t+(dp)

2)) time to compute weights of
a selected node in the lasso-based L1-graph.

Proof Castnet first computes the SVD of matrix X
used in computing the bounds at O(M logm) time amor-
tized on the number of nodes [12]. In the SVD-based bound
computations, it takes O(dpm) time to compute norm ‖r̃p‖2
and O(Nm) time to compute the bounds. Similarly, we
need O(N) time to compute the bounds by the incremental
computation approach. In addition, we can compute edge
sets M[wp], C[wp], and A in O(N) time. In performing up-
date computations for edges whose weights are zero, it takes
O(Mt) time to compute the residuals and O(M(N − dp))
time to update computations. In updating nonzero weights,
it needs O(M(dp)2) time to compute the inner products and
O(dpt) time to update weights. Therefore, Castnet needs
O(dpt+M(N+logm+t+(dp)

2)) time. !

In practice, the number of update computations t in-
creases with the number of nodes N . However, we can
reduce t if a node has small degree dp. We show these rela-
tionships in Section 5.

Theorem 2 (Construction result). If matrix X has
full row rank, the proposed approach converges on the same
regression result as the original coordinate descent approach
in computing edge weights for a selected node.

Proof As shown in Algorithm 1, Castnet first update
weights if K[u|wp] < −1 or K[u|wp] > 1 holds. It then
update weights if K[u|wp] > 1 or K[u|wp] < −1 hold. As
shown in Lemma 3, we have K[u|wp]> 1 or K[u|wp]<−1
if K[u|wp] < −1 or K[u|wp] > 1 holds. Therefore, these
two processes of the proposed approach indicate that we do
not perform update computations for weights of edges such
that K[u|wp]≤ 1 and K[u|wp]≥−1. It is clear that such
edges cannot have nonzero weights from the KKT condition
(Definition 1). As a result, our approach cannot prune edges
that have nonzero weights. Since there is a unique regression
result if matrix X has full row rank, the coordinate descent
approach converges to the unique result [6, 24]. Since our
approach is based on the coordinate descent, it is clear that
Castnet converges the same result as the original coordinate
descent approach if matrix X has full row rank. !

236

100

101

102

103

104

105

106

107

USPS Reuters Protein SensIT MSD INRIA

W
al

l c
lo

ck
 ti

m
e

[s
]

Castnet
Sling

Original

100

101

102

103

104

105

106

USPS Reuters Protein SensIT MSD INRIA

W
al

l c
lo

ck
 ti

m
e

[s
]

Castnet
Sling

Original

100

101

102

103

104

105

106

USPS Reuters Protein SensIT MSD INRIA

W
al

l c
lo

ck
 ti

m
e

[s
]

Castnet
Sling

Original

(1) λ = 0.1 (2) λ = 0.2 (3) λ = 0.3

Figure 1: Graph construction time of each approach.

If matrix X does not have full row rank, which is neces-
sarily the case when N > M , there may not be a unique
regression result. In this case, our approach yields almost
the same result as the original coordinate descent approach.
In the next section, we detail experiments that show the
efficiency and effectiveness of the proposed approach.

5. EXPERIMENTAL EVALUATION
We performed experiments to demonstrate the effective-

ness of our approach. In the experiments, we used the six
datasets taken from various domains: USPS, Reuters, Pro-
tein, SensIT, MSD, and INRIA. USPS is a popular dataset
of handwritten digits captured from envelopes by the U.S.
Postal Service2. This dataset contains 2, 007 grayscale im-
ages, each 16 × 16 pixels; the number of features is 256.
Reuters is a corpus of newswire stories that contains 8, 293
documents3. In this dataset, tf-idf is used as the document
feature; it has 18, 933 dimensions. Protein is a set of amino
acid sequences where the number of data and features are
17, 766 and 357, respectively4. SensIT is a dataset obtained
from a distributed wireless sensor network for vehicle type
classification5 . In this dataset, the number of data and fea-
tures are 78, 823 and 100, respectively. MSD is a music
dataset that contain 515, 345 songs of 90 features6. In this
dataset, songs are mostly western and commercial tracks.
INRIA consists of 1, 000, 000 image features extracted from
both personal and Flickr photos, which of each is represented
by a 128-D SIFT descriptor7. Since we have N > M , matrix
X is not full row rank except for Reuters while matrix X is
full row rank for the dataset. The numbers of nodes in the
datasets increase in the order of USPS, Reuters, Protein,
SensIT, MSD, and INRIA.

In what follows, “Castnet”, “Sling”, and “Original” rep-
resents our approach, the state-of-the-art approach for the
lasso [7], and the original coordinate descent approach [5],
respectively. We set the target rank of SVD to 10 for the
proposed approach. All the experiments were conducted on
a Linux 2.70 GHz Intel Xeon server with 1 TB of main mem-
ory. We implemented all the approaches using GCC.

5.1 Graph Construction Time
We assessed the graph construction time needed for each

approach. Figure 1 shows the results where we set tuning
2
https://www.otexts.org/1577

3
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

4
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

5
http://mldata.org/repository/data/

6
http://labrosa.ee.columbia.edu/millionsong/

7
http://corpus-texmex.irisa.fr/

Table 2: Degree and updates in INRIA.
λ N = 250, 000 N = 500, 000 N = 1, 000, 000

Degree
0.1 16.77 15.02 15.32

0.2 9.91 9.34 9.59

0.3 6.76 6.82 7.17

Updates
0.1 5.44 × 105 1.03 × 106 2.04 × 106

0.2 4.82 × 105 9.27 × 105 1.82 × 106

0.3 4.22 × 105 7.56 × 105 1.53 × 106

parameter λ to 0.1, 0.2, and 0.3. In Figure 1, we omit the
result of Sling for MSD and INRIA datasets since it could
not construct the L1-graph within a month. Similarly, we
omit the results of the original approach for SensIT, MSD,
and INRIA datasets for the same reason. Table 2 shows the
average degree and update computations of each node; IN-
RIA was used as the dataset and we changed the number
of nodes in the graph. To evaluate the scalability offered
by our parallelization approach, we plot speedup over single
thread vs. the number of threads for each graph in Fig-
ure 2. Figure 3 shows the computation overhead of k-means
clustering in the parallelization approach.

Figure 1 shows that our approach is much faster than the
previous approaches. Specifically, Castnet is up to 1, 300
times faster than the original approach. In order to obtain
edge weights, the original approach requires a different re-
gression result for each weight as described in Section 3.
Therefore, the original approach must compute the regres-
sion result every time it updates each weight. In addition,
the original approach iteratively updates weights until con-
vergence even though almost all edges have zero weights due
to the sparse structure of the L1-graph, which explains its
high computation cost. To improve the computation speed
for the lasso, Sling updates weights by using the covariance-
based approach as described in Section 2. Since the covariance-
based approach does not need the different regression re-
sults, Sling can more efficiently update weights in each iter-
ation than the original approach. However, the covariance-
based approach needs inner product computations for all
edges to update the weights before entering the iterations.
On the other hand, our approach can avoid the heavy com-
putations of inner products by using the two types of update
computations as described in Section 4.2.2. In addition, our
approach selectively updates weights by computing edge sets
from upper and lower bounds of KKT condition scores as
described in Section 4.2.1. As a result, our approach is up
to 130 times faster than the state-of-the-art approach. As
shown in Figure 1, computation time of our approach in-
creases with dataset size. This is because we need more
update computations as the number of nodes increases as

237

 0

 5

 10

 15

 20

 25

 30

USPS Reuters Protein SensIT MSD INRIA

Sp
ee

du
p

ov
er

 s
in

gl
e

th
re

ad
4-thread
8-thread

16-thread
32-thread

Figure 2: Effect of parallelization
approach.

10-3

10-2

10-1

100

101

USPS Reuters Protein SensIT MSD INRIA

W
al

l c
lo

ck
 ti

m
e

[s
]

4-thread
8-thread

16-thread
32-thread

Figure 3: Overhead with paral-
lelization.

100

101

102

103

104

105

106

107

USPS Reuters Protein SensIT MSD INRIA

W
al

l c
lo

ck
 ti

m
e

[s
]

Castnet(10)
Castnet(20)
Castnet(30)

Figure 4: Effect of target rank
number.

Table 3: Number of update computations.
Dataset m = 10 m = 20 m = 30

USPS 2.362 × 107 2.296 × 107 1.833 × 107

Reuters 1.471 × 108 1.470 × 108 1.469 × 108

Protein 1.400 × 109 1.380 × 109 1.372 × 109

SensIT 1.373 × 1010 1.341 × 1010 1.092 × 1010

MSD 4.258 × 1011 1.975 × 1011 7.196 × 1010

INRIA 2.038 × 1012 2.029 × 1012 1.992 × 1012

shown in Table 2. On the other hand, Figure 1 indicates
that we can increase the efficiency by increasing tuning pa-
rameter λ. This is because, as shown in Table 2, the number
of update computations decreases if we reduce the degree of
each node by assigning large values to the tuning parameter.
Since our approach can effectively prune unnecessary com-
putations, it can more efficiently construct the lasso-based
L1-graph than the previous approaches.

As described in Section 4.4, Castnet can be parallelized
by using multiple threads. As shown in Figure 2, our paral-
lelization approach is up to 25 times faster than the single-
thread approach with 32-thread execution. Although our
parallelization approach needs the additional process of k-
means clustering in a single thread, its computation over-
head has negligible impact on the graph construction time.
This is because we can efficiently perform k-means cluster-
ing by using SVD and k-means++ as shown in Figure 3; it
takes at most 5 seconds to perform the clustering for the
largest dataset. Therefore, we can effectively increase the
processing speed by exploiting the parallelization approach.

5.2 Efficiency vs. Target Rank Number
As described in Section 4.3, our approach computes SVD

of rank m for the data matrix to increase the computation
speed of the upper and lower bounds. Since the bounds
are used in computing the edge sets for updating weights,
the target rank of SVD is expected to impact the graph
construction time. In this section, we show the graph con-
struction times recorded for different target rank values of
SVD. Figure 4 shows the results where we set λ = 0.1 as the
tuning parameter of the lasso. In this figure, the results of
our approach are indicated by “Castnet(m)” where m is the
target rank of SVD. In addition, Table 3 shows the num-
ber of update computations for all the nodes needed by our
approach to construct the L1-graph when λ = 0.1.

As shown in Figure 4, the graph construction time varies
only slightly against the target rank of SVD for the data
matrix; our approach is not sensitive to rank m in terms of
efficiency. As described in Section 4.3, it takes O(m) time
to compute the upper and lower bounds by SVD. Therefore,

Table 4: Regression results of each approach.
Dataset Approach Objective

function
Squared
loss

L1-norm
con-
straint

USPS
Castnet 0.1355 0.0348 0.1007

Sling 0.1355 0.0348 0.1007

Original 0.1355 0.0348 0.1007

Reuters
Castnet 0.3985 0.3360 0.0625

Sling 0.3985 0.3360 0.0625

Original 0.3985 0.3360 0.0625

Protein
Castnet 0.3323 0.1651 0.1672

Sling 0.3323 0.1651 0.1672

Original 0.3323 0.1651 0.1672

we can increase the efficiency of computing the bounds if
rank m has a small score. On the other hand, as shown in
Table 3, we can reduce the number of update computations
if rank m has a large score. This is because we can improve
the accuracy of SVD in approximating the data matrix by
increasing the target rank. In conclusion, we can efficiently
compute the bounds by reducing the target rank at the sac-
rifice of the number of update computations whereas we can
efficiently update weights with the large target rank that
incurs high computation cost for the bounds. Due to the
trade-off derived from rank m, our approach is not sensitive
to the target rank of SVD.

5.3 Effectiveness of the Graph Structure
As described in Section 4.4, one major advantage of our

approach is that it yields the same L1-graph as the origi-
nal approach if matrix X has full row rank. However, our
approach can output different results from the original ap-
proach if matrix X does not have full row rank since there
may not be a unique lasso solution in terms of the objective
function introduced in Section 3 (Equation (1)). In this sec-
tion, we evaluate the effectiveness of the regression result in
constructing the L1-graph of each approach. Table 4 shows
the averages of the objective function in computing edge
weights for each node in the L1-graph when λ = 0.1. In the
table, “Squared loss” and “L1-norm constraint” correspond
to the first and second terms of the objective function, re-
spectively. Note that the datasets used in this experiment
do not have full row rank due to N > M except for Reuters
dataset. In addition, the same as our approach, Sling can
output different regression results from the original approach
if matrix X does not have full row rank [7].

Table 4 indicates that our approach yields the same ob-
ject function scores as the original approach for the Reuters
dataset, which does have full row rank. This is because our
approach provably guarantees to output the same solution

238

Table 5: Label propagation.
Castnet L1 k-NN LN

Precision 0.581 0.576 0.433 0.554

Graph Construction [s] 19.19 78.17 3.35 7.19

Number of edges 34, 804 39, 329 36, 926 30, 426

for the L1-optimization problem as described in Theorem 2.
Although our approach can yield different regression results
if matrix X does not have full row rank, the graph structures
obtained by our approach were almost the same as those by
the original approach. This is because we perform update
computations for edges that must/can have nonzero weights
by computing the upper and lower bounds of KKT condi-
tion scores as shown in Algorithm 1. Since KKT condition
scores correspond to gradients in coordinate descent [5], our
approach can effectively identify edges that effectively im-
prove the objective functions by obtaining the edge set that
must/can have nonzero weights. Therefore, our approach
can effectively compute the solution for the optimization
problem of the lasso by using the upper and lower bounds.
As a result, scores of the objective function of our approach
and the original approach are the same in practice for USPS
and Protein datasets as shown in Table 4 even though these
datasets do not have full row rank. Along with Figure 1,
Table 4 indicates that our approach significantly improves
the efficiency to construct the L1-graph while the quality of
graph structure is as high as the previous approaches.

6. CASE STUDIES
In order to effectively find the hidden structure of data

points, it is important to construct a graph that is robust
against the noise. Our approach allows users to efficiently
construct the lasso-based L1-graph so as to enhance the
quality of applications more than is possible with traditional
k-NN graphs. This section compares our approach to a k-
NN graph as well as the L1-graph proposed by Cheng et al.
[2] and the linear neighborhood graph proposed by Wang
et al. [25]. The L1-graph by Cheng et al. uses only the
L1-norm constraint as the objective function while our ap-
proach uses the sum of squared loss and L1-norm constraint
as described in Section 3. The linear neighborhood graph
by Wang et al. computes the edge weight of each node as a
linear combination of its neighbors.

We used the COIL-100 dataset that contains images of
100 objects8. The objects were placed on a turntable that
was rotated through 360 degrees to vary object pose with
respect to a fixed camera. Images of the object were taken
at pose intervals of 5 degrees; 72 poses per object, resulting
in 7, 200 images. We used bag of keypoints of 128 dimen-
sions as image features where we exploited SIFT descriptor
to computer feature vector [3]. Since we have N > M , data
matrix X does not have full row rank for this dataset. In or-
der to evaluate the effectiveness, we used label propagation
[9]; it estimates labels of unlabeled data points from labeled
data points. To this end, it propagates labels to the unla-
beled nodes in the given graph from a labeled seed node.
We randomly selected a data point from each object as the
seed node. Table 5 shows labeling accuracy and graph con-
struction time of each approach; labeling accuracy is ratio
of labeled nodes that correspond to the same object as the
seed node. Table 5 also shows the number of edges obtained

8
http://www1.cs.columbia.edu/CAVE/software/

Table 6: Connected nodes by each approach.

Approach

Connected nodes

Castnet 0.610 0.512 0.653 0.161 0.609 0.353

0.394 0.008 0.014 0.002 0.061 0.060

L1
0.422 0.350 0.330 0.273 0.418 0.279

0.313 0.002 0.270 0.058 0.255 0.070

k-NN 0.295 0.282 0.252 0.222 0.221 0.206

0.254 0.184 0.220 0.219 0.199 0.190

LN 0.350 0.339 0.374 0.277 0.353 0.299

0.305 0.005 0.193 0.194 0.167

by each approach. In addition, Table 6 shows examples of
connected nodes and their edge weights obtained by each
approach. In Table 5 and 6, “L1” and “LN” correspond
to the results of the L1-graph by Cheng et al. [2] and the
linear neighborhood graph by Wang et al. [25]. In con-
structing k-NN graph, we used FLANN that approximately
finds the nearest neighbors; it is a popular approach used in
OpenCV [18]. We set parameters of FLANN so that it yields
accuracy of 90% in computing the nearest neighbors since
this setting is well used in OpenCV. Note that FLANN out-
performs LSH-based approaches in terms of efficiency. We
set λ = 0.4 to construct the L1-graph and computed the
top four nodes to obtain edges in the k-NN graph. As a
result, each approach yielded similar number of edges as
shown in Table 5. For the k-NN graph, we computed edge
weights from normalized graph Laplacians [9]. Note that
our approach yields the same labeling results as the original
coordinate descent approach.

Table 5 indicates that our approach can more effectively
identify semantically equivalent nodes than other graphs.
In addition, as shown in Table 6, our approach successfully
connected semantically equivalent nodes to the picked up
nodes. This is because, by effectively using the regression
approach, the loss-based L1-graph can connect semantically
equivalent nodes. Therefore, semantically equivalent nodes
comprise a cluster structure in the high dimensional feature
spaces. In terms of constructing the L1-graph, the approach
by Cheng et al. is similar to our approach. However, since
their approach does not use the squared loss as the objec-
tive function, it is not robust against noise as described in

239

the previous study [4]. This indicates that our approach can
improve the robustness against noise by using the squared
loss in the objective function. For example, in the third case
of Table 6 where a white car is a node, both our and their
approaches connected a green car to the node. However, our
approach assigns much lower edge weight to the semantically
different node than semantically equivalent nodes. On the
other hand, their approach assigns high edge weight to the
semantically different node. In addition, Table 5 indicates
that our approach is more efficient than their approach in
constructing the L1-graph. This is because our approach
skips unnecessary weight updates. In terms of efficiency,
k-NN graph can be constructed more efficiently than the
lasso-based L1-graph as shown in Table 5. However, k-NN
graph as well as linear neighborhood graph offers lower label-
ing accuracy than our approach. This is because, as shown
in Table 6, they are not so effective as our approach in con-
necting semantically equivalent nodes. For example, in the
first case where a white cat is a node, k-NN graph connects
red doll to the node. In addition, they give high weights to
semantically different nodes as shown in Table 6.

Although the traditional k-NN graph is the most popular
approach, it is sensitive to data noise as shown in Table 5.
Effectiveness is quite important in many applications such
as lesion detection as described in Section 1.1; we can reduce
deaths caused by prostate cancer by effectively performing
lesion detection. The lasso base L1-graph was proposed to
improve the sensitive to data noise. Although it overcomes
the drawback, the original coordinate descent approach does
not scale well to handle large data sets as shown in Figure 1.
The contribution of our approach is to significantly increase
the efficiency of constructing the L1-graphs without sacri-
ficing the usefulness of the graph structure. As a result, the
proposed approach is an attractive option for the research
community in constructing the lasso-based L1-graphs.

7. CONCLUSIONS
We addressed the problem of efficiently constructing the

lasso-based L1-graph. Our approach, Castnet, limits up-
date computations to the edges that must/can have nonzero
weights before entering the iterations by computing the up-
per and lower bounds of KKT condition scores. In addition,
our approach efficiently updates nonzero weights in each it-
eration by pruning edges whose weights are zero. Experi-
ments show that our approach can achieve higher efficiency
than existing approaches. Since the L1-graph can effectively
capture the cluster structures that share useful semantic in-
formation, it plays a fundamental role in many applications
such as brain analysis, motion segmentation, and lesion de-
tection. Our approach allows many applications to be im-
plemented more efficiently, and will help to improve the ef-
fectiveness of future data mining applications.

8. REFERENCES
[1] D. Arthur and S. Vassilvitskii. k-means++: The

Advantages of Careful Seeding. In SODA, pages 1027–1035,
2007.

[2] B. Cheng, J. Yang, S. Yan, Y. Fu, and T. S. Huang.
Learning with l1-graph for Image Analysis. IEEE Trans.
Image Processing, 19(4):858–866, 2010.

[3] C. Dance, J. Willamowski, L. Fan, C. Bray, and G. Csurka.
Visual Categorization with Bags of Keypoints. In ECCV
International Workshop on Statistical Learning in
Computer Vision, 2004.

[4] E. Elhamifar and R. Vidal. Sparse Subspace Clustering. In
CVPR, pages 2790–2797, 2009.

[5] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani.
Pathwise Coordinate Optimization. Annals of Applied
Statistics, 1(2):302–332, 2007.

[6] J. H. Friedman, T. Hastie, and R. Tibshirani.
Regularization Paths for Generalized Linear Models via
Coordinate Descent. Journal of Statistical Software,
33(1):1–22, 2 2010.

[7] Y. Fujiwara, Y. Ida, H. Shiokawa, and S. Iwamura. Fast
Lasso Algorithm via Selective Coordinate Descent. In
AAAI, pages 1561–1567, 2016.

[8] Y. Fujiwara and G. Irie. Efficient Label Propagation. In
ICML, pages 784–792, 2014.

[9] Y. Fujiwara, G. Irie, S. Kuroyama, and M. Onizuka.
Scaling Manifold Ranking Based Image Retrieval. PVLDB,
8(4):341–352, 2014.

[10] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, Y. Ida, and
M. Toyoda. Adaptive Message Update for Fast Affinity
Propagation. In SIGKDD, pages 309–318, 2015.

[11] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima, and
M. Onizuka. Fast and Exact Top-k Algorithm for
PageRank. In AAAI, 2013.

[12] N. Halko, P. Martinsson, and J. A. Tropp. Finding
Structure with Randomness: Probabilistic Algorithms for
Constructing Approximate Matrix Decompositions. SIAM
Review, 53(2):217–288, 2011.

[13] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer, 2011.

[14] S. Ji. Computational Network Analysis of the Anatomical
and Genetic Organizations in the Mouse Brain.
Bioinformatics, 27(23):3293–3299, 2011.

[15] S. Liao, Y. Gao, and D. Shen. Sparse Patch Based Prostate
Segmentation in CT Images. In MICCAI, pages 385–392,
2012.

[16] N. Meinshausen and P. Bühlmann. High-Dimensional
Graphs and Variable Selection with the Lasso. The Annals
of Statistics, 34(3):1436–1462, June 2006.

[17] T. Mishima and Y. Fujiwara. Madeus: Database Live
Migration Middleware under Heavy Workloads for Cloud
Environment. In SIGMOD, pages 315–329, 2015.

[18] M. Muja and D. G. Lowe. Scalable Nearest Neighbor
Algorithms for High Dimensional Data. IEEE Trans.
Pattern Anal. Mach. Intell., 36(11):2227–2240, 2014.

[19] M. Nakatsuji, Y. Fujiwara, A. Tanaka, T. Uchiyama, and
T. Ishida. Recommendations over Domain Specific User
Graphs. In ECAI, pages 607–612, 2010.

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes 3rd Edition. Cambridge
University Press, 2007.

[21] H. Shiokawa, Y. Fujiwara, and M. Onizuka. SCAN++:
Efficient Algorithm for Finding Clusters, Hubs and Outliers
on Large-scale Graphs. PVLDB, 8(11):1178–1189, 2015.

[22] J. M. Steele. The Cauchy-Schwarz Master Class: An
Introduction to the Art of Mathematical Inequalities.
Cambridge University Press, 2004.

[23] R. Tibshirani. Regression Shrinkage and Selection via the
Lasso. Journal of the Royal Statistical Society, Series B,
58:267–288, 1996.

[24] R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon,
J. Taylor, and R. J. Tibshirani. Strong Rules for Discarding
Predictors in Lasso-type Problems. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
74(2):245–266, 2012.

[25] F. Wang and C. Zhang. Label Propagation through Linear
Neighborhoods. IEEE Trans. Knowl. Data Eng.,
20(1):55–67, 2008.

240

