
Noticeable Network Delay Minimization via Node Upgrades

Sourav Medya∗
University of California, Santa Barbara

medya@cs.ucsb.edu

Jithin Vachery∗
Indian Institute of Technology, Madras

jithin@cse.iitm.ac.in
Sayan Ranu

Indian Institute of Technology, Delhi

sayanranu@iitd.ac.in

Ambuj Singh
University of California, Santa Barbara

ambuj@cs.ucsb.edu

ABSTRACT
In several domains, the flow of data is governed by an underlying
network. Reduction of delays in end-to-end data flow is an im-
portant network optimization task. Reduced delays enable shorter
travel times for vehicles in road networks, faster information flow
in social networks, and increased rate of packets in communication
networks. While techniques for network delay minimization have
been proposed, they fail to provide any noticeable reduction in in-
dividual data flows. Furthermore, they treat all nodes as equally
important, which is often not the case in real-world networks. In
this paper, we incorporate these practical aspects and propose a
network design problem where the goal is to perform k network
upgrades such that it maximizes the number of flows in the net-
work with a noticeable reduction in delay. We show that the prob-
lem is NP-hard, APX-hard, and non-submodular. We overcome
these computational challenges by designing an importance sam-
pling based algorithm with provable quality guarantees. Through
extensive experiments on real and synthetic data sets, we establish
that importance sampling imparts up to 1000 times speed-up over
the greedy approach, and provides up to 70 times the improvement
achieved by the state-of-the-art technique.

PVLDB Reference Format:
Sourav Medya, Jithin Vachery, Sayan Ranu, and Ambuj Singh. Noticeable
Network Delay Minimization via Node Upgrades. PVLDB, 11(9): 988-
1001, 2018.
DOI: https://doi.org/10.14778/3213880.3213889

1. INTRODUCTION
Many applications generate data that flow through a network.

Examples include trajectories of vehicles in road networks [2, 3,
10], flow of packets in communication networks [8], and electricity
distribution in power grids [23]. Naturally, the quality of flow is
governed by the network properties. In this paper, we study the
problem of network optimization to minimize delay in data flow.

∗The authors with * have equal contribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 9
Copyright 2018 VLDB Endowment 2150-8097/18/05... $ 10.00.
DOI: https://doi.org/10.14778/3213880.3213889

To provide a concrete example, consider a road network and tra-
jectories of vehicles that ply through this network. In a road net-
work, each edge corresponds to a road segment and a node repre-
sents an intersection. Naturally, optimizing the network for smooth
flow of vehicles is of critical importance. The quality of a traffic
system is enhanced if the commuting time is as low as possible.
Therefore, an important question in optimizing a road network is
as follows. Given the trajectories and the number of people nav-
igating through these, how do we optimize the network to reduce
the commuting time (delay) for the maximum number of people?
Optimizing the network in this example could mean widening a
road (edge), installing better signalling procedure at an intersection
(node) or deployment of traffic police at critical locations (edge or
node) to better regulate vehicles.

An important consideration in this optimization problem is the
budget. More specifically, we never have infinite resources to widen
as many roads as needed. Rather, we can introduce only k changes
where k is decided based on the resource constraints. Consequently,
the goal is to intelligently perform k network optimizations such
that the overall path delays are minimized.

Applications: A prominent application of the proposed prob-
lem is in transportation infrastructure management for traffic con-
gestion minimization. Metropolitan cities worldwide are facing se-
vere traffic congestion, which increases pollution, fuel usage, and
unproductive travel time [15]. For example, it is estimated that
drivers in the City of Chicago cumulatively suffered 302 million
hours of travel delay with a total congestion cost of $7, 222 million
in 2014[31]. The cause of traffic delays could arise from various
factors such as overshooting road capacities, poor road conditions,
and sub-optimal signalling infrastructure. It is therefore of prac-
tical importance to analyze road network data, identify bottleneck
points, and propose systematic upgrades to these bottlenecks so that
they work in cohesion to reduce congestion.

There are several applications beyond traffic networks as well.
For instance, given a communication network, end-to-end delays
of data packet flow can be improved via upgrading network de-
vices [8]. The delays of sending packets (data) arise in the device
level. Improving or upgrading the devices, such as upgrading a
switch, enable a better and faster communication system. As an-
other application scenario, consider an airport network [19] gener-
ated by a particular carrier. In the network, airports represent nodes
and the edges correspond to flights offered by the carrier between
endpoint cities. Based on information of the past flights one can
associate airports with airline-caused delays such as security check
delay, luggage handling, etc. An important question for a carrier
is how to minimize overall travel time by improving the available
infrastructure (e.g. luggage handling).

988

Table 1: Table shows the improvement (%) of pairs (%) for bud-
get 8 and 10. Figure shows how the percentage of improvement
is skewed over the number of pairs.

Improvement (%) k = 8 k = 10
= 0 92.22 92.16
> 0 7.78 7.84
>= 2 6.73 6.78
>= 5 2.44 2.45
>= 10 0.43 0.42

Table 2

0 50

Improvement %

10 -2

10 0

10 2

%
 P

ai
rs k=5

k=7

Figure 1

The importance of this problem has been recognized in the data
mining literature [16, 21]. The problem is modeled as follows. The
delay in each node or edge of the network is quantified using a
weight. The length of a path is the summation of its constituent
node and edge weights. A network upgrade involves reducing the
weight of a node or an edge to a small value α ≥ 0. The total de-
lay in the flow from node u to v is therefore the length of shortest
path from u to v. Given a budget k, the goal is to perform k net-
work upgrades such that the sum (or average) of all pairs shortest
path distances in the network is minimized. Existing techniques,
however, ignore two key practical aspects.

1. Noticeable impact: Existing techniques [19, 8] focus on
minimizing the sum of the shortest path distances across all pairs of
nodes in a network. This formulation leads to negligible reduction
in the delay between most of the individual pairs. Consequently,
none of the stakeholders (such as vehicles in road networks) wit-
ness any noticeable difference in their experiences and may not be
satisfied even in the improved network.

To substantiate our claim that existing techniques fail to provide
noticeable reduction on individual pairwise delays, we execute the
state-of-the-art algorithm [19] on the Los Angeles road network
[19] and present the results in Table 2 and Fig. 1. Fig. 1 presents
the distribution of improvement (%) over all node pairs and Ta-
ble 2 presents the cumulative distribution of improvement (%). As
shown in Table 2, more than 92% of the total node pairs do not
improve at all. Furthermore, less than 3% of the total pairs have
improvement more than 5%. To mitigate the above outlined issue:
in this paper, we ask a more practical question:How should we per-
form k node upgrades such that the maximum number of shortest
paths have a significant reduction in their lengths? We call a reduc-
tion in length significant if the reduced length is at least β% shorter
than its original length, where β is a user-provided input parameter.

2. Node pair importance: Existing techniques assume that the
shortest path between any pair of nodes is equally important. In
reality, this is often not the case. In road networks for example,
arterial roads connecting prominent places such as the downtown,
office and residential districts, airport, etc., have far higher traffic
than other roads. Consequently, having a noticeable reduction in
the delay in these arterial roads is of higher importance than other
less frequently travelled roads.

Our main contributions are as follows:
• We propose and formalize a novel and practical Path Optimiza-

tion Problem (POP) to minimize delays in a network. The pro-
posed problem incorporates practical aspects such as importance
of node pairs and noticeable improvement in quality.
• We show that POP is NP-hard as well as APX-hard.
• To overcome the hardness of POP, we propose an importance

sampling algorithm with probabilistic approximation guarantees.
• We perform extensive benchmarking on real-world road networks

and establish that importance sampling obtains a speed-up of
three orders of magnitude over greedy and 70 times better than
the state-of-the-art algorithm.

2. PROBLEM DEFINITION
In this section, we first define the concepts central to our problem

and then analyze the problem complexity.

2.1 Preliminaries
The path optimization problem ingests two sources of data as

inputs: a network and a collection of network flows.

DEFINITION 1 (NETWORK). A network is modeled as a graph
(directed or undirected) G(V,E, L), where V and E are sets of
nodes and edges respectively and L is function L : V → R>0

over V . This function specify the delays (weights) lv := L(v) of
individual nodes.

In several domains, objects flow through a network. For exam-
ple, in transportation networks, vehicles move through a road net-
work. Similarly, in a communication network, data packets move
through a sequence of connected routers. We capture the flow of
such objects through the idea of network flows.

DEFINITION 2 (NETWORK FLOW). A network flow represents
the flow of an object through a network. Mathematically, each flow
corresponds to some path Pv1,vr = (v1, v2, ..., vr) from the source
node v1 to destination vr .

In a transportation network, the set of network flows would be a
set of vehicular trajectories, and in a communication network, the
network flows would constitute the routes taken by data packets

DEFINITION 3 (PATH DELAY). The delay of a path is defined
as the cumulative delays (weights) of the nodes along the path, ex-
cluding that of the destination node. More formally, if Pv1,vr =
(v1, v2, ..., vr) is a path from node v1 to vr , its delay is defined as
Σr−1
i=1 lvi .

Weight at the destination node in a path is excluded since the
destination node typically does not add any delays in case of the
targeted applications (e.g., commuting time in the traffic network).
The shortest path between two nodes s and t is the one with the
minimum delay among all paths connecting these two nodes and
its delay is denoted as d(s, t). By convention, d(s, s) = 0 for all
s ∈ V . Furthermore, if there does not exist a path between two
nodes u and v, then d(u, v) = ∞. We next define the concept of
improving a node.

DEFINITION 4 (NODE IMPROVEMENT). A node is improved
by reducing the node delay lv to a small value α ≥ 0. The nodes
(a fixed/budget k number of nodes) to be improved are chosen from
a given candidate set of nodes Γ.

For simplicity, in the rest of the paper, we assume α = 0. The
proposed techniques and proofs hold for any value of α.

The reduction of delays in few nodes (call it solution set S) may
significantly reduce the delay of the shortest paths. We quantify
significant improvement in path delay through the definition of β-
improvement.

DEFINITION 5 (β-IMPROVEMENT). A node pair (s, t) is
β-improved if d(s,t)−d(s,t;S)

d(s,t)
≥ β, where d(s, t) is the original

shortest path and d(s, t;S) is the updated shortest path after im-
proving nodes in solution set S.

We use ΛS to denote the set of β-improved node pairs.
As discussed in Sec. 1, not all node pairs are equally important.

For instance, if the traffic flow between two prominent regions is
much higher than the flow between two less-visited regions, then
it is more important to improve the path between the prominent
regions. This aspect is modeled through node pair flow.

989

S1

gfe

abcd

10
10

10

205 20 5

(a) Initial graph

S1

gfe

abcd

10
10

10

05 0 5

(b) Modified graph

Figure 2: Example of Path Optimization Problem. We want to
optimize the set of pairs {(a, d), (d, f)} with a budget of two
nodes from the candidates Γ = {b, c, e, g}.

DEFINITION 6 (NODE PAIR FLOW:). Let F be the collection
of all network flows in the network. The flow associated with a node
pair (u, v), denoted by ξu,v , is the proportion of flows originating
at u and terminating at v. Mathematically,

ξu,v =

∣∣{f ∈ F | f starts at u and ends at v}
∣∣

|F| (1)

In a road network, the flow between a node pair (u, v) can be
computed by counting the number of vehicles that started at u and
ended at v. Similarly, in a communication network, the flow corre-
sponds to the number of packets flowing from u to v. The quality
of a solution set S is quantified as the total flow f(S) among β-
improved node pairs. Mathematically,

f(S) =
∑

(u,v)∈ΛS

ξu,v (2)

The path optimization problem is defined as follows.

PROBLEM 1. (Path Optimization Problem (POP)) Given a net-
workG = (V,E, L), the set of flows F, the improvement parameter
β, a candidate set of nodes Γ that can be improved, and a budget k,
find a solution set S ⊂ Γ such that |S| = k and f(S) is maximized.

EXAMPLE 1. Fig. 2 shows a possible solution of size k = 2.
Initially, the delays of the green, red, blue and grey nodes are
0, 5, 10, 20 respectively. Let the candidate set Γ = {b, c, e, g}
and β = 60%. Furthermore, let the collection of network flows F
be such that |F| = 150 and ξa,d = 100

150
, ξd,f = 50

150
, and the flow

between all other pairs is 0. Fig. 2b shows an optimal solution,
where the modified graph has the delays of b and c are reduced
to 0. Improving b and c results in f({b, c}) = 150

150
= 1 since it

produces at least 60% improved shortest path between (a, d) (35
becomes 5) and between (d, f) (15 becomes 5). normalized
Edge Upgrades: We limit ourselves to node upgrades since this
is a more generic formulation and any network with delays on
edges can easily be mapped to an equivalent network with delays
on nodes. More specifically, an edge (u, v) with delay le is par-
titioned into two edges (u, e) and (e, v), where e is a new node
inserted into the network and the delay on node e is le. By set-
ting Γ to include only the newly added nodes corresponding to the
edges, we solve the problem for edge upgrades. If delays are both
on edges and nodes, Γ may include all candidate nodes and edge-
converted-nodes.

Practical Implications: In a practical scenario, the cause of a
delay can be multiple. For example, in a road network, it could
arise due to reaching the capacity of a road segment, poor road
quality such as potholes, or sub-optimal signalling infrastructure.
Reducing delays in such cases could therefore mean widening a
road (edge), improving the quality of a road (edge), or upgrading
signalling infrastructure at an intersection (node). In our problem,
however, we do not deal with the exact cause of the delay or the

upgrade mechanism to remove this delay. These domain-specific
aspects are abstracted out and the problem only identifies the delay
causing entities, and the impact of removing these delays.

2.2 Hardness and Approximability

THEOREM 1. POP (decision version) is NP-hard.

PROOF. Consider an instance of the NP-complete Set Cover
problem, defined by a collection of subsets S = {S1, S2, ..., Sm}
for a universal set of items U = {u1, u2, ..., un}. The problem
is to decide whether there exist k subsets whose union is U . To
define a corresponding POP instance, we construct an undirected
graph with m + n + 1 nodes in V : there are nodes i and j corre-
sponding to each set Si and each element uj respectively, and an
undirected edge (i, j) whenever uj ∈ Si. Node a is added to the
graph. Node a is connected to i for all Si ∈ S. The reduction
clearly takes polynomial time. The candidate set Γ = {i|Si ∈ S},
ξa,j = 1/n for each node j corresponding to uj ∈ U , and all
remaining node pairs have 0 flow between them. All weights are
equal (let us say d) and β = d

2d
= 1

2
.

A set S′ ⊂ Γ = S, with |S′| ≤ k is a set cover iff f(S′)
becomes 1. Assume that S′ is a set cover and weights are reduced
to α = 0 for every node in S′. Then f(S′) becomes 1 as the
nodes in U are of distance d from a. Note, in the initial graph, the
distances between a and nodes in U are 2d.

On the other hand, assume that the f(S′) becomes 1 after reduc-
ing the weights of nodes in any set S′ ⊂ S with |S′| ≤ k. The
only way to have the distance between (a, u) (u ∈ U), improved
by β = d

2d
or 1

2
is by making S′ a set cover.

THEOREM 2. POP is APX-hard. More specifically, it is NP-
hard to approximate POP within a factor of (1− 1

e
).

PROOF. For reduction, we use the Maximum Coverage (MSC)
problem. Given a collection of subsets S1, S2, ..., Sm for a uni-
versal set of items U = {u1, u2, ..., un}, the problem is to choose
at most k sets to cover as many elements as possible. We give an
L-reduction [34] from the MSC problem with parameters x and y.
Our reduction is such that following two equations are satisfied:

OPT (IPOP) ≤ xOPT (IMSC) (3)

OPT (IMSC)− s(TM) ≤ y(OPT (IPOP)− s(TP)) (4)

where IMSC and IPOP are problem instances, and OPT (Y)
is the optimal value for instance Y . s(TM) and s(TP) denote
any solution of the MSC and POP instances respectively. If the
conditions hold and POP has an ε approximation, then MSC has
an (1 − xy(1 − ε)) approximation. However, MSC is NP-hard to
approximate within a factor greater than (1 − 1

e
). It follows that

(1 − xy(1 − ε)) < (1 − 1
e
), or, ε < (1 − 1

xye
) [5]. So, if the

conditions are satisfied, POP is NP-hard to approximate within a
factor greater than (1− 1

xye
).

We apply the same construction as in Theorem 1. However,
we use MSC problem for reduction. Let the solution of IPOP be
s(TP). That implies that the number of β-improved pairs increases
by s(TP) · n. Note that, by construction, s(TP) · n = s(TM).
So, it follows that both the conditions are satisfied when x = 1/n
and y = n. Thus, POP is NP-hard to approximate within a factor
greater than (1− 1

e
).

We next investigate the existence of submodularity property. A
function f(.) is submodular if the marginal gain from adding an

990

u-

v-

u+

v+

l_u

l_v

0

0 0

0

Figure 3: The figures shows the transformed graph G′ as a rep-
resentation of nodes u and v and the edge (u, v) in G. The
values show the delays of the edges.

element to a set S is at least as high as the marginal gain from
adding it to a superset of S. Mathematically, it satisfies:

f(S ∪ {o})− f(S) ≥ f(T ∪ {o})− f(T) (5)

for all elements o and all pairs of sets S ⊆ T . For submodular and
monotone functions, the greedy algorithm of iteratively adding the
element with the maximum marginal gain approximates the optimal
solution within a factor of (1 − 1

e
)[24]. The next theorem shows

that the optimization function related to POP is monotone but does
not have submodular property.

THEOREM 3. The objective function f(.) is monotone but not
submodular.

PROOF. Monotone: Follows from the definition of a shortest
path. Let the reduction of delays in S result in the set of β-improved
node pairs, ΛS . Reducing the delay of one more node v ∈ Γ cannot
decrease

∑
(u,v)∈ΛS

ξu,v , i.e., f(S). Thus, f(.) is monotone.
Non-submodular: To prove non-submodularity, we consider the

simple example of a chain graph G of four nodes with unit delays:
node x1 is connected to x2, x2 to x3 and x3 to x4 by edges. The
intuition is the following: a super-set of nodes as solution might
force the shortest paths improved by β along with the newly added
vertex, whereas, a sub-set of nodes is not sufficient to improve by
β. Let us set A = φ,B = {x2}, β = 2

3
, α = 0,Γ = V . Only

the node pair {(x1, x4)} has a flow of 1. In our example, f(B ∪
{x3}) = 1, f(B) = 0 as β = 2

3
. f(A ∪ {x3}) = 0, f(A) = 0.

So, f(B ∪ {x3})− f(B) > f(A∪ {x3})− f(A). So, f(·) is not
submodular.

3. ALGORITHMS
POP is not only NP-hard, but also hard to approximate. Fur-

thermore, due to lack of submodularity, it is hard to even decide
on an optimization strategy. We therefore start with the optimal
solution to POP through mixed integer programming (MIP). Next,
we improve efficiency through a greedy approach. Finally, we fur-
ther expedite greedy through importance sampling with probabilis-
tic guarantees on the approximation error, which allows us to scale
on real networks containing more than half a million nodes.

3.1 Optimal Solution
We formulate the POP problem as a mixed integer program (MIP),

in order to obtain the optimal solution. We use a multi-commodity
flow formulation[8] to compute the shortest path delay between a
node pair p = (u, v) ∈ P (for simplicity, P = V × V). To ap-
ply MIP on a given graph G, we first convert it to a directed graph
G′ as follows: a node v is replaced by two nodes v− and v+ with
two additional parallel edges from v− to v+ with delays lv (origi-
nal node edge, ev) and 0 (upgraded node edge e′v) respectively. If
an edge (u, v) is present in the original graph, there are two edges
(u+, v−) and (v+, u−) with delays 0 in G′. Figure 3 shows an

example of this transformation procedure for an edge e = (u, v).
The variables used in the MIP formulation are as follows:
• xv: a flag for whether node v is to be upgraded.
• xp: a variable that indicates a pair p is β-improved
• d′(p):the effective shortest path delay between nodes in pair p
• ∆p: difference between effective improvement and β in pair p.
• budget: the total number of upgraded nodes
• gpv: a continuous variable that indicates the flow of the com-

modity p on edge ev .
• g′pv: continuous variable that indicates the flow of the commod-

ity p on edge e′v .
• hpe: continuous variable that indicates whether edge e is chosen

to be on the shortest path for the pair p.
In an integral solution, gpv and g′pv denote whether the origi-

nal node and upgraded node respectively are chosen to be on the
shortest path between the pair p in an integral solution. We use
δ−(v−) and δ+(v+) to denote the set of incoming and outgoing
edges respectively. d(p) denotes the original shortest path distance
(we assume this as constant as it is given) in the initial graph for
pair p. M is a large positive constant. The full MIP formulation is
as follows:

max

∑
p∈P

ξp

 such that,

gps + g′ps = 1, gpt + g′pt = 1 ∀p = (s, t) ∈P (6)∑
e∈δ−(s−)

hpe = 0 ∀p = (s, t) ∈P (7)

∑
e∈δ+(s+)

hpe = gps + g′ps ∀p = (s, t) ∈P (8)

∑
e∈δ−(t−)

hpe = gpt + g′pt ∀p = (s, t) ∈P (9)

∑
e∈δ+(t+)

hpe = 0 ∀p = (s, t) ∈P (10)

∑
e∈δ+(v+)

hpe = gpv + g′pv ∀p = (s, t) ∈P, ∀v 6= s, t ∈ V

(11)∑
e∈δ−(v−)

hpe = gpv + g′pv ∀p = (s, t) ∈P, ∀v 6= s, t ∈ V

(12)

g′pv ≤ xv, gpv ≤ 1− xv ∀p = (s, t) ∈P, ∀v 6= s, t ∈ V
(13)

d′(p) =
∑
v∈V

lv · gpv ∀p ∈P (14)

∆p =
d(p)− d′(p)

d(p)
− β ∀p ∈P (15)

budget =
∑
v∈V

xv, budget ≤ k, xv ∈ {0, 1}∀v ∈ V

(16)

∆p ≥ −M(1− xp), ∆p < Mxp,∀p ∈P (17)
xp ∈ {0, 1} ∀p ∈P (18)

hpe, gpv, g
′
pv ≥ 0 ∀p ∈P, e ∈ E, v ∈ V (19)

The constraints in MIP formulation for POP are shown in Eqs.
(6-19). The constraints as Eqs. (6-12) are used to model the short-
est path delay of each terminal pair as multi-commodity flow. Con-
straints (6-10) enforce the nodes s and t to be the source and sink

991

respectively with one unit of flow in each terminal pair (s, t). The
next two constraints (11,12) ensure the flow conservation through
the rest of the nodes. Constraint 13 enforces that the upgraded node
edge e′v will carry the flow instead of the original node edge ev ,
when the node v is upgraded. The original node edge ev carries
the flow when the node v is not upgraded. Constraint 14 computes
the total effective delay. Constraint 15 computes the difference be-
tween effective fractional improvement of each pair and β. Con-
straint 16 computes the total budget and sets the maximum as k.
It also ensures that the upgrade decision variables for nodes are
binary. Constraints 18 and 19 ensure that improvement decision
variables for pairs and flow variables are binary and non-negative
respectively. Constraint 17 ensures that xp is 1 when ∆p is non-
negative.

While the above MIP formulation allows us to compute the op-
timal solution, it is not scalable to large networks. This motivates
us to design approximation algorithms for POP. For any approxi-
mation algorithm, it is desirable to provide theoretical guarantees
on the approximation error. However, since POP is APX-hard, it is
NP-hard to even approximate within a factor of 1− 1

e
. Owing to this

property, we first consider a restricted version of POP and develop
a greedy algorithm. Next, we generalize this greedy algorithm for
POP and provide probabilistic error bounds.

3.2 Restricted Path Optimization Problem
(RPOP)

RPOP introduces the restriction that each node pair can be β-
improved by only one node. In other words, there cannot be two
β-improved nodes in the shortest path between a node pair. We
next show that RPOP is a lower bound of POP.

THEOREM 4. Let fr(S) be the total flow from all pairs that sat-
isfy the RPOP constraint. For any solution set S, fr(S) ≤ f(S).

PROOF. Let P r and P be the set of all β-improved node pairs
under RPOP and POP for a solution set S respectively. Since
P r ⊆ P ,

fr(S) =
∑

∀(u,v)∈Pr
ξu,v ≤ f(S) =

∑
∀(u,v)∈P

ξu,v �

Since RPOP is a lower bound of POP, intuitively, a good solution
to RPOP is likely to yield a good solution to POP as well if the ob-
jective functions yield values that are close to each other. With this
intuition, we next show that RPOP is monotone and submodular.

THEOREM 5. The objective function fr(.) is monotone and sub-
modular.

PROOF. Monotone: The proof is similar as in Theorem 3.
Submodular: We consider improvement (delay reduction) of two
sets of nodes, Va and Vb where Va ⊂ Vb, and show that fr(Va ∪
{v}) − fr(Va) ≥ fr(Vb ∪ {v}) − fr(Vb) for any node v ∈ Γ
such that v /∈ Va and v /∈ Vb. Let F (A) be the set of node pairs
(s, t) which are β-improved by a vertex v ∈ A. Then fr(.) is
submodular if F (Vb ∪ {v}) \ F (Vb) ⊆ F (Va ∪ {v}) \ F (Va).
To prove this claim, we use the described constraint. Therefore,
each pair (s, t) ∈ F (Vb) is β-improved by only one node in Vb.
As Va ⊂ Vb, adding v to Va will β-improve some of the pairs
which are already β-improved by Vb \ Va. Then, for any newly
β-improved pair (s, t) ∈ F (Vb ∪ {v}) \ F (Vb), it must hold that
(s, t) ∈ F (Va ∪ {v}) \ F (Va).

THEOREM 6. RPOP is APX-hard, i.e., RPOP cannot be ap-
proximated within a factor greater than (1− 1

e
).

Algorithm 1: Greedy Selection of Nodes (GSN)
Require: NetworkG = (V,E, L) with vertex delays l(v), network flows F,

Budget k, candidate set Γ, β.
Ensure: A subset of k nodes
1: S ← ∅
2: Compute the shortest path between all nodes that is part of some node pair with

non-zero flow to all other nodes in the network. Store the corresponding shortest
path delays in distance matricesA,B

3: while |S| < k do
4: for v ∈ Γ \ S do
5: λv ←

∑
(x,y)∈Λs

ξx,y where Λs is the set of new β-improved pairs

when lv = 0 (UseA to compute β-improvement andB to compute
marginal gain)

6: v′ ← arg maxv∈Γ\S{λv} and then set l(v′) as 0

7: S ← S ∪ {v′}
8: Update d(s, t) inB as l(v′) becomes 0
9: Return S

PROOF. The proof directly follows from Theorem 2 as the con-
struction respects the described constraint.

Since the objective function fr(.) is submodular and monotone,
the greedy algorithm of iteratively adding the node with the max-
imum marginal gain on Eq. 2 approximates RPOP within a factor
of (1− 1

e
) [24]. This result, in conjunction with Theorem 6, allows

us to conclude that greedy is the best possible polynomial-time al-
gorithm for RPOP.

The above conclusion motivates us to propose a greedy heuristic
(GSN, Algorithm 1) for optimizing POP as well. More specifi-
cally, we know from Theorem 4 that RPOP is a lower bound for
POP. Furthermore, from an intuitive point of view, in most real life
networks the number of node pairs is much larger than the budget
k. Thus, the likelihood of having more than one improved node
in the shortest path between a randomly selected node pair is low.
Consequently, it is likely that the lower bound is tight.

However, an important question remains. Can we provide bounds
on the quality of the greedy solution for POP? We answer this ques-
tion through the sandwich theorem [17]. The idea of the sandwich
theorem is as follows: First, run the greedy algorithm on the actual
function (f(.)) and its lower bound (fr(.)). Let S′ and Sr be the
produced solution sets respectively. If S = arg maxS∈{S′,Sr} f(S),
f(S) has the following lower bound:

THEOREM 7. Sandwich Theorem: If fr is a lower bound of f
and fr is monotone and submodular, then

f(S) ≥ C · (1− 1

e
).f(S∗) (20)

where C = fr(S∗)
f(S∗) and S∗ is optimal solution under cardinality

constraint for function f(.).

PROOF. f(S) ≥ fr(S) ≥ (1− 1

e
)fr(S∗)

≥ C · (1− 1

e
).f(S∗) Since fr(S∗) = C f(S∗)�

Theorem 7 says that the performance of greedy on POP is di-
rectly proportional to the tightness of RPOP. More specifically,
C = fr(S∗)

f(S∗) quantifies the tightness of RPOP. The closer the ratio
is to 1, the better is the approximation quality. Our empirical eval-
uation in Sec. 4 reveals that C typically lies in the range [0.5, 1].

3.3 Greedy Selection of Nodes
Algorithm 1, called GSN, outlines the pseudocode of the greedy

algorithm for POP. In each iteration, it selects the node that pro-
duces the maximum marginal gain on the total flow from β-improved

992

pairs given the current solution set, S (step 7). To enable this op-
eration, first, GSN pre-computes the shortest path delays between
any node that is part of at least one node pair with a positive flow
to all other nodes in the network and stores them in matrices A and
B (step 2). Note, we ignore shortest paths between nodes u and
v, if neither u nor v is part of some node pair with a positive flow,
since such paths do not contribute to the flow improvement. If the
network is undirected, computing only the upper half of the dis-
tance matrix is enough since distances are symmetric. Stored path
delays in A remain unchanged through out the algorithm. On the
other hand, B stores the updated shortest path delays following the
node upgrades made in S. A is used to determine if a pair has been
β-improved and B is used to compute the marginal gain of a node
upgrade. S is populated iteratively (3-9) and B is updated in each
of these iterations (line 9). Finally, after k iterations, the solution
set S is returned (line 11).

EXAMPLE 2. Figure 2 shows a possible solution of size k = 2
for a small network. The settings are already described before in
the main paper. In the first step, GSN can choose either node c
or e as both of them individually β-improve (the initial shortest
path delay, 15 becomes 5) the pair (d, f) and thus improves flow of
50
150

. If node c is chosen, then in second iteration, GSN will choose
node b as it β-improves (the initial distance, 35 becomes 5) the pair
(a, d) and thus flow of 100

150
.

3.3.1 Cost Analysis
Computation Cost: The most important steps in GSN are lines

2, 5 and 9. In the worst case, line 2 computes all-pairs-shortest-
paths in time O(n2 logn), where n is the total number of ver-
tices. Next, it chooses, among the candidate nodes Γ, the one that
maximizes the number of β-improved pairs (line 5), which takes
O(|Γ|n2) time. As the shortest path distances are stored, the com-
putation of β-improved pairs takes O(n2) for each candidate node.
After choosing the best node and improving its delay, the shortest
path distances are updated in B (line 9) consuming O(n2) time.
Therefore, the total running time of GSN is O(n2 logn+ k|Γ|n2).

Memory footprint: Since in the worst case we need to store
the distance matrix for all pairs shortest path delays, the memory
footprint is O(n2).

Both the computation cost and the memory footprint are pro-
hibitively large for large networks. Clearly, a more efficient ap-
proach than greedy (Alg. 1) is required. Towards that goal, we ex-
pedite greedy through sampling and provide theoretical guarantees
on the sampling quality.

3.4 Sampling
As in any sampling algorithm, the goal is to carefully select a

subset of the data and compute the answer set by only analyzing
this subset. In our particular case, the goal is to sample a subset of
node pairs, and execute the greedy algorithm only on the sampled
subset. The sampling algorithm is effective if the computed answer
set is as good as the answer set that would be computed if the entire
dataset is processed. The key step towards ensuring this quality
control is to choose a subset that is representative of the entire data
for the task in hand. Towards that end, we first consider the naı̈ve
approach of uniform sampling.

3.4.1 Uniform Sampling
As the name suggests, in this procedure, we sample uniformly

with replacement a set of ordered node pairs U from the set of all
node pairs in V × V . Although the approach is simple, this sam-
pling algorithm under-utilizes the information hidden in node pair
flows. More specifically, not all node pairs are of equal importance.

10 -7 10 -5 10 -3

Normalized Flow

10 -3

10 1
10 2

%
 N

od
e

P
ai

rs Beijing
NY
SF

(a) Flow

0 50 100
Node Delay (Sec.)

10 -5

10 0

%
 N

od
es

Beijing
NY
SF

(b) Delay
Figure 4: The distribution of (a) node-pair flows and (b) node
delays in three real road network datasets.

In our optimization function (Eq. 2), improving the shortest paths
on important node pairs has a much more profound impact than
improving pairs that have negligible flow between them.

To better understand the impact of ignoring node pair impor-
tance, in Figure 4a, we plot their distribution on three real road
networks of Beijing, New York, and San Francisco. The flow of a
node pair (a, b) is the proportion of taxi trips from location a to b.
As can be seen, the distribution follows a power law, which means
a small set of node pairs are highly more popular than the remain-
ing majority. Since a small minority of the node pairs contribute
majority of the node flows, uniform sampling is unlikely to have a
large enough sample of these important node pairs. Consequently,
the estimates computed from the sampled sets may suffer. To over-
come this drawback, we propose Importance Sampling.

3.4.2 Importance sampling
Importance sampling [1, 32] samples elements proportional to

their importance. When applied to POP, importance sampling sam-
ples node pairs proportional to their flow value. Consequently, the
sampling is biased towards node pairs that are more relevant to
compute the given estimate. The formal definition is as follows.

DEFINITION 7 (IMPORTANCE SAMPLING). In importance sam-
pling, a node pair (s, t) is selected (with replacement) in the sam-
pled set I with probability p̂s,t = ξs,t.

Next, we show that importance sampling is an unbiased estima-
tor of the entire set. A sampling procedure is unbiased if it is pos-
sible to estimate the mean of the entire set from the sampled set.
More formally, E[µ̂(I)] = µξ =

∑
ξs,t

n(n−1)
= 1

n(n−1)
, where µ̂(I)

is the mean estimator. We define µ̂(I) as the weighted average
over the samples in I: µ̂(I) = 1∑

(s,t)∈I ŵs,t

∑
(s,t)∈I ŵs,t · ξs,t ,

where ŵs,t = 1
p̂s,t

. Next, we show µ̂(I) is an unbiased estimator
of µξ.

LEMMA 3.1. µ̂(I) is an unbiased estimate of µξ when ŵs,t =
1
p̂s,t

, i.e., E[µ̂(I)] = µξ.

PROOF. E[µ̂(I)] = 1
E[

∑
(s,t)∈I ŵs,t]

· E
[∑

(s,t)∈I ŵs,t · ξs,t
]

If we simplify the first term, we obtain

E

 ∑
(s,t)∈I

ŵs,t

 = |I|.E[ŵs,t]

= |I|.
∑

∀(s,t)∈V×V

ŵs,t · ξs,t = n(n− 1)|I|

993

where, n = |V |. From the second term, we get,

E

 ∑
(s,t)∈I

ŵs,t · ξs,t

 = |I|E[ŵs,t · ξs,t]

= |I|
∑

∀(s,t)∈V×V

p̂s,t(ŵs,t · ξs,t) = |I|

Combining these two, E[µ̂(I)] = |I|
n(n−1)|I| = µξ.

Armed with an unbiased estimator, we show that by carefully choos-
ing the size of the sample set, importance sampling provides an
accurate estimation of the marginal gain of adding a node to the so-
lution set (line 5 in Alg. 1). More formally, we prove the following.

THEOREM 8. Let S be the solution set till the current iteration.
Furthermore, let I be the set of sampled node pairs. In this setting,
let vg be the node providing the highest marginal gain on the entire
set of node pairs and vs be the highest one when only considering
the sampled set I. The difference in the flow from the β-improved
paths by these choices is bounded as follows:

Pr
[
|f(S ∪ {vg})− f(S ∪ {vs})| < ε

]
> 1− 1

n2
, (21)

where |I| is O(c·logn
ε2

), c = (ξm
µξ

)2, ε is the error bound, and
ξm and µξ are the maximum and average flow of all pairs of nodes
respectively.

PROOF. Let µg =
f(S∪{vg})
n(n−1)

and µs = f(S∪{vs})
n(n−1)

denote the
corresponding means and Yg and Ys be the corresponding expected
means from the samples.

The samples can be viewed as random variables associated with
the selection of a pair of nodes. More specifically, the random vari-
able, Xi, is the flow associated with the i-th pair of vertices in
the importance sample I. Since the samples provide an unbiased
estimate (Lemma 3.1) and are i.i.d., we can apply Hoeffding’s in-
equality [11] to bound the error of the mean estimates:

Pr[|Yg − µg| ≥ θ] ≤ δ (22)

where δ = 2 exp
(
− 2|I|2θ2

T

)
, T =

|I|∑
i=1

(bi − ai)2, where each

Xi is strictly bounded by the intervals [ai, bi]. Similarly,

Pr[|Ys − µs| ≥ θ] ≤ δ (23)

Applying union bound,

Pr[(|Yg − µg| ≥ θ) ∪ (|Ys − µs| ≥ θ)] ≤ 2δ (24)

By construction, µg ≥ µs as GSN selects the best next node at
each step. On the other hand, if importance sampling selects vs, it
must be that Ys ≥ Yg . As, the sampled best node is probabilistic,
we need to apply union bound over n possible nodes. As a conse-
quence, Pr[|µg − µs| ≥ 2θ] ≤ 2nδ and Pr[|µg − µs| < 2θ] >
1− 2nδ. Now, Pr

[
|f(S ∪ {vg})− f(S ∪ {vs})| < ε

]
=Pr[|µa − µg| <

ε

n(n− 1)
]

>1− 4n exp

−2|I|2
(

ε
2n(n−1)

)2

T

 (25)

Algorithm 2: Importance Sampling’s Selection (ISS)
Require: NetworkG = (V,E, L), Approximation error ε, Sampling factor c,

Budget k, candidate node set Γ, network flows F, β.
Ensure: A subset of k nodes
1: ChooseO(c(logn)/ε2) sample pairs of vertices in I via importance sampling
2: A← A distance matrix containing the distance of all nodes appearing in the

sampled set |I| to all other nodes in the network.
3: S ← Φ
4: while |S| < k do
5: for (s, t) ∈ I do
6: B ← Re-compute the distances in matrix A after considering the

upgraded nodes in S.
7: for v ∈ Γ do
8: λv ←

∑
(x,y)∈Λs

ξx,y where Λs is the set of new β-improved pairs in I

when l(v) = 0 (UseA to compute β-improvement andB to compute
marginal gain)

9: v′ ← arg maxv∈Γ\S{λv}, l(v
′)← 0

10: S ← S ∪ {v′}
11: Return S

Since the average flow µξ = 1
n(n−1)

and ξm ≥ bi, ai ≥ 0, we
get T ≤ |I| · ξ2

m. Combining these factors, we get,

1− 4n exp

−2|I|2
(

ε
2n(n−1)

)2

T



>1− 4n exp

−2|I|2
(
ε·µξ

2

)2

|I| · ξ2
m

 (26)

Combining Eq. 25 and Eq. 26, we get

Pr
[
|f(S ∪ {vg})− f(S ∪ {vs})| < ε

]
>1− 4n exp

(
−|I| (ε.µξ)

2

2ξ2
m

)
(27)

By setting the number of samples |I| = 2ξ2m·log(4n3)

(ε·µξ)2
, we have

Pr
[
|f(S ∪ {vg})− f(S ∪ {vs})| < ε

]
> 1− 1

n2

Remarks: Theorem 8 shows the number of samples required to
keep the approximation error compared to the greedy approach in
Alg. 1, sufficiently low. The key results are as follows.
• |I|, which is the sample size, is a function of the error ε and in-

versely proportional to ε. Thus, with higher number of samples,
our estimates get more accurate.
• The sample size grows logarithmically with the network size.

3.4.3 Efficient greedy through Importance Sampling
Armed with Theorem 8, we next describe how Importance Sam-

pling is used to speed up greedy. We call this algorithm Importance
Sampling’s Selection (ISS). Alg. 2 presents the pseudocode. In sim-
ple terms, Theorem 8 is used to first decide the sample size (line 1),
and the Greedy selection of node upgrades is performed by analyz-
ing the impact of an upgrade only on the sampled set of node pairs.
As in greedy(Alg. 1), the algorithm runs for k iterations and in each
iteration, the best node from the candidate set is selected based on
the sampled node pairs (lines 4-13). Instead of computing the en-
tire distance matrix, we compute the distance from all nodes in the
network to only those nodes that appears in at least one sampled
pair (lines 2 and 6). These distances provide the β-improved pairs

994

in the sampled set I of pairs of nodes. The remaining operations
remain same as in greedy (Alg. 1).

Computation Cost: First, we sample |I| node pairs based on
importance sampling. Recall from Def. 6, that the importance of
a node pair (u, v) is the proportion of flows from u to v. Let d
be the total number of network flows (Def. 2) in the dataset and
each flow is assigned an ID from 1 to d. To sample |I| node pairs
proportional to their importance, we generate |I| random IDs in
the range [1, d] and extract the corresponding flows. The origin and
destination nodes of each of these sampled flows form a node pair
in our sample set. The sampling procedure consumes O(|I|) time.
As defined in Def. 7, the sampling is performed with replacement.
Hence, the number of times a node pair appears in I is proportional
to its importance.

The costliest steps of our algorithm are lines 2, 5-7 and 8-12.
In line 2, we compute a distance matrix A, which stores the initial
shortest path distances between all nodes that appear in some pair in
|I| to all other nodes in the network. This computation consumes
O(|I|n logn) time since the shortest path is computed between
each node of a sampled pair to all other nodes. In steps 5-7, ISS
recomputes the shortest paths based on the node upgrades made
so far. This operation again consumes O(|I|n logn) time. Next,
the algorithm estimates the additional number of β-improved pairs
after removing the delay of each of the nodes in the candidate set
Γ. (steps 8-10). As the shortest path distances of all sampled nodes
are stored in A, the computation of β-improved pairs takes O(|I|)
for each candidate node upgrade. Therefore, the best node to be
upgraded is selected in O(|Γ||I|) time (step 11-12). This entire
process from line 5-12 is then repeated k times to select the k nodes
upgrade to be performed. Combining all these factors, the total
running time of ISS is O(k|I|n(logn) + k|Γ||I|). Since |I| is a
logarithmic function of n (i.e., |V |), the complexity of ISS reduces
toO(kn(log2 n)+k|Γ| logn). Recall that the computation cost of
greedy (Alg. 1) is O(n2 logn + k|Γ|n2). Consequently, we get a
dramatic reduction in running time.

Storage Cost: In addition to the network (O(|V |+ |E|) space),
ISS stores O(|I|) node pairs and their importances. The matri-
ces A and B consume O(|I||V |) space. Since |I| is a logarith-
mic function of n (i.e., |V |), the space complexity is bounded by
O(|I|+ |I||V |+ |V |+ |E|) = O(n logn+m).

4. EXPERIMENTS
In this section, we benchmark the proposed algorithms and eval-

uate their approximation quality and scalability.

4.1 Experimental Setup
All experiments are performed using Java on an Intel(R) Xeon(R)

E5-2609 8-core machine with 2.5 GHz CPU and 512 GB RAM run-
ning Linux Ubuntu 14.04.

4.1.1 Baselines
We denote our importance sampling algorithm as ISS, the opti-

mal algorithm based on mixed integer programming as MIP-OPT,
and the greedy algorithm as GSN. The other baselines are as fol-
lows: (1) USS (Uniform Sampling’s Selection): We adapt the
state-of-the-art method [19] of uniform sampling and apply towards
our problem. (2) High-Cen [35]: We choose the top-k most
central nodes to improve. The central nodes are present on the
maximum number of distinct shortest paths and could potentially
β-improve a large number of node pairs. However, this method
does not capture the dependency among node upgrades. (3) High-
Delay: This baseline selects the top-k nodes with highest delays.

Table 3: Dataset description and statistics.

Name #Trajectories Type |V | |E|
Bejing (BJ) 123K Directed 623.9K 672.2K

San Fransisco (SF) 442K Undirected 5.08K 41.7K
New York (NY) 49247K Directed 72.7K 169.8K

4.1.2 Datasets:
Table 3 summarizes the real-world datasets. Each dataset con-

tains the road network of a city and is extracted from OpenStreetMap1.
Each node corresponds to a region and an edge denotes a street con-
necting these regions. For network flows, we use the cab trajectory
data from each of the cities listed in Table 3.

(1) Beijing (BJ)[36]: We have trajectories of cabs, over a period
of 1 week. Each trajectory contains the sequence of nodes visited
in a trip and the timestamps at which the nodes were visited.

(2) San Francisco (SF)[29]: The dataset has been collected
over a duration of one month and contains taxi pick-up and drop-
off information from taxis in San Francisco.

(3) New York (NY) [9]: This is the largest publicly available
taxi dataset. It was collected over a period of four years ranging
from 2009 to 2013. It contains records of yellow and green taxis in
the city of New York. We use the trajectories from January, 2013
to March, 2013 to find the importance of the node pairs.

To compute the delay in a node, we first partition the cab trajec-
tories based on their starting timestamp into four windows of six
hours each viz. 00:00 to 06:00, 06:00 to 12:00, and so on. Next, for
each edge, we compute the average time taken to cross it in each
of the four time slots. The delay in an edge is quantified as the
difference between the maximum and the minimum average times
across the four windows. Finally, the delay in a node is set to the
sum of the delays in all of its incoming edges.

4.1.3 Performance metric and parameters
Performance Metric: The quality of a solution set S in a net-

work N is defined in Eq. 2. We call this metric the flow improve-
ment due to S and is denoted as FI(N). From our formulation of
node-pair importance in Def. 6, the total flow in a network is 1.

The solution set S produced by any algorithm is evaluated based
on f(S) =

∑
(u,v)∈ΛS

ξu,v where ΛS denotes the set of β-improved
node pairs. For large graphs, this evaluation is time consuming
as it involves all-pair-shortest-paths computation. To mitigate this
scalability bottleneck, we evaluate the algorithms based on ran-
domly chosen sampled pairs Q. More specifically, the metric is
f(S) =

∑
(u,v)∈Λ∗

S
ξu,v , where Λ∗S denotes the set of β-improved

node pairs in Q. The size of the sample set Q is set to 50, 000.
Default Parameters: We set Γ, which is the candidate set of

nodes that can be improved, to V , i.e., the set of all nodes. Unless
specifically mentioned, the default value for β is 0.1 or 10%, and
the default size of sample set used in ISS (and USS) is 15 log(n).
Note that, we use the number samples in the form of c log(n) where
c controls the error ε (mentioned in Theorem 8).

4.2 GSN and optimal MIP
First, we compare the performance of GSN with the optimal so-

lution. As described in Sec. 3.1, the optimal solution is computed
using mixed integer programming (MIP). We implement MIP using
CPLEX and validate on the SF and BJ datasets. However, we ex-
tract a sub-network containing only 1000 nodes from these datasets
since MIP consumes exorbitantly high running times on larger net-
works. Figure 5 presents the results as we vary β and the budget
k. Across both datasets, GNS produces results that are close to
optimal. More specifically, beyond k = 5, GSN is at most 10%

1http://openstreetmap.org/

995

http://openstreetmap.org/

1 2 3 4 5 6 7 8 9 10
Budget (k)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

FI
 (N

)

MIP OPT
GSN

(a) SF (β = 5%)

1 2 3 4 5 6 7 8 9 10
Budget (k)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

FI
 (N

)

MIP OPT
GSN

(b) SF (β = 10%)

1 2 3 4 5 6 7 8 9 10
Budget (k)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

FI
 (N

)

MIP OPT
GSN

(c) BJ (β = 5%)

1 2 3 4 5 6 7 8 9 10
Budget (k)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

FI
 (N

)

MIP OPT
GSN

(d) BJ (β = 10%)
Figure 5: Comparison between MIP vs GSN: Normalized Flow Improvement for (a-b) SF, (c-d) BJ.

0 5 10 15 20 25 30 35
Budget (k)

0.0
0.2
0.4
0.6
0.8
1.0

Ra
tio

BJ
NY
SF

(a) Ratio

10 15 20 25 30
Budget (k)

104

105
Ti

m
e

(S
ec

.)
GNS
ISS

(b) Running Time in BJ

10 15 20 25 30
Budget (k)

103

104

105

106

Ti
m

e
(S

ec
.)

NY
NY

(c) Running Time in NY

10 15 20 25 30
Budget (k)

101

102

103

104

Ti
m

e
(S

ec
.)

GSN
ISS

(d) Running Time in SF
Figure 6: (a) Approximation quality of ISS against GSN. (b-d)Running times of ISS and GSN.

away from the flow improvement achieved by the optimal algo-
rithm. This result validates our intuition that greedy is an effective
heuristic for the proposed problem. Moreover, GSN takes only a
few seconds (< 100 seconds) to produce the nearly optimal results
whereas MIP takes more than a day’s time to terminate. A pat-
tern consistent across both datasets is that as β increases, the gap
between GSN and optimal increases as well. This trend is a direct
consequence of the fact that when β increases, only a group of node
upgrades can β-improve a path and hence higher is the need to fully
search the combinatorial space and identify the best group.

4.3 ISS vs GSN
We next compare the performance of GSN with ISS. In Fig. 6a,

we plot the approximation quality of ISS with respect to GSN. The
approximation quality is the ratio between the flow improvements
produced by ISS and GSN. A high ratio indicates that ISS produces
similar quality results as that of GSN. As can be seen, the ratio is
the highest in BJ, followed by SF and finally NY. This result follows
directly from the distribution of node pair importances. Specifi-
cally, it is evident from Fig. 4a, that the node-pair importances are
most skewed in BJ, followed by SF, and finally NY. When the dis-
tribution is skewed towards a small number of important node pairs,
importance sampling is better able to estimate the marginal gain of
a node upgrade from just the sampled collection of node pairs. This
results in the trend visible in Fig. 6a.

Next, we analyze the running times of GSN and ISS. Figs. 6b-6d
present the results. ISS is up to three orders of magnitudes faster
than GSN. GSN finds it most difficult to scale in the NY dataset,
where it consumes around 17 days (410 hours) to terminate. Al-
though, NY is a smaller network than BJ, GSN consumes more
time since the number of node pairs with non-zero importance is
much higher in NY and therefore more shortest path computations
are necessary while calculating the marginal gain of an upgrade.

4.4 Comparison with scalable baselines
Next, we compare the performance of ISS with the baseline algo-

rithms listed in Sec. 4.1.1. We omit GSN from further experiments
since it fails to scale.

0 10 20 30

Budget (k)

0

0.01

0.02

0.03

F
I (

N
)

USS
ISS
Central
Delay

(a) Varying Budget

0 500 1000

#Samples

0

0.02

0.04

0.06

F
I (

N
)

USS
ISS
Central
Delay

(b) Varying #Sample

5 10 15 20 25

-

0

0.02

0.04

0.06

F
I (

N
)

USS
ISS
Central
Delay

(c) Varying β (%)

Figure 7: (NY) The flow improvement (FI) by varying (a) bud-
get, (b) the number of samples, and (c) β (%).

0 5 10

#Nodes#10 5

0

1000

2000

T
im

e
(s

ec
)

USS
ISS

(a) Scalability

0 20 40

Budget (k)

0

200

400

T
im

e
(s

ec
)

USS
ISS

(b) Vs Budget

0 500 1000

#Sample

0

500

1000

T
im

e
(s

ec
)

USS
ISS

(c) Vs #Sample

Figure 8: (a-c) The running times of ISS and USS by varying
(a) (All) the size of graphs, (b) (NY) the budget, (c) (NY) the
number of samples.

Tables 4 and 5 present the results for NY and BJ respectively. To
highlight the efficacy of ISS more prominently, we report the per-
formance improvement of ISS in terms of ratio. More specifically,
each cell reports the ratio

Performance improvement(X) =
FIISS
FIX

(28)

where X is the method corresponding to the cell’s column and
FIX is the flow improvement achieved by that method.

Across both NY and BJ, ISS drastically outperforms all base-
lines. Some baselines fail to provide any flow improvement at all
and therefore the improvement ratio in those cases is∞. This im-
pressive performance of ISS stems from two factors. First, unlike
ISS, both High-Cen and High-Delay are oblivious to the dependen-
cies between the nodes selected for reduction. Second, although
this problem does not exist in USS, USS samples node pairs uni-
formly and therefore fails to capture an adequate representation of
the important node pairs. Consequently the performance suffers.

996

Table 4: (NY) Comparison of Flow Improvement between ISS
and other baselines on NY against varying budget (k) and β.
Each cell reports the relative Improved Flow w.r.t. ISS, i.e.
FIISS
FIX

, where X is the method used in that particular cell.
When X does not produce any FI (FIX = 0), FIISS

FIX
=∞.

β = 5% β = 10%
k High-Cen USS High-Delay High-Cen USS High-Delay
5 ∞ 27.5 350 ∞ 50.3 2085

10 36000 37.5 110 ∞ 69.6 115
15 40000 40 80 ∞ 46 120
20 42000 42 56.5 20624 47.2 72
25 43000 43 54.8 20772 47.5 46
30 21500 43 54 21000 40.9 46

Table 5: (BJ) Comparison of Flow Improvement between ISS
and other baselines on BJ against varying budget (k) and β.

β = 5% β = 10%
k High-Cen USS High-Delay High-Cen USS High-Delay
5 4.0 25.1 ∞ ∞ ∞ ∞

10 9.1 10.3 ∞ ∞ ∞ ∞
15 5.1 12.2 ∞ 9.1 ∞ ∞
20 2.5 14.8 ∞ 6.2 ∞ ∞
25 1.8 16.8 ∞ 3.1 ∞ ∞
30 1.7 17.7 ∞ 2.4 ∞ ∞

A consistent trend we see across both NY and BJ is that as β
increases the performance gap between ISS and other baselines in-
creases. This is another natural consequence of being oblivious to
the node dependencies. At a higher β, it is even more important to
know the other nodes in the solution set since such high improve-
ment is typically possible only when all nodes in the solution set
collectively bring down the shortest path delay by β%.

4.5 Impact of Parameters on Performance
The key parameters impacting the performance are the budget k,

the number of samples, and β. Note that the number of samples
affects the error ε (Theorem 8). The running time is affected by the
budget, the number of samples and the size of the graph. We study
the impact of these parameters on the quality and running time.

4.5.1 Quality
First, we evaluate the quality in terms of Flow Improvement (FI)

against varying budget. Figure 7a shows the results for NY. As
the budget increases ISS shows growth in improving the flows and
outperforms all other baselines convincingly.

Next, we vary the number of samples and observe its effects in
Figure 7b. The budget (k) is set to 50. Though ISS is able to show
a steady growth in quality, others struggle to make a noticeable im-
pact. This behavior is a direct consequence of not being sensitive
to the importance of node pairs. More specifically, all techniques
except ISS randomly sample node pairs. As shown in Fig. 4a, the
node pair importance follows a power-law distribution and thus a
small minority of the pairs contribute majority of the network flows.
The chances of these important pairs to get randomly sampled is ex-
tremely low and thus the performance of the other baselines suffer.

Finally, we show the quality of the algorithms varying β. With
the increase of β, the possibility of improving a node pair reduces
and thus the number of improved flows should reduce. Figure 7c
validates this intuition.

4.5.2 Scalability
First, we study the growth rate of running time against the net-

work size. In this experiment, we compute the running time for

5 10 15 20 25 30
Budget (k)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

TI
 (m

illi
on

) ISS
USS

(a) BJ

5 10 15 20 25 30
Budget (k)

0
200
400
600
800

TI
 (m

illi
on

) ISS
USS

(b) NY
Figure 9: The total improvement (TI) on (a) BJ and (c) NY.

1 5 10 20
0.2
0.4
0.6
0.8
1.0

(a) C in BJ

5 10 15 200.00
0.05
0.10
0.15
0.20

Lik
el

ih
oo

d NY
BJ

(b) Likelihood
Figure 10: (a) Tightness of RPOP and (b) The likelihood to have
more than one improved node in the shortest path between a
randomly selected node pair against β (in percentage).

each of the datasets listed in Table 3 and verify how the running
time grows with respect to the network size. Figure 8a presents
the results. The running time grows at a rate that is slightly higher
than linear with increase in network size. This result is consis-
tent with the theoretical analysis of the computation cost (Section
3.4.3), where we show that the computation cost of ISS grows at
O(n log2 n) with respect to the network size. On the largest net-
work of Beijing, ISS finishes with 30 minutes.

Next, we evaluate the growth rate of running time against budget
on the NY dataset. Figure 8b presents the results. As expected
from the theoretical analysis of computation cost in Section 3.4.3,
the running time grows linearly and consumes less than 7 minutes
across all values of k.

Finally, we analyze scalability against the number of samples
on NY dataset and present the results in Fig. 8c. Here, we fix the
budget as 30 and vary the number of samples. As expected, the
running time grows linearly with the number of samples.

4.6 Total Improvement
In our analysis, we have argued that noticeable improvement for

each individual pair of nodes is important. Does this focus on indi-
vidual improvement compromise on the total improvement across
the entire network? In the next experiment, we analyze this ques-
tion by measuring the performance of ISS on the total improvement
(TI) metric. TI is the total reduction in delay (in minutes) across all
trajectories of the datasets. TI is defined as follows.

TI =
∑

∀Pu,v∈F

(
d(u, v)− d(u, v;S)

)
(29)

Here, F is the set of all trajectories, Pu,v denotes a trajectory
that starts at node u and terminates at v. S is the set of upgraded
nodes and d(u, v) and d(u, v;S) are the delays of the shortest paths
from u to v before node upgrades and after node upgrades respec-
tively. We compare the performance of ISS with the state-of-the-art
method USS [19], which is designed specifically for total improve-
ment. For ISS, we set β = 0 since the goal is to optimize total
improvement. Fig. 9 presents the results in NY and BJ. As visible,
ISS is up to 8 times better than USS. USS is blind to the idea of
node pair importance and hence its performance suffers.

997

Table 6: (Synthetic Delay:) Comparison of Flow Improvement
between ISS and other baselines on NY against varying budget
(k) and type of synthetic delays.

Gaussian Uniform
k High-Cen USS High-Cen USS
5 ∞ ∞ ∞ ∞

10 ∞ 829 1700 ∞
15 ∞ 1400 5800 1600
20 ∞ 1600 6900 1900
25 ∞ 1700 8300 2200
30 ∞ 1900 9200 2500

Table 7: (Synthetic Flows/Importance:) Comparison of Flow
Improvement between ISS and other baselines on NY against
varying budget (k) and type of synthetic flows/importance.

Gaussian Uniform
k High-Cen USS High-Cen USS
5 ∞ 2.2 ∞ 2.2

10 ∞ 2.7 ∞ 2.6
15 ∞ 2.0 ∞ 2.0
20 ∞ 2.3 ∞ 2.3
25 ∞ 2.4 ∞ 2.3
30 ∞ 2.5 ∞ 2.3

4.7 Tightness of RPOP
Recall that our motivation to use greedy as the optimization strat-

egy for POP emerged from the observation that RPOP is a lower
bound of POP (Section 3.2) and greedy is the optimal polynomial-
time algorithm for RPOP. Theorem 7 establishes an error bound on
the performance of greedy on POP as a function of the tightness
factor C = fr(S)

f(S)
, between RPOP and POP. In the next, experi-

ment, we analyze how the tightness varies with increase in β.
Fig. 10a presents the results in the BJ dataset at k = 30. C

decreases with increase in β. Unsurprisingly, When β is high, it
is hard for a single node upgrade to β-improve a path. Conse-
quently, multiple node upgrades in a path are necessary to achieve
β-improvement. Since RPOP allows only one node upgrade per
path, fr(S) (RPOP) stays much lower than f(S) (POP). As a re-
sult C decreases. Overall, C lies in the range [0.5, 1].

We next analyze another assumption regarding RPOP. We claim
in Section 3.2 that intuitively, in most real life networks the number
of node pairs is much larger than the budget k. Thus, the likeli-
hood of having more than one improved node in the shortest path
between a randomly selected node pair is low. Consequently, POP
should behave similarly to RPOP. We empirically evaluate this like-
lihood in real large datasets of BJ and NY. Fig. 10b shows that our
assumption is indeed true and the likelihood is less than 0.1 (i.e.,
1%) in BJ and 0.08 in NY. k is set to 30 in this experiment.

4.8 Experiments on Synthetic data
The three data properties that have a profound impact on the

quality of the approximation algorithms are: 1) the delay distri-
bution of nodes, 2) the flow/importance distribution of the node
pairs, and 3) the graph structure itself. We systematically pick each
of these properties and study its impact on the performance. To-
wards that end, let X be the property under study. To isolate the
impact of property X , we pick a real dataset and synthetically alter
its property X while keeping the other two properties intact.

1) Synthetic Delay: As shown in Fig. 4b, the delay distributions
in real transportation networks are highly skewed. Specifically,
only a small minority of nodes face high delays. In this experiment,
we benchmark the performance of ISS on uniform and standard
normal distributions. Towards that end, we pick the NY dataset,
and assign node delays synthetically from U(0, 1) and N (0, 1),

5 10 15 20 25
Budget (k)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

FI
 (N

)

ISS
USS
High-Cen

(a) BA

5 10 15 20 25
Budget (k)

0.000
0.001
0.002
0.003
0.004
0.005
0.006

FI
 (N

)

ISS
USS
High-Cen

(b) WS

5 10 15 20 25
Budget (k)

0.00
0.02
0.04
0.06
0.08
0.10

FI
 (N

)

ISS
USS
High-Cen

(c) ER

5 10 15 20 25 30
Budget (k)

0.00
0.03
0.06
0.09
0.12
0.15
0.18

FI
 (N

) ISS
USS
High-Cen

(d) Edge-NY

Figure 11: Comparison of Flow Improvement FI(N) between ISS
and other baselines varying budget (k) (a-c) Synthetic Network
Structure: on (a) BA, (b) WS, and (c) ER graph generation
models; (d) when the delays are on the edges.

while retaining the original node pair flows and network structure.
In the case of N (0, 1), it may generate negative numbers. Since
negative delay is not feasible, we add the value of the minimum
delay to all the delays to make them non-negative. Table 6 presents
the Performance Improvement ratio (Eq. 28). Clearly, regardless of
the distribution, ISS is significantly better than the competing base-
lines. This superior performance of ISS is a direct consequence of
the other baselines being ignorant of node pair flows.

2) Synthetic Node Pair Flows: In this experiment, we alter the
NY dataset by assigning the node pair flows synthetically. First, we
assign flow values to node pairs from uniform distribution U(0, 1)
and standard normal distribution N (0, 1). As in the case of syn-
thetic node delays, we shift the normal distribution to exclusively
non-negative values by adding the minimum of all flow values. Fi-
nally, for both Uniform and Normal, the flow values are normalized
by dividing them with the sum of all node pair flows. Note that the
NY dataset contains more than 5 billion node pairs and assigning
flow values to all of them is not computationally feasible. In addi-
tion, to normalize the flow values, we also need to store them, and
this memory requirement is prohibitively large. To mitigate this is-
sue, we randomly pick 100 million unique node pairs and assign
flow values to only these. The rest of the node pairs are assumed to
have 0 importance. As a comparison, the real NY dataset has ≈ 11
million node pairs with positive flow.

Table 7 shows the performance improvement ratios (Eq. 28). and
consistent with previous trends, ISS outperforms both baselines.
However, the gap between ISS and USS is much smaller compared
to their performance on the real unaltered datasets. This result is ex-
pected since in the real dataset the node-pair flows follow a power-
law distribution (Fig. 4a). In a power law distribution, only a small
set of node pairs contribute significantly to the flow improvement.
These highly important pairs are also likely to be present in the im-
portance sample set. Consequently, the estimate of a node upgrade
computed from this sample set is accurate. In uniform or normal
distributions, since a large number of node pairs contribute to the
flow improvement, a small sample set is unable to capture the en-
tire picture. As a result, the gap between ISS and USS reduces. We
also observe that the performance of High-Cen is worse than both

998

ISS and USS. Since the flows of node pairs are synthetic, the like-
lihood that a central node will lie on the shortest path between an
important pair of nodes is low. The effect is visible in Table 7.

3) Synthetic Network Structure: Finally, we investigate the im-
pact of the network structure. We generate synthetic network struc-
tures from three well-studied models: (a) Barabasi-Albert (BA), (b)
Watts-Strogatz (WS) and (c) Erdos-Renyi (ER).

As in the previous two experiments, we alter the NY dataset
by synthetically constructing the network structure, while retain-
ing the original node-pair and delay distributions. Specifically, we
first construct a network through one of the graph generation mod-
els where the size of the network in terms of number of nodes is the
same as the original NY network. Since the number of nodes is the
same, we create a mapping from each node in the original struc-
ture to the synthetically generated one. Based on this mapping, we
assign delays and node-pair importances in the synthetic dataset.
Note that although the number of nodes is the same, the number of
edges would be different.

Figs. 11a-11c present the results. Several key insights emerge
from this experiment. First, ISS is the best performing technique
across all models of graph structure. Second, all techniques achieve
high flow improvement in BA (Fig. 11a). Since BA has scale-
free property, there are few nodes of extreme high degree. These
nodes typically also have high centrality and thus, reducing the de-
lays in these central nodes bring a reduction in the shortest path
delays among a large number of node pairs. Due to this same rea-
son, all three techniques provide similar flow improvements in the
BA model, particularly at a high value of k. In contrast, the flow
improvement problem is most difficult in WS. WS generates small-
world networks where the average shortest path delays are small (in
terms of number of hops and not delays). The flow improvement
problem is easier when many shortest paths go through a central
node, since in such a case improving the central node improves
many node pairs. When shortest paths are small, the likelihood
of two shortest paths going through a common node is also small.
Consequently, achieving a high flow improvement through a small
number of node upgrades is difficult.

The gap between ISS and the baselines is most pronounced in
ER. The structure of ER is random by construction. In this sce-
nario, the flows of the node pairs and the delays of the nodes play
a crucial role. Unlike USS and High-Cen, ISS takes into account
these aspects and provides up to 5 times more flow improvement.

4.9 Edge Delays
Recall from Sec. 2, that the proposed algorithm can incorporate

delays in either nodes, edges or a mixture of both. To showcase
this ability, we next measure the performance of ISS with delays on
edges. The delay on an edge is computed as discussed in Sec. 4.1.2.
Fig. 11d presents the results. Consistent with previous results, ISS
outperforms USS and High-Cen significantly. ISS is up to 36 times
better than the next best baseline USS. High-Cen does not pro-
vide any substantial improvement as the notion of edge centrality,
i.e., the number of node pairs with at least one shortest path going
through the edge, is an even weaker indicator of a good upgrade
than node centrality. Consequently, the performance suffers.

5. RELATED WORK
The majority of work on network design target various objec-

tives via modifying the network structure and attributes [4, 22, 13].
The problems differ in the upgrade models and the objective func-
tions. Paik et al. [25] first introduced a set of design problems in
which vertex upgrades improve the delays of adjacent edges. Later,
Krumke et al. [14] generalized this model assuming varying costs

for vertex/edge upgrades and proposed algorithms to minimize the
cost of the minimum spanning trees. Lin et al. [16] also proposed
the shortest path improvement problem where the weights are as-
sociated with undirected edges. In the above problems, the upgrade
models are different and cannot be used to solve out problem.

The closest works to our problem are [8] and [19]. Though
they consider a variation of POP, our formulation is different in
the sense that we target significant improvement of the important
paths. Both these techniques do not capture the intricacies of sig-
nificant improvement and node pair importance and thus, as shown
in our comparative evaluation, the performance suffers (Section 4).

Network design problems to improve several global objectives
(vertex eccentricity, diameter, all-pairs shortest paths etc.) by addi-
tion of edges have been addressed in the past literature [21, 26, 27,
7, 28]. Meyerson et al. [21] designed approximation algorithms for
single source and all pairs shortest path minimization. Demaine et
al. [7] proposed a constant factor approximation algorithm to min-
imize the diameter of a network by adding shortcut edges. Prior
work has also studied the eccentricity minimization problem in a
composite network [28]. All of the above problems, however, con-
sider structural modification (addition of new edges), and hence are
complementary to our setting.

Other related problems involve efficient computation of network
centrality. In [30], the authors compute top-k nodes based on be-
tweenness centrality via sampling. The group betweenness prob-
lem has been solved in almost linear time [35, 18] by a probabilistic
approximation algorithm. The design problems to improve the cen-
tralities of nodes had been studied in recent past [20, 6, 12, 33]. In
these works, the shortest path based centralities has been improved
via edge addition. These words differ from the proposed problem
in both the upgrade model as well as the objective function.

6. CONCLUSION
In this paper, we studied and proposed solutions for a novel net-

work design problem of delay minimization. Different from exist-
ing techniques, our formulation incorporated the practical consid-
erations that the impact of delay minimization should be noticeable
and favor important paths in a network. The proposed problem has
diverse applications in a variety of domains including road, airline,
power and communication networks. We showed that the prob-
lem is NP-hard as well as APX-hard. To overcome the exponential
cost of the optimal solution, we proposed an importance sampling
based algorithm with provable quality guarantees. Through exten-
sive evaluation on multiple real-word traffic networks, we estab-
lished that importance sampling is accurate and up to three orders
of magnitude faster than the greedy approach. In addition, impor-
tance sampling produces flow improvement that is up to 70 times
better than the state-of-the-art technique. Finally, our experiments
on synthetic datasets established that ISS is robust to variation in
network structure, delay distributions and node-pair importances.

Acknowledgment
Research was sponsored by the Army Research Laboratory and ac-
complished under Cooperative Agreement Number W911NF-09-
2-0053 (the ARL Network Science CTA). The views and conclu-
sions in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation here on.

999

7. REFERENCES

[1] S. Asmussen and P. W. Glynn. Stochastic simulation:
algorithms and analysis, volume 57. Springer Science &
Business Media, 2007.

[2] P. Banerjee, S. Ranu, and S. Raghavan. Inferring uncertain
trajectories from partial observations. In International
Conference on Data Mining (ICDM), pages 30–39. IEEE,
2014.

[3] P. Banerjee, P. Yawalkar, and S. Ranu. Mantra: a scalable
approach to mining temporally anomalous sub-trajectories.
In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 1415–1424. ACM, 2016.

[4] V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt.
Recommendations to boost content spread in social
networks. In Proceedings of the 21st international
conference on World Wide Web, pages 529–538. ACM, 2012.

[5] P. Crescenzi, G. D’Angelo, L. Severini, and Y. Velaj.
Greedily improving our own centrality in a network. In SEA,
pages 43–55. Springer International Publishing, 2015.

[6] P. Crescenzi, G. D’angelo, L. Severini, and Y. Velaj. Greedily
improving our own closeness centrality in a network. ACM
Trans. Knowl. Discov. Data, 11(1), 2016.

[7] E. D. Demaine and M. Zadimoghaddam. Minimizing the
diameter of a network using shortcut edges. in SWAT,
ser.Lecture Notes in Computer Science, H. Kaplan,Ed., pages
420–431, 2010.

[8] B. Dilkina, K. J. Lai, and C. P. Gomes. Upgrading shortest
paths in networks. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization
Problems, pages 76–91. Springer, 2011.

[9] D. Donovan, Brian; Work. New york city taxi trip data
(2010-2013), 2016.

[10] N. Garg and S. Ranu. Route recommendations for idle taxi
drivers: Find me the shortest route to a customer! In
Proceedings of the 24th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM,
2018.

[11] W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American statistical
association, 58(301):13–30, 1963.

[12] V. Ishakian, D. Erdos, E. Terzi, and A. Bestavros. A
framework for the evaluation and management of network
centrality. In SIAM International Conference on Data Mining
(SDM), pages 427–438. SIAM, 2012.

[13] V. Kolar, S. Ranu, A. P. Subramainan, Y. Shrinivasan,
A. Telang, R. Kokku, and S. Raghavan. People in motion:
Spatio-temporal analytics on call detail records. In
Communication Systems and Networks (COMSNETS), 2014
Sixth International Conference on, pages 1–4. IEEE, 2014.

[14] S. Krumke, M. Marathe, H. Noltemeier, R. Ravi, and
S. Ravi. Approximation algorithms for certain network
improvement problems. Journal of Combinatorial
Optimization, 2:257–288, 1998.

[15] Z. Li, R. A. Hassan, M. Shahidehpour, S. Bahramirad, and
A. Khodaei. A hierarchical framework for intelligent traffic
management in smart cities. IEEE Transactions on Smart
Grid, PP(99):1–1, 2017.

[16] Y. Lin and K. Mouratidis. Best upgrade plans for single and
multiple source-destination pairs. GeoInformatica,
19(2):365–404, 2015.

[17] W. Lu, W. Chen, and L. V. Lakshmanan. From competition
to complementarity: comparative influence diffusion and
maximization. PVLDB, 9(2):60–71, 2015.

[18] A. Mahmoody, C. E. Tsourakakis, and E. Upfal. Scalable
betweenness centrality maximization via sampling. In
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 1765–1773. ACM, 2016.

[19] S. Medya, P. Bogdanov, and A. K. Singh. Towards scalable
network delay minimization. In IEEE International
Conference on Data Mining (ICDM), pages 1083–1088,
2016.

[20] S. Medya, A. Silva, A. K. Singh, P. Basu, and A. Swami.
Group centrality maximization via network design. In SIAM
International Conference on Data Mining (SDM). SIAM,
2018.

[21] A. Meyerson and B. Tagiku. Minimizing average shortest
path distances via shortcut edge addition. In Approximation,
Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 272–285. Springer, 2009.

[22] S. Mitra, S. Ranu, V. Kolar, A. Telang, A. Bhattacharya,
R. Kokku, and S. Raghavan. Trajectory aware macro-cell
planning for mobile users. In Computer Communications
(INFOCOM), 2015 IEEE Conference on, pages 792–800.
IEEE, 2015.

[23] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa.
Spontaneous synchrony in power-grid networks. Nature
Physics, 9(3):191–197, 2013.

[24] G. L. Nemhauser and L. A. Wolsey. Best algorithms for
approximating the maximum of a submodular set function.
Mathematics of operations research, 3(3):177–188, 1978.

[25] D. Paik and S. Sahni. Network upgrading problems.
Networks, 26(1):45–58, 1995.

[26] M. Papagelis, F. Bonchi, and A. Gionis. Suggesting ghost
edges for a smaller world. In International conference on
Information and knowledge management (CIKM), pages
2305–2308. ACM, 2011.

[27] N. Parotsidis, E. Pitoura, and P. Tsaparas. Selecting shortcuts
for a smaller world. In SIAM International Conference on
Data Mining (SDM), pages 28–36. SIAM, 2015.

[28] S. Perumal, P. Basu, and Z. Guan. Minimizing eccentricity in
composite networks via constrained edge additions. In
Military Communications Conference, MILCOM, pages
1894–1899. IEEE, 2013.

[29] M. Piorkowski, N. Sarafijanovic-Djukic, and
M. Grossglauser. CRAWDAD dataset epfl/mobility (v.
2009-02-24). Downloaded from http:
//crawdad.org/epfl/mobility/20090224, Feb.
2009.

[30] M. Riondato and E. M. Kornaropoulos. Fast approximation
of betweenness centrality through sampling. In International
conference on Web search and data mining (WSDM), pages
413–422. ACM, 2014.

[31] D. Schrank, T. Lomax, and B. Eisele. 2015 urban mobility
scorecard and appendices. Texas AM Transportation
Institute, 39.

[32] A. Silva, P. Bogdanov, and A. K. Singh. Hierarchical
in-network attribute compression via importance sampling.
In International Conference on Data Engineering (ICDE),
pages 951–962. IEEE, 2015.

[33] M. Waniek, T. P. Michalak, T. Rahwan, and M. Wooldridge.

1000

http://crawdad.org/epfl/mobility/20090224
http://crawdad.org/epfl/mobility/20090224

On the construction of covert networks. In AAMAS, pages
1341–1349, 2017.

[34] D. P. Williamson and D. B. Shmoys. The design of
approximation algorithms. Cambridge university press,
2011.

[35] Y. Yoshida. Almost linear-time algorithms for adaptive
betweenness centrality using hypergraph sketches. In
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
1416–1425. ACM, 2014.

[36] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and
Y. Huang. T-drive: driving directions based on taxi
trajectories. In Proceedings of the 18th SIGSPATIAL
International conference on advances in geographic
information systems, pages 99–108. ACM, 2010.

1001

	Introduction
	Problem Definition
	Preliminaries
	Hardness and Approximability

	Algorithms
	Optimal Solution
	Restricted Path Optimization Problem (RPOP)
	Greedy Selection of Nodes
	Cost Analysis

	Sampling
	Uniform Sampling
	Importance sampling
	Efficient greedy through Importance Sampling

	Experiments
	Experimental Setup
	Baselines
	Datasets:
	Performance metric and parameters

	GSN and optimal MIP
	ISS vs GSN
	Comparison with scalable baselines
	Impact of Parameters on Performance
	Quality
	Scalability

	Total Improvement
	Tightness of RPOP
	Experiments on Synthetic data
	Edge Delays

	Related Work
	Conclusion
	References

