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ABSTRACT

This paper overviews an approach that addresses machine
learning over relational data as a database problem. This is
justified by two observations. First, the input to the learn-
ing task is commonly the result of a feature extraction query
over the relational data. Second, the learning task requires
the computation of group-by aggregates. This approach has
been already investigated for a number of supervised and
unsupervised learning tasks, including: ridge linear regres-
sion, factorisation machines, support vector machines, deci-
sion trees, principal component analysis, and k-means; and
also for linear algebra over data matrices.

The main message of this work is that the runtime per-
formance of machine learning can be dramatically boosted
by a toolbox of techniques that exploit the knowledge of the
underlying data. This includes theoretical development on
the algebraic, combinatorial, and statistical structure of re-
lational data processing and systems development on code
specialisation, low-level computation sharing, and paralleli-
sation. These techniques aim at lowering both the complex-
ity and the constant factors of the learning time.
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Figure 1: Kaggle survey of 16,000 practitioners on
the state of data science and machine learning: Use
of relational data: overall (left), by industry (right).

1. WHY BOTHER?

As we witness the data science revolution, each research
community legitimately reflects on its relevance and place
in this new landscape. The database research community
has at least three reasons to feel empowered by this revo-
lution. This has to do with the pervasiveness of relational
data in data science, the widespread need for efficient data
processing, and the new processing challenges posed by data
science workloads beyond the classical database workloads.
The first two aforementioned reasons are widely acknowl-
edged as core to the community’s raison d’étre. The third
reason explains the longevity of relational database man-
agement systems success: Whenever a new promising data-
centric technology surfaces, research is under way to show
that it can be captured naturally by variations or extensions
of the existing relational techniques. Prime examples are the
management of XML data , probabilistic data , graph
data , code , and ontologies , as well as prior work
on migrating data mining inside the database [18].

Like the Star Trek’s Borg Collective co-opting
technology and knowledge of alien species, the
Relational Data Borg a.k.a. RDBMS assimilates
ideas and applications from connex fields to adapt
to new requirements and become ever more pow-
erful and versatile. Unlike the former, the latter
moves fast, has great skin complexion, and is rea-
sonably happy. Resistance is futile in either case.

This paper overviews work by the author on learning over
relational data. Along with a growing number of recent con-
tributions, e.g., a database theory manifest |3] and SIGMOD
tutorials overviewing work at the interface of machine learn-
ing and databases 140], this effort is another episode of
the relentless learning process for the Relational Data Borg.
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Figure 2: Learning over relational data.
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In structure-agnostic learning (the top flow in red), a feature

extraction query constructs the data matrix on which the model is trained using a machine learning library.
In structure-aware learning (the bottom flow in blue), sufficient statistics is computed over the input database
using a batch of aggregate queries and then optimisation is performed on this statistics to obtain the model.

1.1 Relational data is ubiquitous

According to a recent Kaggle survey , most
data scientists use relational data (Figure .

This is a testament to the usability of the relational data
model. Many human hours are invested in building rela-
tional databases that are curated and enriched with knowl-
edge of the underlying domains and integrity constraints.

Figure |2| depicts a dataset used for data science in the
retailer domain. Features are gathered from a number of re-
lations detailing information on items in stores, store infor-
mation, demographics for areas around the stores, inventory
units for items in stores on particular dates, and weather.
The data matrix, which is the input to the learning task, is
the result of a feature extraction query that joins these rela-
tions on keys for dates, locations, zipcode, and items. The
query may construct further features using aggregates, e.g.,
running aggregates over days, weeks, months; min, max, av-
erage, median aggregates, or aggregates over many-to-many
relationships and categorical attributes with high cardinal-
ity (e.g., identifiers) [60]. A typical model of interest would
predict sales or inventory units for next month.

The author’s observation based on interactions with data
scientists at LogicBlox and Relational Al is that similar data-
sets of up to a few hundreds of millions of rows across a dozen
relations are common in data science projects.

1.2 Ignorance is not bliss

The mainstream data science solutions ignore the
structure of the underlying relational data at the
expense of runtime performance.

The structure of relational data is rich. A large body
of work in database research is on discovering, enforcing,
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and exploiting structure such as dependencies and integrity
constraints. It is therefore rather perplexing that the cur-
rent state of affairs in learning over relational data is to ig-
nore its structure! The flow of such structure-agnostic main-
stream solutions is depicted in Figure[2} They first construct
the data matrix using a feature extraction query expressed
in SQL for a database system, e.g., PostgreSQL or Spark-
SQL , or in Python Pandas for jupyter notebooks.
The data matrix is then passed on to a machine learning
library, e.g., scikit-learn , R , TensorFlow , or ML-
lib , which then learns the model.

The structure-agnostic solutions that put together black-
box specialised systems for data processing and machine
learning may work for virtually any dataset and model. The
uncomfortable drawback of this marriage of convenience is
that the two systems were not originally designed to work
together. They may therefore suffer from some of the follow-
ing shortcomings: (1) the feature extraction query is fully
materialised; (2) its result is exported from the query en-
gine and imported into the statistical library; (3) the cate-
gorical variables are one-hot encoded; (4) the pipeline may
suffer from impedance mismatch and high maintenance cost
in the face of changes to the underlying dataset; (5) and the
pipeline inherits the limitations of both systems.

In practice, all of these shortcomings may significantly
hinder the runtime performance of the data science solution.
1. Data matrix materialisation. The materialisation
of the feature extraction query may take non-trivial time
as it typically produces data matrices whose sizes are or-
ders of magnitude larger than the input data. This departs
from the classical database setting, where queries are over-
constrained by highly selective joins and filter conditions.
Here, the goal is to bring together the available data and
use it to train accurate models. Figure [3]shows that for our



PostgreSQL-+TensorFlow LMFAO [65]

Relation Cardinality/Attrs CSV Size Time CSV Size Time CSV Size
Inventory 84,055,817 / 4 2 GB Database - 2.1 GB - 2.1 GB
Items 5618 / 5 129 KB Join 152.06 secs 23 GB - -
Stores 1,317 / 15 139 KB Export 351.76 secs 23 GB - -
Demogr. 1,302 / 16 161 KB Shuffling 5,488.73 secs 23 GB - -
Weather 1,159,457 / 8 33 MB Query batch - —  6.08 secs 37 KB
Join 84,055,817 / 44 23GB Grad Descent 7,249.58 secs — 0.05 secs -
Total time 13,242.13 secs 6.13 secs

Figure 3: Left: characteristics of our retailer dataset. Right: Runtime performance experiment (Intel i7-4770,
3.4GHz, 32GB, 8 cores). The structure-aware (LMFAO) approach is 2,160x faster than the structure-agnostic
(PostgreSQL+TensorFlow) approach, while producing a more accurate solution (RMSE on 2% test data).
TensorFlow runs one epoch with 100K tuple batch. Both approaches train a linear regression model to
predict the inventory given all the other features from the data matrix defined by the join of the relations.

retailer dataset, the result of the key-fkey join is one order
of magnitude larger than the input dat

2. Data move. Moving the data matrix from the query
engine to the learning library is without doubt a time-consu-
ming step. Furthermore, the data formats of the two sys-
tems may be different and require a conversion. In our ex-
periment reported in Figure[3] moving the data matrix takes
more than twice the time to compute it.

3. One-hot encoding. The data is standardised and one-
hot encoded before the learning step. Done naively, the
one-hot encoding may increase the size of the data matrix,
turning it from lean (tall-and-thin) into chubby and thereby
blurring the typical database distinction between the large
number of rows and the small number of columns.

4. Maintenance cost. The structure-agnostic data sci-
ence pipeline is not designed to cope effectively with on-the-
fly changes to the underlying data. Data updates in the form
of tuple insertions and deletions, as well as schema updates
in the form of addition and removal of relations, columns,
derived aggregate features, would require recomputation of
the data matrix as well as the model learned over it.

5. Inherited limitations. The two systems have been de-
signed for different use cases that are not necessarily aligned.
For instance, the maximum data frame size in R and the
maximum number of columns in PostgreSQL are much less
than typical database sizes and respectively number of model
features. The mainstream solutions thus inherit the limita-
tions of both constituent systems.

All aforementioned shortcomings pose significant runtime
performance challenges. Whereas query processing engines
are designed to cope with large datasets, this is not the case
for the bulk of popular learning libraries. By having the
learning libraries work on orders of magnitude larger data
than the query engine, the mainstream solutions exacerbate
the runtime performance challenge. Even for medium-sized
input datasets such as our retailer dataset, working solutions
are forced to employ distributed platforms to train models.
This accidental complexity comes with a high, rather un-
necessary compute cost, as observed repeatedly in recent
studies on the cost of scalability [46], and also non-trivial
energy cost [21]. Distributed platforms should be reserved
for truly very large problem instances to justify the cost.

! A notable exception is a factorised query engine [15| |14}
65]. For our retailer dataset, the factorised/non-factorised
join is 26x smaller/10x larger than the input data size.
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1.3 Structure awareness to the rescue!

Learning over the data matriz defined by a fea-
ture extraction query may take much less time
than materialising the data matrix and is feasi-
ble on a commodity machine.

A natural question is whether the shortcomings highligh-
ted in Section [[.2] can be avoided. There is increasing effort
to address these shortcomings by migrating from the main-
stream solution to an ever tighter integration of the query-
ing and the learning tasks into a single execution plan that
avoids moving the data matrix. Opening up the learning
task and expressing its data-intensive computation steps as
a batch of aggregate queries is another source of radical per-
formance improvements. Computing the batch of queries
over the feature extraction queries is now a purely database
workload. We can exploit the join structure in the feature
extraction query to optimise this database workload. In fact,
an entire toolbox of database theory and systems techniques
is at our disposal to tackle the performance challenges of this
workload, as discussed in the next sections. This forms the
basis of the structure-aware learning paradigm, as opposed
to the structure-agnostic paradigm discussed before.

Figure depicts the flow of a structure-aware learning so-
lution: By analysing the learning task, i.e., the features of
the model and the objective function used for learning the
model, a batch of aggregates is synthesised manually [66]
or automatically [70]. This batch is then composed with
the feature extraction query, optimised, and evaluated. Its
result is typically much smaller than that of the feature ex-
traction query and its evaluation may be much faster than
that of the feature extraction query alone! This result is
sufficient to compute the model parameters using an opti-
misation algorithm tailored at the desired model such as
gradient descent or CART. Section [2] exemplifies aggregates
for several models and objective functions.

Our structure-aware learning system LMFAO (Layered
Multiple Functional Aggregates Optimisation) [65] avoids
the materialisation of the join and computes the batch of ag-
gregates directly over the input database. As shown in Fig-
ure [3] LMFAO only takes 6 seconds to compute the batch.
It then takes 50 milliseconds to compute the model parame-
ters of a ridge linear regression model using gradient descent,
where the gradient vector is built up using the computed ag-
gregates and the current parameters.
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Figure 4: Left: Speedup of LMFAO over existing DBMSs (commercial
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and MonetDB). The task is to

compute query batches C (covariance matrix) and R (regression tree node) over four datasets (AWS d2.xlarge,
4 vCPUs, 32GB). Right: Throughput of F-IVM over first-order IVM (delta processing) and higher-order
IVM (delta processing with intermediate views). The task is to maintain the covariance matrix in the retailer
dataset (Azure DS14, Intel Xeon, 2.40 GHz, 112GB, 1 thread, one hour timeout).

In contrast, the structure-agnostic solution takes signif-
icantly more time. It needs 152 seconds only to compute
the join using PostgreSQL. While commercial database sys-
tems may be faster than PostgreSQL, they would still need
non-trivial time to create the 23GB join result, whereas the
sufficient statistics computed by LMFAO is only 37KB. The
structure-agnostic solution exports the data matrix from
PostgreSQL, imports it into TensorFlow, and shuffles it. Fi-
nally, the model is learned using a variant of stochastic gradi-
ent descent in one epoch (i.e., one pass over the data matrix).
Both times to shuffle and learn using TensorFlow dwarf the
join time by a factor of 50x. Overall, the structure-aware
solution is 2,160x faster than the structure-agnostic solution
in our experiment. Both systems were given the same set of
input features and the resulting model was validated against
a training dataset. LMFAO computed a model very close to
that given by the closed-form ordinary least squares solu-
tion, whereas TensorFlow returned a slightly less accurate
model trained in one epoch (pass) over the data matrix.

This lack of efficiency can be observed beyond the choice
of model and dataset in our experiment. Prior work [66, |5,
65) reports on similar stories with a range of public datasets
(Favorita, TPC-DS, Yelp), models (decision trees, factori-
sation machines, k-means), and learning libraries (R [62],
scikit-learn [59|, Python StatsModels [72], mlpack [22], and
XGBoost [19]). They often fail to process the data matrix
on commodity machines due to out-of-memory errors.

Over the past years, we have investigated the gap between
the two types of solutions from different angles and for dif-
ferent models. We have built a number of prototypes for
learning a variety of models over relational data: F |66} [55],
F-IV [53l |54], AC/DC [5], LMFAO |[65} |64], IFAQ |70],
and Rk-means [23]. We have also investigated theoretical
aspects including: the use of sparse tensors and functional
dependencies to improve the time complexity of learning
polynomial regression models, factorisation machines, and
PCA over relational data [6, |7]; algorithms and complexity
analysis for queries with group-by aggregates and joins with
equality and additive inequality conditions, and their ap-
plication to k-means clustering and learning linear support
vector machines and models with non-polynomial loss [4];

Zhttps://github.com/fdbresearch/FIVM
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and the incremental maintenance of linear regression mod-
els [53] and of relational queries [35} [37] under data updates.
Sections and [5] highlight some of this development.
Our effort is not alone. There is an increasingly larger
body of work at the interface of databases and machine
learning towards addressing the shortcomings listed in Sec-
tion For instance, increasingly more solutions, starting
with MADIib [32] and Bismarck [26], integrate the two sys-
tems into one system to avoid Shortcomings (2), (4), and
(5). This mirrors two-decades old efforts on integrating data
mining and databases [18]. Shortcoming (3) is commonly
addressed by compressed feature vectors that avoid explicit
representation of zero values as done by, e.g., TensorFlow [1]
and libFM [63]|. Our previous work [6] 7] proposed a sparse
tensor representation for one-hot encoded features that can
be expressed using group-by queries; this is used by LM-
FAO [65]. A few solutions aim at addressing Shortcoming
(1) by pushing the learning task past the joins. Whereas
most solutions only handle restricted joins, e.g., star key-
fkey joins [41], others allow for arbitrary join schemas [66,
65]. A brief and incomplete overview of such approaches is
given in a recent tutorial |[67]. A promising area of research
is understanding the connection between learning and query
languages, e.g., the relative expressiveness of graph neural
networks and fragments of first-order logic and SQL [16].

1.4 Wait! This problem was already solved

Death dealers, who categorise research problems
as either ”done/dead” or "not done”, might say
that the problem of learning over relational data
is done. Yet existing database technology is not
ready for workloads specific to training models.

Given that the structure-aware solution essentially relies
on casting data-dependent computation as queries, why not
use existing database systems to compute them?

Figure [4] depicts two of our experimental findings.

The first experiment considers the computation of the ag-
gregates that define the covariance matrix used to learn a lin-
ear regression model and the costs used by CART to decide
on a node in a regression tree |65]. The number of distinct
aggregates varies from hundred to thousands for the four
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considered datasets, yet they are very similar and amenable
to significant shared computation. The speedup of our pro-
totype LMFAO over two competitive database systems is
on par with the number of aggregates, suggesting that these
systems might only provide limited support for sharing com-
putation across the aggregates in a batch. These systems
performed worse on SQL encodings of LMFAQ’s shared exe-
cution plans, which compute many intermediate aggregates.
This hints at LMFAQ’s distinct design that departs from
mainstream query processing.

The second experiment considers the maintenance of the
covariance matrix under tuple insertions into an initially
empty retailer dataset [53]. The throughput of our system
F-IVM (Factorised Incremental View Maintenance) is orders
of magnitude higher than of first-order (classical delta pro-
cessing) and higher-order (delta processing with intermedi-
ate views) incremental view maintenance approaches. The
three approaches are implemented on top of DBToaster’s
backend [39] and take advantage of its intermediate repre-
sentation language and code compilation. The main reason
for the performance difference lies again in sharing the main-
tenance across the aggregates within a batch.

These experiments suggest that the task of learning over
relational data comes with new database workloads that re-
quire novel optimisation and evaluation techniques. LMFAO
and F-IVM are just two points of reference in a large design
space for systems to cope with the new workloads.

1.5 Wait, wait! This effort is irrelevant

This effort misses the point: Accuracy is the holy
grail of machine learning, not runtime efficiency.
Yet faster training can mean better accuracy.

The term “performance” is mostly used to mean accuracy
in the machine learning literature and runtime efficiency in
the database community. How can a database mindset ever
make a difference to the machine learning battle field? It is
obviously pointless to quickly train models with poor accu-
racy and therefore not useful. While this is a valid point,
being able to train much faster can in fact help improve the
accuracy in several scenarios.

First, it raises the possibility to train several models within
the same time that it takes a slower system to train one
of these models. For instance, in our experiment in Fig-
ure @ once we computed the covariance matrix over the
given features, we can train a new model over a subset of
these features in 50 milliseconds. In contrast, TensorFlow
would use separate scans of the data matrix to train each
model, with each scan taking over 7,000 seconds. This would
effectively allow the faster approach to perform model selec-
tion by looking over a large set of possible models defined
by subsets of the set of all given features within a fraction
of the time it takes TensorFlow to complete one model.

Second, it allows to train more complex and expensive
models in a reasonable time.

Third, it opens the door to keeping models fresh so that
they accurately reflect the new evidence: Instead of updat-
ing the models say every day solely due to the abysmal run-
time performance of the learning library, one can update it
every hour or even every minute. In our streaming experi-
ment in F igure (right), F-IVM can maintain the covariance
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Retailer Favorita Yelp TPC-DS
Covar. matrix 937 157 730 3,299
Decision node 3,150 273 1,392 4,299
Mutual inf. 56 106 172 254
k-means 44 19 38 92

Figure 5: Number of aggregates for various datasets
and workloads (covariance matrix for linear regres-
sion; decision tree node; mutual information for
model selection and Chow-Liu trees; k-means).

matrix with a throughput of over one million tuples per sec-
ond. Refreshing the linear regression model after each up-
date (we considered a bulk of 1000 inserts at a time) would
take tens of milliseconds only; it takes less than the 50 mil-
liseconds for computing the parameters from scratch given
the covariance matrix, since we resume the convergence pro-
cedure of the gradient descent already with parameter values
that are close to the final ones.

Besides the runtime aspect, the structure of the relational
data and the human-added knowledge in the form of con-
straints and ontologies may help synthesise more accurate
models. This is a relevant subject that is out of the scope
of this paper and deserves proper treatment on its own.

2. FROM LEARNING TO AGGREGATES

Aggregation is the aspirin to all problems.

As argued in Section[I} turning the machine learning prob-
lem into a database problem follows a database community’s
recipe for success. The learning task relies on various forms
of aggregation over the data matrix that are readily sup-
ported by database query languages. The types of aggre-
gates depend on the model and objective function. In this
section, we give such aggregates for several models; it is be-
yond the scope of this overview paper to show how to derive
them. For an in-depth treatment, please refer to our work [6}
65, |7, |4]. Figure [5| shows that their number is much more
than in a typical database query. The efficient computation
of batches of such aggregates requires new techniques that
exploit their structure and similarities.

We next consider that the data matrix D, which is defined
by a feature extraction query, consists of tuples (x,y) of a
feature vector x and a response y.

2.1 Least-squares loss function

The gradient vector of the least-squares loss func-
tion is built up using sum-product aggregates over
the model features and parameters.

For linear regression models trained by minimising the
least-squares loss function using gradient descent optimisa-
tion, the data-dependent aggregates that come up in the
gradient vector have one of the following forms:

SUM(XZ*X])
SUM(X;) GROUP BY X;
SuM(1) GROUP BY X, X,

where X; and X; are database attributes whose values make
up the features x; and respectively z;. In case both x; and



x; are continuous, we sum their products over all tuples
in the data matrix D. In case z; is continuous and x; is
categorical, we report the sum of z; for each category of z;.
Finally, in case both z; and x; are categorical, we count the
number of occurrences for each pair of their categories that
appears in D. Each pair of features, or a pair of a feature and
the response, defines such an aggregate; for n features, we
thus have (n 4+ 1)? such aggregates (although the aggregate
SUM(y?) over the response y is not needed in the gradient
vector). We arrange these aggregates in an (n+1) x (n+1)
symmetric matrix, where the (7, j) entry is the aggregate for
X; and X;. If the features are standardised, this matrix is a
compact encoding of the covariance matrix of the features.

Two remarks are in order. First, the data matrix D need
not be materialised, so the above aggregates are expressed
directly over the feature extraction query Q:

SELECT X,agg FROM Q GROUP BY X;

where X represents the categorical feature(s) and agg is one
of the sum aggregates discussed before. Parts of the ag-
gregates can be pushed past the joins and shared across
the aggregates. This reduces the sizes of the intermediate
results. For the evaluation of such queries, we resort to fac-
torised query processing [57, |56] that combines aggregate
pushdown with worst-case optimal join computation |74] to
achieve a runtime asymptotically lower than classical query
plans with binary joins [51]. The feature extraction queries
are typically acyclic, in which case our execution strategy
takes time linear in the input data instead of output data.
Second, these aggregates represent a sparse tensor encod-
ing of the interactions of any two categorical features: In-
stead of one-hot encoding them, we only represent the pairs
of categories of the features that appear in the data matrix
D [7]. This is naturally expressed using the group-by clause.
Similar aggregates can be derived for polynomial regres-
sion models [56], factorisation machines [6], sum-product
networks [20], quadratically regularised principal component
analysis [33], and QR and SVD decompositions [73].

2.2 Cost functions for decision trees

The computation of the cost functions for each
attribute and condition at a decision tree node
can be expressed by a sum-product aggregate with
a filter condition.

The cost functions used by algorithms such as CART [17]
for constructing regression trees rely on aggregates that com-
pute the variance of the response conditioned on a filter:

VARIANCE(Y) WHERE X; op c;

For a continuous feature x;, the filter asks whether its value
is above a threshold c¢;: X; > ¢;. For a categorical feature
x;, the filter asks whether its value is in a set of possible cat-
egories: X; in (v1,...,v;) or X; = v. The thresholds and
categories are decided in advance based on the distribution
of values for x;. The variance aggregate is expressed using
the sum of squares, the square of sum, and the count.

For classification trees, the aggregates encode the entropy
or the Gini index using group-by counts to compute value
frequencies in the data matrix.

The aggregates for decision trees are thus very similar to
those in Section [2.1] with the addition of filters.

2.3 Non-polynomial loss functions

The sub-gradients of non-polynomial loss func-
tions require a new type of theta joins with ad-
ditive inequality conditions. Such joins call for
new algorithms beyond the classical ones.

A large class of models including support vector machines
and robust regression are trained using sub-gradient descent.
They use non-polynomial loss functions, such as (ordinal)
hinge, scalene, and epsilon insensitive, that are defined by
multiple cases conditioned on additive inequalities of the
form Y. x; - w; > ¢, where w; and ¢ are constants and x;
are the features. Huber loss admits a gradient with additive
inequalities. The (sub)gradients of these loss functions can
be formulated using aggregates of the form [4]:

SUM(X) WHERE X; x w1 + ...+ X, *wy > ¢ GROUP BY Z

where X may be the value one, a feature, or the product of
two attributes for continuous features, while Z is none, one,
or two attributes for categorical features.

This aggregate is structurally different from the previous
ones as it involves an additive inequality join condition. This
is a new type of theta join. Existing database systems evalu-
ate it by iterating over the data matrix and checking the ad-
ditive inequality condition for each tuple. As we show in re-
cent work [4], there are better algorithms that do not need to
iterate over the entire data matrix and that may need poly-
nomially less time to compute such aggregates with addi-
tive inequalities. This is a prime example of a new database
workload motivated by a machine learning application.

Similar aggregates are derived for k-means clustering [4].

3. LOWERING THE ASYMPTOTICS

Owver decades, the database community has devel-
oped a toolbox of techniques to understand and
use the algebraic, combinatorial, statistical, and
geometric structure of relational data to lower the
computational complezity of database problems.

In this section, we overview principles behind structure-
aware learning that led to new algorithms for queries with
joins, additive inequality conditions, and group-by aggre-
gates, and the analysis of their computational complexity.

3.1 Algebraic structure

Relational data exhibits an algebraic structure: A relation
is a sum-product expression, where the sum is the set union
and the product is the Cartesian product. Relational alge-
bra computation can be captured using (semi)ringsﬂ such

3A ring (D, 4+, *,0,1) is a set D with closed binary opera-
tions + and *, the additive identity 0, and the multiplicative
identity 1 satisfying the axioms (Va, b, c € D):

l.a+b=b+a.

(a+b)+c=a+(b+c).

O+a=a+0=a.
d—a€eD:a+(—a)=(—a)+a=0.
(axb)xc=ax(bxc).

axl=1*xa=a.

ax(b+c)=axb+taxcand (a+b)xc=axc+bxc.

NS Uk N
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as work on k-relations over provenance semirings [27], gener-
alised multiset relations [38], and factors over semirings [9].

The following properties make the rings particularly ef-
fective for computing and maintaining aggregates.

Distributivity law. This powerful law underlies our work
on factorised databases [57} [56]. In particular, it allows to
factor out data blocks common to several tuples, represent
them once and compute over them once. Using factorisa-
tion, relations can be represented more succinctly as directed
acyclic graphs. For instance, we can trade the explicit repre-
sentation of the Cartesian product of two sets R = U;c[n 7
and S = Uj¢[ms; for a symbolic representation:

Uielnl,jetm) (Ti X 85) = (Ui 7i) X (Ujepm) 55)

Whereas the left expression has 2nm values, the right ex-
pression only has n + m values. This can be generalised to
joins, which are by definition unions of Cartesian products,
and also to queries with select, project, join, group-by aggre-
gates, and order-by clauses. A join query may admit several
factorisations and a question is which ones are optimal, i.e.,
there is no factorisation whose size is smaller in worst-case.
Can such factorisations can be computed optimally, i.e., in
time proportional to their sizes? These questions have been
answered in the affirmative [57]. Factorisation can lower
the computational complexity of joins [15], aggregates [14],
and machine learning [66} |56, |6} |4]. Section exemplifies
factorised computation for joins and aggregates.

As a representation formalism, factorised databases are
a special class of multi-valued ordered decision diagrams
that have been studied in knowledge compilation, a field
in AT literature that aims at exploiting structure in (worst-
case hard) problems to solve them efficiently in practice [24].
The framework of Functional Aggregate Queries |9] gener-
alises factorised databases to semirings beyond sum-product
and shows that many problems across Computer Science
can benefit from factorised computation. LMFAO [65] [64],
F-IVM [53] 54], and IVM€ |37, |36] employ factorised query
computation and maintenance. These systems factorise the
query into a hierarchy of increasingly simpler views, which
are maintained bottom-up under data updates.

Additive inverse. The additive inverse of rings allows to
treat uniformly data updates (inserts and deletes). This
would require relations to map tuples to their multiplicities,
i.e., using the ring of integers. Then, an insert/delete of a
tuple r into/from a relation R is modelled as the addition
of the mapping {r — 1} and respectively {r — —1} to the
map R. If the key r is already present in R, then we sum
up their multiplicities so that each key appears once in the
map R. Tuples with multiplicity zero are not represented.
This uniform treatment of updates simplifies the mainte-
nance procedure for queries [39,35] and models (53 [54].

Sum-product abstraction. The sum-product abstrac-
tion in rings allows to use the same processing (computing
and maintaining) mechanism for seemingly disparate tasks,
such as database queries, covariance matrices, inference in
probabilistic graphical models, and matrix chain multiplica-
tion [9, 53]. Section exemplifies a ring designed for co-
variance matrices. The efficient maintenance of covariance

A semiring (D, +, %, 0, 1) satisfies all of the above properties
except the additive inverse property (4) and adds the axiom
Oxa=ax0=0. A (semi)ring for which a xb = bx*a is
commutative. Axiom (7) is the distributivity law.
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matrices makes it possible to keep models fresh under high-
throughput data changes [53]. A recent tutorial overviews
advances in incremental view maintenance [25].

3.2 Combinatorial structure

The combinatorial structure prevalent in relational data
is captured by notions such as the width measure of the
query and the degree of a data value. If a feature extraction
query has width w, then its data complexity is O(N"™) for a
database of size N, where O hides logarithmic factors in N.

Width measures. Various increasingly more refined and
smaller width measures have been proposed recently:

e The fractional edge cover number [29] captures the
asymptotic size of the results for join queries |29, |12]

and the time to compute them [50, |51} |74].

The fractional hypertree width [43] is defined using
the fractional edge cover number of the bags in the
hypertree decompositions of the query.

The factorisation width [57} |56] generalises the frac-
tional hypertree width to non-Boolean queries. This
width defines the size of factorised query results.

The FAQ-width [9] generalises the factorisation width
to functional aggregate queries over several semirings.

The submodular width [44] |10] is the smallest known
width for Boolean conjunctive queries.

The relaxed versions [4] of FAQ-width and submodular
width capture the complexity of queries with additive
inequalities discussed in Section |2.3]

This theoretical development led to a number of algo-
rithms that attain the above width measures: LFTJ [74],
F 66} 56|, InsideOut [9], EmptyHeaded [2|, PANDA [10],
and #PANDA [4]. Our prototypes F [66] and LMFAO [65]
for learning over relational data use an underlying query
engine that achieves the factorisation width.

Data degree. The degree information captures the num-
ber of occurrences of a data value in the input database [51].
Several existing query processing algorithms adapt their ex-
ecution strategy depending on the degree of data values,
with different strategies for heavy and light values, where
a value is heavy/light if its degree is above/below a certain
chosen threshold. This adaptive processing has been used
by worst-case optimal join algorithms [50], worst-case op-
timal incremental maintenance of triangle queries |35}, |36],
and to achieve the submodular width for Boolean conjunc-
tive queries [10]. The complexity of query evaluation can
reduce dramatically in the presence of bounded degrees or
even more refined notions of data sparsity, such as nowhere
denseness [28|. This is the case, for instance, for computing
queries with negated relations of bounded degree [8].

Functional dependencies. A special form of bounded de-
gree is given by functional dependencies. They can be used
to lower the learning runtime for ridge polynomial regres-
sion models and factorisation machines. Instead of learn-
ing a given model, we can instead learn a reparameterised
model with fewer parameters and then map it back to the
original model [6} [7]. Take for instance a model whose pa-
rameters include a parameter 6.y, for each city and Ocountry



for each country in the input data, and assume the func-
tional dependency city — country holds in the database. We
can replace each parameter pair (city, Ocountry) With a new
parameter (g, country). Lhe relationship between the orig-
inal and new parameters can be expressed in closed form
for ridge polynomial regression and factorisation machines,
hence (fcity; Ocountry) can be recovered from gy, country)-

3.3 Statistical and geometric structure

An alternative approach to computing over the entire in-
put data is to compute over data samples. There is a solid
body of work in sampling for machine learning [4§]. In
our database setting, the major challenge is that we would
need to sample through the feature extraction query. The
most notable advances in the database literature is on sam-
pling through selection conditions and joins, e.g., the ripple
joins [31] and the wander joins [42]. However, the feature
extraction query may also compute derived aggregate fea-
tures, which means that sampling through aggregates would
be also needed. More recent work considers sampling for
specific classes of machine learning models [58]. This is a
challenging and interesting subject to future work.

Sampling is employed whenever the input database is too
large to be processed within a given time budget. It may
nevertheless lead to approximation of both steps in the end-
to-end learning task, from the computation of the feature
extraction query to the subsequent optimization task that
yields the desired model. Work in this space quantifies the
loss in accuracy of the obtained model due to sampling [48].

Geometric structure is relevant whenever we use distance
measures. Clustering algorithms can exploit such measures,
e.g., the optimal transport distance between two probability
measures, and inequalities between them, e.g., the triangle
inequality. One example is Relational k-means [23], which
achieves constant-factor approximations of the k-means ob-
jective by clustering over a small coreset instead of the full
result of the feature extraction query.

4. LOWERING THE CONSTANT FACTORS

The database researcher continuously refines a
toolbox of clever system tricks, including: spe-
cialisation for workload, data, and hardware; ob-
serving the memory hierarchy and blocking op-
erations; distribution and parallelisation. These
tools can bring otherwise computationally hard
problems into the realm of the possible.

While asymptotic runtime improvements are desirable,
their successful implementation in practical cases is not a
given. They also aim at upper bounding the worse-case sce-
nario, which may not happen in practice. While worst-case
optimal join algorithms |74} |11} [52] and factorised computa-
tion and maintenance of models [65} 53] have been validated
in practice, the jury is still out on adaptive query strate-
gies 35, 37] and the submodular width [10]. At least of
equal relevance are systems aspects of theoretically-efficient
algorithms. Our prototyping effort considered code speciali-
sation, shared scans, and parallelisation, which contribute to
LMFAOQ’s runtime performance as shown in Figure [l The
baseline for this comparison (1x speedup) is AC/DC [5], the
precursor of LMFAO that has none of these optimisations.

We next mention aspects of lowering the constants in our
LMFAO and IFAQ systems.
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Figure 6: Speedup of code optimisations in LM-
FAO for computing the covariance matrix relative
to baseline implementation. The optimisations are
added in this order: , sharing, paral-
lelization (AWS d2.xlarge, 4 vCPUs, 32GB).

Workload compilation. LMFAOQO generates code specific
to the query and database schema [49] |68 [69], and also
specific to the model.

For a more systematic study of the code optimisation
and generation effort in LMFAO, we recently initiated a
new project called IFAQ (Iterative Functional Aggregate
Queries) [70]. IFAQ is a framework that allows to specify in
a unified domain-specific language DB+ML workloads and
provides a unified optimisation and compilation approach to
programs in this language. Example of such programs in-
clude: gradient descent optimisation for learning a variety of
models over relational data, the CART algorithm for deci-
sion trees, model selection, and cross validation. Section[5.3
exemplifies IFAQ transformations for learning a linear re-
gression model over a join using gradient descent.

Sharing computation. Both LMFAO and IFAQ exhibit
sharing across the batch of aggregates at different stages.
We next sketch two common sharing scenarios.

Consider a join tree of the feature extraction query (if the
query is cyclic, it is first partially evaluated to an acyclic
query). We decompose each aggregate in the batch following
a top-down traversal of this tree as follows. We assign at a
node in the tree a restriction of the aggregate that only
refers to the attributes within the subtree rooted at that
node. This means that we assign the entire aggregate at
the root. It also means that if the subtree rooted at a node
has no attributes in the aggregate, then we assign a count
aggregate at the node. The reason is that this restriction of
the aggregate can be answered at each node in the tree using
the partial aggregates computed at its children, if any. At
each node, we then consolidate the synthesised aggregates
into views. For the batches discussed in Section it is
often the case that several aggregates have the same partial
aggregates at a node in the tree, so we only compute these
partial common aggregates once and use them several times.

Furthermore, to compute the views at the same node, we

can share the scan of the relation at the node. To increase
sharing and minimise the sizes of the intermediate views,
LMFAO may decompose different aggregates starting at dif-
ferent root nodes in the join tree.
Parallelisation. LMFAOQO supports parallelism by comput-
ing in parallel groups of views that do not depend on each
other. It supports domain parallelism by deploying threads
to compute view groups on disjoint parts of a relation.



Orders Dish Ttems Natural join of Orders, Dish, and Items

customer day dish dish item item  price customer X day x  dish X item X price U
Elise Monday  burger burger patty patty 6 Elise X Monday X burger X patty X 6 U
Elise Friday  burger burger onion onion 2 Elise X Monday X burger X X 2U
Steve Friday  hotdog burger bun bun 2 Elise X Monday X burger X bun X 2U

Joe Friday  hotdog hotdog bun sausage 4 Elise x Friday X burger X patty X 6 U
hotdog onion — Elise x Friday X burger X X 2U
hotdog  sausage Elise x Friday X burger X bun X 2U

Figure 7: Example database used in Section with relations Orders, Dish, and Items, and a fragment of
their natural join expressed as a relational algebra expression with union and Cartesian product.
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0 dish burger
| |
/ " \ / " \
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day item Monday Friday patty bun bun sausage Friday
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{dish, U U U (G U U @]
day} item} | | | | \ \ N

customer price Elise Elise 6 2 4 Joe Steve

Figure 8: Factorised representation of the join result in Figure Left: Order on the query variables, where
each variable is adorned with its ancestors on which it depends. Right: Factorisation of the natural join from
Figure [7] modelled on the variable order.
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Figure 9: Aggregate computation computed in one pass over the factorised join in Figure Left: SUM(1).
‘We map all values to 1, U to + and x to *. Right: SUM(dish * price). We assume there is a function f that
turns dish into numbers (e.g., one-hot encoding) or we group by dish: SUM(price) GROUP BY dish. We map all
values except for dish and price to 1, U to + and x to *.

burger (1,0, f(burger)) ‘ (6,20,20 - f(burger)) ‘
| |
X *
T S e
Monday Friday patty  bun (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0)
| | | | | | | | | |
% % % % % * ‘(L()A[l)‘ ‘(L[)#U)‘ * ‘(Lh‘.(])‘ * ‘(1420)‘ * ‘(1,2,0)‘ *
\ \ \ \ \ | | | | |
U U U U U + + + + +
\ \ \ \ \ [ [ [ [ [
Elise Elise 6 2 (1,0,0) (1,0,0) (1,6,0) (1,2,0) (1,2,0)

Figure 10: Left: Factorised join. Right: Computing SUM(1), SUM(price), SUM(price * dish) using a ring whose
elements are triples of numbers, one per aggregate. The sum (+) and product (*) operations are now defined
over triples. This specialised ring enables shared computation across the aggregates.
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S. HIGHLIGHTS

We exemplify some of the query computation and main-
tenance techniques mentioned in Sections [3] and [4

5.1 Factorised computation

Factorisation is a mormal form for the query re-
sult that comes with time and space improvement.

Consider the relations and their natural join in Figure[7]
The relations, including the join, can be interpreted as rela-
tional algebra expressions over union and Cartesian product:
Each tuple is a product of values and a relation is a union
of such tuples. The set of possible relations together with
these two operations form a semirin,

As highlighted in Figurem the same value may occur sev-
eral times in a relation. Using the distributivity and commu-
tativity laws of the semiring, we may factor out occurrences
of the same value or even entire expressions so as to achieve
a small representation. Figure [§] depicts a factorisation of
the join. There are several algebraically equivalent factori-
sations. The one we depict has fewer data values than the
input relations. In contrast, the number of values in the
non-factorised join can be much larger.

The factorised join is modelled on an order of the variables
(or attributes) in the join result. This variable order dictates
the compression factor of the factorisation. It exploits the
join dependencies in the join result to avoid redundancy in
the representation. In this sense, the factorisation can be
thought of as a normal form for the join result (in analogy
with the normalisation commonly applied to the input re-
lations). To avoid redundancy, the factorisation represents
separately conditionally independent information. For in-
stance, the days are independent of the items given a dish.
Indeed, the latter and the former are in different relations,
which are joined via dish. We express graphically this con-
ditional independence by having these variables in different
branches under dish. Not every conditional independence
can be captured by branching. For instance, price is inde-
pendent of dish given item, yet all three variables are along
the same path in the order. To signal this independence,
we explicitly adorn each variable in the order by the set of
its ancestors on which it depends. For instance, price is
adorned with item only and not also with dish.

The structure of the variable order is mirrored in the fac-
torised join. We first group by dish; for each dish, we repre-
sent separately the days and customers from the items and
their prices. Furthermore, since price is independent from
dish given item, we cache the price for a specific item so as
to avoid its repetition under several dishes.

By avoiding data repetitions, factorised representations
can be much more succinct than their equivalent tabular
representation. The variable order can also effectively guide
us to compute the factorisation directly from the input re-
lations and in time proportional to its size.

We can compute aggregates of the form given in Section [2]
directly on the factorised join. Moreover, the operators for
join and aggregates can be fused so that we do not need
to first compute the factorised join. Figure [9] shows how
to compute a count and a sum-product aggregate used for

4Constraint: Only relations with the same schema can be
added and relations with disjoint schemas can be multiplied.

3511

the covariance matrix. They are computed in one bottom-
up traversal of the factorised join using a different semiring.
For the count, we use the semiring of the natural numbers
and map each value to 1. For the sum-product aggregate,
we use the same semiring mapping, with the exception that
the price values are kept (since we want to sum over them)
while the dish values are mapped to numbers (or become
keys, if we were to group by dish).

5.2 Sum-product abstraction

Ring operations can be redefined to capture the
shared computation of aggregates in a batch.

We continue the example in Section [.1] and consider a
strategy that shares the computation of several aggregates.
This is motivated by the large number of similar aggregates
needed to train models, cf. Section In particular, we would
like to design a ring that captures this shared computation.

Figure [10| gives a factorised join (a fragment of the one in
Figure |8 for simplicity) and a bottom-up run over it anno-
tated with triples of values corresponding to local computa-
tions for the aggregates SUM(1), SUM(price), SUM(price
*x dish). We can observe that our aggregates are of in-
creasing complexity: the first does not have a variable, the
second has one variable, and the third has two variables.
Such aggregates are common in covariance matrices.

We proceed with our computation as in Figure |§|, yet now
with all three aggregates together. There are two instances
where computation sharing occurs. At the product node
under the root: The count from the left branch is used to
scale the sum of prices from the right. At the root node, the
second aggregate is used to compute the third aggregate.

A natural question is whether we can generalise this to
an entire covariance matrix. For a set of numerical features
Z1,...,%n, this matrix is defined by the aggregates SUM(1),
SUM(z;), and SUM(z; x x;) for i,5 € [n]. Following our exam-
ple, we can use their partial computation as follows:

e SUM(1) can be reused for all SUM(z;) and SUM(z; * ;).
e SUM(z;) can be reused for all SUM(z; * x;).

The ring (R, +, *,0,1) over triples of aggregates (c,s, Q)
captures this shared computation:
(c1,51,Q1) + (c2,52,Q2) = (c1 + c2,81 +52,Q1 + Q2)
(c1,51,Qu) * (c2,52,Q2) = (c1-ca,ca- 51+ 152,02 Qut
c1- Q2 +sis) +s08; )
0=(0,0nx1,0nxn)
1=(1,0n%x1,0nxn)

A ring element consists of a scalar, a vector, and a matrix:

( |
u
D 7 D 7
T T T
SUM(1) SUM(x) SUM(x*x;)
In the definition of the product operation, the scalars c;
are used to scale the vectors s; and matrices @Q;, while the
vectors s; are used to compute the matrices Q; (i € [2]).
Shared computation across the aggregates as emulated by

the above ring is partly responsible for the performance ben-
efits shown in Figure [4| for LMFAO [65] and F-IVM [53].
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5.3 Multi-stage compilation

IFAQ can automatically synthesise and optimise
aggregates from ML+DB workloads.

We exemplify IFAQ [70] using a simplified gradient de-
scent program that learns the parameters of a linear re-
gression model over the join Q = S < R 1 I of relations
S(i,s,u), R(s,c), and I(i,p)ﬂ The model predicts the re-
sponse u given the set of numerical features F = {i, s, ¢, p}.

IFAQ takes the gradient descent program through the se-
quence of equivalence-preserving rule-based transformations
shown in Figure We start with the program:

let F = {i,s,p,c} in
0%90

while( not converged ) {

0=\ <0(f1) - )

f1€EF
}
(4

IFAQ supports collections via dictionaries, which map keys
to values that can be simple data types or again dictionaries.
Sets are dictionaries, where we only show the keys. Exam-
ple of dictionaries are: sup(Q) mapping of tuples in the join
Q to feature vectors; the feature set x mapping features (i,
s, p, and c¢) to values; the corresponding parameter set 6.
IFAQ has three iteration constructs: )\ f(e) constructs a

ecset
dictionary that maps each key e to f(e); the stateful com-
putation Y} f(e) sums f(e) over the elements in the set;

ecset
and the while construct is used for general iterations.

Without loss of generality, we left out the convergence
condition and the step size and assume that the response u
is also included in @ (8(u) = 1 need not be updated).

Y Q@) « (3 0(f2) s a(f2)) * 2(f1)

xEsup(Q) f2€F

High-level optimisations. We first normalise the gradient
by bringing Q(z) and x(f1) inside the innermost summation,
swap the two summations so that the inner one iterates over
larger dictionaries than the outer one, and factor out €(f2)
to use less arithmetic operations. The update step becomes:

Al |

fr1€F
Since the data-intensive computation over Q in the above
expression is independent of the two loops over F, we can

0h) — B 0(2)« (X Q@) xx(f2) xx(f1))

f2€F x€Esup(Q)

5The relations can be for instance Sales(item, store, units),
StoRes(store, city), and Items(item, price).
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hoist it outside the convergence loop. To achieve this, we
first use memoisation to synthesise the dictionary M:

let M= > Q) *x(f2) *x(f1) in

f1€EF fo€F x€sup(Q)

o=\ (60— 3 6(f2) » M(£1)(f2))

f1€EF fo€F

The dictionary M encodes the (non-centred) covariance
matrix. Next, the code motion transformation moves the
computation of M outside the while convergence loop:

let F = {i,s,p,c} in

let M= )\ 3 Q) #x(f2) *x(f1) in

f1EF fo€F x€sup(Q)
0 «— 00

while( not converged ) {

0=\ (600)— X 6s2) « M(f1)(12))

f1€EF fo€F
}
(2]

Schema specialisation. Since the set F of features is
known at compile time, we can unroll the loops over F in
the definitions for M and 8. We show below the expanded
definition of M:

M:{c—){...,p—> E Q(x)*x(c)*x(p),...},...}

xEsup(Q)

We next enforce static field access wherever possible. This

means that we convert dictionaries over F into records so
that the dynamic accesses to the dictionary now become
static accesses. For instance, the dictionary x becomes the
record = and then the dynamic access x(c) becomes the
static access x.c. The program becomes:

let M:{c:{...,p—

> Q(ﬂ?)*ﬁC*x.p,...},.,,}

zEsup(Q)

in
0(—00

while( not converged ) {
0:{0:9.07(.,.+9.C*M‘c,c+9.p*M,c.p...),.,.}

}
9

Aggregate optimisations. The next set of transforma-
tions focus on database optimisations. In particular, we ex-
tract the aggregates from M, push them past the joins in Q,
and share them across several entries in M. IFAQ identifies
all aggregates in M and pulls them out of M:

let Mee = Z Q(z) * z.cx z.c in
z€sup(Q)

let Mep = E Q(z) *xz.c*x.p in
zEsup(Q)

let M:{c:{..., c= Me¢c, p= Mcp,...

},...}in

We next unfold the definition of the join Q. Recall that we
do not want to materialise this join for runtime performance
reasons as argued in Section[I} TFAQ represents relations as



dictionaries mapping tuples to their multiplicities. The join
query Q can be expressed in IFAQ as follows:

> X X

zsEsup(S) z,rEsup(R) z; Esup(l)

Q

let k= {i=xs.1,8s = xs.5,¢c = Ty.c,p = T;.p} in

{k =S(zs) * R(zy) * I(x;) * (5.1 == x4.7) * (5.5 == zr.s)})
By inlining Q in M.,, we obtain:

DI VDY

zsEsup(S) z,Esup(R) x; Esup(I)

M. p =

let k={i=uxs.i,8 = xs.5,¢c = Ty.Cc,p = x;.p} in
let Q = {k — S(zs) * R(zy) * I(z;)*
(5.5 ==x;.%) * (xs.s == zr.5)} in

E Q(z) *x z.c* :L'.p)

zEsup(Q)

Since sup(Q) = {k} is a singleton set, we can replace the

last line above by Q(k) % z.c * x.p. Further inlining field
accesses and retrieving the value of a singleton dictionary
yields the following expression:

>

xsE€sup(S) x,rEsup(R) x; Esup(l)

]\/[Lip =

S(zs) * R(zr) * I(x;) * (2s.0 == 24.0) * (5.8 == Tr.8)

* X.C % mp)

We can now leverage the distributivity of multiplication
over addition to factorise the expression:

M= Y, S(zs) *
s Esup(S)
Z R(zr) * (Ts.8 == xy.8) * Tp.Cc *
z,Esup(R)
E I(z;) * (5.8 == x;.9) * x;.p
x; €sup(I)

By static memoisation and loop-invariant code motion, we
partially push the aggregates past the joins. We effect this
using the dictionaries Vi and V for the partial aggregates:

let Vp = Z R(zr) * {{s=zyr.s} = xp.c} in
z,Esup(R)
let Vi = 2 I(z;) * {{i =x;.i} = z;.p} in
x; €Esup (D)
let Mcp = E S(zs) * VR({s=xs}) * Vi({i=wxs.i})
x5 Esup(S)
We can obtain M. similarly:

let Vo= > R(zy) * {{s=ar5} > zr.c * zr.c} in
zpEsup(R)

let V) = Z I(z;) * {{i =w;.i} > 1} in
z; Esup (1)

let Mee= Y, S(zs) * VR({s=as}) * Vi({i==s.i})

x5 €Esup(S)
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The expressions for M., and M. are similar. To benefit
from shared computation, we fuse them:

let W= Y, R(zy) * {{s==zr5} >

z,Esup(R)
{vr = 17,»40,11;3 =xr.c ¥ xr.c}} in

z; Esup(I)
{vi = z;.p,v; = 1}} in

let Mec,ep = E S(zs) * (
x s Esup(S)
let wp = Wg({s =zs.5}),wr = Wr({i = 25.i}) in

{mep = wWR.VR * W1.VL, Meec = WRVR * wI.v’I}>

Then Mce = Mec,ep.mee and Meyp, = Mee,cp . Mep.

Trie conversion. By representing S as a nested dictionary,
first grouped by zs and then by xz;, IFAQ factors out the
multiplication of the elements in wr with those in w; before
the enumeration of the z; values. This further reduces the
number of arithmetic operations needed to compute Mcc cp.
Data layout. As data structures for dictionaries, IFAQ
supports hash tables, balanced-trees, and sorted dictionar-
ies. Each of them show advantages for different workloads.

6. REFLECTIONS

The work overviewed in this paper follows a three-step
recipe for efficient learning over relational data:

1. Turn the learning problem into a database problem.
2. Exploit the problem structure to lower the complexity.
3. Generate optimised code to lower the constant factors.

This recipe proved surprisingly effective for a good num-
ber of machine learning models and also reinvigorated the
fundamental problems of query evaluation and optimisa-
tion. Further principled work on the theory and systems
of structure-aware learning approaches is needed. What are
the limits of structure-aware learning? What other classes
of machine learning models can benefit from it? What other
types of structure are relevant to the learning task? A major
target remains the development of data systems that can na-
tively run database and machine learning workloads as one.
A pragmatic step towards this goal is to integrate database
techniques for feature extraction queries, such as those de-
scribed in this paper, in popular tools used by data sci-
entists, e.g., TensorFlow, scikit-learn, R, and jupyter note-
books. A second major target is to translate the rich knowl-
edge readily available in curated relational databases into
the accuracy of the trained models.

It may be a painstaking endeavour to understand and
translate success stories on machine learning models and op-
timisation to the database coordinate system, though this
may reveal deeper connections between the two fields and
also draw them closer. Database research may also streng-
then the machine learning research landscape with its rigour
in theoretical and system development, benchmarking, and
reproducibility. Designing and teaching courses that present
a more integrated and unified view of Computer Science
fields, such as databases and machine learning, may equip
both the lecturers and their students with the tools neces-
sary to advance research and practice at the interface be-
tween seemingly disparate fields.
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