
Nearest Neighbor Classifiers over Incomplete Information:
From Certain Answers to Certain Predictions

Bojan Karlaš
∗,†
, Peng Li

∗,‡
, Renzhi Wu

‡
, Nezihe Merve Gürel

†
, Xu Chu

‡
, Wentao Wu

§
, Ce Zhang

†
†
ETH Zurich,

‡
Georgia Institute of Technology,

§
Microsoft Research

†
{bojan.karlas, nezihe.guerel, ce.zhang}@inf.ethz.ch,

‡
{pengli@,renzhiwu@ xu.chu@cc.}gatech.edu,

§
wentao.wu@microsoft.com

ABSTRACT
Machine learning (ML) applications have been thriving recently,

largely attributed to the increasing availability of data. However,

inconsistency and incomplete information are ubiquitous in real-

world datasets, and their impact onML applications remains elusive.

In this paper, we present a formal study of this impact by extend-

ing the notion of Certain Answers for Codd tables, which has been

explored by the database research community for decades, into the

field of machine learning. Specifically, we focus on classification

problems and propose the notion of “Certain Predictions” (CP) —
a test data example can be certainly predicted (CP’ed) if all pos-
sible classifiers trained on top of all possible worlds induced by

the incompleteness of data would yield the same prediction. We

study two fundamental CP queries: (Q1) checking query that de-

termines whether a data example can be CP’ed; and (Q2) counting
query that computes the number of classifiers that support a par-

ticular prediction (i.e., label). Given that general solutions to CP

queries are, not surprisingly, hard without assumption over the

type of classifier, we further present a case study in the context of

nearest neighbor (NN) classifiers, where efficient solutions to CP

queries can be developed — we show that it is possible to answer

both queries in linear or polynomial time over exponentially many

possible worlds. We demonstrate one example use case of CP in

the important application of “data cleaning for machine learning

(DC for ML).” We show that our proposed CPClean approach built

based on CP can often significantly outperform existing techniques,

particularly on datasets with systematic missing values. For ex-

ample, on 5 datasets with systematic missingness, CPClean (with

early termination) closes 100% gap on average by cleaning 36% of

dirty data on average, while the best automatic cleaning approach

BoostClean can only close 14% gap on average.

PVLDB Reference Format:
Bojan Karlaš, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao

Wu, Ce Zhang. Nearest Neighbor Classifiers over Incomplete Information:

From Certain Answers to Certain Predictions. PVLDB, 14(3): 255 - 267,

2021.

doi:10.14778/3430915.3430917

* The first two authors contribute equally to this paper and are listed alphabetically.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 3 ISSN 2150-8097.

doi:10.14778/3430915.3430917

John
Anna
Kevin

32
29
@

1
2
3

name ageid
John
Anna
Kevin

32
29
1

1
2
3

name ageid
John
Anna
Kevin

32
29
2

1
2
3

name ageid
John
Anna
Kevin

32
29
30

1
2
3

name ageid

SELECT *
FROM Person
WHERE age < 30

SELECT *
FROM Person
WHERE age < 30

SELECT *
FROM Person
WHERE age < 30

Anna
Kevin

29
1

2
3

name ageid
Anna
Kevin

29
2

2
3

name ageid
Anna 292
name ageid

SELECT *
FROM Person
WHERE age < 30

Anna 292
name ageid

·Train ML Model
·Predict on
 a new tuple t

·Train ML Model
·Predict on
 a new tuple t

·Train ML Model
·Predict on
 a new tuple t

·Train ML Model
·Predict on
 a new tuple t

Codd Table Possible Worlds without Incomplete Information

Yes Yes Yes

No No No

No NoYes

Yes

No

33% 66%

Certain Answers in DB

Certain Predictions in ML

Certain
Answer

Certain
Prediction

Certain
Prediction

Counting
Query

Figure 1: An illustration of the relationship between certain
answers and certain predictions.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/chu-data-lab/CPClean.

1 INTRODUCTION
Building high-quality Machine learning (ML) applications often

hinges on the availability of high-quality data. However, due to

noisy inputs from manual data curation or inevitable errors from

automatic data collection/generation programs, in reality, data is

unfortunately seldom clean. Inconsistency and incompleteness are

ubiquitous in real-world datasets, and therefore can have an impact

onML applications trained on top of them. In this paper, we focus on

the question: Can we reason about the impact of data incompleteness
on the quality of ML models trained over it?

Figure 1 illustrates one dataset with incomplete information. In

this example, we have the incomplete dataset 𝐷 with one missing

cell (we will focus on cases in which there are many cells with

incomplete information) — the age of Kevin is not known and

therefore is set as NULL (@). Given an ML training algorithmA, we

can train an ML model over 𝐷 ,A𝐷 , and given a clean test example

𝑡 , we can get the prediction of this ML model A𝐷 (𝑡). The focus
of this paper is to understand how much impact the incomplete
information (@) has on the prediction A𝐷 (𝑡). This question is not

only of theoretical interest but can also have interesting practical

implications — for example, if we know that, for a large enough

255

https://doi.org/10.14778/3430915.3430917
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3430915.3430917
https://github.com/chu-data-lab/CPClean

number of samples of 𝑡 , the incomplete information (@) does not

have an impact on A𝐷 (𝑡) at all, spending the effort of cleaning or

acquiring this specific piece of missing information will not change

the quality of downstream ML models.

Relational Queries over Incomplete Information. This paper is
inspired by the algorithmic and theoretical foundations of running
relational queries over incomplete information [1]. In traditional data-
base theory, there are multiple ways of representing incomplete

information, starting from the Codd table, or the conditional table

(c-table), all the way to the recently studied probabilistic conditional

table (pc-table) [36]. Over each of these representations of incom-

plete information, one can define the corresponding semantics of a

relational query. In this paper, we focus on the weak representation

system built upon the Codd table, as illustrated in Figure 1. Given a

Codd table 𝑇 with constants and 𝑛 variables over domain D𝑣 (each
variable only appears once and represents the incomplete informa-

tion at the corresponding cell), it represents |D𝑣 |𝑛 many possible
worlds 𝑟𝑒𝑝 (𝑇), and a query Q over 𝑇 can be defined as returning

the certain answers that always appear in the answer of Q over each

possible world:

𝑠𝑢𝑟𝑒 (Q,𝑇) = ∩{Q(𝐼) |𝐼 ∈ 𝑟𝑒𝑝 (𝑇)}.

Another line of work with similar spirit is consistent query an-
swering, which was first introduced in the seminal work by Arenas,

Bertossi, and Chomicki [4]. Specifically, given an inconsistent data-

base instance 𝐷 , it defines a set of repairs R𝐷 , each of which is a

consistent database instance. Given a query Q, a tuple 𝑡 is a consis-
tent answer to Q if and only if 𝑡 appears in all answers of Q evaluated

on every consistent instance 𝐷 ′ ∈ R𝐷 .
Both lines of work lead to a similar way of thinking in an effort

to reason about data processing over incomplete information, i.e., to
reason about certain/consistent answers over all possible instantiations
of incompleteness and uncertainty.

Learning Over Incomplete Information: Certain Predictions
(CP). The traditional database view provides us a powerful tool to

reason about the impact of data incompleteness on downstream

operations. In this paper, we take a natural step and extend this

to machine learning (ML) — given a Codd table 𝑇 , its |D𝑣 |𝑛 many

possible worlds 𝑟𝑒𝑝 (𝑇), and an ML classifier A, one could train

one ML model A𝐼 for each possible world 𝐼 ∈ 𝑟𝑒𝑝 (𝑇). Given a

test example 𝑡 , we say that 𝑡 can be certainly predicted (CP’ed) if
∀𝐼 ∈ 𝑟𝑒𝑝 (𝑇),A𝐼 (𝑡) always yields the same class label, as illustrated

in Figure 1. This notion of certain prediction (CP) offers a canonical

view of the impact from training classifiers on top of incomplete

data. Specificlly, we consider the following two CP queries:

(Q1) Checking Query — Given a test data example, determine

whether it can be CP’ed or not;

(Q2) Counting Query — Given a test data example that cannot
be CP’ed, for each possible prediction, compute the number

of classifiers that support this prediction.

Structure of This Paper. This paper contains two integral com-

ponents built around these two types of queries. First, we notice

that these queries provide a principled method to reason about data
cleaning for machine learning — intuitively, the notion of CP provides
us a way to measure the relative importance of different variables in
the Codd table to the downstream classification accuracy. Inspired

by this, we study the efficacy of CP in the imporant application of

“data cleaning for machine learning (DC for ML)” [21, 22]. Based on

the CP framework, we develop a novel algorithm CPClean that pri-

oritizes manual cleaning efforts. Second, the CPClean framework,

in spite of being a principled solution, requires us to evaluate these

CP queries efficiently. However, when no assumptions are made

about the classifier, Q1 and Q2 are, not surprisingly, hard. Thus, a

second component of this work is to develop efficient solutions to

both Q1 and Q2 for a specific family of classifiers. We made novel

contributions on both aspects, which together provide a principled

data cleaning framework. In the following, we discuss these aspects.

Efficient CP Algorithm for Nearest Neighbor Classifiers. We

first study efficient algorithms to answer both CP queries, which

is indispensable to enable any practical data cleaning framework

built upon the notion of certain prediction. We focus on K-nearest

neighbor (KNN) classifier, one of themost popular classifiers used in

practice. Surprisingly, we show that, both CP queries can be answered
in polynomial time, in spite of there being exponentially many possible
worlds! Moreover, these algorithms can be made very efficient. For

example, given a Codd table with 𝑁 rows and at most𝑀 possible

versions for rows with missing values, we show that answering

both queries only takeO (𝑁 ·𝑀 · (log(𝑁 ·𝑀) + 𝐾 · log𝑁)). For Q1
in the binary classification case, we can even do O(𝑁 · 𝑀)! This
makes it possible to efficiently answer both queries for the KNN

classifier, a result that is both new and technically non-trivial.
Discussion: Relationship with answering KNN queries over prob-

abilistic databases. As we will see later, our result can be used to

evaluate a KNN classifier over a tuple-independent database, in its

standard semantics [2, 3, 20]. Thus we hope to draw the reader’s

attention to an interesting line of work of evaluating KNN queries
over a probabilistic database in which the user wants the system to

return the probability of a given (in our setting, training) tuple that

is in the top-K list of a query. Despite the similarity of the naming

and the underlying data model, we focus on a different problem in

this paper as we care about the result of a KNN classifier instead of

a KNN query. Our algorithm is very different and heavily relies on

the structure of the classifier.

Applications to Data Cleaning for Machine Learning. The
above result is not only of theoretical interest, but also has an

interesting empirical implication. Based on the CP framework, we

develop a novel algorithm CPClean that prioritizes manual cleaning

efforts given a dirty dataset. Data cleaning (DC) is often an impor-

tant prerequisite step in the entire pipeline of an ML application.

Unfortunately, most existing work considers DC as a standalone

exercise without considering its impact on downstream ML appli-

cations (exceptions include exciting seminal work such as Active-

Clean [22] and BoostClean [21]). Studies have shown that such

oblivious data cleaning may not necessarily improve downstream

ML models’ performance [24]; worse yet, it can sometimes even

degrade ML models’ performance due to Simpson’s paradox [22].

We propose a novel “DC for ML” framework built on top of cer-

tain predictions. In the following discussion, we assume a standard

setting for building ML models, where we are given a training set

𝐷train and a validation set 𝐷
val

that are drawn independently from

the same underlying data distribution. We assume that 𝐷train may

contain missing information whereas 𝐷
val

is complete.

256

The intuition of our framework is as follows.When the validation

set is sufficiently large, if Q1 returns true for every data example

𝑡 in 𝐷
val

, then with high probability cleaning 𝐷train will not have

impact on the model accuracy. In this case we can immediately

finish without any human cleaning effort. Otherwise, some data

examples cannot be CP’ed, and our goal is then to clean the data

such that all these examples can be CP’ed. Why is this sufficient?
The key observation is that, as long as a tuple 𝑡 can be CP’ed,

the prediction will remain the same regardless of further cleaning

efforts. That is, even if we clean the whole 𝐷train, the prediction

for 𝑡 (made by the classifier using the clean 𝐷train) will remain the

same, simply because the final clean version is one of the possible

worlds of 𝐷train that has been included in the definition of CP!

To minimize the number of tuples in 𝐷train being cleaned until

all data examples in𝐷
val

are CP’ed, we further propose a novel opti-

mization algorithm based on the principle of sequential information
maximization [8], exploiting the counts in Q2 for each example in

𝐷
val

that cannot be certainly predicted. The optimization algorithm

is iterative: Each time we pick the next example in 𝐷train (to be

cleaned) based on its potential impact on the “degree of certainty”

of 𝐷train after cleaning (see Section 4.1 for more details).

Summary of Contributions. In summary, this paper makes the

following contributions:

(C1) Wepropose certain predictions, as well as its two fundamental

queries/primitives (checking and counting), as a tool to study

the impact of incomplete data on training ML models.

(C2) We propose efficient solutions to the two fundamental CP

queries for nearest neighbor classifiers, despite the hardness

of these two queries in general.

(C3) We propose a novel “DC for ML” approach, CPClean, built

on top of the CP primitives that significantly outperforms ex-

isting work, particularly on datasets with systematic missing

values. For example, on 5 datasets with systematic missing-

ness, CPClean (with early termination) closes 100% gap on

average by cleaning 36% of dirty data on average, while the

best automatic cleaning approach BoostClean can only close

14% gap on average.

Limitations and Moving Forward. Just like the study of consistent
query answering that focuses on specific subfamilies of queries, in

this paper we have focused on a specific type of classifier, namely

the KNN classifier, in the CP framework. We made this decision

because of two reasons. First, KNN classifier is a popular family

of classifiers that are used commonly in practice. Second, it has a

simple structure that is often used as a “proxy model” for computa-

tionally challenging learning tasks [14, 26, 34]. In the future, it is

interesting to extend our study to a more diverse range of classifiers

— either to develop efficient exact algorithms or to explore efficient

approximation algorithms. With respect to this direction, there are

interesting connections between CP and the recently studied notion

of expected prediction and probabilistic circuits [16–18]. In terms of

approximation algorithms, we believe that the notion of influence

functions [19, 32] could be a promising technique to be applied

for more complex classifiers. Another limitation of our efficient

algorithms to answer Q1 and Q2 is to deal with large candidate set

or even infinite candidate set induced by large discrete domains and

continuous domains. For candidate set of a continuous domain, if

we are aware of an analytical form of the distribution, we can also

Paris
Rome
Rome

NULL
00121
32000

Source dataset with
incomplete information

Incomplete
Dataset

Possible
Worlds

Rome
Rome

00119
00118

Rome 00199

Rome 00121

Paris
Paris

75001
75000

Paris 75020

Rome 00199
Rome 00121
Paris 75020

Rome 00119
Rome 00121
Paris 75000

Rome 00118
Rome 00121
Paris 75020

Rome 00118
Rome 00121
Paris 75001

Rome 00118
Rome 00121
Paris 75000

ZIP CodeCityClass

Invalid ZIP Code
when City = Rome

Figure 2: Example of a dataset with incomplete information,
its representation as an incomplete dataset, and the induced
set of possible worlds.

design efficient algorithms for a variant of KNN classifiers [41]. It is

interesting future direction to understand how to more efficiently

accommodate these scenarios. Moreover, in this work, we assumed

a uniform prior (thus the “count” in Q2) for uncertainty. We believe

that this can be extended to more complex priors, similar to [41].

Paper Organization. This paper is organized as follows. We for-

malize the notion of certain predictions, as well as the two primitive

queries Q1 and Q2 (Section 2). We then propose efficient algorithms

in the context of nearest neighbor classifiers (Section 3). We follow

up by proposing our novel “DC for ML” framework exploiting CP

(Section 4). We report evaluation results in Section 5, summarize

related work in Section 6, and conclude the paper in Section 7.

2 CERTAIN PREDICTION (CP)
In this section, we describe the certain prediction (CP) framework,

which is a natural extension of the notion of certain answer for
query processing over Codd tables [1] to machine learning. We first

describe our data model and then introduce two CP queries.

Data Model. We focus on standard supervised ML settings:

(1) Feature Space X: without loss of generality, we assume that

every data example is drawn from a domain X = D𝑑 , i.e., a
𝑑 dimensional space of data type D.

(2) Label Space Y: we assume that each data example can be

classified into one of the labels in Y.
(3) Training Set 𝐷𝑡𝑟𝑎𝑖𝑛 ⊆ X × Y is drawn from an unknown

distribution PX,Y .
(4) Test Set 𝐷𝑡𝑒𝑠𝑡 ⊆ X (Validation Set 𝐷𝑣𝑎𝑙) is drawn from the

marginal distribution PX of the joint distribution PX,Y .
(5) Training Algorithm A: A training algorithm A is a func-

tional that maps a given training set 𝐷𝑡𝑟𝑎𝑖𝑛 to a function

A𝐷𝑡𝑟𝑎𝑖𝑛 : X ↦→ Y. Given a test example 𝑡 ∈ 𝐷𝑡𝑒𝑠𝑡 ,

A𝐷𝑡𝑟𝑎𝑖𝑛 (𝑡) returns the prediction of the trained classifier

on the test example 𝑡 .

Incomplete Information in the Training Set In this paper, we

focus on the case in which there is incomplete information in the

training set. We define an incomplete training set as follows.
Our definition of an incomplete training set is very similar to a

block tuple-independent probabilistic database [36]. However, we

do assume that there is no uncertainty on the label and we do not

have access to the probability distribution of each tuple.

Definition 2.1 (Incomplete Dataset). An incomplete dataset

D = {(C𝑖 , 𝑦𝑖) : 𝑖 = 1, ..., 𝑁 }

257

is a finite set of 𝑁 pairs where each C𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, ...} ⊂ X is a

finite number of possible feature vectors of the 𝑖-th data example

and each 𝑦𝑖 ∈ Y is its corresponding class label.

According to the semantics of D, the 𝑖-th data example can

take any of the values from its corresponding candidate set C𝑖 . The
space of all possible ways to assign values to all data points in

D is captured by the notion of possible worlds. Similar to a block

tuple-independent probabilistic database, an incomplete dataset can

define a set of possible worlds, each of which is a dataset without

incomplete information.

Definition 2.2 (Possible Worlds). Let D = {(C𝑖 , 𝑦𝑖) : 𝑖 = 1, ..., 𝑁 }
be an incomplete dataset. We define the set of possible worlds ID ,
given the incomplete dataset D, as

ID =
{︁
𝐷 = {(𝑥′𝑖 , 𝑦′𝑖) } : |𝐷 | = |D | ∧ ∀𝑖 . 𝑥′𝑖 ∈ C𝑖 ∧ 𝑦′𝑖 = 𝑦𝑖

}︁
.

In other words, a possible world represents one complete dataset

𝐷 that is generated from D by replacing every candidate set C𝑖
with one of its candidates 𝑥 𝑗 ∈ C𝑖 . The set of all distinct datasets
that we can generate in this way is referred to as the set of possible
worlds. If we assume that D has 𝑁 data points and the size of each

C𝑖 is bounded by𝑀 , we can see |ID | = O(𝑀𝑁).
Figure 2 provides an example of these concepts. As we can see,

our definition of incomplete dataset can represent both possible

values for missing cells and possible repairs for cells that are con-

sidered to be potentially incorrect.

Connections to DataCleaning. In this paper, we use data cleaning
as one application to illustrate the practical implication of the CP

framework. In this setting, each possible world can be thought of as

one possible data repair of the dirty/incomplete data. These repairs

can be generated in an arbitrary way, possibly depending on the

entire dataset [29], or even some external domain knowledge [9].

Attribute-level data repairs could also be generated independently

and merged together with Cartesian products.

We will further apply the assumption that any given incomplete

dataset D is valid. That is, for every data point 𝑖 , we assume that

there exists a true value 𝑥∗
𝑖
that is unknown to us, but is nevertheless

included in the candidate set C𝑖 . This is a commonly used assump-

tion in data cleaning [13], where automatic cleaning algorithms are

used to generate a set of candidate repairs, and humans are then

asked to pick one from the given set. We call 𝐷∗D the true possible
world, which contains the true value for each tuple. When D is

clear from the context, we will also write 𝐷∗.

2.1 Certain Prediction (CP)
When we train an ML model over an incomplete dataset, we can

define its semantics in a way that is very similar to how people

define the semantics for data processing over probabilistic databases

— we denote A𝐷𝑖 as the classifier that was trained on the possible

world 𝐷𝑖 ∈ ID . Given a test data point 𝑡 ∈ X, we say that it can be

certainly predicted (CP’ed) if all classifiers trained on all different

possible worlds agree on their predictions:

Definition 2.3 (Certain Prediction (CP)). Given an incomplete

datasetD with its set of possible worlds ID and a data point 𝑡 ∈ X,
we say that a label 𝑦 ∈ Y can be certainly predicted with respect to

a learning algorithm A if and only if

∀𝐷𝑖 ∈ ID ,A𝐷𝑖 (𝑡) = 𝑦.

Connections to Databases. The intuition behind this definition

is rather natural from the perspective of database theory. In the

context of Codd tables, each NULL variable can take values in its do-

main, which in turn defines exponentially many possible worlds [1].

Checking whether a tuple is in the answer of some query Q is to

check whether such a tuple is in the result of each possible world.

Two Primitive CP Queries. Given the notion of certain prediction,
there are two natural queries that we can ask. The query 𝑄1 repre-

sents a decision problem that checks if a given label can be predicted

in all possible worlds. The query 𝑄2 is an extension of that and

represents a counting problem that returns the number of possible

worlds that support each prediction outcome. We formally define

these two queries as follows.

Definition 2.4 (Q1: Checking). Given a data point 𝑡 ∈ X, an in-

complete dataset D and a class label 𝑦 ∈ Y, we define a query that

checks if all possible world permits 𝑦 to be predicted:

𝑄1(D, 𝑡, 𝑦) :=
{︄
true, if ∀𝐷𝑖 ∈ ID ,A𝐷𝑖 (𝑡) = 𝑦;
false, otherwise.

Definition 2.5 (Q2: Counting). Given a data point 𝑡 ∈ X, an in-

complete dataset D and a class label 𝑦 ∈ Y, we define a query that

returns the number of possible worlds that permit 𝑦 to be predicted:

𝑄2(D, 𝑡, 𝑦) := | {𝐷𝑖 ∈ ID : A𝐷𝑖 (𝑇) = 𝑦 } |.

Computational Challenge. If we do not make any assumption

about the learning algorithm A, we have no way of determining

the predicted label 𝑦 = A𝐷𝑖 (𝑡) except for running the algorithm on

the training dataset. Therefore, for a general classifier treated as a

black box, answering both 𝑄1 and 𝑄2 requires us to apply a brute-

force approach that iterates over each 𝐷𝑖 ∈ ID , produces A𝐷𝑖 ,
and predicts the label. Given an incomplete dataset with 𝑁 data

examples each of which has𝑀 clean candidates, the computational

cost of this naive algorithm for both queries would thus be O(𝑀𝑁).
This is not surprising. However, as we will see later in this paper,

for certain types of classifiers, such as K-Nearest Neighbor classi-

fiers, we are able to design efficient algorithms for both queries.

Connections to Probabilistic Databases. Our definition of cer-

tain prediction has strong connection to the theory of probabilistic

database [36] — in fact, Q2 can be seen as a natural definition of eval-

uating an ML classifier over a block tuple-independent probabilistic

database with uniform prior.

Nevertheless, unlike traditional relational queries over a proba-

bilistic database, our “query” is an ML model that has very different

structure. As a result, despite the fact that we are inspired by many

seminal works in probabilistic database [2, 3, 20], they are not ap-

plicable to our settings and we need to develop new techniques.

Connections to Data Cleaning. It is easy to see that, if𝑄1 returns
true on a test example 𝑡 , obtaining more information (by cleaning)

for the original training set will not change the prediction on 𝑡 at

all! This is because the true possible world 𝐷∗ is one of the possible
worlds in ID . Given a large enough test set, if 𝑄1 returns true for

all test examples, cleaning the training set in this case might not

improve the quality of ML models at all!

Of course, in practice, it is unlikely that all test examples can

be CP’ed. In this more realistic case, 𝑄2 provides a “softer” way

than 𝑄1 to measure the degree of certainty/impact. As we will see

258

𝐾 |Y | Query Alg. Complexity in𝑂 (−) Section

1 2 Q1/Q2 SS 𝑁𝑀 log𝑁𝑀 3.1.2

𝐾 2 Q1 MM 𝑁𝑀 Full Version

𝐾 |Y | Q1/Q2 SS 𝑁 2𝑀 Full Version

𝐾 |Y | Q1/Q2 SS-DC 𝑁𝑀 log𝑁𝑀 Full Version

Figure 3: Summary of results (𝐾 and |Y| are constants).

later, we can use this as a principled proxy of the impact of data

cleaning on downstreamMLmodels, and design efficient algorithms

to prioritize which uncertain cell to clean in the training set.

3 EFFICIENT SOLUTIONS FOR CP QUERIES
Given our definition of certain prediction, not surprisingly, both

queries are hard if we do not assume any structure of the classifier.

In this section, we focus on a specific classifier that is popularly

used in practice, namely the 𝐾-Nearest Neighbor (KNN) classifier.

As we will see, for a KNN classifier, we are able to answer both

CP queries in polynomial time, even though we are reasoning over

exponentially many possible worlds!

𝐾-Nearest Neighbor Classifiers.A textbook KNN classifier works

in the following way: Given a training set 𝐷 = {(𝑥𝑖 , 𝑦𝑖)} and a test

example 𝑡 , we first calculate the similarity between 𝑡 and each 𝑥𝑖 :

𝑠𝑖 = 𝜅 (𝑥𝑖 , 𝑡). This similarity can be calculated using different kernel

functions 𝜅 such as linear kernel, RBF kernel, etc. Given all these

similarity scores {𝑠𝑖 }, we pick the top 𝐾 training examples with the

largest similarity score: 𝑥𝜎1 , ..., 𝑥𝜎𝐾 along with corresponding labels

{𝑦𝜎𝑖 }𝑖∈[𝐾] . We then take the majority label among {𝑦𝜎𝑖 }𝑖∈[𝐾] and
return it as the prediction for the test example 𝑡 .

Summary of Results. In this paper, we focus on designing efficient

algorithms to support a KNN classifier for both CP queries. In

general, all these results are based on two algorithms, namely SS

(SortScan) and MM (MinMax). SS is a generic algorithm that can be

used to answer both queries, while MM can only be used to answer

𝑄1. However, on the other hand, MM permits lower complexity

than SS when applicable. Figure 3 summarizes the result.

Structure of This Section. Due to space limitation, we focus on a

specific case of the SS algorithm to illustrate the high-level ideas

behind our approach, and leave other cases and algorithms to the

full version of this work [15]. Specifically, in Section 3.1, We will

explain a simplified version of the SS algorithm for the special case

(𝐾 = 1, |Y| = 2) in greater details as it conveys the intuition behind

this algorithm. We leave the general form of the SS algorithm, the

efficient divide-and-conquer version of the SS algorithm (SS-DC)

and the MM algorithm to the full version [15].

3.1 SS Algorithm
We now describe the SS algorithm. The idea behind SS is that

we can calculate the similarity between all candidates ∪𝑖C𝑖 in an

incomplete dataset and a test example 𝑡 . Without loss of generaility,

assume that |C𝑖 | = 𝑀 , this leads to 𝑁 ×𝑀 similarity scores 𝑠𝑖, 𝑗 . We

can then sort and scan these similarity scores.

The core of the SS algorithm is a dynamic programming pro-

cedure. We will first describe a set of basic building blocks of this

problem, and then introduce a simplified version of SS for the spe-

cial case of 𝐾 = 1 and |Y| = 2, to explain the intuition of SS.

3.1.1 Two Building Blocks. In our problem, we can construct two

building blocks efficiently. We start by articulating the settings pre-

cisely. We will use these two building blocks for our SS algorithm.

1
1
0

Q2

When , this count is the
support for label tally
because

0
2
1

2 Conditioned on:
, and

 being the most
similar example

3 Increment
the similarity
tally for

4 Multiply all where
to compute the
boundary count for

0
0
1

0
1
1

0
2
1

1
2
1

1
2
2

2
2
2

- - - 2 - 4

Result: 2 6

How many possible worlds support each label?

0

5

similarity with test example

Sum up supports for all tallies
grouped by their winning label

6

1 Iterate over all
candidates
ordered by
similarity

0 0 0 - 2 -

Figure 4: Illustration of SS when 𝐾 = 1 for 𝑄2.

Setup. We are given an incomplete datasetD = {(C𝑖 , 𝑦𝑖)}. With-

out loss of generality, we assume that each C𝑖 only contains 𝑀

elements, i.e., |C𝑖 | = 𝑀 . We call C𝑖 = {𝑥𝑖, 𝑗 }𝑗 ∈[𝑀] the 𝑖𝑡ℎ incom-

plete data example, and 𝑥𝑖, 𝑗 the 𝑗
𝑡ℎ

candidate value for the 𝑖𝑡ℎ

incomplete data example. This defines𝑀𝑁
many possible worlds:

ID = {𝐷 = {(𝑥𝐷𝑖 , 𝑦𝐷𝑖) } : |𝐷 | = |D | ∧ 𝑦𝐷𝑖 = 𝑦𝑖 ∧ 𝑥𝐷𝑖 ∈ C𝑖 }.

We use 𝑥𝑖, 𝑗𝑖,𝐷 to denote the candidate value for the 𝑖𝑡ℎ data point in

𝐷 . Given a test example 𝑡 , we can calculate the similarity between

each candidate value 𝑥𝑖, 𝑗 and 𝑡 : 𝑠𝑖, 𝑗 = 𝜅 (𝑥𝑖, 𝑗 , 𝑡). We call these values

similarity candidates. We assume that there are no ties in these

similarities scores (we can always break a tie by favoring a smaller

𝑖 and 𝑗 or a pre-defined random order).

Furthermore, given a candidate value 𝑥𝑖, 𝑗 , we count, for each

candidate set, how many candidate values are less similar to the

test example than 𝑥𝑖, 𝑗 . This gives us what we call the similarity
tally 𝛼 . For each candidate set C𝑛 , we have

𝛼𝑖,𝑗 [𝑛] =
∑︂𝑀

𝑚=1
I[𝑠𝑛,𝑚 ≤ 𝑠𝑖,𝑗] .

Example 3.1. In Figure 4 we can see an example of a similarity

tally 𝛼2,2 with respect to the data point 𝑥2,2. For 𝑖
𝑡ℎ

incomplete data

example, it contains the number of candidate values 𝑥𝑖, 𝑗 ∈ C𝑖 that
have the similarity value no greater than 𝑠2,2. Visually, in Figure 4,

this represents all the candidates that lie left of the vertical yellow

line. We can see that only one candidate from C1, two candidates

from C2, and none of the candidates from C3 satisfy this property.

This gives us 𝛼2,2 [1] = 1, 𝛼2,2 [2] = 2, and 𝛼2,2 [3] = 0.

KNN over Possible World𝐷 . Given one possible world𝐷 , running

a KNN classifier to get the prediction for a test example 𝑡 involves

multiple stages. First, we obtain Top-K Set, the set of 𝐾 examples in

𝐷 that are in the K-nearest neighbor set𝑇𝑜𝑝 (𝐾, 𝐷, 𝑡) ⊆ [𝑁], which
has the following property:

|𝑇𝑜𝑝 (𝐾,𝐷, 𝑡) | = 𝐾,

∀𝑖, 𝑖′ ∈ [𝑁] . 𝑖 ∈ 𝑇𝑜𝑝 (𝐾,𝐷, 𝑡) ∧ 𝑖′ ∉ 𝑇𝑜𝑝 (𝐾,𝐷, 𝑡)
=⇒ 𝑠𝑖,𝑗𝑖,𝐷 > 𝑠𝑖′, 𝑗𝑖′,𝐷 .

Given the top-K set, we then tally the corresponding labels by

counting how many examples in the top-K set support a given label.

259

We call it the label tally 𝛾𝐷 :

𝛾𝐷 ∈ N|Y| : 𝛾𝐷
𝑙

=
∑︂

𝑖∈𝑇𝑜𝑝 (𝐾,𝐷,𝑡)
I[𝑙 = 𝑦𝑖] .

Finally, we pick the label with the largest count:

𝑦∗𝐷 = argmax

𝑙
𝛾𝐷
𝑙
.

Example 3.2. For 𝐾 = 1, the Top-K Set contains only one ele-

ment 𝑥𝑖 which is most similar to 𝑡 . The label tally then is a |Y|-
dimensional binary vector with all elements being equal to zero

except for the element corresponding to the label 𝑦𝑖 being equal to

one. Clearly, there are |Y| possible such label tally vectors.

Building Block 1: Boundary Set. The first building block answers

the following question: Out of all possible worlds that picked the
value 𝑥𝑖, 𝑗 for C𝑖 , how many of them have 𝑥𝑖, 𝑗 as the least similar
item in the Top-K set? We call all possible worlds that satisfy this

condition the Boundary Set of 𝑥𝑖, 𝑗 :

𝐵𝑆𝑒𝑡 (𝑖, 𝑗 ;𝐾) = {𝐷 : 𝑗𝑖,𝐷 = 𝑗 ∧ 𝑖 ∈ 𝑇𝑜𝑝 (𝐾, 𝐷, 𝑡)
∧𝑖 ∉ 𝑇𝑜𝑝 (𝐾 − 1, 𝐷, 𝑡)}.

We call the size of the boundary set the Boundary Count.
We can enumerate all

(︁ 𝑁
(𝐾−1)

)︁
possible configurations of the top-

(K-1) set to compute the boundary count. Specifically, let S(𝐾 −
1, [𝑁]) be all subsets of [𝑁] with size 𝐾 − 1. We have

|𝐵𝑆𝑒𝑡 (𝑖, 𝑗 ;𝐾) | =
∑︂

𝑆∈S(𝐾−1,[𝑁])
𝑖∉𝑆

(︄∏︂
𝑛∉𝑆

𝛼𝑖,𝑗 [𝑛]
)︄
·
(︄∏︂
𝑛∈𝑆
(𝑀 − 𝛼𝑖,𝑗 [𝑛])

)︄
.

The idea behind this is the following —we enumerate all possible

settings of the top-(K-1) set: S(𝐾 − 1, [𝑁]). For each specific top-

(K-1) setting 𝑆 , every candidate set in 𝑆 needs to pick a value that is

more similar than 𝑥𝑖, 𝑗 , while every candidate set not in 𝑆 needs to

pick a value that is less similar than 𝑥𝑖, 𝑗 . Since the choices of value

between different candidate sets are independent, we can calculate

this by multiplying different entries of the similarity tally vector 𝛼 .

We observe that calculating the boundary count for a value 𝑥𝑖, 𝑗
can be efficient when 𝐾 is small. For example, if we use a 1-NN

classifier, the only 𝑆 that we consider is the empty set, and thus,

the boundary count merely equals

∏︁
𝑛∈[𝑁],𝑛≠𝑖 𝛼𝑖, 𝑗 [𝑛].

Example 3.3. We can see this, in Figure 4 from Step 3 to Step 4,

where the size of the boundary set |𝐵𝑆𝑒𝑡 (2, 2; 1) | is computed as the

product over elements of 𝛼 , excluding 𝛼 [2]. Here, the boundary set

for 𝑥2,2 is actually empty. This happens because both candidates

from C3 are more similar to 𝑡 than 𝑥2,2 is, that is, 𝛼2,2 [3] = 0.

Consequently, since every possible world must contain one element

from C3, we can see that 𝑥2,2 will never be in the Top-1, which is

why its boundary set contains zero elements.

If we had tried to construct the boundary set for 𝑥3,1, we would

have seen that it contains two possible worlds. One contains 𝑥2,1
and the other contains 𝑥2,2, because both are less similar to 𝑡 than

𝑥3,1 is, so they cannot interfere with its Top-1 position. On the other

hand, both possible worlds have to contain 𝑥1,1 because selecting

𝑥1,2 would prevent 𝑥3,1 from being the Top-1 example.

Building Block 2: Label Support. To get the prediction of a KNN

classifier, we can reason about the label tally vector 𝛾 , and not

necessarily the specific configurations of the top-K set. It answers

the following question: Given a specific configuration of the label

tally vector 𝛾 , how many possible worlds in the boundary set of 𝑥𝑖, 𝑗
support this 𝛾? We call this the Support of the label tally vector 𝛾 :

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑖, 𝑗, 𝛾) = |{𝐷 : 𝛾𝐷 = 𝛾 ∧ 𝐷 ∈ 𝐵𝑆𝑒𝑡 (𝑖, 𝑗 ;𝐾)}|.

Example 3.4. For example, when 𝐾 = 3 and |Y| = 2, we have

4 possible label tallies: 𝛾 ∈ {[0, 3], [1, 2], [2, 1], [3, 0]}. Each tally

defines a distinct partition of the boundary set of 𝑥𝑖, 𝑗 and the size

of this partition is the support for that tally. Note that one of these

tallies always has support 0, which happens when 𝛾𝑙 = 0 for the

label 𝑙 = 𝑦𝑖 , thus excluding 𝑥𝑖, 𝑗 from the top-𝐾 set.

For 𝐾 = 1, a label tally can only have one non-zero value that

is equal to 1 only for a single label 𝑙 . Therefore, all the elements in

the boundary set of 𝑥𝑖, 𝑗 can support only one label tally vector that

has 𝛾𝑙 = 1 where 𝑙 = 𝑦𝑖 . This label tally vector will always have the

support equal to the boundary count of 𝑥𝑖, 𝑗 .

Calculating the support can be done with dynamic program-

ming. First, we can partition the whole incomplete dataset into |Y|
many subsets, each of which only contains incomplete data points

(candidate sets) of the same label 𝑙 ∈ |Y|:
D𝑙 = {(C𝑖 , 𝑦𝑖) : 𝑦𝑖 = 𝑙 ∧ (C𝑖 , 𝑦𝑖) ∈ D}.

Clearly, if we want a possible world 𝐷 that supports the label tally

vector 𝛾 , its top-K set needs to have 𝛾1 candidate sets from D1, 𝛾2
candidate sets fromD2, and so on. Given that 𝑥𝑖, 𝑗 is on the boundry,
how many ways do we have to pick 𝛾𝑙 many candidate sets from D𝑙
in the top-K set?We can represent this value as𝐶

𝑖, 𝑗

𝑙
(𝛾𝑙 , 𝑁), with the

following recursive structure:

𝐶
𝑖,𝑗

𝑙
(𝑐, 𝑛) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶
𝑖,𝑗

𝑙
(𝑐, 𝑛 − 1), if 𝑦𝑛 ≠ 𝑙 ∨ 𝑥𝑛 = 𝑥𝑖 ,

𝐶
𝑖,𝑗

𝑙
(𝑐 − 1, 𝑛 − 1), if 𝑥𝑛 = 𝑥𝑖 , otherwise

𝛼𝑖,𝑗 [𝑛] ·𝐶𝑖,𝑗𝑙 (𝑐, 𝑛 − 1) + (𝑀 − 𝛼𝑖,𝑗 [𝑛]) ·𝐶
𝑖,𝑗

𝑙
(𝑐 − 1, 𝑛 − 1) .

This recursion defines a process in which one scans all candidate

sets from (C1, 𝑦1) to (C𝑁 , 𝑦𝑁). At candidate set (C𝑛, 𝑦𝑛):
(1) If 𝑦𝑛 is not equal to our target label 𝑙 , the candidate set

(C𝑛, 𝑦𝑛) will not have any impact on the count.

(2) If 𝑥𝑛 happens to be 𝑥𝑖 , this will not have any impact on

the count as 𝑥𝑖 is always in the top-K set, by definition.

However, this means that we have to decrement the number

of available slots 𝑐 .

(3) Otherwise, we have two choices to make:

(a) Put (C𝑛, 𝑦𝑛) into the top-K set, and there are (𝑀 −𝛼𝑖, 𝑗 [𝑛])
many possible candidates to choose from.

(b) Do not put (C𝑛, 𝑦𝑛) into the top-K set, and there are𝛼𝑖, 𝑗 [𝑛]
many possible candidates to choose from.

It is clear that this recursion can be computed as a dynamic

program in O(𝑁 ·𝑀) time. This DP is defined for 𝑐 ∈ {0...𝐾} which
is the exact number of candidates we want to have in the top-𝐾 ,

and 𝑛 ∈ {1...𝑁 } which defines the subset of examples 𝑥𝑖 : 𝑖 ∈
{1...𝑁 } we are considering. The boundary conditions of this DP

are 𝐶
𝑖, 𝑗

𝑙
(−1, 𝑛) = 0 and 𝐶

𝑖, 𝑗

𝑙
(𝑐, 0) = 1.

Given the result of this dynamic programming algorithm for

different values of 𝑙 , we can calculate the support of label tally 𝛾 :

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑖, 𝑗,𝛾) =
∏︂

𝑙∈Y
𝐶
𝑖,𝑗

𝑙
(𝛾𝑙 , 𝑁),

which can be computed in O(𝑁𝑀 |Y |) .

Example 3.5. If we assume the situation shown in Figure 4, we

can try for example to compute the value of 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (3, 1, 𝛾) where

260

𝛾 = [1, 0]. We would have 𝐶
3,1
0
(1, 𝑁) = 1 because 𝑥3 (the subset of

𝐷 with label 0) must be in the top-𝐾 , which happens only when

𝑥3 = 𝑥3,1. On the other hand we would have𝐶
3,1
1
(0, 𝑁) = 2 because

both 𝑥1 and 𝑥2 (the subset of 𝐷 with label 1) must be out of the

top-𝐾 , which happens when 𝑥1 = 𝑥1,1 while 𝑥2 can be either equal

to 𝑥2,1 or 𝑥2,2. Their mutual product is equal to 2, which we can see

below the tally column under 𝑥3,1.

3.1.2 𝐾 = 1, |Y| = 2. Given the above two building blocks, it is

easy to develop an algorithm for the case 𝐾 = 1 and |Y| = 2. In SS,

we use the result of 𝑄2 to answer both 𝑄1 and 𝑄2. Later we will

introduce the MM algorithm that is dedicated to 𝑄1 only.

We simply compute the number of possible worlds that support

the prediction label being 1. We do this by enumerating all possible

candidate values 𝑥𝑖, 𝑗 . If this candidate has label 𝑦𝑖 = 1, we count

how many possible worlds have 𝑥𝑖, 𝑗 as the top-1 example, i.e., the

boundry count of 𝑥𝑖, 𝑗 . We have

𝑄2(D, 𝑡, 𝑙) =
∑︂
𝑖∈[𝑁]

∑︂
𝑗∈[𝑀]

I[𝑦𝑖 = 𝑙] · |𝐵𝑆𝑒𝑡 (𝑖, 𝑗 ;𝐾 = 1) |,

which simplifies to

𝑄2(D, 𝑡, 𝑙) =
∑︂
𝑖∈[𝑁]

∑︂
𝑗∈[𝑀]

I[𝑦𝑖 = 𝑙] ·
∏︂

𝑛∈[𝑁],𝑛≠𝑖
𝛼𝑖,𝑗 [𝑛] .

If we pre-compute the whole 𝛼 matrix, it is clear that a naive imple-

mentation would calculate the above value in O(𝑁 2𝑀). However,
as we will see later, we can do much better.

Efficient Implementation. We can design a much more efficient

algorithm to calculate this value. The idea is to first sort all 𝑥𝑖, 𝑗
pairs by their similarity to 𝑡 , 𝑠𝑖, 𝑗 , from the smallest to the largest,

and then scan them in this order. In this way, we can incrementally

maintain the 𝛼𝑖, 𝑗 vector during the scan.

Let (𝑖, 𝑗) be the current candidate value being scanned, and

(𝑖 ′, 𝑗 ′) be the candidate value right before (𝑖, 𝑗) in the sort order,

we have

𝛼𝑖,𝑗 [𝑛] =
{︄
𝛼𝑖′, 𝑗′ [𝑛] + 1 if 𝑛 = 𝑖′,

𝛼𝑖′, 𝑗′ [𝑛] .
(1)

Therefore, we are able to compute, for each (𝑖, 𝑗), its∏︂
𝑛∈[𝑁],𝑛≠𝑖

𝛼𝑖,𝑗 [𝑛] (2)

in O(1) time, without pre-computing the whole 𝛼 . This will give us
an algorithm with complexity O(𝑀𝑁 log𝑀𝑁)!

Example 3.6. In Figure 4 we depict exactly this algorithm. We

iterate over the candidates 𝑥𝑖, 𝑗 in an order of increasing similarity

with the test example 𝑡 (Step 1). In each iteration we try to compute

the number of possible worlds supporting 𝑥𝑖, 𝑗 to be the top-1 data

point (Step 2). We update the tally vector 𝛼 according to Equation 1

(Step 3) and multiply its elements according to Equation 2 (Step 4)

to obtain the boundary cont. Since 𝐾 = 1, the label support for the

label 𝑙 = 𝑦𝑖 is trivially equal to the boundary count and zero for

𝑙 ≠ 𝑦𝑖 (Step 5). We can see that the label 0 is supported by 2 possible

worlds when 𝑥3 = 𝑥3,1 and 4 possible worlds when 𝑥3 = 𝑥3,2. On

the other hand, label 1 has non-zero support only when 𝑥1 = 𝑥1,2.

Finally, the number of possible worlds that will predict label 𝑙 is

obtained by summing up all the label supports in each iteration

where 𝑙 = 𝑦𝑖 (Step 6). For label 0 this number is 2 + 4 = 6, and for

label 1 it is 0 + 0 + 0 + 2 = 2.

Summary of Other Optimizations. For the general case, one can
further optimize the SS algorithm.We propose a divide-and-conquer

version of SS algorithm (SS-DC), which renders the complexity as

O(𝑁 ·𝑀 · log(𝑁 ·𝑀)) for any K and |Y|. The idea behind SS-DC is

that we observed that in SS algorithm (1) all the states relevant for

each iteration of the outer loop are stored in 𝛼 , and (2) between two

iterations, only one element of 𝛼 is updated. We can take advantage

of these observations to reduce the cost of computing the dynamic

program by employing divide-and-conquer. We leave the details of

SS-DC to the full version [15].

4 APPLICATION: DATA CLEANING FOR ML
In this section, we show how to use the proposed CP framework

to design an effective data cleaning solution, called CPClean, for
the important application of data cleaning for ML. We assume as

input a dirty training set D𝑡𝑟𝑎𝑖𝑛 with unknown ground truth 𝐷∗

among all possible worlds ID . Our goal is to select a version𝐷 from

ID , such that the classifier trained on A𝐷 has the same validation

accuracy as the classifier trained on the ground truth world A𝐷∗ .
Cleaning Model. Given a dirty dataset D = {(C𝑖 , 𝑦𝑖)}𝑖∈[𝑁] , in
this paper, we focus on the scenario in which the candidate set C𝑖 for
each data example is created by automatic data cleaning algorithms

or a predefined noise model. For each uncertain data example C𝑖 ,
we can ask a human to provide its true value 𝑥∗

𝑖
∈ C𝑖 . Our goal

is to find a good strategy to prioritize which dirty examples to be

cleaned. That is, a cleaning strategy of 𝑇 steps can be defined as

𝜋 ∈ [𝑁]𝑇 ,
which means that in the first iteration, we clean the example 𝜋1
(by querying human to obtain the ground truth value of C𝜋1 ; in the

second iteration, we clean the example 𝜋2; and so on.
1
Applying a

cleaning strategy 𝜋 will generate a partially cleaned dataset D𝜋 in

which all cleaned candidate sets C𝜋𝑖 are replaced by {𝑥∗𝜋𝑖 }.
Formal Cleaning Problem Formulation. The question we need

to address is "What is a successful cleaning strategy?" Given a vali-

dation set 𝐷𝑣𝑎𝑙 , the view of CPClean is that a successful cleaning

strategy 𝜋 should be the one that produces a partially cleaned

dataset D𝜋 in which all validation examples 𝑡 ∈ 𝐷𝑣𝑎𝑙 can be cer-

tainly predicted. In this case, picking any possible world defined

by D𝜋 , i.e., ID𝜋 , will give us a dataset that has the same accuracy,

on the validation set, as the ground truth world 𝐷∗. This can be

defined precisely as follows.

We treat each candidate set C𝑖 as a random variable c𝑖 , taking
values in {𝑥𝑖,1, ..., 𝑥𝑖,𝑀 }. We write D = {(c𝑖 , 𝑦𝑖)}𝑖∈[𝑁] . Given a

cleaning strategy 𝜋 we can define the conditional entropy of the

classifier prediction on the validation set as

H(AD (𝐷𝑣𝑎𝑙) |c𝜋1 , ..., c𝜋𝑇) ≔
1

|𝐷𝑣𝑎𝑙 |
∑︂

𝑡∈𝐷𝑣𝑎𝑙

H(AD (𝑡) |c𝜋1 , ..., c𝜋𝑇) .

Naturally, this gives us a principled objective for finding a “good”

cleaning strategy that minimizes the human cleaning effort. Let

dim(𝜋) be the number of cleaning steps (cardinality), we hope to

min𝜋 dim(𝜋)
𝑠.𝑡 ., H(AD (𝐷𝑣𝑎𝑙) |c𝜋1 = 𝑥∗𝜋1 , ..., c𝜋𝑇 = 𝑥∗𝜋𝑇) = 0.

1
Note that using [𝑁]𝑇 leads to the same strategy as using [𝑁] × [𝑁 − 1] ... [𝑁 −𝑇]
and thus we use the former for simplicity. This is because, in our setting, cleaning the

same example twice will not decrease the entropy.

261

If we are able to find a cleaning strategy in which

H(AD (𝐷𝑣𝑎𝑙) |c𝜋1 = 𝑥∗𝜋1 , ..., c𝜋𝑇 = 𝑥∗𝜋𝑇) = 0,

we know that this strategy would produce a partially cleaned

dataset D𝜋 on which all validation examples can be CP’ed. Note

that we can use the query 𝑄2 to compute this conditional entropy:

H(AD (𝑡) |c𝜋1 = 𝑥∗𝜋1 , ..., c𝜋𝑇 = 𝑥∗𝜋𝑇) = −
∑︂
𝑦∈Y

𝑝𝑦 log𝑝𝑦,

where 𝑝𝑦 = 𝑄2(D𝜋 , 𝑡, 𝑦)/|D𝜋 |.
Connections to ActiveClean. The idea of prioritizing human

cleaning effort for downstream ML models is not new — Active-

Clean [23] explores an idea with a similar goal. However, there

are some important differences between our framework and Ac-

tiveClean. The most crucial one is that our framework relies on

consistency of predictions instead of the gradient, and therefore,

we do not need labels for the validation set and our algorithm can

be used in ML models that cannot be trained by gradient-based

methods. The KNN classifier is one such example. Since both frame-

works essentially measure some notion of “local sensitivity,” it is

interesting future work to understand how to combine them.

4.1 The CPClean Algorithm
Finding the solution to the above objective is, not surprisingly, NP-

hard [39]. In this paper, we take the view of sequential information

maximization introduced by [8] and adapt the respective greedy

algorithm for this problem. We first describe the algorithm, and

then review the theoretical analysis of its behavior.

Principle: Sequential Information Maximization. Our goal is
to find a cleaning strategy that minimizes the conditional entropy
as fast as possible. An equivalent view of this is to find a cleaning

strategy that maximizes the mutual information as fast as possible.

To see why this is the case, note that

𝐼 (AD (𝐷𝑣𝑎𝑙) ; c𝜋1 , ..., c𝜋𝑇) = H(AD (𝐷𝑣𝑎𝑙)) − H(AD (𝐷𝑣𝑎𝑙) |c𝜋1 , ..., c𝜋𝑇),

where the first term H(AD (𝐷𝑣𝑎𝑙)) is a constant independent

of the cleaning strategy. While we use the view of minimizing

conditional entropy in implementing the CPClean algorithm, the

equivalent view of maximizing mutual information is useful in

deriving theoretical guarantees about CPClean.

Given the current 𝑇 -step cleaning strategy 𝜋1, ..., 𝜋𝑇 , our goal

is to greedily find the next data example to clean 𝜋𝑇+1 ∈ [𝑁] that
minimizes the entropy conditioned on the partial observation as

fast as possible:

𝜋𝑇+1 = arg min

𝑖∈[𝑁]
H(AD (𝐷𝑣𝑎𝑙) |c𝜋1 = 𝑥∗𝜋1 , ..., c𝜋𝑇 = 𝑥∗𝜋𝑇 , c𝑖 = 𝑥

∗
𝑖) .

Practical Estimation.The question thus becomes how to estimate

H(AD (𝐷𝑣𝑎𝑙) |c𝜋1 = 𝑥∗𝜋1 , ..., c𝜋𝑇 = 𝑥∗𝜋𝑇 , c𝑖 = 𝑥
∗
𝑖)?

The challenge is that when we are trying to decide which example

to clean, we do not know the ground truth for item 𝑖 , 𝑥∗
𝑖
. As a result,

we need to assume some priors on how likely each candidate value

𝑥𝑖, 𝑗 is the ground truth 𝑥∗
𝑖
. In practice, we find that a uniform prior

already works well and will use it throughout this work:
2

1

𝑀

∑︂
𝑗∈[𝑀]

H(AD (𝐷𝑣𝑎𝑙) |c𝜋1 = 𝑥∗𝜋1 , ..., c𝜋𝑇 = 𝑥∗𝜋𝑇 , c𝑖 = 𝑥𝑖,𝑗) . (3)

2
For more general priors, we believe that our framework, in a similar spirit as [41],

can support priors under which different cells are independent (e.g., to encode prior

distributional information) and we plan to extend this work in the future.

Algorithm 1 Algorithm CPClean.
Input: D, incomplete training set; 𝐷𝑣𝑎𝑙 , validation set.

Output: 𝐷 , a dataset in ID s.t. A𝐷 and A𝐷∗ have same validation accuracy

1: 𝜋 ← []
2: for𝑇 = 0 to 𝑁 − 1 do
3: if 𝐷𝑣𝑎𝑙 all CP’ed then
4: break
5: 𝑚𝑖𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ←∞
6: for all 𝑖 ∈ [𝑁]\𝜋 do
7: 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 1

𝑀

∑︁
𝑗∈[𝑀]

H(AD (𝐷𝑣𝑎𝑙) |c𝜋1 = 𝑥∗𝜋
1
, ..., c𝜋𝑇 = 𝑥∗𝜋𝑇 , c𝑖 = 𝑥𝑖,𝑗)

8: if 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 <𝑚𝑖𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 then
9: 𝜋𝑇+1 ← 𝑖 ,𝑚𝑖𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ← 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

10: x∗𝜋𝑇+1 ← obtain the ground truth of C𝜋𝑇+1 by human

11: return Any world 𝐷 ∈ ID𝜋

The above term can thus be calculated by invoking the 𝑄2 query.

In practice, instead of using all validation examples, we can

estimate it over a mini-batch randomly sampled from the validation

set, similar to how stochastic gradient descent is often used in place

of gradient descent. We used 32 as the batch size.

CPClean. The pseudocode for CPClean is shown in Algorithm 1.

The algorithm starts with an empty cleaning strategy (line 1). In

each iteration, given the current cleaning strategy 𝜋1, ..., 𝜋𝑇 , we

compute the expected value of entropy conditioned on cleaning

one extra training example (lines 6-7). We select the next example

to clean 𝜋𝑇+1 that minimizes the entropy (lines 8-9). We then ask a

human to clean the selected example (line 10). The greedy algorithm

terminates when all validation examples become CP’ed (line 3).

Finally, we return any world 𝐷 among all possible partially cleaned

worlds ID𝜋 (line 12). Since all the validation examples are CP’ed

with ID𝜋 , classifier trained on any world in ID𝜋 , including the

unknown ground truth world 𝐷∗, has the same validation accuracy.

Therefore, A𝐷 has the same validation accuracy as A𝐷∗ .
Example 4.1. Figure 5 shows an example of how CPClean selects

the next data example to clean in each iteration via sequential infor-

mation maximization. Assume there are two dirty examples, C1 and
C2, in the training set and each example has two candidate repairs.

Therefore, there are four possible clean versions after cleaning the

next data point, based on which data point is selected to be cleaned

and which candidate repair is the ground truth. For example, the

first table at step 1 shows the clean version after cleaning C1 if 𝑥1,1
is the ground truth. Assume that we have two validation examples.

We run the counting query (Q2) on each possible version w.r.t. each

validation example as shown in step 2. Then we can compute the

entropy of predictions on validation examples as shown in step 3

and 4. The results show that if C1 is selected to be cleaned, the en-

tropy may become 0 or 0.17 depending on which candidate repair is

the ground truth. We assume that each of the two candidate repairs

has 50% chance to be the ground truth. Therefore, the expected

entropy after cleaning C1 is (0 + 0.17)/2 = 0.09 (step 5). Similarly,

we compute the expected entropy after cleaning C2 as 0.17. Since
C1 has a lower expected entropy, we select C1 to clean.

Complexity of CPClean. In each iteration of Algorithm 1, we

need to (1) automatically select a tuple; and (2) ask human to clean

the selected tuple. To select a tuple, we need to first check whether

|𝐷𝑣𝑎𝑙 | are all CP’ed (line 3), which invokes the 𝑄1 query 𝑂 (|𝐷𝑣𝑎𝑙 |)
times. If not all 𝐷𝑣𝑎𝑙 are CP’ed, we need to compute the expected

value of entropy𝑂 (𝑁) times (line 6). Computing the expected value

of entropy (line 7) needs to invoke the 𝑄2 query𝑂 (𝑀 |𝐷𝑣𝑎𝑙 |) times.

262

5 Compute the
average entropy
over all clean versions

0

1 1
0 2

1 1
0 2

2 0
0 2

1 1
0 2

0.34
0

0.34
0

0
0

0.34
0

0.170.09

Q2 Q2Q2 Q2

H HH H

AVG

ARGMIN

OP Which data point should we clean next?

1 Consider all clean versions
for every data point

2 Run the counting
query (Q2) with
the validation dataset

3 Compute the entropy
over all possible
predicted labels

4 Compute the average
over all validation
data points

6 Select the data point
with the lowest
estimated entropy Result:

AVGAVG

1
1

0.17 0.17

AVGAVG AVG

0 0.17

Figure 5: CPClean via sequential info. maximization.

Therefore, when the downstream ML model is KNN, using our

SS-DC algorithm for 𝑄1 and 𝑄2, the complexity for selecting a

tuple at each iteration is𝑂 (𝑁 2𝑀2 |𝐷𝑣𝑎𝑙 | × log(𝑀𝑁)). The quadratic
complexity in tuple selection is acceptable in practice, since human

involvement is generally considered to be the most time consuming

part in practical data cleaning [13].

Summary of Other Optimizations. Algorithm 1 can be further

optimized. We introduce a special version of the SS algorithm called

SS-BDP, which renders the complexity of selecting an example as

𝑂 (𝑁 2𝑀2 |𝐷𝑣𝑎𝑙 |). Algorithm 1 invokes Q2 𝑂 (𝑁𝑀) times on each

validation example; the idea behind SS-BDP is that it produces a

precomputed bidirectional dynamic program, which can be reused

in each of the 𝑂 (𝑁𝑀) times Q2 is invoked to reduce the computa-

tional complexity of each invocation down to𝑂 (𝑁𝑀). We describe

this method in more detail in the appendix of the full version [15].

Theoretical Guarantee. The theoretical analysis of this algorithm,

while resembling that of [8], is non-trivial. We provide the main

theoretical analysis here and leave the proof to the full version [15].

Corollary 4.2. Let the optimal cleaning policy that minimizes
the cleaning effort while consistently classifying the test examples be
denoted by 𝐷Opt ⊆ 𝐷𝑡𝑟𝑎𝑖𝑛 with limited cardinality 𝑡 , such that

𝐷Opt = argmax

𝐷𝜋 ⊆D𝑡𝑟𝑎𝑖𝑛 , |𝐷𝜋 |≤𝑡
𝐼 (AD (𝐷𝑣𝑎𝑙) ;𝐷𝜋) .

The sequential information maximization strategy follows a near
optimal strategy where the information gathering satisfies

𝐼 (AD (𝐷𝑣𝑎𝑙) ; c𝜋1 , ..., c𝜋𝑇)
≥𝐼 (AD (𝐷𝑣𝑎𝑙) ;𝐷Opt) (1 − exp (−𝑇 /𝜃𝑡 ′))

where

𝜃 =

(︃
max

𝑣∈Dtrain
𝐼 (AD (𝐷𝑣𝑎𝑙) ; 𝑣)

)︃−1
𝑡 ′ = 𝑡 min{ log |Y |, log𝑀 }, Y : label space, 𝑀 : |C𝑖 |.

Dataset Error Type #Examples #Features Missing rate
BabyProduct [10] real 4019 7 14.1%

Supreme [33] synthetic 3052 7 20%

Bank [28] synthetic 3192 8 20%

Puma [28] synthetic 8192 8 20%

Sick [38] synthetic 3772 29 20%

Nursery [38] synthetic 12960 8 20%

Table 1: Datasets characteristics
The above result, similarly as in [8], suggests that data cleaning

is guaranteed to achieve near-optimal information gathering up

to a logarithmic factor min(log |Y|, log𝑀) when leveraging the

sequential information maximization strategy.

5 EXPERIMENTS
We now conduct an extensive set of experiments to compare CP-

Clean with other data cleaning approaches in the context of K-

nearest neighbor classifiers.

5.1 Experimental Setup
Hardware and Platform. All our experiments were performed

on a machine with a 2.20GHz Intel Xeon(R) Gold 5120 CPU.

Datasets.We evaluate theCPClean algorithm on five datasets with

synthetic missing values and one dataset with real missing values,

where we are able to obtain the ground truth via manual Googling
3
.

We summarize all datasets in Table 1.

We use five real-world datasets (Supreme, Bank, Puma, Sick,
Nursery), originally with no missing values, to inject synthetic

missing values. We simulate two types of missingness:

• Random: Every cell has an equal probability of being missing.

• Systematic: Different cells have different probabilities of being
missing. In particular, cells in features that are more important for

the classification task have higher missing probabilities (e.g., high

income people are less likely to report their income in a survey).

This corresponds to the “Missing Not At Random” assumption [30].

We assess the relative importance of each feature in a classification

task by measuring the accuracy loss after removing a feature, and

use the relative feature importance as the relative probability of

values in a feature to be missing.

The BabyProduct dataset contains various baby products of dif-

ferent categories (e.g., bedding, strollers). Since the dataset was

scraped from websites using Python scripts [10], many records

have missing values, presumably due to extractor errors. We ran-

domly selected a subset of product categories with 4,109 records

and we designed a classification task to predict whether a given

baby product has a high price or low price based on other attributes

(e.g. weight, brand, dimension, etc). For records with missing brand

attribute, we then perform a Google search using the product title to

obtain the product brand. For example, one record titled “Just Born
Safe Sleep Collection Crib Bedding in Grey” is missing the product

brand, and a search reveals that the brand is “Just Born.”

For all experiments (except Figure 7), we randomly select 1,000 ex-

amples as the validation set. We then randomly split the remaining

examples into training/test set by 70%/30%. For datasets originally

with no missing values, we inject synthetic missing values to the

training sets. For the BabyProduct dataset with real missing values,

we fill in the missing values in the validation and test sets with the

ground truth to make the validation and test sets clean.

3
The dirty version, the ground-truth version, as well as the version after applying

CPClean, for all datasets can be found in https://github.com/chu-data-lab/CPClean.

263

https://github.com/chu-data-lab/CPClean

Numerical Categorical
Simple

Imputation
Min, 25-percentile,

Mean, 75-percentile, Max

All active domain values

ML-based
Imputation

KNN, Decision Tree,

EM, missForest, Datawig

missForest,

Datawig

Table 2: Methods to Generate Candidate Repairs

Model. We use a KNN classifier with K=3 and use Euclidean dis-

tance as the similarity function.

Cleaning Algorithms Compared.We compare the following ap-

proaches for handling missing values in the training data.

• Ground Truth: This method uses the ground-truth version of the

dirty data, and shows the performance upper-bound.

• Default Cleaning: This is the default and most commonly used

way for cleaning missing values in practice, namely, missing cells

in a numerical column are filled in using the mean value of the

column, and those in a categorical column are filled using the most

frequent value of that column.

• CPClean: This is our proposal, where the SS algorithm is used to

answer Q1 and Q2. CPClean needs a candidate repair set C𝑖 for each
example with missing values. We consider various missing value

imputation methods to generate candidate repairs, including both

simple imputation methods and ML-based imputation methods. We

summarize the methods to generate candidate repairs in Table 2.

– Simple Imputation. We impute the missing values in a column

based on values in the same column only. Specifically, for numer-

ical missing values, we consider five simple imputation methods

that impute the missing values with the minimum, the 25-th per-

centile, the mean, the 75-th percentile, and the maximum of the

column, respectively; for categorical missing values, we consider

all active domain values of the column as candidate repairs.

– ML-based imputation. These methods build ML models to pre-

dict missing values in a column based on information in the

entire table. For numerical missing values, we consider 5 ML-

based imputation methods including K-nearest neighbors (KNN)

imputation [37], Decision Tree imputation [7], Expectation-

Maximization (EM) imputation [11], missForest based on random

forest [35], and Datawig [6] using deep neural networks. For

KNN and Decision Tree imputation, we use the implementation

from scikit-learn [27]. For EM imputation, we use the impyute
package.

4
For missForest, we use the missingpy package.

5
For

Datawig, we use the open-source implementation from the paper

with default setup. For categorical missing values, we consider

missForest and Datawig, as the implementation of other three

methods does not support imputing categorical missing values.

We simulate human cleaning by picking the candidate repair that

is closest to the ground truth based on the Euclidean distance. We

sample a batch of 32 validation examples to estimate the entropy

(Equation 3) at each iteration of CPClean.

• CPClean-ET : This is the CPClean algorithm with early termina-

tion. In other words, CPClean-ET allows users to terminate the

cleaning algorithm early before all validation examples are CP’ed.

Recall that CPClean is an online cleaning algorithm, where humans

clean one example at each iteration. Therefore, in real deployment

of CPClean, users can observe the validation accuracy as more

examples get cleaned and users can terminate the process early if

4
https://impyute.readthedocs.io/

5
https://github.com/epsilon-machine/missingpy/

they believe the accuracy gain is not worth further cleaning efforts

at any time. In the experiments, for every 10% of additional training

data manually cleaned, the CPClean algorithm is terminated if the

validation accuracy improvement is less than 0.005.

• BestSimple: For every dataset, we select a missing value imputa-

tion method from all simple imputation methods (c.f. Table 2) that

achieves the highest accuracy on the validation set.

• BestML: For every dataset, we select a missing value imputa-

tion method from ML-based imputation methods (c.f. Table 2) that

achieves the highest accuracy on the validation set.

• BoostClean: It is one of the state-of-the-art automatic data clean-

ing methods for ML [21]. In contrast to BestSimple and BestML,
it selects an ensemble of cleaning methods from a predefined set

using statistical boosting to maximize the validation accuracy. To

ensure fair comparison, the predefined set of cleaning methods

used in BoostClean is the same as that of CPClean, i.e., Table 2. The

number of boosting stages is set to be 5, the best setting in [21].

• HoloClean: This is the state-of-the-art probabilistic data cleaning
method [29]. As a weakly supervised machine learning system,

it leverages multiple signals (e.g. quality rules, value correlations,

reference data) to build a probabilistic model for data cleaning. We

use a version of HoloClean that imputes the missing values using

attention-based mechanism and only relies on information from

the input table [42]. Note that the focus of HoloClean is to find the

most likely fix for a missing cell in a dataset without considering

how the dataset is used by downstream classification tasks.

• RandomClean: While CPClean uses the idea of sequential infor-

mation maximization to select which examples to manually clean,

RandomClean selects an example to clean randomly.

Performance Measures. Besides the cleaning effort spent, we

are mainly concerned with the test accuracy of models trained on

datasets cleaned by different cleaning methods. Instead of report-

ing exact test accuracies for all methods, we only report them for

Ground Truth and Default Cleaning, which represents the upper

bound and the lower bound, respectively. For other methods, we

report the percentage of closed gap defined as:

gap closed by X =
accuracy(X) - accuracy(Default Cleaning)

accuracy(Ground Truth) - accuracy(Default Cleaning)
.

5.2 Experimental Results
Model Accuracy Comparison. Table 3 shows the end-to-end per-
formance of our method and other automatic cleaning methods.

Notice that the gap closed can sometimes be negative as some

cleaning method may actually produce a worse model than Default
Cleaning. For example, the -1,000% happens as HoloClean produces

a model with 0.9114 test accuracy (−1, 000% = 0.9114−0.9395
0.9423−0.9395). Also

note that the gap closed can sometimes be greater than 100% as

some cleaning method may produce a model that has a higher

test accuracy than the model trained using the ground-truth data.

For example, the 250% happens as CPClean produces a model with

0.9466 test accuracy (250% = 0.9466−0.9395
0.9423−0.9395). These are not surpris-

ingly as ML is an inherently stochastic process — it is very likely

that one possible world is better than the ground-truth world in

terms of end model performance, especially when evaluated on an

unseen test set. We have the following observations from Table 3:

(1) We can observe that random missingness and systematic miss-

ingness exhibit vastly different impacts on model accuracy. The

264

https://impyute.readthedocs.io/
https://github.com/epsilon-machine/missingpy/

MV Type Dataset Ground Truth Default Clean Boost Clean HoloClean BestSimple BestML CPClean CPClean-ET
Test

Accuracy
Test

Accuracy
Gap

Closed
Gap

Closed
Gap

Closed
Gap

Closed
Examples
Cleaned

Gap
Closed

Examples
Cleaned

Gap
Closed

Random

Supreme 0.966 0.949 125% 150% 127% 77% 28% 100% 20% 100%

Bank 0.739 0.704 111% -21% 68% 110% 81% 111% 10% 68%

Puma 0.754 0.726 28% -24% 26% 12% 56% 79% 20% 12%

Nursery 0.980 0.960 139% 17% 10% -15% 22% 103% 20% 109%

Sick 0.942 0.940 0% -1000% 17% 88% 17% 250% 17% 250%

Systematic

Supreme 0.933 0.796 10% -10% 0% 10% 54% 100% 20% 96%

Bank 0.767 0.641 0% 1% 0% 1% 83% 103% 80% 99%

Puma 0.733 0.627 0% -9% 18% -14% 68% 93% 40% 72%

Nursery 0.995 0.572 1% -5% 1% -4% 28% 93% 28% 93%

Sick 0.945 0.928 58% 8% -2% 58% 20% 133% 10% 142%

Real BabyProduct 0.842 0.662 11% 1% 11% 1% 100% 100% 50% 90%

Table 3: End-to-End Performance of CC and Automatic Cleaning Methods

maximum gap caused by random missing values is 0.035, while the

maximum gap caused by systematic missing values is 0.423.

(2) Comparing BestSimple, BestML, and BoostClean, three methods

that select from a pre-defined set of cleaning methods to maximize

validation accuracy, we can see that (a) there is no obvious winner

between BestSimple and BestML, suggesting that ML-based impu-

tation methods are not necessarily better than simple imputation

methods; and (b) BoostClean is noticeably better than BestSimple
and BestML, suggesting that intelligently selecting an ensemble of

cleaning methods is usually better than one cleaning method.

(3) Comparing BoostClean with HoloClean, one of the state-of-the-
art generic cleaning methods, BoostClean is noticeably better. This

means that designing data cleaning solutions tailored to a down-

stream application (in this case, KNN classification models) is usu-

ally better than applying generic cleaning solutions without con-

sidering how cleaned data will be consumed.

(4) Comparing the best automatic cleaning method BoostCleanwith
CPClean, we can see that CPClean has a considerably better perfor-

mance. In most cases, CPClean is able to close almost 100% of the

gap (i.e., achieving ground-truth test accuracy), and the average

percentage of examples cleaned is 51%. On Sick with systematic

missing values, CPClean only requires cleaning 20% of dirty exam-

ples to close all the gaps. The advantage of CPClean is most ap-

pealing on datasets with systematic missingness, where BoostClean
fails to achieve good performances in most cases while CPClean
closes 100% in all cases. In contrast, under random missingness,

default cleaning can already achieve similar accuracy to ground-

truth data, and hence the amount of additional benefit by manual

cleaning is limited. Indeed, under random missingness, CPClean
achieves similar performances with BoostClean, except for Sick.
(5) We notice that for BabyProduct, CPClean requires cleaning all

examples for all validation examples to be CP’ed. This is because

we consider every active domain value as a possible repair for the

categorical missing attribute Product Brand in BabyProduct, and
it has 60 unique values in the dataset. This creates a very diverse

set of possible worlds, making it difficult for validation examples

to become CP’ed.

(6) Comparing CPCleanwith CPClean-ET, we can see that CPClean-
ET retains most of the benefits in CPCleanwhile significantly reduc-
ing human cleaning efforts. For example, forBabyProduct,CPClean-
ET can save half of cleaning efforts and still close 90% of the gap.

Comparedwith RandomCleaning.As discussed before, if users
have a limited cleaning budget, they may choose to terminate CP-

Clean early. To study the effectiveness of CPClean in prioritizing

Figure 6: ComparisonwithRandomCleaning for Systematic
and Real Missing Values

manual cleaning effort, we compare it with RandomClean that ran-

domly picks an example to clean at each iteration. The results for

RandomClean are the average of 10 runs.

The red lines in Figure 6 show the percentage of CP’ed examples

in the validation set as more and more examples are cleaned for

systematic missing values. As we can see, CPClean (solid red line)

dramatically outperforms the RandomClean (dashed red line) both

in terms of the number of training examples cleaned so that all

validation examples are CP’ed and in terms of the rate of conver-

gence. The blue lines in Figure 6 show the percentage of gap closed

for the test set accuracy for systematic missing values. Again, we

can observe that CPClean significantly outperforms RandomClean,
proving that the examples picked by CPClean are much more useful

in improving end model compared with randomly picked examples.

For example, with 50% of data cleaned in Bank, RandomClean only

closes about 50% of the gap, whereas CPClean closes almost 80%

of the gap. The results for random missing values reveal similar

findings and thus are omitted here and left to the full version [15].

265

Alg. Supreme Bank Puma Nusery Sick BabyProduct

SS-BDP 8s 2s 7s 9s 6s 35s

SS-DC 144s 109s 140s 46s 258s >1h

SS >1h >1h >1h >1h >1h > 1h

Table 4: Running Time per iteration

Figure 7: Varying size of 𝐷𝑣𝑎𝑙 .

Running Time. Table 4 shows the average running time of CP-
Clean for selecting an example to clean on each dataset. As we

can see, using SS-BDP algorithm to compute the entropy, for most

datasets, it takes about 10s on average for CPClean to select an

example at each iteration. On BabyProduct, since it has over 60
candidate repairs for each dirty example (about 6 times more than

other datasets), it takes about 35s at each selection. Considering

human cleaning usually incurs high costs (we spent about 2 min-

utes per record on average in manually cleaning BabyProduct), this
running time is acceptable. In contrast, with the SS-DC algorithm, it

takes over 100s at each iteration, and with the vanilla SS algorithm,

it can take over 1 hour at each iteration.

Size of the Validation Set 𝐷𝑣𝑎𝑙 . For this experiment, we first

split a dataset into training/validation/test sets the same way as

described in Section 5.1, except the validation set is 1,400. We then

vary the size of 𝐷𝑣𝑎𝑙 (400, 600, ..., 1,400) while using the same

training and test sets to understand how it affects the result. Figure

7 shows the gap closed and examples cleaned for real missing values

and systematic missing values as the size of validation set increases.

As we can see, both the test accuracy gap closed and the cleaning

effort spent first increase and then become steady. This is because,

when the validation set is small, it is easier to make all validation

examples CP’ed (hence the smaller cleaning effort). However, a

small validation set may not be representative of some unseen test

set, and hencemay not close the accuracy gap on test set. In all cases,

we observe that 1K validation set is sufficiently large and further

increasing it does not significantly improve the performance. The

results for random missing values reveal similar findings and thus

are omitted here and left to the full version of this paper [15].

6 RELATEDWORK
Relational Query over Incomplete Information. Our work is

heavily inspired by the database literature of handling incomplete

information [1], consistent query answering [4, 5, 25], and proba-

bilistic databases [36]. While these related works target SQL analyt-

ics, our proposed consistent prediction query targets ML analytics.

Learning over Incomplete Data. The statistics and ML commu-

nity have also studied the problem of learning over incomplete

data. Many studies operate under certain missingness assumptions

(e.g., missing completeness at random) and reason about the perfor-

mance of downstream classifiers in terms of asymptotic properties

and in terms of different imputation strategies [12]. In this work,

we focus more on the algorithmic aspect of this problem and try

to understand how to enable more efficient manual cleaning of the

data. Another line of work aims at developing ML models that are

robust to certain types of noise. Multiple imputation [31] is one

such method that is most relevant to us. Our CP framework can

be seen as an extreme case of multiple imputation (i.e, by trying

all possible imputations) with efficient implementation (in KNN),

which also enables novel manual cleaning for ML use cases.

The semantics of learning over incomplete data by calculating

the expectation over all possible uncertain values is natural. For

example, Khosravi et al. [18] explored similar semantics as ours,

but for logistic regression models. [16] studied the feasibility of

this problem in general, in the context of probabilistic circuits. [17]

discussed tree-based models and connects it to dealing with missing

values. In this paper, we focus on efficient algorithms for KNNs.

Data Cleaning and Analytics-Driven Cleaning. The research
on data cleaning (DC) has been thriving for many years. Many data

cleaning works focus on performing standalone cleaning without

considering how cleaned data is used by downstream analytics. We

refer readers to a recent survey on this topic [13]. As DC itself is an

expensive process that often ends up needing human involvement

(e.g., to confirm suggested repairs), the DB community is starting

to work on analytics-driven cleaning methods. SampleClean [40]

targets the problem of answering SQL aggregate queries when

the input data is dirty by cleaning a sample of the dirty dataset,

and at the same time, providing statistical guarantees on the query

results. ActiveClean [22] is an example of cleaning data intelligently

for convex ML models that are trained using gradient descent. As

discussed before, while both ActiveClean and our proposal assume

the use of a human cleaning oracle, they are incomparable as they

are targeting different ML models. BoostClean [21] automatically

selects from a predefined space of cleaning algorithms, using a hold-

out set via statistical boosting. We show that CPClean significantly

outperforms BoostClean under the same space of candidate repairs.

7 CONCLUSION
In this work, we focused on the problem of understanding the

impact of incomplete information on training downstream ML

models. We present a formal study of this impact by extending the

notion of Certain Answers for Codd tables, which has been explored

by the database research community for decades, into the field of

machine learning, by introducing the notion of Certain Predictions
(CP). We developed efficient algorithms to analyze the impact via

CP primitives, in the context of nearest neighor classifiers. As an

application, we further proposed a novel “DC for ML” framework

built on top of CP primitives that often significantly outperforms

existing techniques in accuracy, with mild manual cleaning effort.

Acknowledgement. The Chu Data Lab acknowledges the support

from SCS in GT, Georgia State funds, as well as the JP Morgan

Faculty award. CZ and the DS3Lab gratefully acknowledge the sup-

port from the Swiss National Science Foundation (Project Number

200021_184628), Innosuisse/SNF BRIDGE Discovery (Project Num-

ber 40B2-0_187132), European Union Horizon 2020 Research and

Innovation Programme (DAPHNE, 957407), Botnar Research Centre

for Child Health, Swiss Data Science Center, Alibaba, Cisco, eBay,

Google Focused Research Awards, Oracle Labs, Swisscom, Zurich

Insurance, Chinese Scholarship Council, and the Department of

Computer Science at ETH Zurich.

266

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases:

The Logical Level (1st ed.). Addison-Wesley Longman Publishing Co., Inc., USA.

[2] Pankaj K. Agarwal, Boris Aronov, Sariel Har-Peled, Jeff M. Phillips, Ke Yi, and

Wuzhou Zhang. 2016. Nearest-Neighbor Searching Under Uncertainty II. ACM
Trans. Algorithms 13, 1, Article Article 3 (Oct. 2016), 25 pages. https://doi.org/

10.1145/2955098

[3] Pankaj K. Agarwal, Alon Efrat, Swaminathan Sankararaman, andWuzhou Zhang.

2012. Nearest-Neighbor Searching under Uncertainty. In Proceedings of the
31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS ’12). Association for Computing Machinery, New York, NY, USA, 225–236.

https://doi.org/10.1145/2213556.2213588

[4] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent query

answers in inconsistent databases. In Proc. 18th ACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems. 68–79.

[5] Leopoldo E Bertossi. 2011. Database Repairing and Consistent Query Answering.
Morgan & Claypool Publishers.

[6] Felix Biessmann, Tammo Rukat, Philipp Schmidt, Prathik Naidu, Sebastian Schel-

ter, Andrey Taptunov, Dustin Lange, and David Salinas. 2019. DataWig: Missing

Value Imputation for Tables. Journal of Machine Learning Research 20, 175 (2019),

1–6.

[7] Lane F Burgette and Jerome P Reiter. 2010. Multiple imputation for missing data

via sequential regression trees. American journal of epidemiology 172, 9 (2010),

1070–1076.

[8] Yuxin Chen, S. Hamed Hassani, Amin Karbasi, and Andreas Krause. 2015. Sequen-

tial Information Maximization: When is Greedy Near-optimal?. In Conference on
Learning Theory.

[9] Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,

and Yin Ye. 2015. KATARA: A Data Cleaning System Powered by Knowledge

Bases and Crowdsourcing. In Proc. ACM SIGMOD Int. Conf. on Management of
Data. 1247–1261.

[10] Sanjib Das, AnHai Doan, Paul Suganthan G. C., Chaitanya Gokhale, Pradap

Konda, Yash Govind, and Derek Paulsen. [n.d.]. The Magellan Data Repository.

https://sites.google.com/site/anhaidgroup/projects/data.

[11] Arthur P Dempster, NanM Laird, and Donald B Rubin. 1977. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the royal statistical society.
Series B (methodological) (1977), 1–38.

[12] Pedro J. García-Laencina, José-Luis Sancho-Gómez, and Aníbal R. Figueiras-Vidal.

2010. Pattern Classification with Missing Data: A Review. Neural Comput. Appl.
19, 2 (March 2010), 263–282. https://doi.org/10.1007/s00521-009-0295-6

[13] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM. https://doi.org/10.1145/

3310205

[14] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo

Li, Ce Zhang, Costas Spanos, and Dawn Song. 2019. Efficient Task-Specific Data

Valuation for Nearest Neighbor Algorithms. Proc. VLDB Endow. 12, 11 (July 2019),
1610–1623. https://doi.org/10.14778/3342263.3342637

[15] Bojan Karlaš, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao Wu,

and Ce Zhang. 2020. Nearest Neighbor Classifiers over Incomplete Information:

From Certain Answers to Certain Predictions. arXiv:2005.05117

[16] Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den

Broeck. 2019. On Tractable Computation of Expected Predictions. In Advances
in Neural Information Processing Systems 32 (NeurIPS). http://starai.cs.ucla.edu/

papers/KhosraviNeurIPS19.pdf

[17] Pasha Khosravi, Yitao Liang, YooJung Choi, and Guy Van den Broeck. 2019.

What to Expect of Classifiers? Reasoning about Logistic Regression with Missing

Features. CoRR abs/1903.01620 (2019). arXiv:1903.01620 http://arxiv.org/abs/

1903.01620

[18] Pasha Khosravi, Yitao Liang, YooJung Choi, and Guy Van Den Broeck. 2019. What

to expect of classifiers? reasoning about logistic regression with missing features.

In Proceedings of the 28th International Joint Conference on Artificial Intelligence.
AAAI Press, 2716–2724.

[19] Pang Wei Koh and Percy Liang. 2017. Understanding Black-box Predictions via

Influence Functions. In Proceedings of the 34th International Conference onMachine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (Proceedings of
Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70.

PMLR, 1885–1894. http://proceedings.mlr.press/v70/koh17a.html

[20] Hans-Peter Kriegel, Peter Kunath, and Matthias Renz. 2007. Probabilistic Nearest-

Neighbor Query on Uncertain Objects. In Proceedings of the 12th International

Conference on Database Systems for Advanced Applications (DASFAA’07). Springer-
Verlag, Berlin, Heidelberg, 337–348.

[21] Sanjay Krishnan, Michael J Franklin, Ken Goldberg, and Eugene Wu. 2017. Boost-

clean: Automated error detection and repair for machine learning. arXiv preprint
arXiv:1711.01299 (2017).

[22] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Gold-

berg. 2016. ActiveClean: Interactive Data Cleaning For Statistical Modeling. Proc.
VLDB Endowment 9, 12 (2016), 948–959.

[23] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Gold-

berg. 2016. Activeclean: Interactive data cleaning for statistical modeling. Pro-
ceedings of the VLDB Endowment 9, 12 (2016), 948–959.

[24] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2019. CleanML:

A Benchmark for Joint Data Cleaning and Machine Learning [Experiments and

Analysis]. arXiv preprint arXiv:1904.09483 (2019).
[25] Andrei Lopatenko and Leopoldo E Bertossi. 2007. Complexity of Consistent

Query Answering in Databases Under Cardinality-Based and Incremental Repair

Semantics. In Proc. 11th Int. Conf. on Database Theory. 179–193.
[26] Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. 2011. Regression

Conformal Prediction with Nearest Neighbours. J. Artif. Int. Res. 40, 1 (Jan. 2011),
815–840.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[28] Carl E Rasmussen, Radford M Neal, Geoffrey E Hinton, Drew van Camp, Michael

Revow, Zoubin Ghahramani, R Kustra, and Robert Tibshirani. 1996. The DELVE

manual. URL http://www. cs. toronto. edu/˜ delve (1996).
[29] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. 2017. Holo-

Clean: holistic data repairs with probabilistic inference. Proceedings of the VLDB
Endowment 10, 11 (2017), 1190–1201.

[30] Donald B Rubin. 1976. Inference and missing data. Biometrika 63, 3 (1976),

581–592.

[31] Donald B. Rubin. 1996. Multiple Imputation After 18+ Years. J. Amer. Statist.
Assoc. 91, 434 (1996), 473–489. http://www.jstor.org/stable/2291635

[32] Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, and Maarten de Rijke. 2018.

Finding Influential Training Samples for Gradient Boosted Decision Trees. In

Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine
Learning Research), Jennifer G. Dy and Andreas Krause (Eds.), Vol. 80. PMLR,

4584–4592. http://proceedings.mlr.press/v80/sharchilev18a.html

[33] Jeffrey S Simonoff. 2013. Analyzing categorical data. Springer Science & Business

Media.

[34] C. Sitawarin and D. Wagner. 2019. On the Robustness of Deep K-Nearest Neigh-

bors. In 2019 IEEE Security and Privacy Workshops (SPW). 1–7.
[35] Daniel J Stekhoven and Peter Bühlmann. 2012. MissForest—non-parametric

missing value imputation for mixed-type data. Bioinformatics 28, 1 (2012), 112–
118.

[36] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011.

Probabilistic Databases. Synthesis Lectures on Data Management 3,

2 (2011), 1–180. https://doi.org/10.2200/S00362ED1V01Y201105DTM016

arXiv:https://doi.org/10.2200/S00362ED1V01Y201105DTM016

[37] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie,

Robert Tibshirani, David Botstein, and Russ B Altman. 2001. Missing value

estimation methods for DNA microarrays. Bioinformatics 17, 6 (2001), 520–525.
[38] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML:

Networked Science inMachine Learning. SIGKDD Explorations 15, 2 (2013), 49–60.
https://doi.org/10.1145/2641190.2641198

[39] Chun Wa Ko, Jon Lee, and Maurice Queyranne. 1995. An Exact Algorithm for

Maximum Entropy Sampling. Oper. Res. 43, 4 (1995), 684–691. https://doi.org/10.

1287/opre.43.4.684

[40] Jiannan Wang, Sanjay Krishnan, Michael J Franklin, Ken Goldberg, Tim Kraska,

and Tova Milo. 2014. A sample-and-clean framework for fast and accurate query

processing on dirty data. In Proc. ACM SIGMOD Int. Conf. on Management of Data.
469–480.

[41] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. 2020. RAB:

Provable Robustness Against Backdoor Attacks. arXiv e-prints, Article

arXiv:2003.08904 (March 2020), arXiv:2003.08904 pages. arXiv:cs.LG/2003.08904

[42] Richard Wu, Aoqian Zhang, Ihab Ilyas, and Theodoros Rekatsinas. 2020.

Attention-based Learning for Missing Data Imputation in HoloClean. Proceedings
of Machine Learning and Systems (2020), 307–325.

267

https://doi.org/10.1145/2955098
https://doi.org/10.1145/2955098
https://doi.org/10.1145/2213556.2213588
https://sites.google.com/site/anhaidgroup/projects/data
https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1145/3310205
https://doi.org/10.1145/3310205
https://doi.org/10.14778/3342263.3342637
https://arxiv.org/abs/2005.05117
http://starai.cs.ucla.edu/papers/KhosraviNeurIPS19.pdf
http://starai.cs.ucla.edu/papers/KhosraviNeurIPS19.pdf
https://arxiv.org/abs/1903.01620
http://arxiv.org/abs/1903.01620
http://arxiv.org/abs/1903.01620
http://proceedings.mlr.press/v70/koh17a.html
http://www.jstor.org/stable/2291635
http://proceedings.mlr.press/v80/sharchilev18a.html
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://arxiv.org/abs/https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1287/opre.43.4.684
https://doi.org/10.1287/opre.43.4.684
https://arxiv.org/abs/cs.LG/2003.08904

	Abstract
	1 Introduction
	2 Certain Prediction (CP)
	2.1 Certain Prediction (CP)

	3 Efficient Solutions for CP Queries
	3.1 SS Algorithm

	4 Application: Data Cleaning for ML
	4.1 The CPClean Algorithm

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

