
Computing How-Provenance for SPARQLQueries viaQuery
Rewriting

Daniel Hernández

Aalborg University, Denmark

danielh@cs.aau.dk

Luis Galárraga

Inria, France

luis.galarraga@inria.fr

Katja Hose

Aalborg University, Denmark

khose@cs.aau.dk

ABSTRACT

Over the past few years, we have witnessed the emergence of large

knowledge graphs built by extracting and combining information

from multiple sources. This has propelled many advances in query

processing over knowledge graphs, however the aspect of providing

provenance explanations for query results has so far been mostly

neglected. We therefore propose a novel method, SPARQLprov,

based on query rewriting, to compute how-provenance polyno-

mials for SPARQL queries over knowledge graphs. Contrary to

existing works, SPARQLprov is system-agnostic and can be applied

to standard and already deployed SPARQL engines without the need

of customized extensions. We rely on spm-semirings to compute

polynomial annotations that respect the property of commutation

with homomorphisms on monotonic and non-monotonic SPARQL

querieswithout aggregate functions. Our evaluation on real and syn-

thetic data shows that SPARQLprov over standard engines incurs

an acceptable runtime overhead w.r.t. the original query, competing

with state-of-the-art solutions for how-provenance computation.

PVLDB Reference Format:

Daniel Hernández, Luis Galárraga, and Katja Hose. Computing

How-Provenance for SPARQL Queries via Query Rewriting. PVLDB, 14(13):

3389-3401, 2021.

doi:10.14778/3484224.3484235

1 INTRODUCTION

The last few years have seen the emergence of large knowledge
graphs (KGs): collections of triples ⟨ subject, relation, object ⟩, mod-

eled using a graph abstraction [8] and constructed by extracting and

integrating information from multiple providers. KGs are typically

stored using the W3C standard RDF (Resource Description Frame-

work) [7] and queried using SPARQL [24]. They find applications in

multiple data-centric AI tasks, e.g., search engines, question answer-

ing, and smart assistants. This has not only given rise to a handful

of academic [26, 28, 29, 34, 42] and industrial [9, 13, 15, 35, 40, 41]

projects, but has also propelled many advances in graph stores and

RDF/SPARQL engines.

Despite the current progress in RDF/SPARQL processing, the

research in query provenance has particularly received little at-

tention. At the same time, query provenance is essential for some

applications given the central role of data integration in KG con-

struction and maintenance. The provenance of a query result is an

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 13 ISSN 2150-8097.

doi:10.14778/3484224.3484235

expression that encodes the “sources”, i.e., relationships/triples, and

processes that led to its computation. Reification is a prerequisite

for provenance, as we need to identify the relationships in a KG to

annotate query answers. For example, the triples in the RDF graph

of Figure 1 have been reified with identifiers of the form 𝑠𝑖 𝑗 .

Notable paradigms for query provenance are lineage, why-, and
how-provenance [10]. Consider, for instance, the query that asks the
KG in Figure 1 for people with an occupation who were awarded

a Nobel Prize in Literature (NPL). The answers to this query are

Gabriela Mistral (GM) and Olga Tokarczuk (OT). Lineage tells us

the sources in the graph that contribute to the answer, e.g., 𝑠22, 𝑠23,

and 𝑠24 for OT. Why-provenance tells us which sources contributed

simultaneously to a solution in the query result set [11]. For OT,

why-provenance is defined by the set {{𝑠22, 𝑠23}, {𝑠23, 𝑠24}} that tells
us that OT can be obtained by combining either 𝑠22 and 𝑠23, or 𝑠22
and 𝑠24. How-provenance extends why-provenance by structuring

the sources of an answer as elements in the commutative semiring

of polynomials with natural quotients (N[𝑋], ⊕, ⊗, 0, 1) where ele-
ments of 𝑋 identify relationships [22]. For instance, the answer OT

is annotated with a polynomial of the form 𝑠23 ⊗ (𝑠22 ⊕ 𝑠24), where
the operators ⊗ and ⊕ denote conjunctive and disjunctive deriva-

tion processes. The key property of commutative semirings is that

they commute with homomorphisms. This property makes polyno-

mials solid proofs that can be used in multiple applications [18].

GM

OT

female writer NPL
a

novelist

gender (𝑠11)

occupation (𝑠12) award (𝑠13)

gender (𝑠21)

occupation (𝑠22) award (𝑠23)

occupation (𝑠24)

a
Nobel Prize in Literature

Figure 1: Running example knowledge graph

It has been shown that commutative semirings cannot explain

the provenance of non-monotonic queries, that is, queries where
an answer can cease to be an answer after adding data to the

database [19, 20]. To guarantee this property, Geerts et al. [20]

propose the spm-semiring formalism. Spm-semirings extend poly-

nomial semirings with a difference operation ⊖ that can model

non-monotonic SPARQL operators (“spm” stands for SPARQL mi-

nus). Geerts et al. prove that spm-semirings can model provenance

3389

https://doi.org/10.14778/3484224.3484235
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3484224.3484235

for monotonic and non-monotonic SPARQL queries, however they

do not show how to compute such provenance.

This paper builds upon spm-semirings and proposes a method to

compute how-provenance annotations for the answers of SPARQL

queries. We target SPARQL because of its widespread use, its rele-

vance for prominent public knowledge graphs [28, 29, 42], and its

status as a W3C standard. Differently from state-of-the-art solu-

tions [4, 21, 43], our approach holds the commutation with homo-

morphisms property for non-monotonic SPARQL queries.

Our techniques rely on query rewriting. This design decision

makes our approach system-agnostic, and thus applicable to any

graph store with a SPARQL interface. This notably includes a large

variety of publicly available interfaces on the Web of Data, i.e.,

SPARQL endpoints. In summary, our contributions are:

• A novel query rewriting approach, SPARQLprov, that delivers

query solutions annotated with how-provenance polynomials

for SPARQL queries including the clauses and, union, minus,

optional, filter, bind, and select.

• An approach to annotate solutions of SPARQL aggregate queries

with lineage expressions.

• An extensive experimental evaluation of the runtime overhead

and scalability of SPARQLprov on real and synthetic data when

using different triple stores and reification schemes. We also

compare SPARQLprov to two state-of-the-art how-provenance

solutions, namely TripleProv [43] and GProM [4].

The remainder of this paper is structured as follows. Section 2

surveys the related work in provenance for query results, with

focus on SPARQL queries. Section 3 then discusses preliminaries,

whereas Section 4 elaborates on our contributions. Our evaluation

is detailed in Section 5. Finally, Section 6 concludes the paper with

an outlook to future work.

2 RELATEDWORK

Algebraic Structures for Provenance. The use of semirings to

model the management of annotated data was pioneered by the

work of Green et al. [22]. This work uses a commutative semiring to
annotate answers of queries in Datalog and the positive fragment

of relational algebra (i.e., selection-project-join-union queries). The

non-monotonic operators (left-outer join and relational difference)

are not expressible in the semiring framework [22] and require

an extension of the algebraic structure with a monus operator to
account for the relational difference [19]. This extended structure

is called m-semiring and is used by the ProvSQL system [38].

The work of Damasio et al. [12] shows that it is possible to

compute provenance annotations on the m-semiring for SPARQL

queries by rewriting the queries into relational algebra. However,

this model does not allow for concise polynomials for SPARQL,

which hampers its practical usability [20]. On those grounds, Geerts

et al. [20] introduce the spm-semirings formalism that guaran-

tees concise explanations for SPARQL queries including the non-

monotonic operators (optional and minus), and that is compatible

with existing annotation frameworks for semantic data [14, 25]. Our

work builds upon spm-semirings and devises a concrete method to

compute how-provenance via query rewriting.

SPARQL Engines with Provenance Support. Wylot et al. [43]

proposed TripleProv, which computes how-provenance annotations

in the semiring model for select queries with basic graph patterns

and the operators union and optional. However, TripleProv does

not guarantee the property of commutation with homomorphisms

for queries with optional due to its reliance on the semiring model.

Furthermore, TripleProv counts on its own customized engine that

stores data as molecules, i.e., star patterns. Hence, it cannot be

deployed on top of existing engines in contrast to our approach.

By relying on query rewriting, solutions such as Perm [21] and

GProM [4] can be deployed on top of existing engines. Neverthe-

less, their annotations are not always suitable for SPARQL queries

because these solutions are designed for relational databases. More-

over, both GProM and Perm rely on the semirings framework, thus

their annotations do not commute with homomorphisms for non-

monotonic queries.

Other solutions exploit provenance annotations for specific ap-

plications. Avgoustaki et al. [6] propose a framework to capture

the triple and attribute provenance polynomials of data added via

SPARQL monotonic insert updates. Halpin et al. [23] use SPARQL

insert updates to implement a Git-like version control system for

RDF. A recent work [18] proposes a strategy to maintain views of

SPARQL queries using how-provenance annotations on answers of

a set of target queries in the presence of updates.

3 PRELIMINARIES

RDF. Assume four countable infinite pairwise disjoint sets I, B, L,
and V, called IRIs, blank nodes, literals, and variables. An term is an

element in T = I∪B∪L. An RDF triple is a triple (𝑠, 𝑝, 𝑜) ∈ I∪B×I×T
where 𝑠 is the subject, 𝑝 the predicate and 𝑜 the object. An RDF graph
(or just a graph) is a set of RDF triples.

SPARQL. A SPARQL selection formula is defined recursively as

follows. If 𝑡1, 𝑡2 ∈ V ∪ T, and 𝑥 ∈ V, then (𝑡1 = 𝑡2) and bound(𝑥)
are atomic selection formulas. If 𝜑1 and 𝜑2 are SPARQL selection

formulas, then the expressions (𝜑1 ∧ 𝜑2), (𝜑1 ∨ 𝜑2), and ¬𝜑1 are
also SPARQL selection formulas.

A SPARQL query is defined recursively as follows. A triple from

(I ∪ V) × (I ∪ V) × (T ∪ V) is a query called a triple pattern1. A
set of triple patterns is called a basic graph pattern (BGP). If 𝑃 , 𝑃1
and 𝑃2 are queries, and 𝜑 is a selection formula then (𝑃1 and 𝑃2),
(𝑃1union𝑃2), (𝑃1optional𝑃2), (𝑃1optional𝜑 𝑃2), (𝑃1minus𝑃2),
(𝑃1 diff 𝑃2), (𝑃1 diff𝜑 𝑃2), and (𝑃 filter 𝜑) are queries2.

Assume a set F disjoint with T ∪ V, called the set of regular

function names, such that each function name 𝑓 ∈ F is associated

to a function 𝑓ˆ : (T∪{error})𝑛 → T∪{error},𝑛 is a natural number,

and “error” is an element that is not a term and denotes unbound

values or errors. If 𝑃 is a query, 𝑓 ∈ F, (𝑡1, . . . , 𝑡𝑛) ∈ (T ∪ V)𝑛 ,
and 𝑥 ∈ V, then (𝑃 bind (𝑓 (𝑡1, . . . , 𝑡1) as 𝑥)) is a query. Let A
be the set of aggregate functions, such that each function name

𝑔 ∈ A is associated to a commutative monoid (T, +𝑔, 0𝑔). If𝑊 is a

finite set of variables, 𝑔1, . . . , 𝑔𝑛 ∈ A, 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ V, and
𝑃 is a query, then (select𝑊 where 𝑃) and (select𝑊 (𝑔(𝑥1) as
𝑦1) . . . (𝑔𝑛 (𝑥𝑛) as 𝑦𝑛) where 𝑃 group by𝑊) are queries.

1
For simplicity, we do not include blank nodes in triple queries. They are expressible

by introducing fresh variables and projecting them out with the select operator.

2
The operator diff refers to the difference operator considered by Geerts et. al [20],

and even though it is not officially part of SPARQL, it is implemented in some existing

engines (e.g., Virtuoso).

3390

Let us denote by G the set of all possible RDF graphs, and by P
the set of all possible SPARQL queries. A solution mapping (or just

a mapping) is a partial function 𝜇 : V → T where the domain of 𝜇,

dom(𝜇), is the subset of V where 𝜇 is defined. The set of mappings

is denoted byM. The evaluation of a query 𝑃 ∈ P on a graph𝐺 ∈ G
is defined as a function J𝑃K𝐺 that returns a multiset of mappings

𝜇 ∈ M according to the semantics defined in [3, 32, 36]. Given a

basic graph pattern 𝑃 , and a mapping 𝜇 whose domain includes all

variables in 𝑃 , we write 𝜇 (𝑃) to denote the RDF graph resulting

from replacing each variable ?𝑥 occurring in 𝑃 by 𝜇 (?𝑥). We write

𝜇 (?𝑥) = error to denote that variable ?𝑥 is not in the domain of

mapping 𝜇. Given a set of variables𝑊 , we write 𝜇 |𝑊 to denote the

mapping resulting from limiting the domain of 𝜇 to dom(𝜇) ∩𝑊 .

The domain of a query 𝑃 ∈ P, denoted by dom(𝑃) in this paper

and called in-scope variables by the specification [24, §18.2.1], is

a set of variables defined recursively on the structures of queries

to satisfy dom(𝜇) ⊆ dom(𝑃) for every solution 𝜇 ∈ J𝑃K𝐺 . Two
mappings 𝜇1 and 𝜇2 are said to be compatible – denoted by 𝜇1 ∼ 𝜇2 –

if 𝜇1 (?x) = 𝜇2 (?x) for every variable ?x ∈ dom(𝜇1) ∩ dom(𝜇2).
We write 𝜇 |= 𝜑 to denote that formula 𝜑 is evaluated as true on

mapping 𝜇 (see [36]). We write 𝜇∅ to denote the mapping with

an empty domain. Note that two mappings with disjoint domains

are compatible, and the empty mapping is compatible with every

mapping. Given a mapping 𝜇 and a selection formula 𝜑 , we write

1𝜇 |=𝜑 to denote the value 1 in case that 𝜇 |= 𝜑 , and 0 otherwise.

Given a triple query (𝑠, 𝑝, 𝑜) and a mapping 𝜇, we write 𝜇 (𝑠, 𝑝, 𝑜) to
denote the triple resulting from replacing ?x with 𝜇 (?x) for each
variable ?x in the triple query.

We omit the semantics of SPARQL for space reasons and refer

the reader to [3, 32, 33, 36].

Structures for provenance in SPARQL. Our goal is to annotate

solution mappings from SPARQL queries with how-provenance

polynomials. Those polynomials are built upon an algebraic struc-

ture called spm-semiring. In the following we introduce the notions

of spm-semirings and describe their use.

A commutative monoidM is an algebraic structure (𝑀, +M , 0M)
where 𝑀 is a non-empty set closed under a commutative and

associate binary operation +M , and 0M is an identity for +M .

A commutative semiring K is a structure (𝐾, +K ,×K , 0K , 1K)
where (𝐾, +K , 0K) and (𝐾,×K , 1K) are commutative monoids,

×K is distributive over +K , and 0K ×K 𝑥 = 0. A spm-semiring
K is an algebraic structure [20] (𝐾, +K ,×K ,−K , 0K , 1K) where
(𝐾, +K ,×K , 0K , 1K) is a commutative semiring, and the follow-

ing axioms hold: 𝑥 −K 𝑥 = 0; 𝑥 −K (𝑦 +K 𝑧) = (𝑥 −K 𝑦) −K 𝑧;

𝑥×K (𝑦−K𝑧) = (𝑥×K𝑦)−K𝑧; and (𝑥−K (𝑥−K𝑦))+K (𝑥−K𝑦) = 𝑥 .
Examples of spm-semirings are: (i) The Boolean spm-semiring

(B,∨,∧,↛,⊥,⊤), whereB = {⊥,⊤},∨,∧, and↛ denote the logical

connectives disjunction, conjunction, andmaterial nonimplication
3
;

(ii) the spm-semiring of natural numbers (N, +,×, ⊖, 0, 1), where
+ and × are the usual sum and product of natural numbers, and

⊖ is the operation defined as 𝑥 ⊖ 𝑦 = 𝑥 if 𝑦 = 0, and 𝑥 ⊖ 𝑦 = 0 if

𝑦 ≠ 0; (iii) the provenance semiring (N[𝑋], ⊕, ⊗, ⊖, 0, 1) where 𝑋 is

a finite set (representing sources) andN[𝑋] is the set of equivalence
classes of the expressions in the closure of the set N ∪ 𝑋 under the

operations ⊕, ⊗, and ⊖.

3
The material nonimplication is defined by the identity 𝑥 ↛ 𝑦 = 𝑥 ∧ ¬𝑦.

If we conveniently annotate RDF triples and solution mappings

with the elements of an spm-semiring, we can extend the SPARQL

algebra with provenance annotations. Given a set 𝐴 and an spm-

semiring K , an annotation function 𝑓 : 𝐴 → 𝐾 is called a K-set
over 𝐴 if the set supp(𝑓) = {𝑥 ∈ 𝐴 | 𝑓 (𝑥) ≠ 0} – called the support
of 𝑓 – is finite. If 𝑎 ∈ 𝐴, we call 𝑓 (𝑎) its K-value. If 𝐴 is a set of

mappings, we say 𝑓 is a K-relation and denote it by Ω, whereas if
𝐴 is a set of triples, we say the annotation function is a K-graph,
which we denote by 𝐺 .

K-relations extend the notions of sets and bags of mappings

defined for the answers of SPARQL queries on RDF graphs. For

example, we can annotate mappings with elements in the Boolean

spm-semiring B to represent sets of mappings, or with elements in

the spm-semiring of natural numbers N to represent multisets of

mappings. In the first case, the annotations tell us if a mapping be-

longs to a set; in the second case, annotations encode multiplicities.

An spm-semiring homomorphism is a mapping ℎ : K → K ′

where K and K ′
are spm-semirings, ℎ(0K) = 0K′ , ℎ(1K) = 1K′ ,

ℎ(𝑥 +K 𝑦) = ℎ(𝑥) +K′ ℎ(𝑦), ℎ(𝑥 ×K 𝑦) = ℎ(𝑥) ×K′ ℎ(𝑦), and
ℎ(𝑥 −K 𝑦) = ℎ(𝑥) −K′ ℎ(𝑦). Given a K-set 𝑆 over a set 𝐴, and a

homomorphism ℎ : K → K ′
, we write ℎ(𝑆) to denote the K ′

-set

𝑆 ′ such that for every element 𝑎 ∈ 𝐴 it holds that 𝑆 ′(𝑎) = ℎ(𝑆 (𝑎)).
Recall that K-graphs and K-relations provide semantics for the

answers of SPARQL queries, however the semantics of the queries

themselves must also be adapted to return K-relations. Geerts et

al. [20] propose the following definition:

Definition 3.1. Given an spm-semiring K , a query 𝑄 ∈ P con-

siting of a combination of triple patterns with the operators and,

union, diff, optional, filter, and select, and a K-graph 𝐺 , we

write L𝑃M𝐺 to denote the K-relation defined recursively as follows:

L(𝑠, 𝑝, 𝑜)M𝐺 (𝜇) = 𝐺 (𝜇 (𝑠, 𝑝, 𝑜)),
Lselect𝑊 where 𝑃M𝐺 (𝜇) = ∑︁

𝜇′ |𝑊 =𝜇 L𝑃M𝐺 (𝜇 ′),
L𝑃 filter 𝜑M𝐺 (𝜇) = L𝑃M𝐺 (𝜇) ×K 1𝜇 |=𝜑 ,

L𝑃1 union 𝑃2M𝐺 (𝜇) = L𝑃1M𝐺 (𝜇) +K L𝑃2M𝐺 (𝜇),
L𝑃1 and 𝑃2M𝐺 (𝜇) = ∑︁

𝜇=𝜇1∪𝜇2 (L𝑃1M𝐺 (𝜇1) ×K L𝑃2M𝐺 (𝜇2)),
L𝑃1 diff 𝑃2M𝐺 (𝜇) = L𝑃1M𝐺 (𝜇) −K (∑︁𝜇′∼𝜇 L𝑃2M𝐺 (𝜇 ′)),
L𝑃1 optional 𝑃2M𝐺 (𝜇) = L𝑃1 and 𝑃2M𝐺 (𝜇) +K L𝑃1 diff 𝑃2M𝐺 (𝜇),

where

∑︁
denotes sums using the sum operation +K . The algebra de-

fined above is called K-annotated SPARQL algebra, which is shown

to hold the property of commutation of homorphisms according to

Geerts et al. [20].

Definition 3.2. Given an spm-semiring homomorphism ℎ : K →
K ′

, a query𝑄 is said to hold the commutationwith homomorphisms

property if for any graph 𝐺 it satisfies ℎ(L𝑄M𝐺) = L𝑄Mℎ (𝐺) .

Commutation with homomorphisms is a desired property be-

cause it allows specializing abstract provenance polynomials for dif-

ferent applications such as multiplicities, trust scores, cost, deletion

propagation, and probabilistic databases [2]. For example, consider

the K-graph 𝐺 depicted in Figure 1, and the query

𝑄 = select ?personwhere (?person, award, NPL) diff
(?person, occupation, novelist)

3391

Table 1: Reification scheme examples. On the left: a binary

relation (top) and a 3-ary relation (bottom). On the right:

reification using the Wikidata scheme (top) and the Direct

Mapping reification for n-ary relationships (bottom).

Relationship 𝑟 and graph 𝐺 Graph 𝐺𝑟 = Reify(𝑟,𝑢)
𝑟 = wdt:𝑞(𝑠, 𝑜),

and 𝐺 is

s owdt:𝑞

𝑢

𝑠 𝑜

p:𝑞 ps:𝑞

𝑟 = 𝑞(𝑎1, 𝑎2, 𝑎3),
and 𝐺 is

𝑞 𝑎1 𝑎2 𝑎3

𝑢

𝑎1 𝑎2 𝑎3

𝑞1 𝑞2 𝑞3

and let 𝜇M = {?person ↦→ GM} and 𝜇T = {?person ↦→ OT} be

two mappings corresponding to the solutions of the first triple

pattern. Because GM is a winner of the Nobel Prize in Literature,

but she is not a novelist, it holds that L𝑄M𝐺 (𝜇M) = 𝑠13 ⊖ 0. Similarly,

L𝑄M𝐺 (𝜇T) = 𝑠23⊖𝑠24. By applying an spm-semiring homomorphism

ℎ : N[𝑋] → B (to the Boolean semiring) such that ℎ(𝑠13) = ⊤,
ℎ(𝑠23) = ⊤, and ℎ(𝑠24) = ⊤, the provenance polynomials explain

why, according to the SPARQL set semantics, GM is an answer

of 𝑄 and why OT is not. Indeed, ℎ(𝑠13 ⊖ 0) = ⊤ ↛ ⊥ = ⊤ and

ℎ(𝑠23 ⊖ 𝑠24) = ⊤↛ ⊤ = ⊥.
Reification Schemes. In order to support provenance annotations

for query answers, we need to use a surrogate entity 𝑢 to refer to

each relationship 𝑟 (e.g., assign identifiers to triples in an RDF

graph). Those surrogate entities define the set𝑋 that is the building

block of our provenance annotations in the spm-semiring N[𝑋].
The process of encoding the data using these surrogate entities is

called reification. RDF and SPARQL allow multiple ways to reify

the data [16, 27]. A reification scheme is a function Reify that re-

ceives an 𝑛-relationship 𝑟 and a term 𝑢 ∈ I, and returns a graph

Reify(𝑟,𝑢), called the encoding of 𝑟 reified as𝑢. A reification scheme

defines an encoding of N[𝑋]-graphs 𝐺 as regular graphs 𝐺𝑟
(i.e.,

without annotations). We write Reify−1 (𝐺𝑟) to denote the N[𝑋]
graph defined as follows

4
:

Reify−1 (𝐺𝑟) ((𝑠, 𝑝, 𝑜)) =
⨁︁

𝜇∈JReify(𝑝 (𝑠,𝑜),?u)K𝐺𝑟
𝜇 (?u) .

Table 1 depicts two RDF reification schemes. The Wikidata

scheme is shown in the first row. Wikidata uses the prefix wdt for
the original predicates, i.e., predicates in a non-reified relationship

such as wdt:𝑞 (left cell). The prefix wdt is replaced by the prefixes p
and ps to create the new relationships p:𝑞, ps:𝑞 that link the new

reification entity 𝑢 with the subject and the object of the original

relationship (right cell). The second row illustrates a scheme to

codify 𝑛-ary relations in RDF (depicted as an hyper-edge on the

left), and is similar to the codification used to represent relational

databases in RDF according to the direct mapping strategy [39].

4
We allow for a sum of sources because one triple can represent several relationships.

For instance, Wikidata codifies that Bachelet was President of Chile with a triple for

which there are two reifying entities. Each entity describes one of two periods in which

Bachelet held that position [27].

Reification schemes are generalized for basic graph pattern by

admitting variables in the input relationships and basic graph pat-

terns in the output. For example, the relationship queries 𝑅1 =

wdt:q(?x, 𝑜) and 𝑅2 = q(𝑏1, ?x, 𝑏3) that result from introducing

variables in the relationships in Table 1 are reified as follows:

Reify(𝑅1, ?u) = (?x, p:q, ?u) and (?u, ps:q, 𝑜),
Reify(𝑅2, ?u) = (?u, q:1, 𝑏1) and (?u, q:2, ?x) and (?u, q:3, 𝑏3).

4 COMPUTING HOW-PROVENANCE

We now present our method, SPARQLprov, to compute how-

provenance for the answers of SPARQL queries. Given a query

𝑄 and a graph 𝐺 , our goal is to annotate 𝑄 ’s answers with polyno-

mials in the spm-semiring N[𝑋], where 𝑋 is the set of identifiers

assigned to the triples in𝐺 via reification. We do so by rewriting 𝑄

into a new query 𝑄 ′
so that its evaluation on 𝐺 returns mappings

in the support of 𝑄 annotated with how-provenance annotations.

Those annotations are encoded as part of the result of 𝑄 ′
, i.e., as

plain relations, and must be decoded into spm-semiring polynomi-

als, that is, into N[𝑋]-relations.
This section is organized in four parts. In Section 4.1, we ex-

tend the N[𝑋]-annotated SPARQL algebra to account for some

missing operators. Then, Section 4.2 describes how to compute

how-provenance for SPARQL queries with monotonic operators.

This is followed by an extension for non-monotonic operators in

Section 4.3. These extensions exclude queries with aggregation,

which we describe in Section 4.4.

4.1 Extending the K-annotated sparql Algebra

The K-annotated SPARQL algebra proposed by Geerts et al. [20]

– and described in Section 3 – is not defined for all the SPARQL

operators considered in this paper. For instance, the empty basic

graph pattern and the operator optional𝜑 (defined in SPARQL 1.0)

were not studied by Geerts et al. Moreover, the operatorsminus and

bind succeed the publication of the spm-semirings formalism. In

this section we extend theK-annotated SPARQL algebra to account

for the missing operators, except for aggregate queries because they

are not expressible with the spm-semiring [2].

Given a K-graph 𝐺 , the semantics of the empty basic graph

pattern are given by the identities L{}M𝐺 (𝜇∅) = 1K and L{}M𝐺 (𝜇) =
0K if 𝜇 ≠ 𝜇∅ , where 𝜇∅ is the empty mapping. We highlight that

producing answers from no data is a distinctive feature of SPARQL

with respect to relational algebra, since in relational algebra all

answers are generated from at least one tuple in the database.

Given a K-graph 𝐺 and a non-aggregate SPARQL query 𝑃 ,

the semantics of the bind operator are given by the identity

L𝑃 bind 𝑓 (𝑡1, . . . , 𝑡𝑛) as 𝑦M𝐺 = L𝑃M𝐺 . Intuitively, the operation

bind does not modify the provenance of answers of query 𝑃 because

the additional values are implicit in them.

In regards to the operators diff𝜑 , optional𝜑 , and minus, it is

known that they are expressible in terms of the operators originally

supported by the K-annotated SPARQL algebra [33]. We can there-

fore extend the annotated algebra for these operators by relying on

these translations, that are omitted here due to the limited space.

It can be shown by induction on the structure of queries that the

algebra resulting from the extension of the K-annotated SPARQL

3392

algebra described in this section holds the commutation with ho-

momorphisms property.

4.2 Provenance for monotonic operators

Before formalizing our approach , we illustrate the principle with

an example. The technique described in the example is implicit

in state-of-the-art provenance systems, such as GProM [4] and

HUKA [18]. Also, this example aims to familiarize the reader with

the encoding of polynomials in tables.

Example 4.1. Consider graph 𝐺 in Figure 1 and the following

query 𝑄 asking for female writers or novelists awarded with the

Nobel Prize in Literature.

select ?person
where ((?person, occupation, writer) union

(?person, occupation, novelist)) and
(?person, gender, female) and (?person, awarded, NPL)

The result of query 𝑄 under the N[𝑋]-annotated SPARQL algebra

is the following N[𝑋]-relation denoted by Ω:

Ω =

⎡⎢⎢⎢⎢⎢⎣
?person Ω(𝜇)

GM 𝑠12 ⊗ 𝑠11 ⊗ 𝑠13
OT (𝑠22 ⊕ 𝑠24) ⊗ 𝑠21 ⊗ 𝑠23

⎤⎥⎥⎥⎥⎥⎦ ,
where 𝜇 denotes each mapping in the support of Ω, and the double

vertical bars separate the domain and range of Ω. We can encode

this N[𝑋]-relation via the following plain relation Ω𝑟
:

Ω𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
?person ?Σ⊗1⊙ ?Σ⊗2⊙ ?Σ⊗3⊙ ?Σ⊗4⊙

GM 𝑠12 𝑠11 𝑠13
OT 𝑠22 𝑠21 𝑠23
OT 𝑠24 𝑠21 𝑠23

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where the single vertical rule separates query solutions from prove-

nance elements. The variables on the right side of the line tell us

how to decode this table into N[𝑋] polynomials. We illustrate this

process in the following:

(1) For each row of the table, multiply all non-unbound values

on the right of the vertical rule and record them under the

variable ?Σ⊗. The result is the following table.⎡⎢⎢⎢⎢⎢⎢⎢⎣
?person ?Σ⊗

GM 𝑠12 ⊗ 𝑠11 ⊗ 𝑠13
OT 𝑠22 ⊗ 𝑠21 ⊗ 𝑠23
OT 𝑠24 ⊗ 𝑠21 ⊗ 𝑠23

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(2) Sum the values on the right of the double vertical bar grouped

by the query answers (on the left), and record the results in

variable ?Σ. The result is the following table:⎡⎢⎢⎢⎢⎢⎣
?person ?Σ

GM 𝑠12 ⊗ 𝑠11 ⊗ 𝑠13
OT (𝑠22 ⊗ 𝑠21 ⊗ 𝑠23) ⊕ (𝑠24 ⊗ 𝑠21 ⊗ 𝑠23)

⎤⎥⎥⎥⎥⎥⎦ .
By the distributivity of the product over the sum, we observe that

the polynomials under the variable ?Σ in the table above are equiv-

alent to the polynomials in the N[𝑋]-relation Ω (recall that the

elements of N[𝑋] are equivalence classes for the polynomial ex-

pressions). In the following, we formalize this process of encoding

Ω into a regular relation Ω𝑟
via query rewriting.

Definition 4.2 (Semiring decoding). Assume two disjoint sets of

variables V𝑆 and V𝑃 , called solution and provenance variables. Let

Ω𝑟
be a set of mappings, where for each mapping 𝜇 ∈ Ω it holds

that dom(𝜇) ⊆ V𝑆 ∪ V𝑃 . The semiring decoding of Ω𝑟
is the N[𝑋]-

relation Ω defined as follows:

Ω(𝜇 ′) =
⨁︂

𝜇∈Ω, 𝜇′=𝜇 |V𝑆

⎛⎜⎝
⨂︂

𝑥 ∈dom(𝜇)∩V𝑃

𝜇 (𝑥)⎞⎟⎠ .
Determining a query rewriting 𝑄 ↦→ 𝑄𝑟

such that the rewrit-

ten query 𝑄𝑟
produces a regular relation Ω𝑟

, requires the use of

reification to obtain the sources associated to each relationship.

Definition 4.3 (Semiring query rewriting). Let Reify be a reifica-
tion scheme, and𝑄 be a query that consists of a combination of the

empty basic graph pattern and triple patterns with the operators

select, union, and, filter, and bind. Then, the semiring rewrit-
ing for query 𝑄 is the query rewriting that produces the query 𝑄𝑟

resulting from the following modifications in query 𝑄 :

(1) each empty basic graph pattern is replaced by the query {}bind
(1 as ?Σ⊗𝑖⊙),

(2) each triple pattern (𝑠, 𝑝, 𝑜) is replaced by the query

Reify(𝑝 (𝑠, 𝑜), ?Σ⊗𝑖⊙),
(3) the variables ?Σ⊗𝑖⊙ from steps 1 and 2 are added to the select

clause.

The value of 𝑖 is chosen consistently (in steps 1 and 2) to guarantee

a fresh variable ?Σ⊗𝑖⊙ in each replacement.

Example 4.4. The application of the semiring query rewriting

on the query of Example 4.1 produces the following query:

select ?person ?Σ⊗1⊙ ?Σ⊗2⊙ ?Σ⊗3⊙ ?Σ⊗4⊙
where (Reify(occupation(?person, writer), ?Σ⊗1⊙) union

Reify(occupation(?person, novelist), ?Σ⊗2⊙)) and
Reify(gender(?person, female), ?Σ⊗3⊙) and
Reify(awarded(?person, NPL), ?Σ⊗4⊙).

By simple inspection, one can verify that the rewritten query

in Example 4.4 returns the table that encodes the N[𝑋]-relation
that results from evaluating the original query. It can be shown

by induction that the semiring rewriting simulates the annotated

algebra. More formally, given a reification scheme Reify; a graph𝐺𝑟

annotated using Reify; a query𝑄 consisting of a combination of the

empty basic graph pattern and triple patterns with the operators

select, union, and, filter, and bind; a query 𝑄𝑟
resulting from

the semiring rewriting on query 𝑄 ; and the N[𝑋]-relation Ω′
that

results from the semiring decoding of the output of𝑄𝑟
in graph𝐺𝑟

,

it holds that Ω′ = L𝑄MReify−1 (𝐺) .

4.3 Provenance for non-monotonic operators

In this section we present our approach for query rewriting to com-

pute how-provenance for queries with non-monotonic SPARQL op-

erators.We build upon the spm-semirings framework.We first point

out the challenges of encoding polynomials in an spm-semiring us-

ing regular relations. We then propose an encoding that overcomes

those difficulties, and a query rewriting to obtain such an encoding.

4.3.1 Challenges to encode spm-semiring polynomials. The encod-
ing from N[𝑋]-relations to regular relations defined for monotonic

3393

operators fails for non-monotonic operations such as optional or

diff. We illustrate this issue by means of the following example.

Example 4.5. Consider the N[𝑋]-graph 𝐺 depicted in Figure 1

and the following query asking for females without an occupation.

𝑄 = select ?personwhere (?person, gender, female) diff
(?person, occupation, ?occup)

Under the annotated algebra, query 𝑄 returns the N[𝑋]-relation

Ω =

⎡⎢⎢⎢⎢⎢⎣
?person Ω(𝜇)

GM 𝑠11 ⊖ 𝑠12
OT 𝑠21 ⊖ (𝑠22 ⊕ 𝑠24)

⎤⎥⎥⎥⎥⎥⎦ .
Since the polynomials in Ω have the operator ⊖, we cannot use
Definition 4.3. A query rewriting for a query 𝑃1 diff 𝑃2 requires

returning the provenance of solutions 𝜇 of 𝑃1, and optionally, the

provenance of solutions of 𝑃2 that are compatible with 𝜇. This

observation yields the following query 𝑄𝑟

select ?person ?Σ⊖1⊙ ?Σ⊖2⊙
where Reify(gender(?person, female), ?Σ⊖1⊙)

optional Reify(occupation(?person, ?occup), ?Σ⊖2⊙),

which returns the following table:

Ω𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
?person ?Σ⊖1⊙ ?Σ⊖2⊙

GM 𝑠11 𝑠12
OT 𝑠21 𝑠22
OT 𝑠21 𝑠24

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

If we apply the naive decoding that computes a polynomial for each

row, and then sums the polynomials of the same solution, we get

the following N[𝑋]-relation:

Ω′ =

⎡⎢⎢⎢⎢⎢⎣
?person ?Σ

GM 𝑠11 ⊖ 𝑠12
OT (𝑠21 ⊖ 𝑠22) ⊕ (𝑠21 ⊖ 𝑠24)

⎤⎥⎥⎥⎥⎥⎦ .
The polynomials for the mapping 𝜇OT = {?person ↦→ OT} in the

resulting table and in Ω are not equivalent because ⊖ is not left-

distributive over ⊕, i.e., 𝑥 ⊖ (𝑦 ⊕ 𝑧) ≠ (𝑥 ⊖ 𝑦) ⊕ (𝑥 ⊖ 𝑧). This
shows that we cannot treat the monotonic operator ⊗ and the non-

monotonic operator ⊖ in the same way. We therefore need a more

sophisticated encoding to distinguish them.

4.3.2 Encoding for spm-semirings polynomials. Hitherto, to encode
an N[𝑋]-relation Ω with a set of mappings Ω𝑟

, we have distin-

guished the variables that are part of the solution mapping from

the variables that codify the provenance. We first define the set of

provenance variables in a more formal fashion.

Definition 4.6. Provenance variables are named with sequences

defined by the following generation rule:

V𝑃 ≔ Σ | ⊕ | ⊗ | ⊖ | ⊙ | (Σ | ⊕𝑁 | ⊗𝑁 | ⊖(1 | 2))V𝑃 ,
where 𝑁 denotes a positive natural number. We assume that the set

V (of variables) is the disjoint union of the sets V𝑆 and V𝑃 , where
variables in V𝑆 are called solution variables.

As Example 4.5 suggests, the names of the provenance variables

encode information. Therefore, it is necessary to identify the compo-

nents of a variable, such as the prefix. Given a provenance variable

?𝑥 , we write V?𝑥 to denote the subset of V𝑃 consisting of the vari-

ables with prefix 𝑥 , e.g., ?⊕⊖ ∈ V?⊕ . Given a set of mappings Ω, a
variable ?𝑥 , a set of variables𝑉 , and a term 𝑐 , the expression Ω |?𝑥=𝑐
denotes the set of mappings {𝜇 ∈ Ω | 𝜇 (?𝑥) = 𝑐}, Ω(?𝑥) denotes
the set of terms {𝜇 (?𝑥) | 𝜇 ∈ Ω}, and Ω[𝑉] denotes the set of

mappings {𝜇 |𝑉 | 𝜇 ∈ Ω}.
Syntactically speaking, polynomial expressions inN[𝑋] are trees

where internal nodes are operations (i.e., ⊕, ⊗, and ⊖), and leafs

are 0, 1, or polynomial variables. For instance, the polynomial ex-

pression (𝑥 ⊕ 𝑦) ⊗ 1 corresponds to the following tree:

⊗
⊕ 1

𝑥 𝑦

1 2

1 2

Edges are labeled with 1 and 2 to distinguish branches.

To encode this tree as a table, we use a column for each node,

and identify these columns with the variables ?⊗, ?⊗1⊕, ?⊗1⊕1⊙,
?⊗1⊕2⊙, and ?⊗2⊙. The sequence of symbols in variable names

identifies the node by its path from the root – including nodes and

edge labels. For instance, since the path to node 𝑦 is the sequence

(⊗, 1, ⊕, 2), we encode this node with the variable ?⊗1⊕2⊙. The
symbol ⊙ at the end of the variable indicates that node 𝑦 is a leaf.

In the same spirit, the tree for the sub-expression 𝑥 ⊕ 𝑦 is codified

with the variables ?⊕, ?⊕1⊙, and ?⊕2⊙. The process of taking a

sub-expression in a table is defined as follows.

Definition 4.7 (Subtables). Given a finite set of mappings Ω, a
finite set of provenance variables 𝑉 , and a variable ?𝑥◦ ∈ 𝑉 that

consists of a prefix 𝑥 and a symbol ◦ ∈ {Σ, ⊕, ⊗, ⊖, ⊙}, the subtable
of Ω over ?𝑥◦, denoted subt(Ω, ?𝑥) is the set of mappings that

results from replacing prefix ?𝑥 by ? in the set of mappings Ω[V?𝑥]
and excluding mappings 𝜇 where ?◦ is unbound. Similarly, the

subtable of 𝑉 over ?𝑥◦, denoted subt(𝑉 , ?𝑥◦), is the set of variables
that results from replacing the prefix ?𝑥 by ? in𝑉 ∩ V?𝑥◦. We write

subt((Ω,𝑉), ?𝑥◦) to denote the pair (subt(Ω, ?𝑥◦), subt(𝑉 , ?𝑥◦)).

Example 4.8. The extraction of the expression 𝑥 ⊕ 𝑦 from the

table that codifies the aforementioned expression (𝑥 ⊕ 𝑦) ⊗ 𝑧 is
implemented with the function subt as follows:

5

subt(
[︄
?⊗ ?⊗1⊕ ?⊗1⊕1⊙ ?⊗1⊕2⊙ ?⊗2⊙
𝑎 𝑏 𝑥 𝑦 1

]︄
, ?⊗1⊕)) =[︄

?⊕ ?⊕1⊙ ?⊕2⊙
𝑏 𝑥 𝑦

]︄
.

Recall that our goal is to define a query rewriting such that the

rewritten queries produce sets of mappings that can be decoded as

N[𝑋]-relations. We call the provenance table the output of such a

rewritten query. Function subt is defined to retrieve sub-expressions

of a polynomial in a provenance table. Since function subt needs to

record the set of variables that define the columns of the table (recall

that sets of mappings do not record the variables that are unbound),

provenance tables are defined as pairs (Ω,𝑉) where Ω is the set of

mappings and 𝑉 is a finite set of variables including all variables

in Ω. Additionally, provenance tables have to satisfy a particular

structure, defined recursively as combinations of provenance tables.

5
Terms 𝑎 and 𝑏 can be ignored for now (they are explained in detail in Section 4.3.3).

3394

Definition 4.9 (Provenance tables). The set of provenance tables is
the minimal set of mappings defined recursively as follows:

(1) A pair ({𝜇}, {?⊙}) where 𝜇 is a mapping, and dom(𝜇) ⊆ {?⊙}
is a provenance table.

(2) A pair (Ω𝑡 ,𝑉), where Ω𝑡
is a set of mappings for 𝑥 ∈ {⊕, ⊗, ⊖},

𝑉 is a finite subset of V?𝑥 and 𝑉 includes the provenance

variables {?𝑥}, ?V𝑥1𝑦 , and V?𝑥2𝑧 with 𝑦, 𝑧 ∈ {Σ, ⊕, ⊗, ⊖, ⊙},
is a provenance table if either Ω𝑡 = {𝜇∅} or Ω𝑡

satisfies

the following conditions: (a) Each mapping 𝜇 ∈ Ω𝑡
satisfies

dom(𝜇) ⊆ 𝑉 ; (b) there exists a term 𝑐 such that 𝜇 (?𝑥) = 𝑐 for
each 𝜇 ∈ Ω𝑡

; (c) for 𝑘 ∈ {1, 2} and 𝑢 ∈ {𝑦, 𝑧}, there exists a dis-
joint union Ω𝑡 [V?𝑥k𝑢] = Ω𝑡

1
∪ · · · ∪Ω𝑡

𝑛 such that, for 1 ≤ 𝑖 ≤ 𝑛,
subt((Ω𝑡

𝑖
,𝑉), ?𝑥k)) is a provenance table.

(3) A pair (Ω𝑡 ,𝑉), where Ω𝑡
is a set of mappings, 𝑉 is a finite sub-

set of V?Σ that includes variable ?Σ and a variable ?Σ𝑦 with

𝑦 ∈ {Σ, ⊕, ⊗, ⊖, ⊙}, is a provenance table if either Ω𝑡 = {𝜇∅}
or Ω𝑡

satisfies the following conditions: (a) Each mapping

𝜇 ∈ Ω𝑡
satisfies dom(𝜇) ⊆ 𝑉 ; (b) there exists a disjoint

union Ω𝑡 [V?Σ𝑦] = Ω𝑡
1
∪ · · · ∪ Ω𝑡

𝑛 such that, for 1 ≤ 𝑖 ≤ 𝑛,

subt((Ω𝑡
𝑖
,𝑉), ?Σ) is a provenance table.

We are now ready to define the main notion of our query rewriting,

that is, how we decode provenance tables as N[𝑋]-relations.

Definition 4.10 (Spm-semiring decoding). Given a provenance

table 𝑇 , the spm-semiring decoding of 𝑇 , denoted ⟪𝑇⟫, is the prove-
nance polynomial defined recursively as follows:

(1) If 𝑇 is a pair ({𝜇}, {?⊙}), where 𝜇 is a mapping, then ⟪𝑇⟫ =

𝜇 (?⊙) if ⊙ ∈ dom(𝜇); otherwise ⟪𝑇⟫ = 0.

(2) If 𝑇 is a pair (Ω𝑡 ,𝑉), where the common prefix of variables in

𝑉 is ?◦ for ◦ ∈ {⊕, ⊖}, and 𝑉 includes variables ?◦, ?◦1𝑦, and
?◦2𝑧 with 𝑦, 𝑧 ∈ {Σ, ⊕, ⊗, ⊖, ⊙}, then ⟪𝑇⟫ = ⟪𝑇1⟫ ◦ ⟪𝑇2⟫ where
𝑇1 = subt(𝑇, ?◦1𝑦) and 𝑇2 = subt(𝑇, ?◦2𝑧).

(3) If 𝑇 is a pair (Ω𝑡 ,𝑉), where the common prefix of

variables in 𝑉 is ?⊗, and 𝑉 includes the variables

?⊗, ?⊗1𝑦 and ?⊗2𝑧 with 𝑦, 𝑧 ∈ {Σ, ⊕, ⊗, ⊖, ⊙}, then

⟪𝑇⟫ =
⨁︁

𝑎∈Ω𝑡 (?⊗1𝑦), 𝑏∈Ω𝑡 (?⊗2𝑧)⟪𝑇1⟫ ⊗ ⟪𝑇2⟫ where

𝑇1 = subt(𝑇 |?⊗1𝑦=𝑎, ?⊗1𝑦) and 𝑇2 = subt(𝑇 |
?⊗2𝑧=𝑏 , ?⊗2𝑧).

(4) If 𝑇 is a pair (Ω𝑡 ,𝑉), where the common prefix of variables

in 𝑉 is ?Σ, and 𝑉 includes the variables ?Σ and ?Σ𝑦 with

𝑦 ∈ {Σ, ⊕, ⊗, ⊖, ⊙}, then ⟪𝑇⟫ =
⨁︁

𝑎∈Ω𝑡 (?Σ𝑦)⟪𝑇𝑎⟫ where

𝑇𝑎 = subt(𝑇 |?Σ𝑦=𝑎, ?Σ𝑦).

Let Ω𝑟
be a set of mappings, and 𝑉 be a finite set of variables that

include all variables in Ω𝑟
. Given a mapping 𝜇 ∈ Ω𝑟 [V𝑆], let Ω𝑟 (𝜇)

be the set of mappings 𝜇 ′ ∈ Ω𝑟
that agree with 𝜇 in the domain

V𝑆 (i.e., for every variable ?𝑥 ∈ V𝑆 , either 𝜇 (?𝑥) = 𝜇 ′(𝑥) or ?𝑥 does

not belong to the domains of 𝜇 and 𝜇 ′). If 𝑇𝜇 = Ω𝑟 (𝜇) [𝑉 ∩ V𝑃] is
a provenance table for each mapping 𝜇 ∈ Ω𝑟 [V𝑆], then the spm-
semiring decoding for Ω𝑟

is the N[𝑋]-relation Ω where Ω(𝜇) =

⟪𝑇𝜇⟫ if 𝜇 ∈ Ω𝑟 [V𝑆], and Ω(𝜇) = 0 if 𝜇 ∉ Ω𝑟 [V𝑆].

Example 4.11. Consider the N[𝑋]-graph 𝐺 in Figure 1, the fol-

lowing query 𝑄 (from Example 4.5), and the set of mappings Ω𝑟
:

𝑄 = select ?personwhere (?person, gender, female) diff
(?person, occupation, ?occup),

Ω𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
?person ?⊖ ?⊖1⊙ ?⊖2Σ ?⊖2Σ⊙

GM 𝑎 𝑠11 𝑐 𝑠12
OT 𝑏 𝑠21 𝑑 𝑠22
OT 𝑏 𝑠21 𝑑 𝑠24

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝑎, 𝑏, 𝑐 , and 𝑑 can be ignored for now – they are explained in

detail in the next section. This set of mappings is interpreted as the

following N[𝑋]-relation:

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

?person

GM ⟪
[︄
?⊖ ?⊖1⊙ ?⊖2Σ ?⊖2Σ⊙
𝑎 𝑠11 𝑐 𝑠12

]︄
⟫

OT ⟪
⎡⎢⎢⎢⎢⎢⎣
?⊖ ?⊖1⊙ ?⊖2Σ ?⊖2Σ⊙
𝑏 𝑠21 𝑑 𝑠22
𝑏 𝑠21 𝑑 𝑠24

⎤⎥⎥⎥⎥⎥⎦⟫

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can see that Ω is the N[𝑋]-relation obtained by the N[𝑋]-
annotated SPARQL algebra using the definition of ⟪·⟫. We next

describe how the provenance polynomial for OT is decoded:

⟪
[︄
?⊙
𝑠21

]︄
⟫ ⊖ ⟪

⎡⎢⎢⎢⎢⎢⎣
Σ Σ⊙
𝑑 𝑠22
𝑑 𝑠24

⎤⎥⎥⎥⎥⎥⎦⟫ = 𝑠21 ⊖
(︄
⟪
[︄
?⊙
𝑠22

]︄
⟫ ⊕ ⟪

[︄
?⊙
𝑠24

]︄
⟫
)︄
=

𝑠21 ⊖ (𝑠22 ⊕ 𝑠24).

4.3.3 Query rewriting for non-monotonic queries. Wenow present a

query rewriting that is compatible with our spm-semiring decoding,

that is, it produces a new query 𝑄𝑟
that evaluates into a regular

relation Ω𝑟
that encodes the N[𝑋]-relation result of the original

query 𝑄 under the N[𝑋]-annotated SPARQL algebra.

The set of mappings Ω𝑟
used in Example 4.11 to encode an

N[𝑋]-relation Ω includes the terms 𝑎 and 𝑏 which are used

to identify mappings associated to the same solution. We can

associate mappings such that 𝜇 (?⊖) = 𝑎 to solution GM and

the mappings where 𝜇 (?⊖) = 𝑏 to solution OT. We define

these terms 𝑎 and 𝑏 as a function 𝛽 of the values of the map-

ping 𝜇 and the variable ?⊖. For instance, 𝑎 = 𝛽 (𝜇, ?⊖) =

<http://example.org/Σ?person=GM&occupation=writer>. We

next define such a function 𝛽 .

Given a provenance variable ?𝑤 and a list of variables

𝑋 = (?𝑥1, . . . , ?𝑥𝑛) in lexicographic order, we write B(𝑋, ?𝑤) to
denote the operation bind (𝐸 as ?𝑤) where 𝐸 is the following

built-in SPARQL expression supported by standard triple stores:

IRI(CONCAT("http://example.org/𝑤?",𝐴1,"&",...,"&",𝐴𝑛)),

where for 1 ≤ 𝑖 ≤ 𝑛, 𝐴𝑖 is the expression:
COALESCE(CONCAT("&𝑥𝑖=",ENCODE_FOR_URI(xsd:string(?𝑥𝑖))),"").

Given a mapping 𝜇 such that dom(𝜇) ⊆ 𝑋 , we define 𝛽 (𝜇, ?𝑤)
as the result of evaluating B(𝑋, ?𝑤) on mapping 𝜇. Given a

set of variables 𝑊 = {?𝑤1, . . . , ?𝑤𝑚}, we write B(𝑋,𝑊) as an

abbreviation for B(𝑋, ?𝑤1) · · · B(𝑋, ?𝑤𝑚).
The rewriting of operator diff poses some challenges that re-

quire additional work. Example 4.5 suggests that a query 𝑄 =

3395

𝑃1 diff 𝑃2 is rewritten as 𝑄𝑟 = (select dom(𝑃1) ∪ 𝑋 where

𝑃𝑟
1
optional 𝑃𝑟

2
), where 𝑃𝑟

1
and 𝑃𝑟

2
are the rewritten queries for 𝑃1

and 𝑃2, and 𝑋 is the set of provenance variables added in queries

𝑃𝑟
1
and 𝑃𝑟

2
. The key of this rewriting is that the provenance vari-

ables generated in query 𝑃𝑟
2
are projected, but not the values of the

solutions of 𝑃2. However in general, this rewriting does not work

because it can still return bindings from solutions of 𝑃2. For instance,

if dom(𝑃1) = dom(𝑃2) = {?𝑥, ?𝑦}, supp(L𝑃1M𝐺) = {?𝑥 ↦→ 𝑎}, and
supp(L𝑃2M𝐺) = {?𝑥 ↦→ 𝑎, ?𝑦 ↦→ 𝑏}, then the aforementioned rewrit-

ten query 𝑄𝑟
returns an annotated mapping {?𝑥 ↦→ 𝑎, ?𝑦 ↦→ 𝑏}

instead of mapping {?𝑥 ↦→ 𝑎}. To solve this issue we substitute

each “problematic” variable ?𝑦 with a fresh variable ?𝑦′, and add a

condition to check that the values of variables ?𝑦 and ?𝑦′ are com-

patible. We call variable substitution, a partial function 𝜈 : V𝑆 → V𝑆 ,
and we write 𝜈 (𝑄) to denote the result of substituting in 𝑄 every

variable ?𝑥 ∈ dom(𝜈) by 𝜈 (?𝑥). We write 𝐶𝜈 to denote the formula⋀︁
?𝑥 ∈dom(𝜈) (¬ bound(?𝑥) ∨¬ bound(𝜈 (?𝑥)) ∨ ?𝑥 = 𝜈 (?𝑥)). Hence,

the aforementioned query 𝑄 is rewritten into 𝑄𝑟
, where pattern

𝑃𝑟
1
optional 𝑃𝑟

2
is substituted with pattern 𝑃𝑟

1
optional𝐶𝜈

𝜈 (𝑃𝑟
2
),

and 𝜈 substitutes the problematic variables with fresh variables

(observe that both patterns are identical if there are no problem-

atic variables). The variable substitution 𝜈 depends on determin-

ing what variables are problematic. A variable ?𝑥 is said to be

problematic if there exists a graph 𝐺 such that there is a mapping

𝜇1 ∈ supp(L𝑃1M𝐺) where ?𝑥 is unbound. We cannot find the ex-

act set of problematic variables because, in general, the problem

of determining whether or not a variable is potentially unbound

is undecidable, but a sound approximate method can be used to

discard variables that are always bound, called strongly bound [5].

Now we are ready to present the query rewriting to annotate

answers of monotonic and non-monotonic SPARQL queries with

how-provenance. The algorithm assumes a SPARQL reification

scheme Reify as parameter. To ease readability, we assume that

Reify reifies binary relationship queries, even though the query

rewriting can be generalized to relationship queries of higher arity.

Additionally, we define the query rewriting for queries written

in terms of the operators select, and, union, diff, filter, and

bind, called primitive in what follows. Queries with the operators

minus, optional, optional𝜑 , and diff𝜑 can be normalized to use

the aforementioned set of operators (see Section 4.1).

Definition 4.12. Let 𝑄 , 𝑃1, and 𝑃2 be SPARQL queries consisting

of empty basic graph patterns, triple patterns, and primitive op-

erators. Let 𝑧V𝑃 be a prefix of a provenance variable, 𝜈 a variable

substitution that substitutes with fresh variables the variables in

dom(𝑃1) ∩ dom(𝑃2) that are not strongly bound in 𝑃1, and Reify a

reification scheme. Then, the rewritten query for 𝑄 and variable 𝑧,

denoted 𝛼 (𝑄, 𝑧), is defined recursively as follows:

(1) If 𝑄 is an empty basic graph pattern, then 𝛼 (𝑄, 𝑧) is the query
{} B(1, 𝑧⊙).

(2) If 𝑄 is a triple pattern (𝑠, 𝑝, 𝑜), then 𝛼 (𝑄, 𝑧) is the query

Reify(𝑝 (𝑠, 𝑜), 𝑧Σ⊙) B(dom(𝑄), 𝑧Σ).
(3) If 𝑄 is 𝑃1 and 𝑃2, then 𝛼 (𝑄, 𝑧) is the query

(𝛼 (𝑃1, 𝑧⊗1) and 𝛼 (𝑃2, 𝑧⊗2)) B(dom(𝑄), 𝑧⊗).
(4) If 𝑄 is 𝑃1 union 𝑃2, then 𝛼 (𝑄, 𝑧) is the query

(𝛼 (𝑃1, 𝑧⊕1) union 𝛼 (𝑃2, 𝑧⊕2)) B(dom(𝑄), 𝑧⊕).

(5) If 𝑄 is 𝑃1 diff 𝑃2, then 𝛼 (𝑄, 𝑧) is the query
(select 𝑊
where (𝛼 (𝑃1, 𝑧⊖1) optional𝐶𝜈

𝛼 (𝜈 (𝑃2), 𝑧⊖2Σ))
B(dom(𝑄), {𝑧⊖, 𝑧⊖2Σ})

,

such that 𝑊 is the set of variables (dom(𝛼 (𝑃1, 𝑧⊖1)) ∪
dom(𝛼 (𝜇 (𝑃2), 𝑧⊖2Σ))) \ dom(𝜇 (𝑃2)).

(6) If 𝑄 is select𝑊 where 𝑃1, then 𝛼 (𝑄, 𝑧) is the query
select 𝑊 ∪ (dom(𝛼 (𝑃1, 𝑧Σ)) \ dom(𝑃1)) ∪ {𝑧Σ}
where 𝛼 (𝑃1, 𝑧Σ)) B(dom(𝑄), 𝑧Σ)

(7) If 𝑄 is 𝑃1 filter 𝜑 , then 𝛼 (𝑄, 𝑧) is the query
𝛼 (𝑃1, 𝑧) filter 𝜑 .

(8) If 𝑄 is 𝑃1 bind (𝐸 as 𝑥), then 𝛼 (𝑄, 𝑧) is the query
𝛼 (𝑃1, 𝑧) bind (𝐸 as 𝑥).

We write 𝛼 (𝑄) as an abbreviation of 𝛼 (𝑄, ?).

The correctness of the query rewriting is given as follows.

Theorem 4.13. Let 𝐺 be a graph, 𝑄 be a SPARQL query consist-
ing of empty basic graph patterns, triple patterns, and the primitive
operators, 𝑄𝑟 = 𝛼 (𝑄) be the rewritten query for 𝑄 according to
Definition 4.17, then J𝑄K𝐺 encodes the N[𝑋]-relation L𝑄M𝐺 .

Example 4.14. Let 𝑄 be the query of Example 4.5 asking for

females without occupation. The rewritten version of query 𝑄 is:

𝛼 (𝑄) = select ?person ?Σ
?Σ⊖ ?Σ⊖1Σ ?Σ⊖1Σ⊙ ?Σ⊖2Σ ?Σ⊖2ΣΣ ?Σ⊖2ΣΣ⊙

where 𝛼 ((?person, gender, female) diff
(?person, occupation, ?occup), ?Σ)

B({?person}, ?Σ)
= select ?person ?Σ

?Σ⊖ ?Σ⊖1Σ ?Σ⊖1Σ⊙ ?Σ⊖2Σ ?Σ⊖2ΣΣ ?Σ⊖2ΣΣ⊙
where (𝛼 ((?person, gender, female), ?Σ⊖1) optional

𝛼 ((?person, occupation, ?occup), ?Σ⊖2Σ), ?Σ)
B({?person}, {?Σ⊖, ?Σ⊖1Σ, ?Σ}) .

We omit the remaining recursive steps of the query rewriting due

to space limitations.

4.4 Provenance for Aggregate Queries

The query rewriting described in Definition 4.17 does not include

aggregate queries, which however are of great interest for OLAP

(OnLine Analytical Processing) applications [17, 30, 31]. We there-

fore extend the algebra covered by Geerts [20] by defining a lineage-

based provenance model for aggregate queries. Lineage annotations

break the property of commutation with homomorphisms. In [2] it

is suggested, however, that respecting this property comes at the

expense of encoding the resulting aggregate values in the solutions

of queries as expressions that can be evaluated via a homomor-

phism. This complefixies the output the query rewriting. Providing

how-provenance annotations that commute with homomorphisms,

and that at the same time do not require to encode the query results,

is an interesting avenue for future work.

Definition 4.15. The lineage-spm-semiring is the structure

(N[𝑋], ⊕, ⊗, ⊖, 𝛿, 0, 1) where (N[𝑋], ⊕, ⊗, ⊖, 0, 1) is a provenance
spm-semiring and 𝛿 is a unary operation. Let 𝐹 be the aggregate

expression (𝑔1 (𝑥1) as𝑦1) . . . (𝑔𝑛 (𝑥𝑛) as𝑦𝑛). The lineage-annotated
algebra is the result of extending the N[𝑋]-annotated SPARQL

3396

algebra as follows: Lselect𝑊 𝐹 where 𝑃 group by𝑊 M𝐺 (𝜇) =

𝛿

(︂⨁︁
𝜇′ |𝑊 =𝜇 |𝑊 L𝑃M𝐺 (𝜇 ′)

)︂
.

Example 4.16. Let 𝐺 = {(𝑎, :price, 1) ↦→ 𝑘1, (𝑎, :price, 2) ↦→
𝑘2} be an N[𝑋]-graph recording products and transaction prices,

and 𝑄 be the following SPARQL query asking for the total taxes

(10%) paid for each product:

select ?product (sum(?tax) as ?totalTax)
where ((?product,:price,?price) bind (?price*0.1 as ?tax))
group by ?product.

The evaluation of 𝑄 in 𝐺 has a unique answer 𝜇 = {?product ↦→
𝑎, ?totalTax ↦→ 0.3}. Intuitively and according to the proposed

semantics, the provenance of a mapping 𝜇 resulting from an ag-

gregation is defined in terms of the provenance of the mappings

𝜇 ′ that are aggregated to generate 𝜇. This intuition is formal-

ized by Definition 4.15, from which it follows that L𝑄M𝐺 (𝜇) =

𝛿 (
⨁︁

𝜇′ |?product=𝜇 L𝑃M𝐺 (𝜇 ′)) = 𝛿 (𝑘1⊕𝑘3) where the operator 𝛿 keeps
track of the sources that participate in a single aggregation, 𝑃 is

the pattern in the where clause of the query above.

The rewriting of aggregate queries requires a special regard.

The main idea behind the rewriting of an aggregate query 𝑄 =

(select 𝑊 (𝑓 (𝑥) as 𝑦) where 𝑃) is that for each answer 𝜇 of

𝑄 we have to compute both, the value 𝑐 of the aggregate function

𝑓 (𝑥) and the polynomial 𝑝 that explains the mapping 𝜇. We fol-

low the approach described in [21] for relational algebra, which

calculates the aggregate function and the polynomial that explains

𝜇 separately and then combines both results with a natural join

to ensure that values of the aggregate function and polynomials

correspond to the same mapping 𝜇. However, this approach can-

not directly be applied to SPARQL because compatible mappings

are joinable, which may result in wrong combinations of aggre-

gate values and provenance polynomials. It follows that we need

a join based on a more strict compatibility notion that accepts

equal values instead of compatible values. This compatibility is

called cautious compatibility in [37] and formalized as follows.

Let 𝑄1 and 𝑄2 be SPARQL queries, 𝜈 be a variable substitution

for the variables in dom(𝑄1) ∩ dom(𝑄2) that are not strongly

bound in 𝑄1 and 𝑄2. Then, we write 𝑄1 and= 𝑄2 to denote the

SPARQL query select𝑊 where (𝑄1 and𝜈 (𝑄2)) filter𝜑𝜈 , where
𝑊 = dom(𝑄1) ∪ dom(𝑄2) and 𝜑𝜈 is the formula

⋀︁
?𝑥 ∈dom(𝜈) (?𝑥 =

𝜈 (?𝑥) ∨ (¬ bound(?𝑥) ∧¬ bound(𝜈 (?𝑥)) . Definition 4.17 formalizes

the extension of our query rewriting for aggregate queries.

Definition 4.17. Let𝑊 be a set of variables; 𝐴 be an aggregate

function expression; 𝑃 be a SPARQL query consisting of empty

basic graph patterns, triple patterns, the primitive operators, and

aggregate functions; 𝑧 be a provenance variable prefix; and 𝑄 be

the query (select𝑊 𝐴 where 𝑃), then 𝛼 (𝑄, 𝑧) is the query
𝛼 ((select𝑊 where 𝑃), 𝑧) and= (select𝑊 𝐴where 𝑃).

5 EVALUATION

We evaluate the viability of SPARQLprov to compute how-

provenance by measuring the runtime overhead w.r.t. the original

query. The evaluation is carried out on Virtuoso and Fuseki, two

standard RDF/SPARQL engines, using real and synthetic data. In

Section 5.1, we evaluate the response times of each phase of SPAR-

QLprov (rewriting, execution, and decoding) as well as the impact

of the reification scheme used to model the data. In Section 5.2, we

conduct a scalability analysis and consider queries with aggregates.

Section 5.3 evaluates our approach on a real-world dataset, i.e.,

Wikidata [42]. Finally, in Section 5.4 we compare our solution with

two state-of-the-art approaches for how-provenance.

All experiments were conducted on a machine with an AMD

EPYC 7281 16-Core Processor, 256GB of RAM, and an 8 TB HDD

disk. We use Virtuoso (v. 7.2.5.1) and Fuseki (v. 3.17.0 with TDB1

as storage driver) to test SPARQLprov. For all experiments, we

set a timeout of 300 seconds, and report the average response

time of the queries over 5 executions after a warm-up phase. Our

implementation as well as the experimental data are available at

https://relweb.cs.aau.dk/sparqlprov/.

5.1 Algorithm phases and reification scheme

For this evaluation we use Watdiv [1], a state-of-the-art perfor-

mance benchmark for RDF/SPARQL engines. Watdiv offers a data

generator to build synthetic datasets of different sizes, and 20 query

templates each containing 10 instantiated queries. The query tem-

plates are divided in four categories; linear queries (L), star queries

(S), snowflake-shaped queries (F), and complex queries (C). We also

introduce 5 new query templates to account for non-monotonic

queries (O). These queries were constructed by surrounding one of

the triple patterns in the linear queries with an optional clause.

5.1.1 Rewriting and decoding. As explained in Section 4, SPARQL-

prov operates in three stages: (i) query rewriting, (ii) execution of

the rewritten query on the host engine, and (iii) decoding of the an-

swer into how-provenance polynomials. Our experimental results

show that phase (ii) dominates the other phases in terms of runtime.

In particular the runtime of phase (i) is negligible, whereas for phase

(iii) runtime is mainly determined by the result size. Based on these

observations, we focus the remainder of our runtime analysis on

phase (ii), i.e., the execution of the provenance query itself.

5.1.2 Query execution. Query runtime is obviously influenced by

the used reification scheme. Hence, we measure query execution

times on the three most popular reification schemes: named graphs,

Wikidata, and standard reification. We also hold a copy of the

data without reification to determine the overhead caused by the

reification schemes. We then measure the execution times of several

versions of the benchmark queries on the data:

𝑃 the provenance query created by our rewriting approach (as

defined in Definition 4.12) on the respective reification scheme,

𝑅 the query without provenance rewriting on the respective reifi-

cation scheme, and

𝐵 the original query executed on the original (non-reified) data.

As illustrated in the figure below, we can break down the execution

time of a provenance query 𝑃 into three components (i) the baseline

share (
𝐵
𝑃
) of executing the original query 𝐵 on non-reified data, (ii)

the reification overhead (
𝑅−𝐵
𝑃

) of executing query 𝑅 over the reified

data, and (iii) the provenance overhead (
𝑃−𝑅
𝑃

) of computing query

𝑃 over the reified data.

3397

https://relweb.cs.aau.dk/sparqlprov/

Figure 2:Watdiv query execution times per reification scheme and query template. The top dotted line represents the timeout.

Figure 2 shows the average query runtimes of the provenance

queries 𝑃 per reification scheme grouped by template on the 100M

triples Watdiv dataset. We first observe that Virtuoso outperforms

Fuseki in most of the queries, and that the performance gap is more

pronounced for the standard reification scheme regardless of the

query template. We also highlight that reification alone already

causes a significant overhead in comparison to executing the orig-

inal query on the non-reified dataset. On average the reification

overhead amounts to 23% on Virtuoso and 47% on Fuseki.

If we distinguish between queries with monotonic and non-

monotonic operators, we find that reification induces a bigger over-

head for queries with non-monotonic operators only (on average

27% on Virtuoso and 56% on Fuseki) than it does compared to those

with monotonic operators (on average 7% on Virtuoso and 19% on

Fuseki). This happens because non-monotonic operators translate

into more complex rewritten queries.

We also find that the effect of reification is particularly pro-

nounced for the standard reification scheme. We observe that on

average, 82% of the provenance queries’ runtime corresponds to

the overhead induced by the reification scheme in Fuseki (52% for

Virtuoso). In contrast, the average overhead for the named graphs

(0.3% Virtuoso, 44% Fuseki) and the Wikidata (18% Virtuoso, 30%

Fuseki) reification schemes are lower. This can be explained by

the fact that reification introduces additional triples that complex-

ify query execution. Besides, standard reification introduces more

triples than any of the other schemes.

Although in general Virtuoso outperforms Fuseki, there are some

cases where the provenance query is slower on Virtuoso. This can

be explained by the choice of sub-optimal plans by Virtuoso’s query

planner. For instance, for complex query C3, Virtuoso sub-optimally

pushes down the calculation and addition of the provenance vari-

ables before the joins. This leads to many superfluous calculations;

many of the intermediate rows extended with provenance variables

are pruned by the subsequent joins. As for S3, Virtuoso resorts to a

query plan containing a costly nested query with a large number

of intermediate results.

All in all, the average provenance overhead for Virtuoso is 40%

for queries without non-monotonic operators and 73% with non-

monotonic operators, compared to provenance overheads of 14%

and 52% for Fuseki. In the latter case, the provenance overhead is

comparably low because, unlike Virtuoso, Fuseki adds new columns

to intermediate results very efficiently. Our experiments did not

reveal any particular influence of the query type on performance

in general. We rather found that performance is influenced by

result sizes and selectivity of the triple patterns as well as whether

non-monotonic operators are involved or not – such operators are

significantly more expensive to evaluate.

5.2 Scalability and aggregation

To evaluate the runtime overhead of our approach as data size

increases, we use the TPC-H benchmark (v. 2.18.0). We generate

datasets using the TPC-H data generator with scale factors of the

form 10
𝑖/4−2

for 𝑖 = {1, 2, . . . , 8}. We wrote a conversion tool to

convert TPC-H data to RDF. Each row of a table in a TPC-H dataset

corresponds to an 𝑛-ary relation in RDF, which we reify according

to the direct mapping scheme in Table 1. The numbers of triples in

the resulting RDF datasets range from 1.2M to 123M.

The TPC-H query generator comes with 22 query templates

with variables that are randomly instantiated to produce concrete

queries. We omit query templates 4, 13, 15, 17, 18, 20, 21, and 22 from

the benchmark because they include features outside the SPARQL

fragment studied in this paper.

For each SQL query template we generate an equivalent SPARQL

query template (base aggregate) as well as a corresponding version

without aggregation (base non-aggregate). For each of these two

queries, we then apply our rewriting approach and generate corre-

sponding provenance queries: provenance aggregate and provenance
non-aggregate. By considering two groups of base queries (base

aggregate and base non-aggregate) we can study the overhead of

computing provenance with and without aggregates. We generate

10 queries for each query template and each scale factor.

3398

Figure 3: TPC-H execution times per query template as scale factor grows.

Figure 3 depicts the evolution of the runtime of the aforemen-

tioned queries in Fuseki and Virtuoso as the scale factor increases.

We highlight that runtime grows linearly with data size, and that

Virtuoso consistently outperforms Fuseki (less clearly in the case of

template 1 though). Even though Virtuoso achieves overall lower

runtimes than Fuseki, the overhead of aggregation in the base

queries is more pronounced for Virtuoso. For provenance queries,

this overhead is less significant (templates 3, 5–7, 12, 14, and 19).

In general, the runtime overhead of provenance is insensitive to

the scale factor and the number of answers in Fuseki. For Virtuoso,

in contrast, this overhead depends largely on the query template.

For example, some of the provenance queries without aggregation

from template 1 reach Virtuoso’s maximal number of answers (2
20
)

from scale factor 10
6/4−2

, putting a ceiling in query runtime and

leading to a constant overhead w.r.t. the base query. In other cases

(e.g., template 19), the overhead fluctuates because the number of

answers does not increase monotonically with the scale factor for

some queries. This suggests that Virtuoso’s performance is more

sensitive to the number of answers than Fuseki’s.

On average, the provenance overheads are 88% and 63% for

aggregate and non-aggregate queries in Virtuoso, and 16% and 0%

in Fuseki (excluding the queries with timeouts). The overhead is

significantly larger for aggregate queries due to the joins introduced

by our rewriting (see Definition 4.17).

5.3 Real data

We evaluate SPARQLprov on the RDF Wikidata dump from 27-01-

2020 that contains 942M relationships encoded with the Wikidata

reification scheme (see Table 1).We generated three types of queries:

star, union, and minus. The star queries were randomly generated

based on the procedure described in [27]. To generate queries with

union and minus operators, we first created two star queries 𝑄1

Figure 4: Wikidata time overhead.

and 𝑄2 such that 𝑄2 is the result of renaming the variables that

are not in the select clause of 𝑄1 with fresh names. These two

patterns produce the union query 𝑄1 union 𝑄2 and the minus

query𝑄1minus𝑄2. For each of the aforementioned query types, we

generate 20 queries and apply our rewriting approach to generate

the corresponding provenance queries.

Our evaluation results (Figure 4) show that our approach induces

an average provenance overhead of 36% for star queries, 43% for

union queries, and 56% for minus queries in Virtuoso (Fuseki: 12%

star, 19% union, 30% minus). The provenance overhead is larger

for the non-monotonic minus queries. This is not surprising since

we compute explanations for, on average, 3599 bindings in the

support of the minus queries – even though the queries do not

have actual results. The general provenance overhead is smaller for

Fuseki, because this engine extends the intermediate results with

provenance variables more efficiently than Virtuoso. These results

show that our approach can compute how-provenance on top of

a standard engine on large real-world datasets with a reasonable

runtime overhead.

3399

Figure 5: Watdiv query execution times per engine and query template. The top dotted line represents the timeout.

5.4 Comparison with other systems

We also compare SPARQLprov with TripleProv [43], a specialized

how-provenance solution for SPARQL, and GProM [4], a system to

compute how-provenance for SQL queries.

5.4.1 Runtime evaluation. Since TripleProv is a pure main-memory

storage engine, these experiments were executed using an in-

memory file system to guarantee a fair comparison. For GProM,

we translated the WatDiv queries into SQL and modeled the RDF

data using one table per predicate as this translation yields the best

performance for GProM (we use PostgreSQL as backend). We limit

our evaluation to monotonic queries, i.e., queries without optional

and diff, since GProM and TripleProv build upon semirings and

therefore do not produce sound polynomials for such queries [20].

For SPARQLprov we use Virtuoso with named graphs reification.

Figure 5 shows the measured runtimes. In general, SPARQLprov

outperforms TripleProv except for queries C3, F5, L3, and S7. C3 is

a star query without constants, which benefits from TripleProv’s

architecture – based on star patterns called molecules. For the re-
maining queries, the difference in runtime is at most 2ms, and can be

explained by the fact that TripleProv, unlike SPARQLprov, lacks the

runtime overhead associated with query parsing, planning, rewrit-

ing, and HTTP communication. Despite this advantage, TripleProv

times out for queries C1, C2, F1, F4, and S1, which require to retrieve

information from multiple molecules and looping through many

intermediate results.

Overall SPARQLprov outperforms GProM. Otherwise, the run-

time difference is less than 0.5s despite the efficient RDF represen-

tation used by GProM, where predicates are omitted, and tables

names identify predicate relations.

These results show that SPARQLprov competes with state-of-the-

art approaches in terms of runtime while being system-agnostic.

5.4.2 Qualitative evaluation. We also compare the annotations

computed by SPARQLprov and those obtained from GProM and

TripleProv. Our first example query is obtained by instantiating

template L3 from the WatDiv benchmark:

select ?𝑣0 where ((?𝑣0, :likes, ?𝑣1) and
(?𝑣0, :subscribes, :Website2579))

SPARQLprov returns a table with 12 rows and 5 columns with the

following structure:⎡⎢⎢⎢⎢⎢⎣
?𝑣0 ?Σ Σ⊗ Σ⊗1⊙ Σ⊗2⊙

:User50045 𝑎 𝑏 𝑢1 𝑢3
:User50045 𝑎 𝑐 𝑢2 𝑢3

⎤⎥⎥⎥⎥⎥⎦

Due to space limitations we present the rows for a single answer,

and denote the values of provenance variables by 𝑢1, 𝑢2, 𝑎, 𝑏, 𝑐 . This

table is interpreted as the polynomial expression (𝑢1⊗𝑢3)⊕(𝑢2⊗𝑢3),
which is the same answer provided by GProM. TripleProv returns

an equivalent factorized expression: (𝑢1 ⊕ 𝑢2) ⊗ 𝑢3.
Consider also query O5 as introduced in Section 5.1.2:

select ?𝑣0 where ((?𝑣0, :subscribes, :Website2579) optional
(?𝑣0, :likes, ?𝑣1))

The rewritten query produced by SPARQLprov returns the follow-

ing table (due to space restrictions some columns are omitted):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

?𝑣0 Σ⊕1⊗1⊙ Σ⊕1⊗2⊙ Σ⊕2⊖1⊙ Σ⊕2⊖2Σ⊙
:User50045 𝑢3 𝑢1
:User50045 𝑢3 𝑢2
:User50045 𝑢3 𝑢1
:User50045 𝑢3 𝑢2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The answer {?𝑣0 ↦→ :User50045} is thus annotated with the poly-

nomial expression 𝑢3 ⊗ 𝑢1 ⊕ 𝑢3 ⊗ 𝑢1 ⊕ 𝑢3 ⊖ (𝑢1 ⊕ 𝑢2), which cap-

tures the semantics of optional. On the other hand, GProM and

TripleProv produce the expression𝑢3⊗ (𝑢1⊕𝑢2), which is incorrect
because it does not adhere to the property of commutation with

homomorphisms (Definition 3.2).

6 CONCLUSIONS

We have proposed an approach to compute how-provenance poly-

nomials for SPARQL query results via query rewriting. This makes

our approach directly applicable to any engine with a SPARQL in-

terface. Unlike existing solutions, our approach can compute how-

provenance explanations that commute with homomorphisms for

monotonic and non-monotonic queries. It can also provide lineage

annotations for queries with aggregates.

As shown by our experiments, our query rewriting layer de-

ployed on standard RDF/SPARQL engines can compute provenance

for large real-world datasets such as Wikidata. Furthermore, our

evaluation on the TPC-H benchmark suggests that our approach is

viable for computing provenance explanations in an OLAP setting

where queries with aggregates are very common.

ACKNOWLEDGMENTS

This research was partially funded by the Danish Council for In-

dependent Research (DFF) under grant agreement no. DFF-8048-

00051B and the Poul Due Jensen Foundation.

3400

REFERENCES

[1] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014. Diver-

sified Stress Testing of RDF Data Management Systems. In The Semantic Web
- ISWC 2014 Proceedings, Part I (Lecture Notes in Computer Science), Vol. 8796.
Springer, 197–212.

[2] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for Aggre-

gate queries. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS. ACM, 153–164.

[3] Renzo Angles and Claudio Gutiérrez. 2016. The Multiset Semantics of SPARQL

Patterns. In The Semantic Web – ISWC Proceedings, Part I (Lecture Notes in Com-
puter Science), Vol. 9981. 20–36.

[4] Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian

Zeng. 2018. GProM - A Swiss Army Knife for Your Provenance Needs. IEEE Data
Engineering Bulletin 41, 1 (2018), 51–62.

[5] Carlos Buil Aranda, Marcelo Arenas, and Óscar Corcho. 2011. Semantics and Op-

timization of the SPARQL 1.1 Federation Extension. In The Semanic Web: Research
and Applications - 8th Extended Semantic Web Conference, ESWC Proceedings, Part
II (Lecture Notes in Computer Science), Vol. 6644. Springer, 1–15.

[6] Argyro Avgoustaki, Giorgos Flouris, Irini Fundulaki, and Dimitris Plexousakis.

2016. Provenance Management for Evolving RDF Datasets. In The Semantic
Web. Latest Advances and New Domains - 13th International Conference, ESWC
Proceedings (Lecture Notes in Computer Science), Vol. 9678. Springer, 575–592.

[7] Dave Beckett. 2004. RDF/XML Syntax Specification (Revised). W3C Recommen-

dation. http://www.w3.org/TR/rdf-syntax-grammar/

[8] Piero Andrea Bonatti, Stefan Decker, Axel Polleres, and Valentina Presutti. 2018.

Knowledge Graphs: New Directions for Knowledge Representation on the Se-

mantic Web (Dagstuhl Seminar 18371). Dagstuhl Reports 8, 9 (2018), 29–111.
[9] Spencer Chang. 2018. Scaling Knowledge Access and Retrieval at Airbnb. AirBnB

Medium Blog. https://medium.com/airbnb-engineering/scaling-knowledge-

access-and-retrieval-at-airbnb-665b6ba21e95 (Accessed on 16/09/2021).

[10] James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Provenance in

Databases: Why, How, and Where. Foundations and Trends in Databases 1, 4
(2009), 379–474.

[11] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the Lineage

of View Data in a Warehousing Environment. ACM Transactions on Database
Systems (TODS) 25, 2 (2000), 179–227.

[12] Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou. 2012. Prove-

nance for SPARQL Queries. In The Semantic Web – ISWC Proceedings, Part I
(Lecture Notes in Computer Science), Vol. 7649. Springer, 625–640.

[13] Deepika Devarajan. 2017. Happy Birthday Watson Discovery. IBM Cloud

Blog. https://www.ibm.com/cloud/blog/announcements/happy-birthday-

watson-discovery (Accessed on 16/09/2021).

[14] Renata Queiroz Dividino, Sergej Sizov, Steffen Staab, and Bernhard Schueler. 2009.

Querying for Provenance, Trust, Uncertainty and other Meta Knowledge in RDF.

Journal of Web Semantics 7, 3 (2009), 204–219.
[15] Xin Luna Dong, Xiang He, Andrey Kan, Xian Li, Yan Liang, Jun Ma, Yifan Ethan

Xu, Chenwei Zhang, Tong Zhao, Gabriel Blanco Saldana, Saurabh Deshpande,

Alexandre Michetti Manduca, Jay Ren, Surender Pal Singh, Fan Xiao, Haw-Shiuan

Chang, Giannis Karamanolakis, Yuning Mao, Yaqing Wang, Christos Faloutsos,

Andrew McCallum, and Jiawei Han. 2020. AutoKnow: Self-Driving Knowledge

Collection for Products of Thousands of Types. InKDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA,
August 23-27, 2020. ACM, 2724–2734.

[16] Johannes Frey, Kay Müller, Sebastian Hellmann, Erhard Rahm, and Maria-Esther

Vidal. 2019. Evaluation of Metadata Representations in RDF Stores. Semantic
Web 10, 2 (2019), 205–229.

[17] Luis Galárraga, Kim Ahlstrøm, Katja Hose, and Torben Bach Pedersen. 2018. An-

swering Provenance-Aware Queries on RDF Data Cubes Under Memory Budgets.

In ISWC. 547–565.
[18] Garima Gaur, Arnab Bhattacharya, and Srikanta Bedathur. 2020. How and Why

is An Answer (Still) Correct? Maintaining Provenance in Dynamic Knowledge

Graphs. In CIKM ’20: The 29th ACM International Conference on Information and
Knowledge Management. ACM, 405–414.

[19] Floris Geerts and Antonella Poggi. 2010. On database query languages for K-

relations. Journal of Applied Logic 8, 2 (2010), 173–185.
[20] Floris Geerts, Thomas Unger, Grigoris Karvounarakis, Irini Fundulaki, and Vassilis

Christophides. 2016. Algebraic Structures for Capturing the Provenance of

SPARQL Queries. Journal of the ACM 63, 1 (2016), 7:1–7:63.

[21] Boris Glavic and Gustavo Alonso. 2009. Perm: Processing Provenance and Data

on the Same Data Model through Query Rewriting. In Proceedings of the 25th

International Conference on Data Engineering, ICDE. IEEE Computer Society,

174–185.

[22] Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance

semirings. In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. ACM, 31–40.

[23] Harry Halpin and James Cheney. 2014. Dynamic Provenance for SPARQLUpdates.

In The SemanticWeb – ISWC Proceedings, Part I (Lecture Notes in Computer Science),
Vol. 8796. Springer, 425–440.

[24] Steve Harris and Ady Seaborne. 2013. SPARQL 1.1 Query Language. W3C

Recommendation. https://www.w3.org/TR/sparql11-query/

[25] Olaf Hartig. 2009. Querying Trust in RDF Data with tSPARQL. In The Semantic
Web: Research and Applications, 6th European Semantic Web Conference, ESWC
Proceedings (Lecture Notes in Computer Science), Vol. 5554. Springer, 5–20.

[26] Nicolas Heist and Heiko Paulheim. 2019. Uncovering the Semantics of Wikipedia

Categories. In The Semantic Web - ISWC Proceedings, Part I (Lecture Notes in
Computer Science), Vol. 11778. Springer, 219–236.

[27] Daniel Hernández, Aidan Hogan, Cristian Riveros, Carlos Rojas, and Enzo Zerega.

2016. Querying Wikidata: Comparing SPARQL, Relational and Graph Databases.

In The Semantic Web – ISWC, Proceedings, Part II (Lecture Notes in Computer
Science), Vol. 9982. 88–103.

[28] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham,

Gerard de Melo, and Gerhard Weikum. 2011. YAGO2: Exploring and Querying

World Knowledge in Time, Space, Context, and Many Languages. In Proceedings
of the 20th International Conference on World Wide Web, WWW (Companion
Volume). ACM, 229–232.

[29] Wei Hu, Honglei Qiu, JiaCheng Huang, and Michel Dumontier. 2017. BioSearch:

A Semantic Search Engine for Bio2RDF. Database - The Journal of Biological
Databases and Curation (2017).

[30] Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi.

2014. Towards Exploratory OLAP Over Linked Open Data - A Case Study. In

BIRTE. 114–132.
[31] Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi.

2016. Optimizing Aggregate SPARQL Queries Using Materialized RDF Views. In

ISWC. 341–359.
[32] Mark Kaminski, Egor V. Kostylev, and Bernardo Cuenca Grau. 2016. Semantics

and Expressive Power of Subqueries andAggregates in SPARQL 1.1. In Proceedings
of the 25th International Conference on World Wide Web, WWW. ACM, 227–238.

[33] Roman Kontchakov and Egor V. Kostylev. 2016. On Expressibility of Non-

Monotone Operators in SPARQL. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifteenth International Conference, KR. AAAI Press,
369–379.

[34] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,

Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,

Sören Auer, and Christian Bizer. 2015. DBpedia - A Large-scale, Multilingual

Knowledge Base Extracted from Wikipedia. Semantic Web 6, 2 (2015), 167–195.
[35] Natalya Fridman Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson,

and Jamie Taylor. 2019. Industry-scale knowledge graphs: lessons and challenges.

Commun. ACM 62, 8 (2019), 36–43.

[36] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. 2009. Semantics and com-

plexity of SPARQL. ACM Transactions on Database Systems (TODS) 34, 3 (2009),
16:1–16:45.

[37] Axel Polleres. 2007. From SPARQL to Rules (and back). In Proceedings of the 16th
International Conference on World Wide Web, WWW. ACM, 787–796.

[38] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018. ProvSQL:

Provenance and Probability Management in PostgreSQL. Proceedings of the VLDB
Endowment 11, 12 (2018), 2034–2037.

[39] Juan F. Sequeda, Marcelo Arenas, and Daniel P. Miranker. 2012. On directly

mapping relational databases to RDF and OWL. In Proceedings of the 21st World
Wide Web Conference 2012, WWW. ACM, 649–658.

[40] Saurabh Shrivastava. 2017. Bring rich knowledge of people, places, things and

local businesses to your apps. BingBlogs. https://blogs.bing.com/search-quality-

insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-

businesses-to-your-apps/ (Accessed on 16/09/2021).

[41] Amit Singhal. 2012. Introducing the Knowledge Graph: things, not strings. Google

Blog. https://www.blog.google/products/search/introducing-knowledge-graph-

things-not/ (Accessed on 16/09/2021).

[42] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: A Free Collaborative

Knowledge Base. Commun. ACM 57, 10 (2014), 78–85.

[43] Marcin Wylot, Philippe Cudré-Mauroux, and Paul Groth. 2014. TripleProv:

Efficient Processing of Lineage Queries in a Native RDF Store. In 23rd International
World Wide Web Conference, WWW. ACM, 455–466.

3401

http://www.w3.org/TR/rdf-syntax-grammar/
https://medium.com/airbnb-engineering/scaling-knowledge-access-and-retrieval-at-airbnb-665b6ba21e95
https://medium.com/airbnb-engineering/scaling-knowledge-access-and-retrieval-at-airbnb-665b6ba21e95
https://www.ibm.com/cloud/blog/announcements/happy-birthday-watson-discovery
https://www.ibm.com/cloud/blog/announcements/happy-birthday-watson-discovery
https://www.w3.org/TR/sparql11-query/
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps/
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps/
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

