
ANN Softmax: Acceleration of Extreme Classification Training
Kang Zhao, Liuyihan Song, Yingya Zhang, Pan Pan, Yinghui Xu, Rong Jin

Machine Intelligence Technology Lab, Alibaba Group
Beijing, China

{zhaokang.zk, liuyihan.slyh, yingya.zyy, panpan.pp, renji.xyh, jinrong.jr}@alibaba-inc.com

ABSTRACT
Thanks to the popularity of GPU and the growth of its compu-
tational power, more and more deep learning tasks, such as face
recognition, image retrieval and word embedding, can take ad-
vantage of extreme classification to improve accuracy. However,
it remains a big challenge to train a deep model with millions of
classes efficiently due to the huge memory and computation con-
sumption in the last layer. By sampling a small set of classes to avoid
the total classes calculation, sampling-based approaches have been
proved to be an effective solution. But most of them suffer from
the following two issues: i) the important classes are ignored or
only partly sampled, such as the methods using random sampling
scheme or retrieval techniques of low recall (e.g., locality-sensitive
hashing), resulting in the degradation of accuracy; ii) inefficient
implementation owing to incompatibility with GPU, like selective
softmax. It uses hashing forest to help select classes, but the search
process is implemented in CPU. To address the above issues, we
propose a new sampling-based softmax called ANN Softmax in this
paper. Specifically, we employ binary quantization with inverted file
system to improve the recall of important classes. With the help of
dedicated kernel design, it can be totally parallelized in mainstream
training framework. Then, we find the size of important classes that
are recalled by each training sample has a great impact on the final
accuracy, so we introduce sample grouping optimization to well
approximate the full classes training. Experimental evaluations on
two tasks (Embedding Learning and Classification) and ten datasets
(e.g., MegaFace, ImageNet, SKU datasets) demonstrate our proposed
method maintains the same precision as Full Softmax for different
loss objectives, including cross entropy loss, ArcFace, CosFace and
D-Softmax loss, with only 1/10 sampled classes, which outperforms
the state-of-the-art techniques. Moreover, we implement ANN Soft-
max in a complete GPU pipeline that can accelerate the training
more than 4.3×. Equipped our method with a 256 GPUs cluster, the
time of training a classifier of 300 million classes on our SKU-300M
dataset can be reduced to ten days.

PVLDB Reference Format:
Kang Zhao, Liuyihan Song, Yingya Zhang, Pan Pan, Yinghui Xu, Rong Jin.
ANN Softmax: Acceleration of Extreme Classification Training. PVLDB,
15(1): 1-10, 2022.
doi:10.14778/3485450.3485451

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 1 ISSN 2150-8097.
doi:10.14778/3485450.3485451

1 INTRODUCTION
In the past decades, deep learning has achieved huge success in
many areas, such as computer vision [25, 38, 41, 46, 47], speech
recognition [29] and natural language processing (NLP) [9, 10, 27].
Among them, extreme classification is playing an increasingly im-
portant role, because of the popularity of GPU and the growth of
its computational power. Many literatures [36, 39, 43] have demon-
strated that a lot of tasks can bemodeled as an extreme classification
problem to increase the precision. Take the embedding learning
in face recognition as an example. In order to make the features
of each person more discriminative, we can add a large number
of face identities into the dataset to increase the information that
model can learn [5, 37]. Simultaneously, it makes the scale of face
classification larger and larger. Another example is product image
classification. At Alibaba, we build a huge fine-grained (i.e., stock
keeping unit (SKU) level) retail product image dataset, which con-
tains several billions of samples in hundreds of millions of classes.
To improve the recognition ability of product images, we expand
the number of product classification from one million to tens of
millions, or even hundreds of millions.

Although extreme classification can be applied to boost model
accuracy, there still remains a big challenge due to the huge mem-
ory and computation consumption in the last layer. Given the hy-
brid parallel training framework (an efficient framework to solve
extreme classification in community) [2, 8, 35], we conduct experi-
ments by using 128 Tesla V100-32G GPUs to train a classifier of 100
million classes, the batch size of one GPU is 48 and the dimension
of weight matrix in last layer is 512, then we have:

𝑀𝑒𝑚𝑤𝑒𝑖𝑔ℎ𝑡 =
100000000

128
× 512 × 4 𝐵𝑦𝑡𝑒𝑠 = 1.49 𝐺𝐵, (1)

𝑀𝑒𝑚𝑜𝑢𝑡𝑝𝑢𝑡 = 128 × 48 × 100000000
128

× 4 𝐵𝑦𝑡𝑒𝑠 = 17.8 𝐺𝐵. (2)

It’s very clear the output matrix of the last layer occupy the majority
of memory. And we find in each iteration, almost 80% of the time
is spent on the forward/backward stage of the last layer.

To tackle this problem, many sampling-based methods have been
proposed to reduce the output memory and computation of the
last layer, by sampling a small set of classes from the total classes.
[2] adopts random sampling scheme, which can not guarantee
the important classes are sampled. An alternative way is using
approximate nearest neighbor search (ANN) to select classes, such
as [26, 45]. But the recall of their retrieval algorithms are not high
enough, resulting in only a small part of important classes being
sampled. Consequently, these two kinds of methods have more or
less accuracy degradation. What’s worse, most ANN-based sampled
methods are dismissed in practice owing to their incompatibility
with GPU.

1

https://doi.org/10.14778/3485450.3485451
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3485450.3485451

In this paper, we propose a new sampled softmax called ANN
Softmax to address above issues. Different from methods that sacri-
fice accuracy for high sampling rate, we pursue the same precision
with Full Softmax and the actual speedup benefit in practice. The
main contributions of our work are outlined as follows:

• We propose a novel sampling approach: binary quantiza-
tion with inverted file system (IVF-BQ). With the help of
dedicated kernel design, it can be totally parallelized in main-
stream training framework, like PyTorch [28].
• Based on an important observation that the important class
recalled by each training sample has a great influence on
the final training accuracy, we employ two kinds of sample
grouping optimization to well approximate the Full Softmax.
• As an ANN-based way, we implement our method in a com-
plete GPU pipeline, which can accelerate the training more
than 4.3×.
• Experimental evaluations on broad range of tasks and datasets
show our proposed method maintains the same accuracy as
full classes training for different loss objectives with only
1/10 sampled classes, outperforming the state-of-the-art tech-
niques.

2 PRELIMINARIES
To facilitate our discussion, we divide a typical extreme classifica-
tion task with softmax loss into three parts, and give some notations
below:
I. Backbone network for feature extraction:

x = 𝑓 (𝐼 ;𝜃), (3)

where 𝐼 is the input image, 𝜃 is the parameter of the backbone, and
x ∈ R𝑑 denotes the extracted feature.
II. A fully connected (FC) layer:

o = ℎ(x;W, b) . (4)

Let 𝑁 be the total number of classification,W ∈ [𝑁,𝑑]1 is denoted
as the weight parameters of FC layer, where each row w𝑗 ∈ R𝑑
represents the weight vector of the 𝑗-th class, and b is bias. For
simplicity, we set b = 0 as in [2, 8]. Then we have o = Wx ∈ R𝑁 .
III. Softmax Cross-Entropy Loss:

𝑙 (x) = − log
exp(o𝑦)∑
exp(o) , (5)

where 𝑦 is the label of x, and o𝑦 = x⊤w𝑦 .
Denote the batch size (of one GPU) as 𝐵, and X ∈ [𝐵,𝑑] as the

feature of mini-batch. The matrix multiplication (mm) in FC layer
(O = XW⊤ ∈ [𝐵, 𝑁]) has the complexity 𝒪(𝐵𝑁), and the softmax
loss also has multiple operations with complexity 𝒪(𝐵𝑁) on O
matrix, such as the 𝑒𝑥𝑝 , 𝑠𝑢𝑚 and 𝑑𝑖𝑣 calculations. It is obvious that
when 𝑁 is quite large, not only the GPUmemory forO is very huge,
but also the computations (including forward and backward) of FC
layer and softmax loss are very time consuming, as we mentioned
above.

1 [𝑁,𝑑] is short for R𝑁×𝑑 .

Therefore, decreasing the cost caused by FC layer and softmax
loss is a key issue in dealing with the challenges in extreme clas-
sification. Existing methods can be roughly divided into two ma-
jor categories: approximate softmax methods and sampling-based
methods.

2.1 Approximate softmax methods
These methods focus on the approximation of softmax function.
As a pioneer, Hierarchical Softmax (HSM) [16] turns a multi-class
classifier to a hierarchical binary classifier, by building a tree with
prior class distribution. Although hierarchical structure can reduce
the computation, it has a negative impact on the accuracy. [18]
proposes Noise Contrastive Estimation (NCE) based on a similar
idea: transforming the multi classification problem into a binary
logistic regression, which also brings about inferior performance. A
simple hashing based divide-and-conquer algorithm is presented in
Merged-Average Classification via Hashing (MACH) [31] to solve
the multi-class classification problem. However, this method still
can not achieve the same performance as Full Softmax. The key
idea of [44] is training a slimmed model with a Random Projected
(RP) softmax classier first, and then recovering it to the original
version. There exists an error between the recovered classier and
the original classier.

2.2 Sampling-based methods
As the term suggests, one can sample a small set of classes from
the total classes to avoid full class calculations. There are two com-
mon sampling ways: frequency-based sampling and classes-based
sampling.

2.2.1 Frequency-based sampling.
In the area of NLP, most of words (classes) are low frequency,
high frequency words (classes) only account for a small part in
datasets, which means we can just use the high-frequency words
for classification tasks, turning extreme classification to a normal
scale classification [6, 34]. But in practical applications, such as face
classification, all classes should be treated equally. We can not do
the sampling based on frequency.

2.2.2 Classes-based sampling.
Random sampling is a typical classes-based sampling method. It
is combined with hybrid parallel framework in Partial FC [2] to
extend classification to 100 million level. Softmax Dissection (D-
Softmax) [20] proposes random sampling variants (D-Softmax-B/K)
to accelerate its training process. Nevertheless, all methods above
have different degrees of precision loss, because random sampling
can not guarantee important classes are sampled.

Some literatures [26, 40, 45] have shown that the classes having
larger responses with x aremore important than that having smaller
ones, because classes with larger responses will have larger gra-
dients in the backward propagation. So sampling these important
classes is an effective way to approximate Full Softmax. Selective
softmax [45] builds a hashing forest (also called HF-Softmax) to
partition theW into small cells, then searches the important classes
in several cells. A fast locality-sensitive hashing technique (LSH-
Softmax) in [26] is adopted to approximate the actual dot prod-
uct. Whatever it’s hashing forest [30] or locality-sensitive hashing

2

Figure 1: The hybrid parallel training framework of ANN Softmax.

(LSH) [14, 15], their search recall is relatively low during the ANN
algorithms [3, 4, 13, 48, 49]. And both methods are not totally im-
plemented by GPU. Our method can be categorized into this scope,
and we refer to important classes as active classes in the rest of this
paper, keeping consistent with [45].

𝑘-Nearest Neighbor Softmax (KNN Softmax) [35] is a variant,
which constructs a global graph on W and uses 𝑦 (instead of x) to
select active classes. However, it has an apparent limitation: the
graph storage and the time spent on brute-force graph building will
increase by 𝒪(𝑁 2), preventing it from extending to a larger scale.

3 ANN SOFTMAX
This section describes the formulation of our ANN Softmax. First,
we present the training architecture based on distributed GPUs.
Then we introduce IVF-BQ for active classes selection and its kernel
design, followed by two kinds of sample grouping optimization.
Finally, a complete pipeline of ANN Softmax is given.

3.1 Training Architecture
Similar to [8, 35], we employ the hybrid parallel training framework
as shown in Figure 1. Suppose the number of GPUs is𝑀 , each GPU
has a complete backbone network (called data-parallel), and 1/𝑀
weight parameters of FC layer (called model-parallel). We denote
the FC weight in 𝑖-th GPU asW𝑖 ∈ [𝐶,𝑑], where 𝐶 = 𝑁 /𝑀 .

In the forward pass, GPU-𝑖 uses the backbone network to extract
the features of batch-𝑖 , then All-Gather features (denoted as X𝑎𝑙𝑙 ∈
[𝐵𝑀,𝑑]) from GPU-1 to GPU-𝑀 . After that, we use ANN Softmax
module to calculate the active classes, which size is 𝐶𝑠𝑢𝑏 (𝐶𝑠𝑢𝑏 <

𝐶), and perform the inner product between X𝑎𝑙𝑙 and the active
classes to get the output (denoted as 𝑓 𝑐-𝑜𝑢𝑡), followed by the loss
computation. We call 𝑟 = 𝐶𝑠𝑢𝑏/𝐶 the sampling rate.

In the backward pass, we will get the gradient of 𝑓 𝑐-𝑜𝑢𝑡 first.
According to the chain rule, we can derive the gradient of active
classes, then expand it to the gradient ofW𝑖 , by setting the gradient
of unselected classes to zero. Similarly, we can compute the gradient
ofX𝑎𝑙𝑙 . ConsideringX𝑎𝑙𝑙 only do inner product withW𝑖 , instead of
total W, we need to add an All-Reduce Communication to get the

complete gradient ofX𝑎𝑙𝑙 . Finally, each GPU takes its corresponding
gradient in the order of All-Gather and executes the backward
propagation of the backbone.

ANN Softmax module mainly includes active classes selection
and sample grouping optimization, we will introduce them in order.

3.2 Active Classes Selection
For the sake of clarity, let’s consider the training of a single sample
x first. As stated in [45], the active classes are the 𝑘 classes that
have largest inner product responses with x. So, it can be regarded
as an ANN search problem of using x to search for 𝑘 nearest classes
among the 𝐶 weight vectors (how to choose 𝑘 will be described
in section 3.3). The more top 𝑘 classes are recalled, the more large
gradients are preserved [45], then the smaller the accuracy differ-
ence from Full Softmax will be. We summarize the challenges we
face in ANN-based active classes selection as follows: 1) high recall
of ANN algorithm; 2) friendly implementation of GPU; 3) efficient
search process (since each training iteration will execute one ANN
search). Therefore, we propose the IVF-BQ strategy.

3.2.1 IVF-BQ.
Following [2, 35], we perform 𝐿2 normalization on x and W𝑖 , mak-
ing the Euclidean distance and inner product equivalent. Inspired
by IVF-PQ [22], we execute K-means clustering on W′

𝑖
(the 𝐿2 nor-

malization of W𝑖), and the number of centers is 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑢𝑚 . The
cluster centers are the entries of the inverted lists (one inverted list
contains all data that belong to the center). One can visit very few
inverted lists to greatly reduce the scope of the search. Noted that:
i) The centers should also be 𝐿2 normed to ensure they are in the
same metric space as x′. ii) Clustering is only performed within
local weight parameters, i.e., no communications between GPUs
are needed, and K-means clustering can be easily implemented by
GPU. iii) Considering the weight parameters change gradually, we
will update the centers periodically (the interval is denoted as T) to
make the clustering time be ignored during the training process.

Besides the inverted lists, we performmean binarization of x′ and
W′

𝑖
to further accelerate the ANN search, by replacing Euclidean

distance with Hamming (HM) distance. Specifically, we take three

3

Figure 2: The kernel design of IVF-BQ.

steps:
Step 1: Calculate the mean vector (∈ R𝑑) of W′

𝑖
;

Step 2: Based on the mean vector, we binarizeW′
𝑖
and x′ as follows:

if one value in W′
𝑖
/ x′ is greater than the mean, then its binary

expression is 1, otherwise is 0;
Step 3: Convert the binary representations ofW′

𝑖
and x′ (produced

by Step 2) into byte streams to save storage, which only takes 1/32
memory compared with data in float.
We denote the binary result of x′ as x̃, and one binary weight vector
as w̃.

In the search process, we first calculate the distance between
x′ and cluster centers, and select the inverted lists closest to x′.
Then we calculate HM distance between x̃ and all w̃ in the selected
inverted lists to sort out the largest 𝑘 ′ (𝑘 ′ > 𝑘) results. Although
binary representation can speed up the calculation, its information
loss will lead to the decline of ANN recall. Therefore, we will rerank
𝑘 ′ results based on original features to get the final top 𝑘 results,
which takes both efficiency and recall into account.

Moreover, considering the size of each inverted list is different,
we fix the number of w̃ (denoted as 𝐻𝑀𝑛𝑢𝑚), not the number of
cluster centers [11, 12, 22], that will be visited by x̃ in the imple-
mentation. This scheme can keep the search range of each training
sample almost the same, and is helpful for the stability of training.

3.2.2 Kernel Design.
Because x̃ and w̃ are stored in byte stream (we need to call __𝑝𝑜𝑝𝑐𝑙𝑙
instruction to compute the Hamming distance), and the number
of inverted list that will be visited is not fixed (see section 3.2.1),
it is very difficult to implement IVF-BQ with existing interfaces
in the mainstream deep learning frameworks (such as PyTorch,
TensorFlow [1]). To tackle this problem, we add a new CUDA kernel
function into PyTorch framework.

For simplicity, suppose there are five centers and let 𝐻𝑀𝑛𝑢𝑚 =

10, as shown in Figure 2. The nearest center of x′ is C1, followed
by C2, C3, C4 and C5, and their sizes are in the array {4, 3, 5, 2,
3}. We will first calculate the prefix sum of this array, and store
the result into an array called 𝑐𝑢𝑚𝑠𝑢𝑚: {0, 4, 7, 12, 14}. The first
value of 𝑐𝑢𝑚𝑠𝑢𝑚 is always 0, means there is no data in front of C1.
The second value is 4, means the center in front of C2 (i.e., C1) has
4 data points. The third value is 7, means the centers in front of
C3 (i.e., C1 and C2) have 7 data points, and so on. So the size of
𝑐𝑢𝑚𝑠𝑢𝑚 is the same as the number of centers.

At the kernel design, we will assign a block to each inverted
list that x̃ will visit. One block will read the corresponding value

Algorithm 1 Naive Sample Grouping Optimization

Input: The total batch X′
𝑎𝑙𝑙
∈ [𝐵𝑀,𝑑]; the number of groups

𝑔𝑛𝑢𝑚 ; the size of active classes 𝐶𝑠𝑢𝑏 ; weight parameters W′
𝑖
in

one GPU;
Output: The output of FC layer 𝑓 𝑐-𝑜𝑢𝑡 ∈ [𝐵𝑀,𝐶𝑠𝑢𝑏]
1: {𝑋𝑔𝑟𝑜𝑢𝑝 𝑗 }𝑔𝑛𝑢𝑚−1𝑗=0 = split(X′

𝑎𝑙𝑙
, 𝑔𝑛𝑢𝑚); // 𝑋𝑔𝑟𝑜𝑢𝑝 𝑗 ∈ [𝐵𝑀

𝑔𝑛𝑢𝑚
, 𝑑]

2: 𝑓 𝑐-𝑜𝑢𝑡 = [];
3: for 𝑗 ← 0 to 𝑔𝑛𝑢𝑚 − 1 do
4: 𝑙 (𝑋𝑔𝑟𝑜𝑢𝑝 𝑗) = IVF-BQ(𝑋𝑔𝑟𝑜𝑢𝑝 𝑗);
5: 𝑙 (𝑋𝑔𝑟𝑜𝑢𝑝 𝑗) = duplicate(𝑙 (𝑋𝑔𝑟𝑜𝑢𝑝 𝑗));
6: 𝑙𝑟𝑎𝑛𝑑𝑜𝑚 = ∅;
7: if size(𝑙 (𝑋𝑔𝑟𝑜𝑢𝑝 𝑗)) < 𝐶𝑠𝑢𝑏 then
8: 𝑙𝑟𝑎𝑛𝑑𝑜𝑚 = sample(W′

𝑖
, 𝐶𝑠𝑢𝑏− size(𝑙 (𝑋𝑔𝑟𝑜𝑢𝑝 𝑗)));

9: end if
10: 𝑙 (𝑋𝑔𝑟𝑜𝑢𝑝 𝑗) = 𝑙 (𝑋𝑔𝑟𝑜𝑢𝑝 𝑗) + 𝑙𝑟𝑎𝑛𝑑𝑜𝑚 ;
11: W𝑎𝑐𝑡𝑖𝑣𝑒 = get𝐶𝑠𝑢𝑏 weights fromW′

𝑖
based on 𝑙 (𝑋𝑔𝑟𝑜𝑢𝑝 𝑗);

12: 𝑓 𝑐-𝑜𝑢𝑡 .append(mm(𝑋𝑔𝑟𝑜𝑢𝑝 𝑗 ,W⊤𝑎𝑐𝑡𝑖𝑣𝑒));
13: end for
14: 𝑓 𝑐-𝑜𝑢𝑡 = concat(𝑓 𝑐-𝑜𝑢𝑡);
15: return 𝑓 𝑐-𝑜𝑢𝑡 ;

in the 𝑐𝑢𝑚𝑠𝑢𝑚 array, and compare it with 𝐻𝑀𝑛𝑢𝑚 . If the value is
less than 𝐻𝑀𝑛𝑢𝑚 , we will traverse the inverted list, and use all
threads in the block to compute the Hamming distances between
x̃ and w̃ in parallel, because less than 𝐻𝑀𝑛𝑢𝑚 data points in front
of this inverted list have been visited, e.g., block0 and block1 in
Figure 2. Otherwise (the value is larger than or equal to 𝐻𝑀𝑛𝑢𝑚),
the block will exit without visiting the inverted list. For example,
Figure 2 shows that blockA and blockB will read number 12 and
14, respectively. 12 and 14 are both bigger than 10 (𝐻𝑀𝑛𝑢𝑚), so the
two blocks will not be executed.

In addition, considering the principle of locality, we will rear-
range the memory of w̃ to make the w̃ in one inverted list are
memory continuous. When one block traverse all w̃ in one inverted
list, the memory continuity of w̃ will speed up the Hamming dis-
tances calculation more than 2×.

Although we also use ANN to search active classes, our approach
is totally different from HF-Softmax and LSH-Softmax in two as-
pects: 1) We propose a new active classes selection method called
IVF-BQ, which is completely GPU implemented. HF/LSH-Softmax
all require the CPU to execute the neighborhood retrieval; 2) Our
IVF-BQ has higher recall than hashing forest and LSH algorithms,
which is important for the final training accuracy. We prove this
in ablation study. By the way, we adopt IVF-BQ instead of IVF-PQ
since Hamming distance calculation in BQ is generally efficient
than table lookups in PQ.

3.3 Sample Grouping Optimization
In large scale training, we will apply ANN Softmax to the total batch
samples X𝑎𝑙𝑙 . Let 𝑙 (𝑥) be the active classes indices of one sample
x, then 𝑙 (𝑋𝑎𝑙𝑙) is a union of 𝑙 (𝑥). We can get the active classes
W𝑎𝑐𝑡𝑖𝑣𝑒 according to 𝑙 (𝑋𝑎𝑙𝑙), and do the mm operation between
W𝑎𝑐𝑡𝑖𝑣𝑒 and X𝑎𝑙𝑙 . As mentioned above, X𝑎𝑙𝑙 in the hybrid parallel
framework contain 𝐵×𝑀 samples. If we use 128 GPUs (𝑀 = 128) to
train a 100 million classifier with 𝐵 = 32, 𝑘 is set to 300, the overlap

4

Figure 3: The bitmap flow in parallel implementation. We
assume 𝐶 = 8, 𝐶𝑠𝑢𝑏 = 4, 𝑔𝑛𝑢𝑚 = 3 and S ∈ [6, 2]. S will be
divided into three groups: {row1, row2}, {row3, row4} and
{row5, row6}. After duplication, {row1, row2} group has three
indices in total, so the first row of bitmap has three 1. We
randomly add one 1 in the first row to make its sum equal
to 𝐶𝑠𝑢𝑏 .

rate of union is assumed to be 50%2, then we find the size of 𝑙 (𝑋𝑎𝑙𝑙)
is almost equal to the number of classification in one GPU:

32 × 128 × 300 × 0.5 ≈ 108/128. (6)

That is to say, the size of W𝑎𝑐𝑡𝑖𝑣𝑒 (= 𝐶𝑠𝑢𝑏) is close to W𝑖 (= 𝐶),
which goes against our intension: we want to make 𝐶𝑠𝑢𝑏 small
enough to improve computation efficiency and save the storage of
𝑓 𝑐-𝑜𝑢𝑡 .

In general, one can reduce the size of 𝑙 (𝑥), i.e., the value of k,
to make the size of 𝑙 (𝑋𝑎𝑙𝑙) smaller. Unfortunately, we empirically
find that the value of 𝑘 has a great influence on the final training
accuracy (see the ablation study in section 4.1.2). For a training
sample x, besides positive class (w𝑦), the majority of its active
classes can be seen as hard negative classes3. The larger 𝑁 or 𝐶
is, the more the number of hard negative classes will be. If we
reduce the active classes of training samples, the corresponding
hard negative classes will be reduced, and the difference between
ANN and Full Softmax will become larger, resulting in the decline
of the final accuracy. What’s worse, if we formulate 𝑘 as follows
(duplication is ignored for clarity):

𝑘 =
𝐶𝑠𝑢𝑏

𝐵 ×𝑀 , (7)

further reduction in𝐶𝑠𝑢𝑏 (e.g. from 1
10𝐶 to 1

100𝐶), or increasing the
number of GPUs (𝐵 ×𝑀 will be increased), may cause 𝑘 less than 1.
It means some training samples have no hard negative classes at
all, leading to the decrease of their classification accuracy.

3.3.1 A Naive Solution.
To solve this problem, a naive solution would be: divide the total
batch (X𝑎𝑙𝑙) into multiple groups, so that the number of each group
active classes is small enough. We call one group as group-batch
and the number of groups is denoted as 𝑔𝑛𝑢𝑚 , then we have the

2The overlap rate will change in pace with the training, from a large value to a small
value. We take 0.5 as its mean value here.
3“hard” means the negative classes in active classes have larger inner product response,
compared with that are not in active classes.

Algorithm 2 ANN Softmax

Input: The total batch X′
𝑎𝑙𝑙
∈ [𝐵𝑀,𝑑]; the label of total batch

Y𝑎𝑙𝑙 ; the number of groups 𝑔𝑛𝑢𝑚 ; the size of active classes𝐶𝑠𝑢𝑏 ;
weight parametersW′

𝑖
in one GPU; the bitmap 𝐵𝑃 ∈ [𝑔𝑛𝑢𝑚,𝐶]

Output: The output of FC layer 𝑓 𝑐-𝑜𝑢𝑡 ∈ [𝐵𝑀,𝐶𝑠𝑢𝑏]
1: Initialize 𝐵𝑃 = 0;
2: 𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = get positive class indices based on Y𝑎𝑙𝑙 ;
3: S = IVF-BQ(X′

𝑎𝑙𝑙
);

4:
5: // fill S into 𝐵𝑃 according to group relationship
6: 𝐵𝑃 = fill(𝐵𝑃, S);
7: // fill 𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 into 𝐵𝑃 according to group relationship
8: 𝐵𝑃 = fill(𝐵𝑃, 𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒);
9: // make the sum of each row of 𝐵𝑃 is 𝐶𝑠𝑢𝑏
10: 𝐵𝑃 = sample_kernel(𝐵𝑃,𝐶𝑠𝑢𝑏);
11:
12: 𝑡𝑒𝑚𝑝𝑊 = W′

𝑖
[𝑚𝑎𝑠𝑘_𝑠𝑒𝑙𝑒𝑐𝑡 (𝐵𝑃), :];

13: 𝑡𝑒𝑚𝑝𝑋 = X′
𝑎𝑙𝑙

.𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (𝑔𝑛𝑢𝑚, 𝐵𝑀
𝑔𝑛𝑢𝑚

, 𝑑);
14: 𝑓 𝑐-𝑜𝑢𝑡 = 𝑏𝑚𝑚(𝑡𝑒𝑚𝑝𝑋, 𝑡𝑒𝑚𝑝𝑊 .𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 (2, 1));
15:
16: return 𝑓 𝑐-𝑜𝑢𝑡 ;

following formula:

𝑘 =
𝐶𝑠𝑢𝑏

𝐵 ×𝑀 × 𝑔𝑛𝑢𝑚 . (8)

It can be seen 𝑘 becomes 𝑔𝑛𝑢𝑚 times larger than it in Eq (7). We
execute the active classes selection on each group-batch, and concat
their results to get 𝑓 𝑐-𝑜𝑢𝑡 at last. If the group-batch has less than
𝐶𝑠𝑢𝑏 active classes (due to duplication), we will randomly sample
the left weight fromW′

𝑖
. Algorithm 1 summarizes the naive solution

of sample grouping optimization.

3.3.2 Parallel Implementation.
Although the naive solution is easy to be implemented, there exists
one problem: the ANN Softmax process of each group-batch will be
run one by one. For the hardware like GPU, serial implementation
can not make full use of computing resources. As a result, we
propose a parallel optimization method to accelerate the process.

First, IVF-BQ is performed on X′
𝑎𝑙𝑙

in parallel, we mark the
output matrix as S ∈ [𝐵𝑀,𝑘]. Then we create a 2D bitmap in the
shape of [𝑔𝑛𝑢𝑚,𝐶], and fill S into this bitmap according to group
mapping relationship. As shown in Figure 3, the row 1 and 2 in
S are the first group, so they are filled into the line 1 of bitmap.
Bitmap[0][0] = 1 means in the first group, w0 is selected as active
class. To make different group-batches have the same size of active
classes, the sum of each row of bitmap should be equal to 𝐶𝑠𝑢𝑏 .
If some group-batches have less than 𝐶𝑠𝑢𝑏 active classes, we will
randomly add active classes indices to their rows, as we did in naive
solution. Differently, we will do parallel random sampling on this
bitmap, which can be easily implemented by a CUDA kernel.

After that, we will use the bitmap to select out a 3D weight from
W′

𝑖
: line 12 in Algorithm 2, where𝑚𝑎𝑠𝑘_𝑠𝑒𝑙𝑒𝑐𝑡 converts the bits to

indices, and 𝑡𝑒𝑚𝑝𝑊 is in the shape of [𝑔𝑛𝑢𝑚 , 𝐶𝑠𝑢𝑏 , 𝑑]. A similar
shape transformation is applied to X′

𝑎𝑙𝑙
: line 13 in Algorithm 2,

where 𝑡𝑒𝑚𝑝𝑋 is in the shape of [𝑔𝑛𝑢𝑚 , 𝐵𝑀
𝑔𝑛𝑢𝑚

, 𝑑]. Finally, we execute

5

batchmatrix multiplication (bmm) operation on 𝑡𝑒𝑚𝑝𝑊 and 𝑡𝑒𝑚𝑝𝑋

to get the final output (instead of mm). If not specified, the parallel
grouping optimization is used in the following experiments.

We summarize the total pipeline of ANN Softmax in Algorithm 2.
Line 2~3 show that we use the label of X′

𝑎𝑙𝑙
(Y𝑎𝑙𝑙) to select positive

classes, and IVF-BQ function to choose active classes. It is noted
that active classes may overlap with positive classes, so we fill both
S and 𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 into bitmap to remove duplicates.

4 EXPERIMENTS
To verify the effectiveness and efficiency of our ANN Softmax, we
conduct experimental comparisons on two tasks: embedding learn-
ing and classification.
Embedding Learning: we try to verify the quality of feature ex-
tractor trained by various approaches. All models are trained on
the refined version of MS-Celeb-1M (MS1MV2)4, which consists
of about 5.8M images and 85K classes. For validation, we have six
testing datasets, including Labelled Faces in the Wild (LFW) [21],
AgeDatabase (AgeDB) [32], Celebritiesin Frontal Profile (CFP) [33],
Cross-Pose LFW (CPLFW) [50], Cross-Age LFW (CALFW) [51] and
MegaFace5 [23]. LFW is evaluated by face verification, whose met-
ric is the verification accuracy via 10-fold cross validation. CFP,
AgeDB, CPLFW and CALFW follow the same evaluation as LFW.
For MegaFace, we record rank-1 identification accuracy with 1M
distractors.
Classification: we choose ImageNet [7] and SKU datasets [35]
with a varying number of classes including 1M, 10M, 100M for
training and evaluation. And we add a large scale dataset SKU-
300M with 300M classes, 4 billion training images and 0.5 billion
testing images to evaluate the scalability of different methods. Top-1
accuracy is used as the metric of classification.

The state-of-the-art baselines and their hyper-parameters are
listed below:
Full Softmax: Standard softmax using all classes for training.
HF-Softmax [45]: We use HF-A version with 𝐿 = 100,𝑇 = 1000
and 𝜏𝑐𝑝 = 0.9.
KNN Softmax [35]: 𝑘 is set to 6 for 1K, 12 for 1M, 120 for 10M and
1200 for 100M classes.
LSH-Softmax [26]: We set 𝑏 = log2𝐶 and 𝐿 = 500.
RP [44]: The random projection size𝑚 is set to 100.
Partial FC [2]: Sampling rate 𝑟 = 0.1.
D-Softmax [20]: We use L𝐷 loss; for D-Softmax-B, we sample 0.1
training samples from mini-batch; for D-Softmax-K, we sample 0.1
classes.

We use ResNet50 [8, 19] as backbone model in each experiment.
For face recognition tasks, we use ArcFace [8] or CosFace [42] to
enhance the discriminative power of feature embeddings learning.
In ArcFace, the parameters of scale 𝑠 and arccos margin𝑚 are set to
64 and 0.5 respectively. And the cosine margin𝑚 of CosFace is set
to 0.4. For classification tasks, we use the standard cross entropy
loss for training. The mini-batch size of MS1MV2 and ImageNet is
set to 2048. We set the base learning rate to 0.4 for MS1MV2 and
0.8 for ImageNet training based on linear scaling rule [17, 24]. For
MS1MV2, the learning rate is divided by 10 at 25K, 40K iterations

4https://github.com/deepinsight/insightface/wiki/Dataset-Zoo.
5The refined version used in ArcFace.

Figure 4: Performance vs. four parameters: 𝑇 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑢𝑚 ,
𝐻𝑀𝑛𝑢𝑚 and 𝑘 ′.

Table 1: The Top-1 Accuracy with different ANN recalls.

Method ANN Softmax HF-Softmax LSH-Softmax
Recall / % 85.64 39.42 31.25

Accuracy / % 87.46 86.39 86.24

and terminated at 45K iterations. When training ImageNet, we set
the learning rate 10 times smaller at epoch 30, 60, and 80 while
limit total training epochs to 90. For SKU datasets, we follow the
fast convergence strategy [35] to adjust both learning rate and
mini-batch size.

All of the experiments are running on a GPU cluster with 32
machines and each machine owns 8 Tesla V100-32G GPUs. We use
PyTorch as the base framework and equip all methods with hybrid
parallel training architecture and mixed precision (O1 version)6 for
fair comparison.

4.1 Ablation Study
The ablation study is performed on SKU-1Mdataset. There are seven
parameters in our ANN Softmax: 𝐶𝑠𝑢𝑏 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑢𝑚 , 𝑘 ′, 𝐻𝑀𝑛𝑢𝑚 , 𝑇 ,
𝑔𝑛𝑢𝑚 and 𝑘 . We set 𝐶𝑠𝑢𝑏 = 1

10𝐶 for two reasons: 1. If 𝐶𝑠𝑢𝑏 is set
too small, like 1/64, the selected active classes will be reduced,
which may decrease training accuracy; 2. Setting 𝐶𝑠𝑢𝑏 to 1

10𝐶 can
bring enough benefits since the computation and memory of FC
layer/softmax loss become 1/10 of Full Softmax. The remaining six
parameters are divided into the following two parts:

4.1.1 IVF-BQ. The four parameters: 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑢𝑚 , 𝑘 ′, 𝐻𝑀𝑛𝑢𝑚 and 𝑇
are closely related to the recall of IVF-BQ and the training accu-
racy. Figure 4 shows the influence of these parameters on the final
accuracy. (a) shows the performance is not sensitive to clustering
interval𝑇 . Only when𝑇 is greater than a threshold (= 106), there is
a clear decline in accuracy. Because in that case, the centers will not
be updated, so the result of IVF-BQ will be close to random sam-
pling. Let each epoch have 𝐸 iterations, 𝑇 is ofter set to 1/5𝐸. The
accuracy of different center numbers 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑢𝑚 is almost the same
6https://nvidia.github.io/apex/.

6

https://github.com/deepinsight/insightface/wiki/Dataset-Zoo
https://nvidia.github.io/apex/

Table 2: Comparisons of different 𝑘 and 𝑔𝑛𝑢𝑚 .

𝑔𝑛𝑢𝑚 16 8 4 2 1
𝑘 97 48 24 12 6

Accuracy / % 87.5 87.47 87.46 87.1 86.88

Table 3: Face recognition performance with different meth-
ods. The dotted line indicates baseline.

Method LFW CALFW CPLFW AgeDB CFP MegaF
Full Softmax 99.82 96.18 92.37 97.72 97.21 97.82
Partial FC 99.77 96.03 92.27 97.72 97.86 97.38

LSH-Softmax 99.77 96.05 92.28 97.73 97.80 97.40
HF-Softmax 99.79 96.08 92.30 97.72 97.79 97.44

RP 99.63 95.63 90.48 96.33 95.93 89.88
KNN Softmax 99.82 96.16 92.36 97.74 97.90 97.81
ANN Softmax 99.83 96.17 92.39 97.73 97.84 97.82

in (b), and the one with larger 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑢𝑚 is slightly better than that
with smaller 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑢𝑚 . Proportional to 𝐶 , we choose 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑢𝑚
from the range [64, 1024]. 𝐻𝑀𝑛𝑢𝑚 determines how many data will
be visited, which is an important factor for the precision. As shown
in (c), the larger 𝐻𝑀𝑛𝑢𝑚 is, the higher the accuracy will be. But
too large 𝐻𝑀𝑛𝑢𝑚 will increase the ANN time. Considering both
efficiency and accuracy, we set 𝐻𝑀𝑛𝑢𝑚 to 1

10𝐶 for ImageNet/SKU
datasets and 1

20𝐶 for MS1MV2, respectively. In (d), 𝑘 ′ has a similar
behavior as 𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑢𝑚 , and is usually set as 1

10𝐻𝑀𝑛𝑢𝑚 .
We compare three ANN-based sampling methods in Table 1 to

display the relationship between ANN recall and accuracy. Obvi-
ously, accuracy is positively correlated with recall. ANN Softmax
balances the traversal data of each sample and rerank binary results
with float feature, so its recall is significantly higher than the other
two methods. By the way, the above four parameters have different
influences on the accuracy, because of their different effects on
the recall. LSH-Softmax has the lowest accuracy, since the random
projection has limited guarantee for recall.

4.1.2 Sample Grouping. Given 𝐶𝑠𝑢𝑏 , 𝐵 and𝑀 , Eq (8) tells 𝑘 is de-
cided by 𝑔𝑛𝑢𝑚 . We change 𝑔𝑛𝑢𝑚 from 16 to 1, and show the perfor-
mance in Table 2. It can be found that 𝑘 or 𝑔𝑛𝑢𝑚 has a great impact
on the accuracy. The larger 𝑘 is, the more active classes of each sam-
ple are recalled, leading to better approximation of Full Softmax and
higher accuracy. And the accuracy of 𝑔𝑛𝑢𝑚=1 (no sample grouping)
is lowest, proving our sample grouping optimization is effective.
Setting 𝑔𝑛𝑢𝑚 too large will increase the memory of 𝑡𝑒𝑚𝑝𝑊 , so we
often choose 𝑔𝑛𝑢𝑚 to make the 𝑔𝑙𝑜𝑏𝑎𝑙 𝑘 𝑜 𝑓 𝑜𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 (=𝑘 × 𝑀)
not greater than 𝑁

5000 in implementation.

4.2 Results on Embedding Learning Tasks
Next, we present the performance of different methods on embed-
ding learning tasks in Table 3. All methods are combined with
ArcFace to train the feature extractor model. It can be seen our
ANN Softmax achieves nearly the same accuracy as Full Softmax
on all datasets, proving its efficiency and stability. HF-Softmax and
LSH-Softmax perform better than Partial FC since they use ANN

Table 4: ANN Softmax with various loss functions. No sam-
pling (𝑟 = 1) occurs in ArcFace, CosFace and D-Softmax, oth-
ers are 𝑟 = 0.1.

Method LFW CALFW CPLFW AgeDB CFP MegaF
ArcFace 99.82 96.18 92.37 97.72 97.21 97.82

Ours (𝑟 = 0.1) 99.83 96.17 92.39 97.73 97.84 97.82
CosFace 99.70 95.93 92.10 97.83 97.46 98.00

Ours (𝑟 = 0.1) 99.71 95.93 92.09 97.84 97.68 98.10
D-Softmax 99.67 95.62 91.23 97.17 97.49 96.78
D-Softmax-B 99.72 95.63 90.77 97.18 97.00 96.71
D-Softmax-K 99.59 95.32 90.50 97.12 96.86 95.91
Ours∗(𝑟 = 0.1) 99.69 95.65 91.22 97.18 97.50 96.76

strategy to recall more active classes, but they can not ensure most
active classes are recalled, which may lead to insufficient training.
The random sampling used by Partial FC ignores the importance
of active class, resulting in worst performance among the sampled
softmax baselines. RP doesn’t perform well especially in CPLFW,
AgeDB, CFP and MegaFace, the accuracy drop is more than 1%.
Since it compresses the feature embeddings to a smaller space so
that the ability of face representation gets damaged.

Table 4 shows the precision of our ANN Softmax combined with
various loss functions on different face datasets. ArcFace and Cos-
Face are widely used in face recognition community. D-Softmax
is a new softmax variant which dissects softmax into independent
intra-class and inter-class objectives to boost the feature expres-
sion. It has two light versions D-Softmax-B and D-Softmax-K for
massive-scale training. D-Softmax-K samples classes, which can
be easily integrated with our ANN Softmax (i.e., Ours∗ in Table 4).
As expected, our method is comparable with baselines on all loss
functions and datasets, exhibiting its robustness and extensibility.

4.3 Results on Classification Tasks
In Table 6, we show the classification results of different methods on
ImageNet and SKU datasets. We vary the number of classes from 1K
to 100M to further explore their limitations on extreme classification
problem. It is very clear that our proposed method has the same
performance as Full Softmax, and outperforms other methods on
both datasets. Noted that as the number of classes increases, the
precision loss of some methods like HF-Softmax, LSH-Softmax, RP
and Partial FC become larger. For example, Partial FC has 0.28%
accuracy loss in ImageNet, but the gap grows to 8.21% in SKU-100M.
This can be attributed to the fact active classes will increase as the
number of classes increases, so does the impact of active classes.
Consequently, these methods that rarely or partly sample active
classes will encounter more and more serious accuracy degradation
when the number of classes get larger and larger. RP has higher
accuracy than sampling-based methods, since it only performs
feature compression, without any active classes reduction. The
experimental results on both embedding learning and classification
demonstrate that our sampling strategy: making each training data
recall large quantity and good quality of active classes, is more
reasonable.

7

Table 5: The time profiling of different methods in three large-scale SKU datasets. FC𝑓 𝑤𝑑 means the time in forward of FC
layer, loss𝑓 𝑤𝑑 is the time in backward of softmax loss, and 𝑔𝑟𝑎𝑝ℎ stands for the building time of graph in KNN Softmax.

Method 𝑟 𝑁 𝑀 𝐵
Time profiling (ms/iter) Mem (GB) Top-1 Acc of SKU (%)

FC𝑓 𝑤𝑑 loss𝑓 𝑤𝑑 loss𝑏𝑤𝑑 FC𝑏𝑤𝑑 graph Total 10M 100M 300M
Full Softmax 1 10M 64 128 26.12 74.31 48.48 33.26 / 319 9.68 81.01 / /
KNN Softmax 0.1 10M 64 128 6.47 14.25 4.78 7.97 41.87 202 8.01 80.99 / /
ANN Softmax 0.1 10M 64 128 19.2 11.88 4.3 13.06 / 162 7.83 81.00 / /
Full Softmax 1 100M 128 54 109.12 316.28 158.61 183.00 / 964 31.4 / 74.52 /
KNN Softmax 0.1 100M 128 54 23.44 27.92 16.27 35.79 70.13 276 26.11 / 74.54 /
ANN Softmax 0.1 100M 128 54 45.05 27.57 16.69 43.21 / 224 22.86 / 74.53 /
Full Softmax 1 300M 256 32 / / / / / / OOM / / /
KNN Softmax 0.1 300M 256 32 / / / / / / OOM / / /
ANN Softmax 0.1 300M 256 32 90.85 58.71 40.36 106.73 / 394 31.5 / / 70.45

Table 6: Image classification performance with different
methods.

Method ImageNet 1M 10M 100M
Full Softmax 76.50 87.43 81.01 74.52
Partial FC 76.22 86.15 76.73 66.31

LSH-Softmax 76.29 86.24 78.16 69.83
HF-Softmax 76.31 86.39 79.02 71.98

RP 75.11 87.16 79.83 72.19
KNN Softmax 76.49 87.46 80.99 74.54
ANN Softmax 76.56 87.49 81.00 74.53

4.4 Time Profiling
As depicted in Figure 5, we plot the time-accuracy curves of all
methods on SKU-10M dataset. As we mentioned above, the time
spent on FC layer and softmax loss occupies the majority of each
iteration, so we focus on their time consumption. We use the Top-1
accuracy with the time cost from FC layer and softmax loss as a
metric, so the points that near the top-left corner indicate high
performance with low cost. The results show that: (1) All methods
can reduce the computation cost. But those totally implemented
by GPU, such as ANN Softmax, KNN Softmax and Partial FC, are
apparently faster than others, like HF-Softmax and LSH-Softmax.
(2) Without any ANN procedure, Partial FC is the fastest, but the
accuracy is also reduced heavily, which is not acceptable in practical
applications. Even if we improve its sample rate to make its speed
same as ANN Softmax, the accuracy is still below ours. (3) RP is
another option to solve massive classification problem. Leave the
loss of accuracy aside, it only reduces feature dimensions without
any classes sampling, which means no acceleration in softmax loss
stage. And recovering the final weights of classifier will introduce
more training time compared with other methods. (4) Our ANN
Softmax can reduce the computation time up to 270% and maintain
lossless accuracy, which is a remarkable improvement in practical
scenarios.

At last, we display the time profiling results on three large-scale
SKU datasets in Table 5. For fair comparison, we only choose the
methods that keep the same precision with Full Softmax, i.e., KNN
Softmax and ANN Softmax. And we add the graph building time
(divided into each iteration) for KNN Softmax, which can not be

Figure 5: Accuracy vs. Time cost of different methods.

ignored in training process. Obviously, our ANN Softmax is fastest
no matter on SKU-10M or 100M. We achieve 4.3× speedup than
Full Softmax, and 1.23× speedup than KNN Softmax, respectively.

Although KNN Softmax keeps almost the same performance
as our method in previous experiments, it runs slower than ANN
Softmax. What’s worse, the resources spent on graph construction
and storage are impracticable when N is very large, like 300M,
limiting its scalability. Thanks to 256 Tesla V100-32G equipped with
ANN Softmax, we succeed in training a 300M SKU classifier within
five epochs and ten days. And the accuracy 70.45% is acceptable in
online application.

5 CONCLUSIONS
In this paper, we regard the quantity and quality of active classes
recalled by one training sample as the key to maintain the same ac-
curacywith Full Softmax. In particular, we propose IVF-BQ to do the
active classes selection, and parallelize it with well designed CUDA
kernel function. Then we introduce two kinds of sample grouping
optimization to improve the sampled active classes quantity of each
training sample. Experiments on a variety of tasks, datasets and
loss functions demonstrate that our ANN Softmax is lossless in
accuracy with only 1/10 sampled classes. What’s more, our method
has successfully trained a classifier of 300 million classes on 256
GPUs cluster in ten days, which sets up a new state-of-the-art for
the community.

8

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation (OSDI). 265–283.

[2] Xiang An, Xuhan Zhu, Yang Xiao, Lan Wu, Ming Zhang, Yuan Gao, Bin Qin,
Debing Zhang, and Ying Fu. 2020. Partial FC: Training 10 Million Identities on a
Single Machine. arXiv preprint arXiv:2010.05222 (2020).

[3] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2016. Cache
locality is not enough: High-performance nearest neighbor search with product
quantization fast scan. In International Conference on Very Large Data Bases
(VLDB). 288–299.

[4] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018. HD-
index: pushing the scalability-accuracy boundary for approximate kNN search
in high-dimensional spaces. In International Conference on Very Large Data Bases
(VLDB). 906–919.

[5] Jiajiong Cao, Yingming Li, and Zhongfei Zhang. 2018. Celeb-500k: A large
training dataset for face recognition. In IEEE Conference on Image Processing
(ICIP). 2406–2410.

[6] Welin Chen, David Grangier, and Michael Auli. 2015. Strategies for training large
vocabulary neural language models. arXiv preprint arXiv:1512.04906 (2015).

[7] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 248–255.

[8] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019. Arcface:
Additive angular margin loss for deep face recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 4690–4699.

[9] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: table
understanding through representation learning. In International Conference on
Very Large Data Bases (VLDB). 307–319.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL). 4171–4186.

[11] Matthijs Douze, Hervé Jégou, and Florent Perronnin. 2016. Polysemous codes. In
European Conference on Computer Vision (ECCV). 785–801.

[12] Matthijs Douze, Alexandre Sablayrolles, and Hervé Jégou. 2018. Link and code:
Fast indexing with graphs and compact regression codes. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 3646–3654.

[13] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. In Interna-
tional Conference on Very Large Data Bases (VLDB). 461–474.

[14] Jinyang Gao, Hosagrahar Visvesvaraya Jagadish,Wei Lu, and Beng Chin Ooi. 2014.
DSH: data sensitive hashing for high-dimensional k-nnsearch. In Proceedings of
the 2014 ACM SIGMOD international conference on Management of data. 1127–
1138.

[15] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In International Conference on Very Large Data
Bases (VLDB). 518–529.

[16] Joshua Goodman. 2001. Classes for fast maximum entropy training. In IEEE
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1. 561–564.

[17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

[18] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models. In International
Conference on Artificial Intelligence and Statistics (AISTATS). 297–304.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 770–778.

[20] Lanqing He, Zhongdao Wang, Yali Li, and Shengjin Wang. 2020. Softmax Dis-
section: Towards Understanding Intra-and Inter-class Objective for Embedding
Learning. In The AAAI Conference on Artificial Intelligence (AAAI), Vol. 34. 10957–
10964.

[21] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. 2007. La-
beled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained
Environments. Technical Report. University of Massachusetts, Amherst.

[22] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 33, 1, 117–128.

[23] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan Brossard.
2016. The megaface benchmark: 1 million faces for recognition at scale. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 4873–4882.

[24] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo Mai, Paolo
Costa, and Peter Pietzuch. 2019. Crossbow: scaling deep learning with small
batch sizes on multi-GPU servers. In International Conference on Very Large Data

Bases (VLDB). 1399–1412.
[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. Advances in Neural Information
Processing Systems (NeurIPS) 25, 1097–1105.

[26] Daniel Levy, Danlu Chen, and Stefano Ermon. 2017. LSH Softmax: Sub-Linear
Learning and Inference of the Softmax Layer in Deep Architectures. InWorkshop
of Advances in Neural Information Processing Systems (NeurIPSW).

[27] Jinfeng Li, Yuliang Li, Xiaolan Wang, andWang-Chiew Tan. 2020. Deep or simple
models for semantic tagging? it depends on your data. In International Conference
on Very Large Data Bases (VLDB). 2549–2562.

[28] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. PyTorch
Distributed: Experiences on Accelerating Data Parallel Training. In International
Conference on Very Large Data Bases (VLDB).

[29] Qiang Long, Wei Wang, Jinfu Deng, Song Liu, Wenhao Huang, Fangying Chen,
and Sifan Liu. 2019. A distributed system for large-scale n-gram language models
at Tencent. In International Conference on Very Large Data Bases (VLDB). 2206–
2217.

[30] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-
probe LSH: efficient indexing for high-dimensional similarity search. In Interna-
tional Conference on Very Large Data Bases (VLDB). 950–961.

[31] TharunMedini, QixuanHuang, YiqiuWang, Vijai Mohan, and Anshumali Shrivas-
tava. 2019. Extreme classification in log memory using count-min sketch: A case
study of amazon search with 50m products. In Advances in Neural Information
Processing Systems (NeurIPS). 13244–13254.

[32] Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang
Deng, Irene Kotsia, and Stefanos Zafeiriou. 2017. Agedb: the first manually col-
lected, in-the-wild age database. InWorkshop of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPRW). 51–59.

[33] C.D. Castillo V.M. Patel R. Chellappa D.W. Jacobs S. Sengupta, J.C. Cheng. 2016.
Frontal to Profile Face Verification in the Wild. In IEEE Winter Conference on
Applications of Computer Vision (WACV).

[34] Wissam Siblini, Pascale Kuntz, and Frank Meyer. 2019. A review on dimensional-
ity reduction for multi-label classification. IEEE Transactions on Knowledge and
Data Engineering (TKDE).

[35] Liuyihan Song, Pan Pan, Kang Zhao, Hao Yang, Yiming Chen, Yingya Zhang,
Yinghui Xu, and Rong Jin. 2020. Large-Scale Training System for 100-Million
Classification at Alibaba. In ACM SIGKDD International Conference on Knowledge
Discovery Data Mining (KDD). 2909–2930.

[36] Chong Sun, Narasimhan Rampalli, Frank Yang, and AnHai Doan. 2014. Chimera:
Large-scale classification using machine learning, rules, and crowdsourcing. In
International Conference on Very Large Data Bases (VLDB). 1529–1540.

[37] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao
Wang, and Yichen Wei. 2020. Circle loss: A unified perspective of pair similarity
optimization. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 6398–6407.

[38] Abhijit Suprem, Joy Arulraj, Calton Pu, and Joao Ferreira. 2020. ODIN: Automated
Drift Detection and Recovery in Video Analytics. In International Conference on
Very Large Data Bases (VLDB). 2453–2465.

[39] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems
(NeurIPS). 3104–3112.

[40] Sudheendra Vijayanarasimhan, Jonathon Shlens, Rajat Monga, and Jay Yagnik.
2015. Deep networks with large output spaces. In Workshop of International
Conference on Learning Representations (ICLRW).

[41] Guanhua Wang, Zhuang Liu, Brandon Hsieh, Siyuan Zhuang, Joseph Gonzalez,
Trevor Darrell, and Ion Stoica. 2021. sensAI: ConvNets Decomposition via Class
Parallelism for Fast Inference on Live Data. Proceedings of Machine Learning and
Systems (MLSys) 3 (2021).

[42] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li, and Wei Liu. 2018. Cosface: Large margin cosine loss for deep
face recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 5265–5274.

[43] Xiao-Lin Wang, Hai Zhao, and Bao-Liang Lu. 2013. A meta-top-down method
for large-scale hierarchical classification. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 26, 3, 500–513.

[44] Zhuoning Yuan, Zhishuai Guo, Xiaotian Yu, Xiaoyu Wang, and Tianbao Yang.
2020. Accelerating Deep Learning with Millions of Classes. In European Confer-
ence on Computer Vision (ECCV). 711–726.

[45] Xingcheng Zhang, Lei Yang, Junjie Yan, and Dahua Lin. 2018. Accelerated training
for massive classification via dynamic class selection. In The AAAI Conference on
Artificial Intelligence (AAAI), Vol. 32.

[46] Yuhao Zhang and Arun Kumar. 2019. Panorama: a data system for unbounded
vocabulary querying over video. In International Conference on Very Large Data
Bases (VLDB). 477–491.

[47] Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya Zhang, Xiaofeng Ren,
and Rong Jin. 2018. Visual search at alibaba. In ACM SIGKDD International
Conference on Knowledge Discovery Data Mining (KDD). 993–1001.

9

[48] Kang Zhao, Hongtao Lu, and Jincheng Mei. 2014. Locality preserving hashing.
In The AAAI Conference on Artificial Intelligence (AAAI), Vol. 28.

[49] Kang Zhao, Pan Pan, Yun Zheng, Yanhao Zhang, Changxu Wang, Yingya Zhang,
Yinghui Xu, and Rong Jin. 2019. Large-Scale Visual Searchwith BinaryDistributed
Graph at Alibaba. In ACM International Conference on Information and Knowledge
Management (CIKM). 2567–2575.

[50] Tianyue Zheng andWeihong Deng. 2018. Cross-pose lfw: A database for studying
cross-pose face recognition in unconstrained environments. Beijing University of
Posts and Telecommunications, Tech. Rep 5 (2018).

[51] Tianyue Zheng, Weihong Deng, and Jiani Hu. 2017. Cross-age lfw: A database
for studying cross-age face recognition in unconstrained environments. arXiv
preprint arXiv:1708.08197 (2017).

10

