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ABSTRACT

The presence of duplicate records is a major data qualityerarin
large databases. To detect duplicategity resolutionalso known
asduplication detectioror record linkageis used as a part of the
data cleaning process to identify records that potentiafer to
the same real-world entity. We present the Stringer systaah t
provides an evaluation framework for understanding whatidrs
remain towards the goal of truly scalable and general parpos
plication detection algorithms. In this paper, we use §gimto
evaluate the quality of the clusters (groups of potentiglidates)
obtained from several unconstrained clustering algosthused in
concert with approximate join techniques. Our work is et
by the recent significant advancements that have made apyatex
join algorithms highly scalable. Our extensive evaluatieveals
that some clustering algorithms that have never been ceresid
for duplicate detection, perform extremely well in termsbaoith
accuracy and scalability.

INTRODUCTION

The presence of duplicates is a major concern for data qual-
ity in large databases. To detect duplicatstity resolutionalso
known asduplication detectioror record linkage is used to iden-
tify records that potentially refer to the same entity. Desghe
large, and growing, number of duplicate detection techesgthe
research literature comparing their quality is surprikirgparse.
There are studies and surveys comparing the similarity oneas
used within these techniques [16, 29, 31]. However, to tist bie
our knowledge there are no comprehensive empirical stutlas
evaluate the quality of the grouping or clustering empldygthese
techniques. This is the case, despite the large number aietvaf
clustering techniques that have been proposed for duplabetec-
tion within the Information Retrieval, Data Managementgty,
and Machine Learning communities. These clustering dlyms
are quite diverse in terms of their properties, their coxipfeand
their scalability. This diversity cries out for a study caanipng the
accuracy of the different clustering approaches for thelicaie
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detection task. In this paper, we present a thorough expeitinh
comparison of clustering approaches from all these areas.

Our work is motivated by the recent exciting advancemerds th
have made approximate join algorithms highly scalable [35]
41, 43]. These innovations lend hope to the idea that duplide-
tection can be made sufficiently scalable and general parfgose
introduced as a generic, data-independent operator vatbiBMS.
In this paper, we describe the Stringer systdhat provides an
evaluation framework for understanding what barriers anta
wards the goal of truly scalable and general purpose dujgita
detection algorithms. Our focus in this paper is on usingngér
to understand which clustering algorithms can be used icaron
with scalable approximate join algorithms to produce dcrgik de-
tection algorithms that are robust with respect to the tiolsused
for the approximate join, and various data characterigtidsiding
the amount and distribution of duplicates.

1.1 Stringer Duplicate Detection Framework

In Stringer, we are interested in scalable algorithms toatat
rely on a specific structure in the data. So while there ardi-dup
cate detection algorithms that can take advantage of etiaitor
co-occurrence information in data such as author co-oitadiata
or social networks, we do not consider these specializeatitthgns
[8, 9].2 Our reasons are two-fold. First, such information is not
always available. Hence, in considering the integratiobibfio-
graphic databases, our techniques can match tables orcaidmh
titles, person names, or any set of attributes about thegatigins,
but will not take advantage of a social network relationsfgpween
the authors. While such social network information is comrfar
data about people, it is less common for other types of datan E
when additional information is available, it may not be shor
may be represented differently. Therefore, in evaluatiagegal
purpose techniques, we focus on duplication detectiornridfagas
that match two relations (on one or more attributes). Secomd
believe that this study, with its strict focus on generalpmse tech-
niques, will provide results that can be used to inform erogir
studies of the more specialized models that require additistruc-
ture within the data.

To ensure scalability, we consider clustering approachgshw
can use as input pairs of similar records that might be foyndrb
approximate join algorithm (Figure 1). The input to the tduig
is the output of the approximate join which can be modeled as a
similarity graphG(U, V'), where a node:. € U in the graph rep-
resents a record in the data and an efiger) € V exists only if
the two records are deemed similar. In these join technjgues

http://dblab.cs.toronto.edu/project/stringer/

2These techniques are sometimes caltgldtional, but we avoid
this term due to the obvious confusion with the relationatigio
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Figure 1: Duplicate detection framework

records are deemed similar if their similarity score based simi-
larity function is above a specified threshéldThe similarity graph

is often weighted, i.e., each edfye v) has a weightv(u, v) which

is equal to the similarity score between the records cooredipg

to nodesu andv. But a key point is that these approximate join
techniques are extremely proficient at finding a small andrate
set of similar items. This feature permits the effective ofelus-
tering techniques on the output of the join, including the o$
techniques that would not scale to graphs over the origimaulti
relations.

Given the result of a similarity or approximate join, a chritg
algorithm can then be used to group nodes in the record simila
ity graph into clusters containing potential duplicateshud, the
clustering algorithms must henconstrainealgorithms, that is, the
algorithms do not require as input the number of clusterstiogro
domain specific parameters. For this framework, they mustebe
signed for graph data and should be able to produce a large (an
unknown) number of clusters.

1.2 Clustering Algorithms

There exists a wealth of literature on clustering algorghm
cluding several books [35, 40, 51], surveys [18, 23, 28, ¥4, 5
and theses [2, 39, 44, 47, 48]. In the classification of ctisgge
algorithms in Figure 2 (from [35]) our algorithms fall in thpar-
titional class. That is, we are not interested in algorithhat are
supervised or only produce hierarchical clusters. As nateale,
we only consider those algorithms that amconstrained The
main characteristic of such algorithms is that unlike thgomity
of clustering algorithms, they do not require the numberlogc
ters as input. All these algorithms share the same goal atioge
clusters that maximize the intra-cluster weights, and ming¢ the
inter-cluster edge weights. Determining the best possibteof
clusters that satisfies this objective is known to be contjmutally
intractable. Therefore several proposals have been mdiwltan
approximate solution either based on heuristics or thiailgtisti-
fications. We consider the following clustering algorithms

e Single-pass algorithmsncluding Partitioning, CENTER and
MERGE-CENTER, that efficiently perform clustering by a
single scan of the list of edges of the similarity graph. Par-
titioning or transitive closure has been used previouslg as
part of many duplicate detection algorithms [33]. The CEN-
TER algorithm has shown to be effective in web document
retrieval [32]. MERGE-CENTER is a new extension of CEN-

Clustering Algorithms

—
Supervised Unsupervised
(Extrinsic) (Intrinsic)
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Figure 2: A classification of clustering algorithms

e Star clustering algorithm originally proposed for clustering
documents [4], creates star-shaped clusters from theagimil

ity graph.

e Ricochet family of algorithms were recently proposed as
unconstrained graph clustering algorithms for documerst-cl
tering [49]. These algorithms are based on combining ideas
from the classic K-means algorithm and the Star algorithm.

e Cut Clustering algorithm based on finding minimum cuts of
edges in the similarity graph, and evaluated on bibliogiaph
citation and web data [24].

e Articulation Point Clustering a scalable graph partition-
ing algorithm based on finding articulation points and bicon
nected components [17], and evaluated on blog data for iden-
tifying chatter in the blogosphere [6].

e Markov Clustering (MCL) is a fast and scalable unsuper-
vised clustering algorithm based on simulation of stodbast
flow in graphs [47]. It has shown high efficiency and quality
in applications in bio-informatics [11, 38].

e Correlation Clustering was originally proposed for cluster-
ing graphs with binary edge labels indicating correlation o
lack of correlation of connected nodes [5]. The labels can
be assigned to edges based on the similarity scores of the
records (edge weights) and a threshold value, which makes it
appealing as an unconstrained algorithm for clustering-sim
larity graphs.

In this work, we do not consider algorithms that contain para
eters adjusting for characteristics in the data or clustepgrties
(such as the cluster diameter) [13, 34]. We do consider tgo-al
rithms that contain input parameters, namely, Markov @itsg
(MCL) and Cut Clustering. MCL contains a parameter that can i
fluence coarseness and the quality of the clustering. Hawase
reported by previous work [49] (and also supported by oueexp
iments) an optimal value for the parameter is rather statiesa
applications. The Cut Clustering algorithm has a singleupeater,
which as our experiments show, directly influences the tyuafi
the clustering. We therefore include this algorithm only dom-
pleteness. We however fix the value of the parameters of these
algorithms in our experiments and treat them as unconsulzt
gorithms.

To the best of our knowledge, clustering algorithms not con-
sidered in this paper do not meet the requirements of ourdram
work. Specifically, the X-means algorithm [42] (an extensaf
K-means), that does not require as input the number of chysis
well as popular Spectral algorithms [14, 37] perform cltistgon
a set of points in Euclidean space, and need the coordinaths o
data points as input. Moreover, the main application ofdétago-

TER we propose to enhance the accuracy of the algorithm for rithms is in pattern recognition and image segmentatiott) diif-

duplicate detection without losing efficiency.

ferent characteristics that make them unsuitable for améwork.



Particularly, the size of the clusters is usually large iesthappli-
cations whereas for duplicate detection in real world dagxre are
many small (and even singleton) clusters in the data. Thieema
some other (unconstrained) clustering algorithms for figdiub-
graphs [22, 26] inapplicable.

1.3 Evaluation Framework

To compare the quality of the detected duplicates, we hawe ch
sen a number of robust metrics. Part of our comparison isdbase
on widely-used quality measures in information retrievelmely
precision, recall and the F1 measure which have previousinb
used for evaluation of clustering algorithms. We also usaityu
measures suitable for the task of duplicate detection. Apoim
tant characteristic of the algorithms that should be evatian our
framework is their ability to find the correct number of clerst

For a thorough evaluation of the clustering algorithmss ie$-
sential to have datasets of varying sizes, error types astduli-
tions, and for which the ground truth is known. For the experi
ments in this paper, we use datasets generated by a publaily a
able version of the widely used UIS database generator wtash
been effectively used in the past to evaluate different@pprate
selection and join predicates used within duplicate dieted®9,
31]. We follow the best practice guidelines from informatice-
trieval and data management, to generate realistic emosging
data. Specifically, we use the data generator to injectreiffiere-
alistic types and percentages of errors to a clean datalhaseng
attributes. The erroneous records made from each cleardrace
put in one cluster (which we use as ground truth) in order to be
able to measure quality (precision and recall) of the chirsgeal-
gorithms.

Although some of the algorithms considered in this papeehav
been evaluated previously on synthetic randomly genegrigths
[10, 47], in document clustering [49], and in computatiohall-
ogy [11], our work is the first to compare all these algorithims
duplicate detection, and based on several robust qualiasunes.

1.4 Contributions and Organization
Our contributions include the following:

e We present a set of unconstrained clustering algorithms an
show how they can be used, in conjunction with scalable ap-
proximate join algorithms, for duplicate detection. We in-
clude highly scalable (single pass) algorithms togethén wi
some more sophisticated and newer clustering algorithros (C
relation Clustering and Markov Clustering) that have gener

e We present the results of our comprehensive evaluation and
comparison study of the effectiveness of unconstrainest clu
tering algorithms for duplicate detection over string d&ar
results show the effect of the characteristics of the digase
and the similarity threshold on the accuracy of the algorgh
Specifically, we show that all algorithms with the exception
of Ricochet family of algorithms are relatively robust t@th
distribution of the errors, although Ricochet algorithms a
less sensitive to the value of the threshold and the amount of
error in the datasets. We show that sophisticated but popu-
lar algorithms like Cut clustering and Correlation clusigs
have lower accuracy than the more efficient single-pass algo
rithms. We are the first to propose using Markov clustering
for duplicate detection and show that in fact it is among the
most accurate algorithms for this task and is also very effi-
cient.

This paper is organized as follows. We present an overvialv an
brief description of the unconstrained clustering aldonis in the
next section. In Section 3, we discuss the methodology ak wel
as the results of our extensive experiments over severaselst of
string data. Section 4 presents a summary of our evaluatinds
concludes the paper.

2. UNCONSTRAINED CLUSTERING

Unconstrained clustering algorithms aim to create clgsten-
taining similar record€ = {ci, ..., cx} where the value of is
unknown. The clustering may be exclusive (disjoint), whgrthe
base relation is partitioned and there is no overlap of nadesng
the clusters, thatig), . ci = Randcine; = @foralle;, c; € C.
Alternatively, non-exclusive clustering permits nodeséong to
more than one cluster, although it is desirable for this layeto
be small. The Star, Ricochet (OCR, CR), and ArticulationnPoi
clustering algorithms may produce overlapping clusters.

Consider the source relation as a gra@ghU, V') where each
nodeu € U represents a record in the base relation and each edge
(u,v) € V connects two nodeg andv only if they are similar,

d I-e-, their similarity score based on some similarity fimietsim ()

is above a specified threshald

2.1 Single-pass Algorithms

In this class of algorithms, we do not materialize the sintifa
graph. In fact, all the algorithms can be efficiently impleresl

ated a lot of buzz in the data management community, but by.a §irjgle scan of the list of similar pgirs retgrned by thaisi
have not been evaluated for duplicate detection. We also larity join module, although some require the list to be sgrby

include algorithms from information retrieval, includirige
Star clustering algorithm and the Ricochet family of algo-
rithms that were originally proposed for document cluster-
ing, as well as the graph-theoretic algorithms Cut Clustgeri
and Articulation Point Clustering. The majority of the clus
tering algorithms presented in this paper were not prelyous
used for duplicate detection.

similarity score. We only use the graghto illustrate these tech-
niques. Figure 3 (from [30]) illustrates the result of applythese
algorithms to a sample similarity graph.

2.1.1 Partitioning (Transitive Closure)

The Partitioning algorithm clusters the given records byifig
the connected components in the graph, and returning each co
nected component as a cluster. The algorithm performsecingt

e We present a comprehensive evaluation framework to study by first assigning each node to its own cluster. Then, theofist

the behaviour of unconstrained clustering algorithms fier t
task of duplicate detection. This framework permits scala-
bility by ensuring that grouping decisions can be made on
the (relatively small) output of an approximate join, rathe
than on the original relation. Our evaluation is also based o
several robust quality measures and on various dataséts wit
many different characteristics.

similar pairs (the output of the similarity join) is scannaate and
if two connected nodes are not in the same cluster, theitezkis
are merged. Figure 3(a) shows how this algorithm clusteesra s
ple graph. As shown in this figure, the algorithm may resulti;
clusters, the results in many records that are not simileagheut
in the same cluster. Partitioning is the common approacHt irse
early entity resolution work, and is included as a baseline.
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Figure 3: lllustration of single-pass clustering algorithms

2.1.2 CENTER

The CENTER algorithm [32] performs clustering by partiiiom
the similarity graph into clusters that haveenter and all records
in each cluster are similar to the center of the cluster. algs-
rithm requires the list of the similar pairs (the output o gimilar-
ity join) to be sorted by decreasing order of similarity ®rThe
algorithm then performs clustering by a single scan of théeso
list. The first time a node is in a scanned pair, it is assigned as the
center of the cluster. All the subsequent nodelat are similar to
u (i.e., appear in a paiu, v) in the list) are assigned to the cluster
of v and are not considered again. Figure 3(b) illustrates hasv th
algorithm clusters a sample graph of records. In this fignoele
w1 is in the first pair in the sorted list of similar records andlea-
appears in a pair right after all the nodes similawtoare visited,
and nodeus appears after all the nodes similaritg are scanned.
As the figure shows, this algorithm could result in more @tst
than Partitioning since it assigns to a cluster only thosenas that
are similar to the center of the cluster.

2.1.3 MERGE-CENTER

The MERGE-CENTER algorithm [30] is a simple extension of
the CENTER algorithm. It performs similar to CENTER, but ges
two clusters:; andc; whenever a record similar to tleenternode
of ¢; isin the cluster;, i.e., a record that is similar to the center of
the clusterc; is similar to the center of;. This is done similarly
by a single scan of the list of the similar records, but kegpiack
of the records that are already in a cluster. Again, the finst &

sired degree of similarity. Furthermore, minimal cliqueexs with
maximal cliques allow vertices to belong to several clisteshich
is a desirable feature in many applications (including pugsfor-
tunately this approach is computationally intractableis Ishown
that the clique cover problem is NP-complete and does nat eve
admit polynomial-time approximation algorithms [46]. TBear
clustering algorithm [4] is proposed as a way to cover thelgra
by dense star-shaped subgrapimstead. Aslam et al. [4] prove
several interesting accuracy and efficiency properties exaluate
the algorithm for document clustering in information retal. The
Star algorithm performs clustering on a weighted simijagitaph
G(U,V) as follows:

a. Leteach vertex id? be initially unmarked.
b. Calculate the degree of each vertex U.

c. Let the highest degree unmarked vertex be a star center, an
construct a cluster from the center and its associateccestti
Mark each node in the newly constructed star.

d. Repeat step c until all the nodes are marked.

Note that this algorithm is similar to the single-pass alfpon CEN-
TER, but may produce overlapping (hon-disjoint) clusténsple-
menting this algorithms requires another scan of the injgtiof
similar records to calculate the degree of each vertex aridtso
vertices based on their degrees.

nodew appears in a pair, it is assigned as the center of the cluster. 2.2.2 Ricochet family of algorithms

All the subsequent nodesthat appear in a paifu, v) in the scan
and are not assigned to any cluster, are assigned to therchfst

Wijaya and Bressan [49] recently proposed a family of uncon-
strained algorithms called ‘Ricochet’ due to their strgtegsem-

u, and are not assigned as the center of any other cluster. ‘When pjing the rippling of stones thrown in a pond. These algonih

ever a paifu, v") is encountered such that is already in another
cluster, the cluster of; is merged with the cluster af’. Figure
3(c) shows the clustering of the sample similarity graphtiy &l-
gorithm, assumimg that the nodes, u» andus are the first three
nodes in the sorted list of similar records that are assigsethe
center of a cluster. As this figure shows, MERGE-CENTER e®at
fewer clusters for the sample graph than the CENTER algurith
but more than the Partitioning algorithm.

2.2 Star and Ricochet Algorithms

2.2.1 Star Clustering Algorithm

This algorithm is motivated by the fact that high-qualitysters
can be obtained from a weighted similarity graph by: (1) reimgp
edges with weight less than a threshéldand (2) finding amin-
imum clique covemwith maximal cliques on the resulting graph.
This approach ensures that all the nodes in one cluster haaet

perform clustering by alternating between two phases. érfitist
phase, the seeds of the clusters are specified, which isasituil
selecting star centers in the Star algorithm. In the secdrade
vertices are assigned to clusters associated with seedsphdse
is similar to the re-assignment phase in the K-means algoriwvi-
jaya and Bressan propose four versions of the algorithmwanof
the algorithms, seeds are chosen sequentially one by orile, iwh
the two other algorithms seeds are chosen concurrently. s€he
quential algorithms produce disjoint clusters, whereasaorent
algorithms may produce overlapping clusters (similar t® $tar
algorithm). In all four algorithms, a weight is associateithveach
vertex which is equal to the average weight of their adjaeeges.
We briefly describe the four algorithms below and refer trasles
to [49] for the complete algorithm pseudo-code.

Sequential Rippling (SR) performs clustering by first sorting
the nodes in descending order of their weight (average weiyh
their adjacent edges). New seeds are chosen one by one fiom th



sorted list. When a new seed is added, vertices are re-askigra
new cluster if they are closer to the new seed than they wetteeto
seed of their current cluster. If there are no re-assignsehen
no new cluster is created. If a cluster is reduced to sing|eito
is reassigned to its nearest cluster. The algorithm stopmvalt
nodes are considered.

Balanced Sequential Rippling (BSR)s similar to the sequen-
tial rippling in selecting the first seed, and has a similacosel
phase. However its first phase differs whereby it choosesdie
seed to maximize the ratio of its weight to the sum of its saniy
to the seeds of existing clusters. This strategy is empltysdlect
a node with a high weight that is far enough from the other seed

Concurrent Rippling (CR) initially marks every vertex as a
seed. In each iteration, the algorithm picks for each seeadge
with highest weight. If the edge connects the seed to a véineex
is not a seed, the vertex is assigned to the cluster of the déed
the vertex is a seed, it is assigned to the cluster of the cibwed
only if its weight is smaller than the weight of the seed. Tihis
eration (propagation of ripple) is performed at equal sfeedll
seeds. This requires sorting of the edges in descending ofde
their weights, finding the minimum value of the weight of thiges
picked in each iteration of the algorithm, and processinghe
edges that have a weight above the minimum weight value.

Ordered Concurrent Rippling (OCR) performs clustering sim-
ilar to concurrent rippling but removes the requirement tha rip-
pling propagates at equal speeds. Therefore this algoigheia-
tively more efficient and also could possibly create highealigy
clusters by favoring heavy seeds.

2.3 Correlation Clustering

Suppose we have a graghonn nodes, where each edge, v)
is labeled either- or — depending on whether andv have been
deemed to be similar or different. Correlation clusteriogginally
proposed by [5], refers to the problem of producing a parifia
clustering) ofG that agrees as much as possible with the edge la-
bels. More precisely, correlation clustering solves a mézation
problem where the goal is to find a partition that maximizes th
number of+ edges within clusters and the number-o&dges be-
tween clusters. Similarly, correlation clustering carodi® for-
mulated as a minimization problem where the goal is to mipémi
the number of- edges inside clusters and the number-oédges
between clusters.

Correlation clustering is &lP-hard problem[5]. Thus, several
attempts have been made to approximate both the maximizatio
and minimization formulations [5, 12, 19, 45]. Most of thene a
different ways of approximating its linear programmingrfora-
tion. For the maximation formulation, Bansal et al. give &po-
mial time approximation scheme. For the minimization folau
tion, Bansal et al. give a constant factor approximationeyTélso
present a result which states that any constant factor gippation
for the minimization problem i{+, —}-graphs can be extended
as a constant factor approximation in general weightedhgr.aipor
the purpose of our application, we implemented and evadutte
algorithm Cautius in [5]. Using a notion of“goodness”, the algo-
rithm Cautius expands a cluster associated with an arpitrade
by adding its neighbors that afegood into the cluster while re-
moving its neighbors that atebad from the given cluster.

2.4 Markov Clustering (MCL)

The Markov Cluster Algorithm (MCL), proposed by Stijn van
Dongen [47], is an algorithm based on simulation of (stotttas
flow in graphs. MCL clusters the graph by performing random
walks on a graph using a combination of simple algebraic-oper

ations on its associated stochastic matrix. Similar to roéthgo-
rithms considered in our paper, it does not require any idtrawl-
edge about an underlying cluster structure. The algorithbased

on a simple intuition that a region with many edges insidet®a
cluster and therefore the amount of flow within a clusteriisrsy.

On the other hand, there exist a few edges between such gaduc
regions (clusters) and therefore the amount of flow betweeh s
regions (clusters) is weak. Random walks (or flow) within the
whole graph are used to strengthen flow where it is alreadngtr
(e.g. inside a cluster), and weaken it where it is weak (eg. b
tween clusters). By continuing with such random walks aneund
lying cluster structure will eventually become visible. €Fafore,
such random walks are finally ended when we find regions (clus-
ters) with strong internal flow that are separated by botadavith
hardly any flow.

The flow simulation in the MCL algorithm is as an alternate ap-
plication of two simple algebraic operations on stochastatrix
associated with the given graph. The first algebraic opmras
calledexpansionwhich coincides with normal matrix multiplica-
tion of a random walk matrix. Expansion models the spreading
out of flow as it becomes more homogeneous. The second alge-
braic operation is callethflation, which is a Hadamard power fol-
lowed by a diagonal scaling of another random walk matrifain
tion models the contraction of flow, becoming thicker in oew of
higher current and thinner in regions of lower current. Téguen-
tial application of expansion and inflation causes flow t@agrout
within natural clusters and evaporate in between diffecirsters.

By varying the inflation parameter of the algorithm, clustgs on
different scales of granularity can be found. Therefore ithmber

of clusters cannot and need not be specified in advance, and th
algorithm can be adapted to different contexts.

2.5 Cut Clustering

Given adirected grapff = (U, V') with edge capacitiequ, v) €
Z™1 , and two vertices, t, the s — t maximum flow problem is to
find a maximum flow path from the soureeo the sink¢ that re-
spects the capacity constraifiténtuitively, if the edges are roads,
the max flow problem determines the maximum flow rate of cars
between two points. Th@ax flow-min cutheorem proven by Ford
and Fulkerson [25] states that finding the maximum flow of a net
work is equivalent to finding the minimum cut that separatesd
t. Specifically, this involves finding a non-trivial partiticof the
vertices into two sets, whereandt are in different sets, such that
the cut weight (the sum of edge weights in the cut) is minimal.
There are many applications of this theorem to areas sucktas n
work reliability theory, routing, transportation plangirand cluster
analysis.

We implemented and evaluated thet Clusteringalgorithm based
on minimum cuts proposed by Flake, Tarjan, and Tsioutdibsili
[24]. The goal is to find clusters with small inter-clustetsso that
the intra-cluster weights are maximized giving strong @mions
within the clusters. The algorithm is based on insertingréfi@al
sink ¢ into G and finding the minimum cut between each vertex
u € U (the source) and. Removing the edges in the minimum
cut yields two sets of clusters. Vertices participating iolaster
are not considered as a source in subsequent evaluatiorisplMu
iterations of finding minimum cuts yields a minimum cut traad
after removing the sink, the resulting connected components are
the clusters of5.

There have been many algorithms proposed for finding the min-
imum cut of G, including finding augmenting paths by Ford and

3Undirected graphs are modeled with bi-directional edges.
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Figure 4: (a) Articulation points are shaded, (b) Biconneced
components.

Fulkerson [25], Edmonds and Karp [21], and Dinic [20], anldeot
variations suited for dense graphs or sparse graphs. Imqulei
mentation, we use the push-relabel algorithm for findingimim
cuts which has been shown to perform as well as the best tpotmi
for sparse and dense graphs [27]. The Cut Clustering atgorit
contains a parameterthat defines the weight for edges connected
to the sinkt. We select a suitabla value for our experiments as
described further in Section 3.3.

2.6 Articulation Point Clustering

This algorithm is based on a scalable technique for finding ar
ticulation points and biconnected components in a graphkerGa
graphG, the algorithm identifies all articulation points @& and
returns all vertices in each biconnected component as teclusn
articulation point is a vertex whose removal (together Wahnci-
dent edges) makes the graph disconnected. A graph is bicethe
if it contains no articulation points. A biconnected comennof a
graph is a maximal biconnected graph. Finding biconnecoea-c
ponents of a graph is a well-studied problem that can be pe&gd
in linear time [17]. The ‘removaf of all articulation points sep-
arates the graph into biconnected components. These cemison
are returned as clusters@f Note that overlapping clusters are pro-
duced. Figure 4 shows an example. A depth first search tiahsrs
used to find all articulation points and biconnected comptsa
G. We refer the reader to [6] for details of a scalable and mgmor
efficient implementation of the algorithm and its pseuddeco

3. EXPERIMENTAL EVALUATION

In this section we describe our evaluation methodology aesent
an overview of the results of our experiments. We first bridf#
cuss the characteristics of the datasets used in the exgrasmNe
then explain the settings of our experiments including tméarity
measure used for the approximate join, and finally presestitse
of our extensive experiments.

3.1 Datasets

The datasets used in our experiments are generated usimg an e
hanced version of the UIS database generator which has lieen e
fectively used in the past to evaluate duplicate detectigorahms

and has been made publicly available [29, 33]. We use the data

generator to inject different realistic types and percgesaof er-
rors to a clean database of string attributes. The erronemasds
made from each clean record are put in a single cluster (wheh
use as ground truth) in order to be able to measure the quudlity
the clustering algorithms. The generator permits the meaif
data sets of varying sizes, error types and distribution#ffe®
ent error types injected by the data generator include camedd

4Descriptive terminology. The articulation points are notually
removed. These vertices serve as links between the bictathec
components and participate in each incident biconnectetpoe
nent vertex set.

errors (character insertion, deletion, replacement op¥wtaken
swap errors and domain specidisbreviation errorse.g., replacing

I nc. with I ncor por at ed and vice versa. We use two different
clean sources of data: a data set consistingpafipany namethat
contains2, 139 records (name of companies) with average record
length of21.03 characters an@.92 words in each record on aver-
age, and a data set consisting of titles frbLP which contains
10, 425 records with averag83.55 characters record length and
averaget.53 words in each record. Note that the data sets created
by the data generator can be much larger than the originahcle
sources. In our experiments, we create data sets of UpG&
records.

For the results in this paper, we used 29 different datatsitef)
with different sizes, error types and distributions. Tahleand 2
show the description of all these datasets along with thegp¢age
of erroneous records in each dataset (i.e., the averageanuhb
the records in each cluster which are erroneous), the pageiof
errors within each duplicate (i.e., the number of errorsdted in
each erroneous record), the percentage of token swap angl/abb
ation errors as well as the distribution of the errors (caiubist. in
Table 2), the size of the datasets (the number of recordscimtea
ble) and the number of the clusters of duplicates (columrst@h#
in Table 2. Five datasets contain only a single type of error (3 lev-
els of edit errors, token swap or abbreviation replacemeats to
measure the effect of each type of error individually. Thiasets
with uniform distribution have equal cluster sizes on agerée.qg.,

10 records in each cluster on average for a datasetosi0 records
with 500 clusters) whereas the size of the clusters in the Zipfian
datasets follow a Zipfian distribution (i.e., most of thestars have
size 1 while a few clusters are very large). Note that we &ohthe
size of the datasets for our experiments on accuracy due tach
that some of the algorithms do not scale well. However, we run
experiments on much larger datasets with the algorithmsdba
scale and the trends were similar. Following [29], we belitwe
errors in these datasets are highly representative of contypes

of errors in databases with string attributes.

3.2 Accuracy Measures

In order to evaluate the quality of the duplicate clustetmtbby
the clustering algorithms, we use several accuracy measume
the clustering literature and also measures that are saitabthe
final goal of duplicate detection. Suppose that we have afset o
k ground truth cluster& = {g¢1,...,gx} of the base relatiok.
Let C = {ci,...,cw} denote the set of’ output clusters of a
clustering algorithm. We define a mappirfgfrom the elements
of G to the elements of’, such that each clustes is mapped to
a clusterc; = f(gs) that has the highest percentage of common
elements withy;. Precision and recall for a cluster, 1 <i < kis
defined as follows:

e il
Pri = 5(g0)]

Intuitively, the value ofPr;is a measure of the accuracy with which
cluster f(g;) reproduces clusteg;, while the value ofRe; is a
measure of the completeness with whigfy;) reproduces class
gi. Precision,Pr, and recall,Re, of the clustering are defined as
the weighted averages of the precision and recall values all/e

and Re; — |f(9|z‘) |ﬂgi|
gi

5These errors are injected based on a study on common types of
edit errors found in real dirty databases.

bAll these datasets along with a small sample of them areabail

at: http://dblab.cs.toronto.edu/project/stringergotuing/



Table 1: Datasets used in the experiments

Percentage of
Group | Name [ Erroneous| Errorsin | Token | Abbr.
Duplicates | Duplicates| Swap | Error
High H1 90 30 20 50
Error H2 50 30 20 50
Medium M1 30 30 20 50
Error M2 10 30 20 50
M3 90 10 20 50
M4 50 10 20 50
Low L1 30 10 20 50
Error L2 10 10 20 50
AB 50 0 0 50
Single TS 50 0 20 0
Error EDL 50 10 0 0
EDM 50 20 0 0
EDH 50 30 0 0
Zipfian ZH1 90 30 20 50
High ZH2 50 30 20 50
Zipfian ZM1 30 30 20 50
Medium | ZM2 10 30 20 50
Error ZM3 90 10 20 50
ZM4 50 10 20 50
Zipfian ZL1 30 10 20 50
Low ZL2 10 10 20 50
DBLP DH1 90 30 20 0
High DH2 50 30 20 0
DBLP DM1 30 30 20 0
Medium | DM2 10 30 20 0
Error DM3 90 10 20 0
DM4 50 10 20 0
DBLP DL1 30 10 20 0
Low DL2 10 10 20 0

Table 2: Size, distribution and source of the datasets

Group Source Dist. Size | Cluster#
High Error, Company | Uniform 5K 500
Medium Error, Names
Low Error,
Single Error
Zipfian High Company | Zipfian | 1.5K 1K
Zipfian Medium | Names
Zipfian Low
DBLP High DBLP Uniform 5K 500
DBLP Medium Titles
DBLP Low
ground truth clusters. More precisely:
Pr = Z 1%] Pr; and Re= Z ||“;]é|

Fi-measure is defined as the harmonic mean of precision ant] reca
i.e.,

2 x Pr x Re
Pr+ Re

We use precision, recall and fneasure as indicative values of
the ability of an algorithm to reconstruct the indicatedstéus in
the dataset. However, in our framework, the number of claste
created by the clustering algorithms is not fixed and dependbke
datasets and the threshold value used in the similarity jbirere-
fore, we define two other measures specifically suitable tor o
framework. Let CPrbe the number of pairs (of records) in each
clusterc; that are in the same ground truth clusger ¢; = f(g;),
ie.,

F =

[(t,8) €Eci x|t #sNTjel...
()

We define Clustering Precision; Pr, to be the average &' Pr;

k,(t,s) € gj X gjl

CPTZ‘ =

for all clusters of size greater than or equa2tdhe value ofC' Pr
indicates the ability of the clustering algorithm to assigoords
that should be in the same cluster to a single cluster, rézgsrd
of the number and the size of the clusters produced. In odler t
penalizes those algorithms that create greater or fewsteghithan
the ground truth, we define Penalized Clustering Precigtaipr,
and compute it a&'Pr multiplied by the percentage of extra or
missing clusters in the result, i.e.,

o {gczﬂr k<K
k

Eopr k>
3.3 Settings

Similarity Function There are a large number of similarity mea-
sures for string data that can be used in the similarity jBased on
the comparison of several such measures in [31], we use teeigh
Jaccard similarity along with g-gram tokens (substring¢eafjth
q of the strings) as the measure of choice due to its relativiglly
efficiency and accuracy compared with other measures. rihcca
similarity is the fraction of tokens im; andr; that are present in
both. Weighted Jaccard similarity is the weighted versibdam-
card similarity, i.e.,

Loieniory WL F)
Zterl Urg (t7 R)

wherew(t, R) is a weight function that reflects the commonality
of the tokent in the relationR. We choose the commonly-used
Inverse Document Frequency (IDF) weights, with a slight ifiod
cation based on the RSJ (Robertson/Sparck Jones) weigith wh
was shown to make the weight values more effective [29]:

N —ni+05
log [ A=t 00 2
Og( e+ 05 ) @

whereN is the number of tuples in the base relat®m@andn. is the
number of tuples irR containing the token. The similarity value
returned is betweefi (for strings that do not share any g-grams)
and1 (for equal strings).

Note that this similarity predicate can be implemented atecl
atively and used as a join predicate in a standard RDBMS engin
[29], or used with some of the specialized, high performastzte-
of-the-art approximate join algorithms [3, 7]. In our exipagnts
we used g-grams of size 2 and the g-gram generation technique
proposed by [29]: strings are first padded with whitespatéisea
beginning and the end, then all whitespaces are replacéd;witl
special symbols (e.g., $).

Implementation Details of the Clustering Algorithms. To com-
pare the clustering algorithms, we have either implemeateab-
tained an implementation of the algorithms from their atghdlo-
tably, not all of these algorithms have previously been am@nted
nor evaluated (even on their own), so we created some new im-
plementations. For other algorithms where the authorsigeov
us with an implementation, their implementation may havenbe
in a different language and used different data structumes bur
own implementation. As a result, the time taken by differat
gorithms is not directly comparable. We report running spisut
they should be taken as an upper bound on the computation time
All the implementations (our own and those of others) codap-
timized further and, more notably for our study, we have niett
to ensure the time optimization is equitable. Rather, we@ses-
ing on comparing the quality of the duplicates detected Ishea
approach.

Some of the clustering algorithms were not originally desit)
for an input similarity graph and therefore we needed to nuike

@)

stmw Jaccard(rlv T2)

w(t, R)



cisions on how to transform the similarity graph to suit tthgoa
rithm’s input format. The original implementation of thec&chet
algorithms obtained from the authors worked only for coreple
graphs. Therefore, for all pairs of disconnected nodesr(imai-
larity score was below), we added an edge with a small constant
weight. In our implementation, for the SR and BSR algorithms
we used a constant value 005, and for the CR and OCR algo-
rithms we used a constant value @f In Correlation Clustering,
we build the input correlation graph by assigning to edges be-
tween nodes with similarity greater thénand assign—' to edges
between nodes with similarity less théan

For the results in this paper, we use the term “CorrelatiarsCl
tering to refer to the approximation algorithm Cautiousff8]gen-
eral weighted graphs. A more efficient approximation is th@-C
PivoT algorithm [1], which is arandomized expected 3-approxiomat
algorithm for the correlation clustering problem. Thisaithm is
similar to the CENTER algorithm, but the center nodes areeho
randomly and not from the sorted list of the edges. Based on ou
experiments, this randomization did not improve the qualftthe
clusters on average comparing with the CENTER algorithnd, an
we therefore do not include the results in this paper.

For the MCL algorithm, we employed the latest C implementa-
tion of MCL, provided by the original author of the algoritinAs
noted previously, we fix the inflation parameter of the MCLaalg
rithm for all the datasets and treat it as an unconstraingatighm.

We use the default parameter valde=£ 2.0) as recommended by
the author of the algorithm. For the Cut Clustering algarithwe

used a C implementation of the push-relabel algorithm akel
from the author§. We evaluated different values for the parame-
ter o across a subset of the datasets at varying thresholds to find
the a value that would produce a total number of clusters (for each
dataset) that was closest to the ground truth. We founditha.2
worked best and used this value throughout our tests.

3.4 Results

We first report the results of our experiments and obsemstio
for each individual algorithm. We use the Partitioning aitjon,
which returns the connected components in the similariaplyras
clusters, as the baseline for our evaluations. We then prassmm-
parative performance study among the algorithms, and yinat
report the running times for each algorithm.

Most of the accuracy results reported in this paper are geera
results over the medium error class of datasets in Tableck sue
believe that these results are representative of algofitsinaviour
when using datasets with different characteristics. Wavste
results from other datasets whenever the trends deviate tie
medium class datasets. Our extensive experimental resdtsall
the 29 datasets in Table 1 are publicly available at:
http://dblab.cs.toronto.edu/project/stringer/clusig/

3.4.1 Individual Results

Single-pass Algorithms. The table below shows the accuracy
values for the single-pass algorithms over medium-erroasgas
and two thresholds that result in the best average F1 measdre
the best average PCPr values in these algorithms. Sim@adsr
were observed for the other thresholds and datasets.

http://micans.org/mcl/src/mcl-06-058/
8http://www.avglab.com/andrew/soft.html.

Partitioning CENTER MC

Best Best Best Best Best Best

PCPr F1 PCPr F1 PCPr F1
PCPr 0.554 | 0.469 || 0.638 | 0.298 || 0.695 | 0.437
CPr 0.946 | 0.805 || 0.818 | 0.692 || 0.940 | 0.795
Pr 0.503 | 0.934 ]| 0.799 | 0.971 || 0.658 | 0.958
Re 0.906 | 0.891 || 0.860 | 0.805 || 0.950 | 0.885
F1 0.622 | 0.910 || 0.825| 0.877 || 0.776 | 0.918
Cluster# || 354 994 697 1305 459 1030

The results above show that, assuming that the optimaltthres
old for the similarity join is known for, the CENTER algorith
performs better than the Partitioning algorithm, and that¥iC al-
gorithm is more effective than both CENTER and Partitiororgr
these datasets. This is to be expected since Partitionitsgnpany
unsimilar records in the same cluster resulting in highealtebut
considerably lower precision. CENTER puts many similaords
in different clusters resulting in lower recall, but high@ecision.
These results show that MC creates clusters with precisioerl
than CENTER but higher than Partitioning, with a recall fisal-
most as high as that of Partitioning.

Note that the number of clusters in the ground truth is 50@& Th
last row in the table shows the number of clusters generaged b
each algorithm. These results show that precision, recallRa
measures alone cannot determine the best algorithm siagedth
not take into account the number of clusters generateduttifies
using the CPr and PCPr measures. Furthermore, we can observe
the high degree of sensitivity of all these algorithms tottireshold
value used in the similarity join, although MC is less séwsito
this value among the single-pass algorithms.

Star algorithm. The table below gives the results for the Star
algorithm, revealing that the algorithm has a better perforce in
terms of accuracy when a lower threshold value is used. With a
lower threshold value, the Star algorithm significantlypmrforms
the Partitioning algorithm, and is less sensitive to theiealf the
threshold used. However, for higher thresholds, the quafithe
clustering considerably decreases. This is because theesteers
in this algorithm are chosen based on the degree of the nbdesy
higher threshold values decreases the degree of all thes fodee
graph and makes the choice of a proper cluster center hardieh
results in clusters of lower quality. It is also worth meniity that
even with an ideal threshold, the Star algorithm’s accuiadgss
than the accuracy of the single-pass algorithms.

6=0.2 6=0.3 6=0.4
Part. Star Part. Star Part. Star
PCPr 0.101 | 0.614 || 0.554 | 0.601 || 0.645| 0.445
CPr 0991 | 0.726 || 0.946 | 0.801 || 0.879 | 0.781
Pr 0.104 | 0.588 || 0.503| 0.778 || 0.788 | 0.900
Re 0.953 | 0.730 || 0.906 | 0.842 || 0.929 | 0.870
F1 0.177 | 0.644 ]| 0.622 ] 0.805 || 0.850 | 0.884
Cluster# 51 521 354 715 704 949

Ricochet family of algorithms. The accuracy results for SR
and BSR, presented in the table below for two similarity $had
values, show that these algorithms are also more effectiosvar
thresholds, but are overall more robust (less sensitiv@saovary-
ing threshold values.

0=0.2 0 =04
Part. SR BSR Part. SR BSR
PCPr 0.101 | 0.628 | 0.466 || 0.645| 0.590 | 0.578
CPr 0.991 | 0.821 | 0.868 || 0.879 | 0.754 | 0.895
Pr 0.104 | 0.989 | 0.675 || 0.788 | 0.991 | 0.828
Re 0.953 | 0.863 | 0.932 ]| 0.929 | 0.818 | 0.930
F1 0.177 | 0.917 | 0.779 ]| 0.850 | 0.893 | 0.873
Cluster# 51 735 268 704 703 323

OCR and CR algorithms, on the other hand, are very sensitive
to the threshold value, and are more effective at highgalues



as shown in the table below. This is again due to different afay
choosing cluster seeds (or centers) used in these algarithiark-
ing all the nodes as seeds and gradually merging the clusters
done in OCR and CR, results in higher quality clusters when th
threshold value is high (i.e., the similarity graph is nohsie) but
does not work well when the threshold value is low (i.e., tineis
larity graph is very dense). On the other hand, when the sareds
chosen sequentially based on the weight of the nodes, asriSire
and BSR, a lower threshold value (i.e., a dense similaraph) re-
sults in more accurate weight values and therefore bettécetof
cluster seeds and higher quality clusters.

6 =02 6 =0.5
Part. CR OCR Part. CR OoC
PCPr 0.101 | 0.494 | 0.351 || 0.469 | 0.402 | 0.687
CPr 0.991| 0.967 | 0.981 | 0.805| 0.782 | 0.817
Pr 0.104 | 0.434 | 0.299 || 0.934 | 0.958 | 0.862
Re 0.953 | 0.869 | 0.952 || 0.891 | 0.869 | 0.883
F1 0.177| 0.567 | 0.454 | 0.910 | 0.910 | 0.872
Cluster# 51 258 180 994 1079 | 593

Cut Clustering (MinCut). Clustering the similarity graph based
on minimum cuts improves the quality of the clustering wheme
pared to the Partitioning algorithm, as shown in the tablevhe
This improvement is significant as we increase the thresioltb
0.4. For@ > 0.4, MinCut Clustering produces the same clusters
as the Partitioning algorithm, since as the input graph inesdess
dense, only significantly related records remain conneatetfur-
ther cutting the edges does not improve the quality of thsteks.

0 =0.2 6 =0.3 0=04

Part. | MinCut Part. | MinCut Part. | MinCut

PCPr || 0.101 | 0.105 0.554 | 0.683 0.645| 0.689
CPr 0.991| 0.509 0.946 | 0.891 0.879 | 0.875
Pr 0.104 | 0.833 0.503 | 0.672 0.788 | 0.827
Re 0.953 | 0.564 0.906 | 0.908 0.929 | 0.926
F1 0.177 | 0.671 0.622 | 0.771 0.850 | 0.873

Clstr# 51 2450 354 665 704 735

Articulation Point Clustering (ArtPt). As the results show in
the following table, the Articulation Point clustering glitly en-
hances the Partitioning algorithm by splitting some of thenpo-
nents in the graph into a few more clusters. This makes the alg
rithm only slightly less sensitive to the threshold valueheTal-
gorithm works best with the optimal threshold for the Pamtiing
algorithm (thed value that creates partitions of highest quality in
the Partitioning algorithm).

6=0.2 6=0.3 0 =04

Part. | ArtPt. Part. | ArtPt. Part. | ArtPt.

PCPr 0.101 | 0.169 || 0.554 | 0.655 || 0.645 | 0.680
CPr 0.991 ] 0.988 || 0.946 | 0.941 || 0.879 | 0.871
Pr 0.104 | 0.157 || 0.503 | 0.581 || 0.788 | 0.825
Re 0.953 | 0.920 || 0.906 | 0.891 || 0.929 | 0.925
F1 0.177 ]| 0.251 || 0.622 | 0.693 || 0.850 | 0.871
Cluster# 51 86 354 428 704 754

Markov Clustering (MCL). As shown in the table below, the
MCL algorithm produces clusters of increased quality tHzosé
created by the Partitioning algorithm. The MCL algorithnalso
most effective when used with the optimal threshold valitepagh
itis much less sensitive overall across varythgalues. This shows
the effectiveness of the flow simulation process using ramgalks
on the graph, and that unlike the Star and SR algorithms,iqgun
the edges with low weights does not affect the quality of s
ters significantly, and unlike Partitioning and CR, a deriselar-
ity graph (i.e., not pruning the low-weight edges) does metift in
clusters with low precision.

0 =02 0=0.3 0=0.4
Part. | MCL Part. | MCL Part. | MCL
PCPr 0.101 | 0.599 || 0.554 | 0.768 || 0.645| 0.644
CPr 0.991 | 0.934 || 0.946| 0.921 || 0.879 | 0.866
Pr 0.104 | 0.571 || 0.503 | 0.754 || 0.788 | 0.888
Re 0.953 | 0.951 || 0.906 | 0.952 || 0.929 | 0.925
F1 0.177 | 0.712 || 0.622 | 0.841 || 0.850 | 0.906
Cluster# 51 323 354 528 704 77

Correlation Clustering (CCL) This algorithm performs best
when using lower threshold values, producing clusters witith
higher quality than those created by the Partitioning atlyor. The
quality of the produced clusters degrade at highealues. This is
to be expected since the algorithm performs clustering hase
correlation information between the nodes and a highmeans a
loss of this information.

0=0.2 0=0.3 0=0.4
Part. | CCL Part. | CCL Part. | CCL
PCPr 0.101 [ 0.612 || 0.554 | 0.542 || 0.645 | 0.406
CPr 0.991 [ 0.711 || 0.946 | 0.762 || 0.879 | 0.748
Pr 0.104 [ 0.596 | 0.503 | 0.803 || 0.788 | 0.914
Re 0.953 [ 0.750 || 0.906 | 0.822 || 0.929 | 0.844
F1 0.177 | 0.659 || 0.622 | 0.808 || 0.850 | 0.876
Cluster# 51 538 354 753 704 1000

3.4.2 Overall Comparison

Sensitivity to the value of the threshold.Table 3 shows the ac-
curacy results of all the algorithms for different threstwobver the
medium-error class of datasets. These results can be usethto
pare different algorithms when using a fixed threshold, ixéth
the same similarity graph as input. Among all the algorithBR
and BSR are least sensitive to the threshold value. Howeeér t
accuracy does not always outperform the other algorithmstHer
algorithms, those that use the weight and degree of the ddges
the clustering perform relatively better using lower ti@d viues,
when the similarity graph is more dense. Therefore, CENTER,
Star, Correlation Clustering and MCL algorithms perfornttére
with low threshold values comparing with the other algarith
The single-pass algorithms along with Articulation Pointl dVlin-
Cut algorithms are generally more sensitive to the threstalue
and are considerably more effective when used with the @btim
threshold (when the number of components in the graph i®clos
to the number of ground truth clusters), with MERGE-CENTER
being the least sensitive among them.

Effect of the amount of errors. The results in Table 4 show the
best accuracy values obtained by the algorithms on datesets
different amounts of error, along with the difference (Diffbe-
tween the value obtained for the high error and low error gsou
of datasets. Note that the accuracy numbers in this tableotan
be used to directly compare the algorithms since they aredbas
on different thresholds and therefore the input similagtgph is
different for each algorithm. We use these results to compize
effect of the amount of error on different algorithms. Thessults
suggest that the Ricochet group of algorithms and MCL atlgori
are relatively more robust on datasets with different ant®aoher-
rors, i.e., they perform equally well on the three groupsaibdets
with lowest drop in the quality of the clusters on high erratakets
comparing with low error groups of datasets.

Sensitivity to the distribution of the errors. Table 5 shows the
best accuracy values obtained for the algorithms on meditror-
datasets with uniform and Zipfian distributions. Note thaZip-
fian datasets, there are many records with no duplicateglésim
clusters) and only a few records with many duplicates. Dubéo
fact that the PCPr measure is the average CPr value for alluke
ters and is calculated for clusters of size 2 or more, thisiaoy
measure is less indicative of the performance of the alyoston
this class of datasets. These results show that all theitdgorare



Table 3: Average accuracy of all the algorithms for differert thresholds over medium-error datasets
0 | Measure| Part. | CENTER | MergeC | Star | SR | BSR | CR | OCR | CCL | MCL | MinCut | ArtPt.
02| PCPr | 0.101| 0593 0.257 | 0.614 | 0.628 | 0.466 | 0.494 | 0.351 | 0.612 | 0.599 | 0.105 | 0.169
F1 0.177 | 0.666 0.389 | 0.644 | 0.917 | 0.779 | 0.567 | 0.454 | 0.659 | 0.712 | 0.671 | 0.251
Cluster# | 51 472 134 521 | 735 | 268 | 258 | 180 | 538 | 323 | 2450 86
03| PCPr | 0.554| 0.638 0.695 | 0.601 | 0.616 | 0.564 | 0.718 | 0.578 | 0.542 | 0.768 | 0.683 | 0.655
F1 0.622 | 0.825 0.776 | 0.805 | 0.907 | 0.863 | 0.791 | 0.718 | 0.808 | 0.841 | 0.771 | 0.693
Cluster# | 354 697 459 715 | 721 | 315 | 527 | 306 | 753 | 528 665 428
04| PCPr | 0.645| 0.445 0.692 | 0.445 | 0590 | 0.578 | 0.640 | 0.629 | 0.406 | 0.644 | 0.689 | 0.680
F1 0.850 | 0.887 0.894 | 0.884 | 0.893 | 0.873 | 0.887 | 0.819 | 0.876 | 0.906 | 0.873 | 0.871
Cluster# | 704 956 750 949 | 703 | 323 | 786 | 454 | 1000 | 777 735 754
06| PCPr | 0.284| 0225 0.275 | 0.234 | 0546 | 0.527 | 0.264 | 0.546 | 0.000 | 0.273 | 0.284 | 0.264
F1 0.897 | 0.841 0.892 | 0.861 | 0.847 | 0.839 | 0.886 | 0.851 | 0.183 | 0.892 | 0.897 | 0.887
Cluster# | 1345 | 1650 1378 | 1593 | 634 | 323 | 1435 | 746 | 4979 | 1382 | 1345 | 1438
08| PCPr | 0.175| 0.173 0.174 | 0.173 | 0.604 | 0.458 | 0.174 | 0.340 | 0.000 | 0.175| 0.175 | 0.174
F1 0.773 | 0.757 0.768 | 0.761| 0.768 | 0.730 | 0.768 | 0.730 | 0.183 | 0.772 | 0.773 | 0.765
Cluster# | 2173 | 2232 2188 | 2227 | 504 | 307 | 2196 | 1709 | 4979 | 2176 | 2173 | 2209

Table 4: Best accuracy values for all the algorithms over dierent groups of datasets
Measure] Group | Part. | CENTER | MergeC | Star SR | BSR | CR | OCR | CCL | MCL | MinCut | ArPt.
Max. Low 0.842 | 0.849 0.904 | 0.841 | 0.854 | 0.661 | 0.918 | 0.847 | 0.818 | 0.921 | 0.855 | 0.900
PCPr | Medium | 0.645 | 0.638 0.695 | 0.614 | 0.633 | 0.578 | 0.718 | 0.687 | 0.612 | 0.768 | 0.689 | 0.680
High | 0.399 | 0.217 0.340 | 0.197 | 0.538 | 0.461 | 0.632 | 0.557 | 0.175 | 0.476 | 0.232 | 0.278
Diff. 0443 | -0.632 | -0.565 | -0.644 | -0.316 | -0.201 | -0.286 | -0.290 | -0.642 | -0.445 | -0.623 | -0.621
Max. Low 0.959 | 0.956 0.960 | 0.953 | 0.976 | 0.918 | 0.957 | 0.917 | 0.951 | 0.960 | 0.959 | 0.957
F1 Medium | 0.910 | 0.887 0.918 | 0.892 | 0.920 | 0.873 | 0.910 | 0.872 | 0.876 | 0.921 | 0.913 | 0.907
High | 0.685 | 0.640 0.734 | 0.660 | 0.853 | 0.695 | 0.733 | 0.640 | 0.624 | 0.760 | 0.760 | 0.668

Diff. -0.273 -0.316 -0.225 | -0.292 | -0.123 | -0.223 | -0.223 | -0.277 ] -0.327 | -0.199 | -0.198 | -0.288
Best Low 428 460 460 471 501 364 468 445 489 471 434 458
Cluster# | Medium 354 472 459 521 504 386 527 454 538 528 665 428
High 919 203 200 221 470 356 643 455 236 236 1404 143
Diff. +491 -257 -260 -250 -32 -8 +175 +11 -254 -235 +970 -315

equally robust with respect to the distribution of the esror the 2.4GHz, 16 GB of RAM running Red Hat Linux 3.4. PC3is a Dual
data except SR, BSR and OCR algorithms from the Ricochet fam- Core AMD Opteron Processor 270 (2GHz) with 6GB of memory

ily which produce clusters of significantly lower quality.hi§ is running Red Hat Linux 2.6. Each experiment is run multipfees
mainly due to the inability of these algorithms in findinggigton to obtain statistical significance.
Clusters._ . i Algorithm Time Lang./Machine
Effectiveness in predlptlng the correct number of clusters Partiioning 1790 sec Java/PC1
The results of our experiments, partly shown in Tables 3dt&n CENTER 3.570 sec JavalPC1L
show that none of the algorithms are capable of accuratelyiqtr MERGE-CENTER| 3.581 sec Java/PC1
ing the number of clusters regardless of the charactesisfithe Star 5.9 min Java/PC1
dataset. For uniform datasets, SR algorithms perform iehe CCL 83.5 min Java/PC2
well for finding the correct number of clusters on datasetth wi MCL 8.395 sec C/pc2
different amounts of errors. However, this algorithm failken MinCut 52.1min | C&Perl/PC3
ArtPt. 17.563 sec Perl/PC3

it comes to datasets with a Zipfian distribution of errors. e@v
all, algorithms that find star-shaped clusters, namely CERT The implementation for the Ricochet algorithms requireiidbu
MERGE-CENTER, Star, CR and OCR algorithms, can effectively ing a complete similarity graph in memory. Therefore, rumgnthe
find the right number of datasets with an optimal thresholtle T algorithm on the dataset of 100K records required keepingphg

graph-theoretic algorithms Correlation clustering anakda clus- with 100 billion edges in memory which was not possible. We

tering also find a reasonable number of clusters at lowestiolds. therefore had to limit the size of the dataset for these éxants.
We used a dataset of 5K records with threshile: 0.1 resulting

3.4.3 Running Time in 391,706 edges. The running times are shown in the tabtswbel

As stated previously, in this work we are focusing mainly on Algorithm | _Time | Lang./Machine

comparing the quality of the duplicates detected by eaatrialgn. SER éi?% zgg jZXZﬁgi

However we do repqrt the runnin.g times in this .section, bet th CR 9911 sec JavalPCl

times taken by the different algorithms are not directly pana- OCR 8972sec|  Java/PCl

ble, and should be taken as an upper bound on the computation
time. All the implementations (our own and those of othems)ld

be optimized further, and more notably for our study, we hzante
tried to ensure the time optimization is equitable. Diffarenple-
mentations and machines are used to run these experimemgs. T
table below shows the running times for 8 of the algorithnmsus-

ing a dataset of 100K records of DBLP titles described in iBect
3.1, and with thresholéd = 0.4, giving 386, 068 edges in the sim- 4. SUMMARY AND CONCLUSION

ilarity graph. PC1 is a Dell 390 Precision desktop with 2.88zG In this paper, we evaluated and compared several uncamestrai
Intel Core2 Extreme Quad-Core Processor QX6700, 4GB of RAM clustering algorithms for duplicate detection by exteasdxperi-
running 32-bit Windows Vista. PC2 is an AMD OPTERON 850 ments over various sets of string data with different chiarastics.

These results support the scalability of single-pass dlgos as
well as MCL and Articulation Point clustering algorithms.ofs
that we used the original implementation of the MCL algarith
which is highly optimized. Such an optimized implementatieas
not available for the Correlation Clustering algorithm.



Table 5: Best accuracy values for all the algorithms over meidm-error datasets with different distributions

Measure| Group | Part. | CENTER | MergeC | Star SR BSR CR OCR | CCL | MCL | MinCut | ArPt.
F1 Uniform | 0.910 | 0.887 0918 | 0.892 | 0.920 | 0.873 | 0.910 | 0.872 | 0.876 | 0.921 | 0.721 | 0.907
Zipfian | 0.936 | 0.936 0.938 | 0.934 | 0.873 | 0.463 | 0.935 | 0.697 | 0.929 | 0.937 | 0.819 | 0.934
Diff. +0.026 | +0.049 | +0.020 | +0.041 | -0.047 | -0.411 | +0.025 | -0.175 | +0.054 | +0.016 | +0.098 | +0.027
Cluster# | Uniform | 354 472 459 521 504 386 527 454 538 528 665 428
Zipfian | 1018 934 10475 | 933 | 6985 | 158 | 1061 | 992 | 955.25| 1021 | 1038 | 1067
We made the results of our extensive experiments publidifale Robustness Against
and we intend to keep the results up-to-date with stat&efart A g >
X . . . £ L 5 &
clustering algorithms and various synthetic and real éasas\We ig g E =
hope these results serve as a guideline for researchersracti p g & 5 ; = A > g
tioners interested in using unconstrained clusteringrétguos es- R =) §_ =4 El=y § " 2
) . . g g 2
pecially for the task of duplicate detection. £ a8 ; 58 %1 E | 25
A summary of the results is presented in Figure 5. Our results & 428 g9 29 |25
using partmomn_g o_f the S|r_n||ar|ty graph (finding the tedtive cI_o- Partitioning High Low Low Low | High
sure of the similarity relation) which is the common apptoat CENTER il el o o
many early duplicate detection techniques, confirms thentom ENT '€ '€ hid W | High
wisdom that this scalable approach results in poor quafitgiue MERGE CENTER High High Low Low | High
plicate groups. But more importantly, we §how tha.t this tyéd Star Medium |  High Low Low | High
poor even wher) compared tg other clusterlng algonthmsmaas SR Low | Medium | High High Low
efficient. The Ricochet algorithms produce high qualitystéuings BSR o = Toh e
when used with uniformly distributed duplicates, but fdile other W w '€ '€ Low
distributions. All other algorithms were robust to the diition of CR Low High | Medium| High | High
the dupl!cates. .Our results also show that sophisticgte@dmu- OCR Low High Medium | High Low
lar algorithms, like Cut clustering and Corrglgtlon quEtg, gave Correlation Clustering Low High Low Low | High
lower accuracy than some of the more efficient single-pags-al VP— . T el Nodi Nodi -
rithms. We were the first to propose the use of Markov clusgeri arkov Clustering '€ '€ edium | Medium | High
as an unconstrained algorithm for duplicate detection &otved Cut Clustering Low Low Low Low | High
that in fact it is among the most accurate algorithms for thgk Articulation Point High Medium Low Low High

and is also very efficient.

A basic observation here is that none of the clustering élgus
produce perfect clusterings. Therefore a reasonable apipiis to
not only keep the clustering that results from our algorghbut to
also keep the important quantitative information produggthese
algorithms. In [30], we show how this quantitative informoatcan
be used to provide an accurate confidence score for eaclcalgpli
that can be used in probabilistic query answering.
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