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ABSTRACT
The presence of duplicate records is a major data quality concern in
large databases. To detect duplicates,entity resolutionalso known
asduplication detectionor record linkageis used as a part of the
data cleaning process to identify records that potentiallyrefer to
the same real-world entity. We present the Stringer system that
provides an evaluation framework for understanding what barriers
remain towards the goal of truly scalable and general purpose du-
plication detection algorithms. In this paper, we use Stringer to
evaluate the quality of the clusters (groups of potential duplicates)
obtained from several unconstrained clustering algorithms used in
concert with approximate join techniques. Our work is motivated
by the recent significant advancements that have made approximate
join algorithms highly scalable. Our extensive evaluationreveals
that some clustering algorithms that have never been considered
for duplicate detection, perform extremely well in terms ofboth
accuracy and scalability.

1. INTRODUCTION
The presence of duplicates is a major concern for data qual-

ity in large databases. To detect duplicates,entity resolutionalso
known asduplication detectionor record linkage, is used to iden-
tify records that potentially refer to the same entity. Despite the
large, and growing, number of duplicate detection techniques, the
research literature comparing their quality is surprisingly sparse.
There are studies and surveys comparing the similarity measures
used within these techniques [16, 29, 31]. However, to the best of
our knowledge there are no comprehensive empirical studiesthat
evaluate the quality of the grouping or clustering employedby these
techniques. This is the case, despite the large number and variety of
clustering techniques that have been proposed for duplicate detec-
tion within the Information Retrieval, Data Management, Theory,
and Machine Learning communities. These clustering algorithms
are quite diverse in terms of their properties, their complexity, and
their scalability. This diversity cries out for a study comparing the
accuracy of the different clustering approaches for the duplicate
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detection task. In this paper, we present a thorough experimental
comparison of clustering approaches from all these areas.

Our work is motivated by the recent exciting advancements that
have made approximate join algorithms highly scalable [3, 7, 15,
41, 43]. These innovations lend hope to the idea that duplicate de-
tection can be made sufficiently scalable and general purpose to be
introduced as a generic, data-independent operator withina DBMS.
In this paper, we describe the Stringer system1 that provides an
evaluation framework for understanding what barriers remain to-
wards the goal of truly scalable and general purpose duplication
detection algorithms. Our focus in this paper is on using Stringer
to understand which clustering algorithms can be used in concert
with scalable approximate join algorithms to produce duplicate de-
tection algorithms that are robust with respect to the threshold used
for the approximate join, and various data characteristicsincluding
the amount and distribution of duplicates.

1.1 Stringer Duplicate Detection Framework
In Stringer, we are interested in scalable algorithms that do not

rely on a specific structure in the data. So while there are dupli-
cate detection algorithms that can take advantage of co-citation or
co-occurrence information in data such as author co-citation data
or social networks, we do not consider these specialized algorithms
[8, 9].2 Our reasons are two-fold. First, such information is not
always available. Hence, in considering the integration ofbiblio-
graphic databases, our techniques can match tables on publication
titles, person names, or any set of attributes about the publications,
but will not take advantage of a social network relationshipbetween
the authors. While such social network information is common for
data about people, it is less common for other types of data. Even
when additional information is available, it may not be shared or
may be represented differently. Therefore, in evaluating general
purpose techniques, we focus on duplication detection algorithms
that match two relations (on one or more attributes). Second, we
believe that this study, with its strict focus on general purpose tech-
niques, will provide results that can be used to inform empirical
studies of the more specialized models that require additional struc-
ture within the data.

To ensure scalability, we consider clustering approaches which
can use as input pairs of similar records that might be found by an
approximate join algorithm (Figure 1). The input to the clustering
is the output of the approximate join which can be modeled as a
similarity graphG(U, V ), where a nodeu ∈ U in the graph rep-
resents a record in the data and an edge(u, v) ∈ V exists only if
the two records are deemed similar. In these join techniques, two

1http://dblab.cs.toronto.edu/project/stringer/
2These techniques are sometimes calledrelational, but we avoid
this term due to the obvious confusion with the relational model.



Figure 1: Duplicate detection framework

records are deemed similar if their similarity score based on a simi-
larity function is above a specified thresholdθ. The similarity graph
is often weighted, i.e., each edge(u, v) has a weightw(u, v) which
is equal to the similarity score between the records corresponding
to nodesu andv. But a key point is that these approximate join
techniques are extremely proficient at finding a small and accurate
set of similar items. This feature permits the effective useof clus-
tering techniques on the output of the join, including the use of
techniques that would not scale to graphs over the original input
relations.

Given the result of a similarity or approximate join, a clustering
algorithm can then be used to group nodes in the record similar-
ity graph into clusters containing potential duplicates. Thus, the
clustering algorithms must beunconstrainedalgorithms, that is, the
algorithms do not require as input the number of clusters or other
domain specific parameters. For this framework, they must bede-
signed for graph data and should be able to produce a large (and
unknown) number of clusters.

1.2 Clustering Algorithms
There exists a wealth of literature on clustering algorithms in-

cluding several books [35, 40, 51], surveys [18, 23, 28, 36, 50],
and theses [2, 39, 44, 47, 48]. In the classification of clustering
algorithms in Figure 2 (from [35]) our algorithms fall in thepar-
titional class. That is, we are not interested in algorithmsthat are
supervised or only produce hierarchical clusters. As notedabove,
we only consider those algorithms that areunconstrained. The
main characteristic of such algorithms is that unlike the majority
of clustering algorithms, they do not require the number of clus-
ters as input. All these algorithms share the same goal of creating
clusters that maximize the intra-cluster weights, and minimize the
inter-cluster edge weights. Determining the best possibleset of
clusters that satisfies this objective is known to be computationally
intractable. Therefore several proposals have been made tofind an
approximate solution either based on heuristics or theoretical justi-
fications. We consider the following clustering algorithms:

• Single-pass algorithmsincluding Partitioning, CENTER and
MERGE-CENTER, that efficiently perform clustering by a
single scan of the list of edges of the similarity graph. Par-
titioning or transitive closure has been used previously asa
part of many duplicate detection algorithms [33]. The CEN-
TER algorithm has shown to be effective in web document
retrieval [32]. MERGE-CENTER is a new extension of CEN-
TER we propose to enhance the accuracy of the algorithm for
duplicate detection without losing efficiency.

Figure 2: A classification of clustering algorithms

• Star clustering algorithm originally proposed for clustering
documents [4], creates star-shaped clusters from the similar-
ity graph.

• Ricochet family of algorithms were recently proposed as
unconstrained graph clustering algorithms for document clus-
tering [49]. These algorithms are based on combining ideas
from the classic K-means algorithm and the Star algorithm.

• Cut Clustering algorithm based on finding minimum cuts of
edges in the similarity graph, and evaluated on bibliographic
citation and web data [24].

• Articulation Point Clustering a scalable graph partition-
ing algorithm based on finding articulation points and bicon-
nected components [17], and evaluated on blog data for iden-
tifying chatter in the blogosphere [6].

• Markov Clustering (MCL) is a fast and scalable unsuper-
vised clustering algorithm based on simulation of stochastic
flow in graphs [47]. It has shown high efficiency and quality
in applications in bio-informatics [11, 38].

• Correlation Clustering was originally proposed for cluster-
ing graphs with binary edge labels indicating correlation or
lack of correlation of connected nodes [5]. The labels can
be assigned to edges based on the similarity scores of the
records (edge weights) and a threshold value, which makes it
appealing as an unconstrained algorithm for clustering simi-
larity graphs.

In this work, we do not consider algorithms that contain param-
eters adjusting for characteristics in the data or cluster properties
(such as the cluster diameter) [13, 34]. We do consider two algo-
rithms that contain input parameters, namely, Markov Clustering
(MCL) and Cut Clustering. MCL contains a parameter that can in-
fluence coarseness and the quality of the clustering. However, as
reported by previous work [49] (and also supported by our exper-
iments) an optimal value for the parameter is rather stable across
applications. The Cut Clustering algorithm has a single parameter,
which as our experiments show, directly influences the quality of
the clustering. We therefore include this algorithm only for com-
pleteness. We however fix the value of the parameters of these
algorithms in our experiments and treat them as unconstrained al-
gorithms.

To the best of our knowledge, clustering algorithms not con-
sidered in this paper do not meet the requirements of our frame-
work. Specifically, the X-means algorithm [42] (an extension of
K-means), that does not require as input the number of clusters, as
well as popular Spectral algorithms [14, 37] perform clustering on
a set of points in Euclidean space, and need the coordinates of the
data points as input. Moreover, the main application of these algo-
rithms is in pattern recognition and image segmentation, with dif-
ferent characteristics that make them unsuitable for our framework.



Particularly, the size of the clusters is usually large in these appli-
cations whereas for duplicate detection in real world data,there are
many small (and even singleton) clusters in the data. This makes
some other (unconstrained) clustering algorithms for finding sub-
graphs [22, 26] inapplicable.

1.3 Evaluation Framework
To compare the quality of the detected duplicates, we have cho-

sen a number of robust metrics. Part of our comparison is based
on widely-used quality measures in information retrieval,namely
precision, recall and the F1 measure which have previously been
used for evaluation of clustering algorithms. We also use quality
measures suitable for the task of duplicate detection. An impor-
tant characteristic of the algorithms that should be evaluated in our
framework is their ability to find the correct number of clusters.

For a thorough evaluation of the clustering algorithms, it is es-
sential to have datasets of varying sizes, error types and distribu-
tions, and for which the ground truth is known. For the experi-
ments in this paper, we use datasets generated by a publicly avail-
able version of the widely used UIS database generator whichhas
been effectively used in the past to evaluate different approximate
selection and join predicates used within duplicate detection [29,
31]. We follow the best practice guidelines from information re-
trieval and data management, to generate realistic errors in string
data. Specifically, we use the data generator to inject different re-
alistic types and percentages of errors to a clean database of string
attributes. The erroneous records made from each clean record are
put in one cluster (which we use as ground truth) in order to be
able to measure quality (precision and recall) of the clustering al-
gorithms.

Although some of the algorithms considered in this paper have
been evaluated previously on synthetic randomly generatedgraphs
[10, 47], in document clustering [49], and in computationalbiol-
ogy [11], our work is the first to compare all these algorithmsfor
duplicate detection, and based on several robust quality measures.

1.4 Contributions and Organization
Our contributions include the following:

• We present a set of unconstrained clustering algorithms and
show how they can be used, in conjunction with scalable ap-
proximate join algorithms, for duplicate detection. We in-
clude highly scalable (single pass) algorithms together with
some more sophisticated and newer clustering algorithms (Cor-
relation Clustering and Markov Clustering) that have gener-
ated a lot of buzz in the data management community, but
have not been evaluated for duplicate detection. We also
include algorithms from information retrieval, includingthe
Star clustering algorithm and the Ricochet family of algo-
rithms that were originally proposed for document cluster-
ing, as well as the graph-theoretic algorithms Cut Clustering
and Articulation Point Clustering. The majority of the clus-
tering algorithms presented in this paper were not previously
used for duplicate detection.

• We present a comprehensive evaluation framework to study
the behaviour of unconstrained clustering algorithms for the
task of duplicate detection. This framework permits scala-
bility by ensuring that grouping decisions can be made on
the (relatively small) output of an approximate join, rather
than on the original relation. Our evaluation is also based on
several robust quality measures and on various datasets with
many different characteristics.

• We present the results of our comprehensive evaluation and
comparison study of the effectiveness of unconstrained clus-
tering algorithms for duplicate detection over string data. Our
results show the effect of the characteristics of the datasets
and the similarity threshold on the accuracy of the algorithms.
Specifically, we show that all algorithms with the exception
of Ricochet family of algorithms are relatively robust to the
distribution of the errors, although Ricochet algorithms are
less sensitive to the value of the threshold and the amount of
error in the datasets. We show that sophisticated but popu-
lar algorithms like Cut clustering and Correlation clusterings
have lower accuracy than the more efficient single-pass algo-
rithms. We are the first to propose using Markov clustering
for duplicate detection and show that in fact it is among the
most accurate algorithms for this task and is also very effi-
cient.

This paper is organized as follows. We present an overview and
brief description of the unconstrained clustering algorithms in the
next section. In Section 3, we discuss the methodology as well
as the results of our extensive experiments over several datasets of
string data. Section 4 presents a summary of our evaluationsand
concludes the paper.

2. UNCONSTRAINED CLUSTERING
Unconstrained clustering algorithms aim to create clusters con-

taining similar recordsC = {c1, . . . , ck} where the value ofk is
unknown. The clustering may be exclusive (disjoint), whereby the
base relation is partitioned and there is no overlap of nodesamong
the clusters, that is,

⋃

ci∈C
ci = R andci∩cj = ∅ for all ci, cj ∈ C.

Alternatively, non-exclusive clustering permits nodes tobelong to
more than one cluster, although it is desirable for this overlap to
be small. The Star, Ricochet (OCR, CR), and Articulation Point
clustering algorithms may produce overlapping clusters.

Consider the source relation as a graphG(U, V ) where each
nodeu ∈ U represents a record in the base relation and each edge
(u, v) ∈ V connects two nodesu andv only if they are similar,
i.e., their similarity score based on some similarity function sim()
is above a specified thresholdθ.

2.1 Single-pass Algorithms
In this class of algorithms, we do not materialize the similarity

graph. In fact, all the algorithms can be efficiently implemented
by a single scan of the list of similar pairs returned by the simi-
larity join module, although some require the list to be sorted by
similarity score. We only use the graphG to illustrate these tech-
niques. Figure 3 (from [30]) illustrates the result of applying these
algorithms to a sample similarity graph.

2.1.1 Partitioning (Transitive Closure)
The Partitioning algorithm clusters the given records by finding

the connected components in the graph, and returning each con-
nected component as a cluster. The algorithm performs clustering
by first assigning each node to its own cluster. Then, the listof
similar pairs (the output of the similarity join) is scannedonce and
if two connected nodes are not in the same cluster, their clusters
are merged. Figure 3(a) shows how this algorithm clusters a sam-
ple graph. As shown in this figure, the algorithm may result inbig
clusters, the results in many records that are not similar being put
in the same cluster. Partitioning is the common approach used in
early entity resolution work, and is included as a baseline.



(a) Partitioning (b) CENTER (c) MERGE-CENTER (MC)

Figure 3: Illustration of single-pass clustering algorithms

2.1.2 CENTER
The CENTER algorithm [32] performs clustering by partitioning

the similarity graph into clusters that have acenter, and all records
in each cluster are similar to the center of the cluster. Thisalgo-
rithm requires the list of the similar pairs (the output of the similar-
ity join) to be sorted by decreasing order of similarity scores. The
algorithm then performs clustering by a single scan of the sorted
list. The first time a nodeu is in a scanned pair, it is assigned as the
center of the cluster. All the subsequent nodesv that are similar to
u (i.e., appear in a pair(u, v) in the list) are assigned to the cluster
of u and are not considered again. Figure 3(b) illustrates how this
algorithm clusters a sample graph of records. In this figure,node
u1 is in the first pair in the sorted list of similar records and nodeu2

appears in a pair right after all the nodes similar tou1 are visited,
and nodeu3 appears after all the nodes similar tou2 are scanned.
As the figure shows, this algorithm could result in more clusters
than Partitioning since it assigns to a cluster only those records that
are similar to the center of the cluster.

2.1.3 MERGE-CENTER
The MERGE-CENTER algorithm [30] is a simple extension of

the CENTER algorithm. It performs similar to CENTER, but merges
two clustersci andcj whenever a record similar to thecenternode
of cj is in the clusterci, i.e., a record that is similar to the center of
the clusterci is similar to the center ofcj . This is done similarly
by a single scan of the list of the similar records, but keeping track
of the records that are already in a cluster. Again, the first time a
nodeu appears in a pair, it is assigned as the center of the cluster.
All the subsequent nodesv that appear in a pair(u, v) in the scan
and are not assigned to any cluster, are assigned to the cluster of
u, and are not assigned as the center of any other cluster. When-
ever a pair(u, v′) is encountered such thatv′ is already in another
cluster, the cluster ofu is merged with the cluster ofv′. Figure
3(c) shows the clustering of the sample similarity graph by this al-
gorithm, assumimg that the nodesu1, u2 andu3 are the first three
nodes in the sorted list of similar records that are assignedas the
center of a cluster. As this figure shows, MERGE-CENTER creates
fewer clusters for the sample graph than the CENTER algorithm,
but more than the Partitioning algorithm.

2.2 Star and Ricochet Algorithms

2.2.1 Star Clustering Algorithm
This algorithm is motivated by the fact that high-quality clusters

can be obtained from a weighted similarity graph by: (1) removing
edges with weight less than a thresholdθ, and (2) finding amin-
imum clique coverwith maximal cliques on the resulting graph.
This approach ensures that all the nodes in one cluster have the de-

sired degree of similarity. Furthermore, minimal clique covers with
maximal cliques allow vertices to belong to several clusters, which
is a desirable feature in many applications (including ours). Unfor-
tunately this approach is computationally intractable. Itis shown
that the clique cover problem is NP-complete and does not even
admit polynomial-time approximation algorithms [46]. TheStar
clustering algorithm [4] is proposed as a way to cover the graph
by dense star-shaped subgraphsinstead. Aslam et al. [4] prove
several interesting accuracy and efficiency properties, and evaluate
the algorithm for document clustering in information retrieval. The
Star algorithm performs clustering on a weighted similarity graph
G(U, V ) as follows:

a. Let each vertex inG be initially unmarked.

b. Calculate the degree of each vertexu ∈ U .

c. Let the highest degree unmarked vertex be a star center, and
construct a cluster from the center and its associated vertices.
Mark each node in the newly constructed star.

d. Repeat step c until all the nodes are marked.

Note that this algorithm is similar to the single-pass algorithm CEN-
TER, but may produce overlapping (non-disjoint) clusters.Imple-
menting this algorithms requires another scan of the input list of
similar records to calculate the degree of each vertex and sort the
vertices based on their degrees.

2.2.2 Ricochet family of algorithms
Wijaya and Bressan [49] recently proposed a family of uncon-

strained algorithms called ‘Ricochet’ due to their strategy resem-
bling the rippling of stones thrown in a pond. These algorithms
perform clustering by alternating between two phases. In the first
phase, the seeds of the clusters are specified, which is similar to
selecting star centers in the Star algorithm. In the second phase,
vertices are assigned to clusters associated with seeds. This phase
is similar to the re-assignment phase in the K-means algorithm. Wi-
jaya and Bressan propose four versions of the algorithm. In two of
the algorithms, seeds are chosen sequentially one by one, while in
the two other algorithms seeds are chosen concurrently. These-
quential algorithms produce disjoint clusters, whereas concurrent
algorithms may produce overlapping clusters (similar to the Star
algorithm). In all four algorithms, a weight is associated with each
vertex which is equal to the average weight of their adjacentedges.
We briefly describe the four algorithms below and refer the reader
to [49] for the complete algorithm pseudo-code.

Sequential Rippling (SR)performs clustering by first sorting
the nodes in descending order of their weight (average weight of
their adjacent edges). New seeds are chosen one by one from this



sorted list. When a new seed is added, vertices are re-assigned to a
new cluster if they are closer to the new seed than they were tothe
seed of their current cluster. If there are no re-assignments, then
no new cluster is created. If a cluster is reduced to singleton, it
is reassigned to its nearest cluster. The algorithm stops when all
nodes are considered.

Balanced Sequential Rippling (BSR)is similar to the sequen-
tial rippling in selecting the first seed, and has a similar second
phase. However its first phase differs whereby it chooses thenext
seed to maximize the ratio of its weight to the sum of its similarity
to the seeds of existing clusters. This strategy is employedto select
a node with a high weight that is far enough from the other seeds.

Concurrent Rippling (CR) initially marks every vertex as a
seed. In each iteration, the algorithm picks for each seed the edge
with highest weight. If the edge connects the seed to a vertexthat
is not a seed, the vertex is assigned to the cluster of the seed. If
the vertex is a seed, it is assigned to the cluster of the otherseed
only if its weight is smaller than the weight of the seed. Thisit-
eration (propagation of ripple) is performed at equal speedfor all
seeds. This requires sorting of the edges in descending order of
their weights, finding the minimum value of the weight of the edges
picked in each iteration of the algorithm, and processing all the
edges that have a weight above the minimum weight value.

Ordered Concurrent Rippling (OCR) performs clustering sim-
ilar to concurrent rippling but removes the requirement that the rip-
pling propagates at equal speeds. Therefore this algorithmis rela-
tively more efficient and also could possibly create higher quality
clusters by favoring heavy seeds.

2.3 Correlation Clustering
Suppose we have a graphG onn nodes, where each edge(u, v)

is labeled either+ or − depending on whetheru andv have been
deemed to be similar or different. Correlation clustering,originally
proposed by [5], refers to the problem of producing a partition (a
clustering) ofG that agrees as much as possible with the edge la-
bels. More precisely, correlation clustering solves a maximization
problem where the goal is to find a partition that maximizes the
number of+ edges within clusters and the number of− edges be-
tween clusters. Similarly, correlation clustering can also be for-
mulated as a minimization problem where the goal is to minimize
the number of− edges inside clusters and the number of+ edges
between clusters.

Correlation clustering is aNP-hard problem[5]. Thus, several
attempts have been made to approximate both the maximization
and minimization formulations [5, 12, 19, 45]. Most of them are
different ways of approximating its linear programming formula-
tion. For the maximation formulation, Bansal et al. give a polyno-
mial time approximation scheme. For the minimization formula-
tion, Bansal et al. give a constant factor approximation. They also
present a result which states that any constant factor approximation
for the minimization problem in{+,−}-graphs can be extended
as a constant factor approximation in general weighted graphs. For
the purpose of our application, we implemented and evaluated the
algorithm Cautius in [5]. Using a notion of “δ-goodness”, the algo-
rithm Cautius expands a cluster associated with an arbitrary node
by adding its neighbors that areδ-good into the cluster while re-
moving its neighbors that areδ-bad from the given cluster.

2.4 Markov Clustering (MCL)
The Markov Cluster Algorithm (MCL), proposed by Stijn van

Dongen [47], is an algorithm based on simulation of (stochastic)
flow in graphs. MCL clusters the graph by performing random
walks on a graph using a combination of simple algebraic oper-

ations on its associated stochastic matrix. Similar to other algo-
rithms considered in our paper, it does not require any priori knowl-
edge about an underlying cluster structure. The algorithm is based
on a simple intuition that a region with many edges inside forms a
cluster and therefore the amount of flow within a cluster is strong.
On the other hand, there exist a few edges between such produced
regions (clusters) and therefore the amount of flow between such
regions (clusters) is weak. Random walks (or flow) within the
whole graph are used to strengthen flow where it is already strong
(e.g. inside a cluster), and weaken it where it is weak (e.g. be-
tween clusters). By continuing with such random walks an under-
lying cluster structure will eventually become visible. Therefore,
such random walks are finally ended when we find regions (clus-
ters) with strong internal flow that are separated by boundaries with
hardly any flow.

The flow simulation in the MCL algorithm is as an alternate ap-
plication of two simple algebraic operations on stochasticmatrix
associated with the given graph. The first algebraic operation is
calledexpansion, which coincides with normal matrix multiplica-
tion of a random walk matrix. Expansion models the spreading
out of flow as it becomes more homogeneous. The second alge-
braic operation is calledinflation, which is a Hadamard power fol-
lowed by a diagonal scaling of another random walk matrix. Infla-
tion models the contraction of flow, becoming thicker in regions of
higher current and thinner in regions of lower current. The sequen-
tial application of expansion and inflation causes flow to spread out
within natural clusters and evaporate in between differentclusters.
By varying the inflation parameter of the algorithm, clusterings on
different scales of granularity can be found. Therefore, the number
of clusters cannot and need not be specified in advance, and the
algorithm can be adapted to different contexts.

2.5 Cut Clustering
Given a directed graphG = (U, V ) with edge capacitiesc(u, v) ∈

Z+ , and two verticess, t, thes − t maximum flow problem is to
find a maximum flow path from the sources to the sinkt that re-
spects the capacity constraints.3 Intuitively, if the edges are roads,
the max flow problem determines the maximum flow rate of cars
between two points. Themax flow-min cuttheorem proven by Ford
and Fulkerson [25] states that finding the maximum flow of a net-
work is equivalent to finding the minimum cut that separatess and
t. Specifically, this involves finding a non-trivial partition of the
vertices into two sets, wheres andt are in different sets, such that
the cut weight (the sum of edge weights in the cut) is minimal.
There are many applications of this theorem to areas such as net-
work reliability theory, routing, transportation planning, and cluster
analysis.

We implemented and evaluated theCut Clusteringalgorithm based
on minimum cuts proposed by Flake, Tarjan, and Tsioutsiouliklis
[24]. The goal is to find clusters with small inter-cluster cuts so that
the intra-cluster weights are maximized giving strong connections
within the clusters. The algorithm is based on inserting an artificial
sink t into G and finding the minimum cut between each vertex
u ∈ U (the source) andt. Removing the edges in the minimum
cut yields two sets of clusters. Vertices participating in acluster
are not considered as a source in subsequent evaluations. Multiple
iterations of finding minimum cuts yields a minimum cut tree,and
after removing the sinkt, the resulting connected components are
the clusters ofG.

There have been many algorithms proposed for finding the min-
imum cut ofG, including finding augmenting paths by Ford and

3Undirected graphs are modeled with bi-directional edges.



Figure 4: (a) Articulation points are shaded, (b) Biconnected
components.

Fulkerson [25], Edmonds and Karp [21], and Dinic [20], and other
variations suited for dense graphs or sparse graphs. In our imple-
mentation, we use the push-relabel algorithm for finding minimum
cuts which has been shown to perform as well as the best techniques
for sparse and dense graphs [27]. The Cut Clustering algorithm
contains a parameterα that defines the weight for edges connected
to the sinkt. We select a suitableα value for our experiments as
described further in Section 3.3.

2.6 Articulation Point Clustering
This algorithm is based on a scalable technique for finding ar-

ticulation points and biconnected components in a graph. Given a
graphG, the algorithm identifies all articulation points inG and
returns all vertices in each biconnected component as a cluster. An
articulation point is a vertex whose removal (together withits inci-
dent edges) makes the graph disconnected. A graph is biconnected
if it contains no articulation points. A biconnected component of a
graph is a maximal biconnected graph. Finding biconnected com-
ponents of a graph is a well-studied problem that can be performed
in linear time [17]. The ‘removal’4 of all articulation points sep-
arates the graph into biconnected components. These components
are returned as clusters ofG. Note that overlapping clusters are pro-
duced. Figure 4 shows an example. A depth first search traversal is
used to find all articulation points and biconnected components in
G. We refer the reader to [6] for details of a scalable and memory
efficient implementation of the algorithm and its pseudo-code.

3. EXPERIMENTAL EVALUATION
In this section we describe our evaluation methodology and present

an overview of the results of our experiments. We first brieflydis-
cuss the characteristics of the datasets used in the experiments. We
then explain the settings of our experiments including the similarity
measure used for the approximate join, and finally present results
of our extensive experiments.

3.1 Datasets
The datasets used in our experiments are generated using an en-

hanced version of the UIS database generator which has been ef-
fectively used in the past to evaluate duplicate detection algorithms
and has been made publicly available [29, 33]. We use the data
generator to inject different realistic types and percentages of er-
rors to a clean database of string attributes. The erroneousrecords
made from each clean record are put in a single cluster (whichwe
use as ground truth) in order to be able to measure the qualityof
the clustering algorithms. The generator permits the creation of
data sets of varying sizes, error types and distributions. Differ-
ent error types injected by the data generator include common edit

4Descriptive terminology. The articulation points are not actually
removed. These vertices serve as links between the biconnected
components and participate in each incident biconnected compo-
nent vertex set.

errors (character insertion, deletion, replacement or swap)5 token
swap errors and domain specificabbreviation errors, e.g., replacing
Inc. with Incorporated and vice versa. We use two different
clean sources of data: a data set consisting ofcompany namesthat
contains2, 139 records (name of companies) with average record
length of21.03 characters and2.92 words in each record on aver-
age, and a data set consisting of titles fromDBLP which contains
10, 425 records with average33.55 characters record length and
average4.53 words in each record. Note that the data sets created
by the data generator can be much larger than the original clean
sources. In our experiments, we create data sets of up to100K

records.
For the results in this paper, we used 29 different datasets (tables)

with different sizes, error types and distributions. Tables 1 and 2
show the description of all these datasets along with the percentage
of erroneous records in each dataset (i.e., the average number of
the records in each cluster which are erroneous), the percentage of
errors within each duplicate (i.e., the number of errors injected in
each erroneous record), the percentage of token swap and abbrevi-
ation errors as well as the distribution of the errors (column Dist. in
Table 2), the size of the datasets (the number of records in each ta-
ble) and the number of the clusters of duplicates (column Cluster#
in Table 2)6. Five datasets contain only a single type of error (3 lev-
els of edit errors, token swap or abbreviation replacement errors) to
measure the effect of each type of error individually. The datasets
with uniform distribution have equal cluster sizes on average (e.g.,
10 records in each cluster on average for a dataset of5, 000 records
with 500 clusters) whereas the size of the clusters in the Zipfian
datasets follow a Zipfian distribution (i.e., most of the clusters have
size 1 while a few clusters are very large). Note that we limited the
size of the datasets for our experiments on accuracy due to the fact
that some of the algorithms do not scale well. However, we run
experiments on much larger datasets with the algorithms that do
scale and the trends were similar. Following [29], we believe the
errors in these datasets are highly representative of common types
of errors in databases with string attributes.

3.2 Accuracy Measures
In order to evaluate the quality of the duplicate clusters found by

the clustering algorithms, we use several accuracy measures from
the clustering literature and also measures that are suitable for the
final goal of duplicate detection. Suppose that we have a set of
k ground truth clustersG = {g1, . . . , gk} of the base relationR.
Let C = {c1, . . . , ck′} denote the set ofk′ output clusters of a
clustering algorithm. We define a mappingf from the elements
of G to the elements ofC, such that each clustergi is mapped to
a clustercj = f(gi) that has the highest percentage of common
elements withgi. Precision and recall for a clustergi, 1 ≤ i ≤ k is
defined as follows:

Pri =
|f(gi) ∩ gi|

|f(gi)|
and Rei =

|f(gi) ∩ gi|

|gi|

Intuitively, the value ofPriis a measure of the accuracy with which
clusterf(gi) reproduces clustergi, while the value ofRei is a
measure of the completeness with whichf(gi) reproduces class
gi. Precision,Pr, and recall,Re, of the clustering are defined as
the weighted averages of the precision and recall values over all

5These errors are injected based on a study on common types of
edit errors found in real dirty databases.
6All these datasets along with a small sample of them are available
at: http://dblab.cs.toronto.edu/project/stringer/clustering/



Table 1: Datasets used in the experiments
Percentage of

Group Name Erroneous Errors in Token Abbr.
Duplicates Duplicates Swap Error

High H1 90 30 20 50
Error H2 50 30 20 50

Medium M1 30 30 20 50
Error M2 10 30 20 50

M3 90 10 20 50
M4 50 10 20 50

Low L1 30 10 20 50
Error L2 10 10 20 50

AB 50 0 0 50
Single TS 50 0 20 0
Error EDL 50 10 0 0

EDM 50 20 0 0
EDH 50 30 0 0

Zipfian ZH1 90 30 20 50
High ZH2 50 30 20 50

Zipfian ZM1 30 30 20 50
Medium ZM2 10 30 20 50

Error ZM3 90 10 20 50
ZM4 50 10 20 50

Zipfian ZL1 30 10 20 50
Low ZL2 10 10 20 50

DBLP DH1 90 30 20 0
High DH2 50 30 20 0
DBLP DM1 30 30 20 0

Medium DM2 10 30 20 0
Error DM3 90 10 20 0

DM4 50 10 20 0
DBLP DL1 30 10 20 0
Low DL2 10 10 20 0

Table 2: Size, distribution and source of the datasets
Group Source Dist. Size Cluster#

High Error, Company Uniform 5K 500
Medium Error, Names

Low Error,
Single Error
Zipfian High Company Zipfian 1.5K 1K

Zipfian Medium Names
Zipfian Low
DBLP High DBLP Uniform 5K 500

DBLP Medium Titles
DBLP Low

ground truth clusters. More precisely:

Pr =
k

∑

i=1

|gi|

|R|
Pri and Re =

k
∑

i=1

|gi|

|R|
Rei

F1-measure is defined as the harmonic mean of precision and recall,
i.e.,

F1 =
2 × Pr × Re

Pr + Re
.

We use precision, recall and F1-measure as indicative values of
the ability of an algorithm to reconstruct the indicated clusters in
the dataset. However, in our framework, the number of clusters
created by the clustering algorithms is not fixed and dependson the
datasets and the threshold value used in the similarity join. There-
fore, we define two other measures specifically suitable for our
framework. Let CPri be the number of pairs (of records) in each
clusterci that are in the same ground truth clustergj : ci = f(gj),
i.e.,

CPri =
|(t, s) ∈ ci × ci|t 6= s ∧ ∃j ∈ 1 . . . k, (t, s) ∈ gj × gj |

(

k′

2

)

We define Clustering Precision,CPr, to be the average ofCPri

for all clusters of size greater than or equal to2. The value ofCPr

indicates the ability of the clustering algorithm to assignrecords
that should be in the same cluster to a single cluster, regardless
of the number and the size of the clusters produced. In order to
penalizes those algorithms that create greater or fewer clusters than
the ground truth, we define Penalized Clustering Precision,PCPr,
and compute it asCPr multiplied by the percentage of extra or
missing clusters in the result, i.e.,

PCPr =

{

k

k′
CPr k < k′

k′

k
CPr k ≥ k′

3.3 Settings
Similarity Function There are a large number of similarity mea-

sures for string data that can be used in the similarity join.Based on
the comparison of several such measures in [31], we use weighted
Jaccard similarity along with q-gram tokens (substrings oflength
q of the strings) as the measure of choice due to its relativelyhigh
efficiency and accuracy compared with other measures. Jaccard
similarity is the fraction of tokens inr1 andr2 that are present in
both. Weighted Jaccard similarity is the weighted version of Jac-
card similarity, i.e.,

simWJaccard(r1, r2) =

∑

t∈r1∩r2
w(t,R)

∑

t∈r1∪r2
w(t,R)

(1)

wherew(t, R) is a weight function that reflects the commonality
of the tokent in the relationR. We choose the commonly-used
Inverse Document Frequency (IDF) weights, with a slight modifi-
cation based on the RSJ (Robertson/Sparck Jones) weights which
was shown to make the weight values more effective [29]:

w(t, R) = log

(

N − nt + 0.5

nt + 0.5

)

(2)

whereN is the number of tuples in the base relationR andnt is the
number of tuples inR containing the tokent. The similarity value
returned is between0 (for strings that do not share any q-grams)
and1 (for equal strings).

Note that this similarity predicate can be implemented declar-
atively and used as a join predicate in a standard RDBMS engine
[29], or used with some of the specialized, high performance, state-
of-the-art approximate join algorithms [3, 7]. In our experiments
we used q-grams of size 2 and the q-gram generation technique
proposed by [29]: strings are first padded with whitespaces at the
beginning and the end, then all whitespaces are replaced with q−1
special symbols (e.g., $).

Implementation Details of the Clustering Algorithms. To com-
pare the clustering algorithms, we have either implementedor ob-
tained an implementation of the algorithms from their authors. No-
tably, not all of these algorithms have previously been implemented
nor evaluated (even on their own), so we created some new im-
plementations. For other algorithms where the authors provided
us with an implementation, their implementation may have been
in a different language and used different data structures from our
own implementation. As a result, the time taken by differental-
gorithms is not directly comparable. We report running times, but
they should be taken as an upper bound on the computation time.
All the implementations (our own and those of others) could be op-
timized further and, more notably for our study, we have not tried
to ensure the time optimization is equitable. Rather, we arefocus-
ing on comparing the quality of the duplicates detected by each
approach.

Some of the clustering algorithms were not originally designed
for an input similarity graph and therefore we needed to makede-



cisions on how to transform the similarity graph to suit the algo-
rithm’s input format. The original implementation of the Ricochet
algorithms obtained from the authors worked only for complete
graphs. Therefore, for all pairs of disconnected nodes (their simi-
larity score was belowθ), we added an edge with a small constant
weight. In our implementation, for the SR and BSR algorithms
we used a constant value of0.05, and for the CR and OCR algo-
rithms we used a constant value of0. In Correlation Clustering,
we build the input correlation graph by assigning ’+’ to edges be-
tween nodes with similarity greater thanθ, and assign ’−’ to edges
between nodes with similarity less thanθ.

For the results in this paper, we use the term “Correlation Clus-
tering to refer to the approximation algorithm Cautious [5]for gen-
eral weighted graphs. A more efficient approximation is the CC-
PIVOT algorithm [1], which is a randomized expected 3-approximation
algorithm for the correlation clustering problem. This algorithm is
similar to the CENTER algorithm, but the center nodes are chosen
randomly and not from the sorted list of the edges. Based on our
experiments, this randomization did not improve the quality of the
clusters on average comparing with the CENTER algorithm, and
we therefore do not include the results in this paper.

For the MCL algorithm, we employed the latest C implementa-
tion of MCL, provided by the original author of the algorithm.7 As
noted previously, we fix the inflation parameter of the MCL algo-
rithm for all the datasets and treat it as an unconstrained algorithm.
We use the default parameter value (I = 2.0) as recommended by
the author of the algorithm. For the Cut Clustering algorithm, we
used a C implementation of the push-relabel algorithm available
from the authors.8 We evaluated different values for the parame-
ter α across a subset of the datasets at varying thresholds to find
theα value that would produce a total number of clusters (for each
dataset) that was closest to the ground truth. We found thatα = 0.2
worked best and used this value throughout our tests.

3.4 Results
We first report the results of our experiments and observations

for each individual algorithm. We use the Partitioning algorithm,
which returns the connected components in the similarity graph as
clusters, as the baseline for our evaluations. We then present a com-
parative performance study among the algorithms, and finally, we
report the running times for each algorithm.

Most of the accuracy results reported in this paper are average
results over the medium error class of datasets in Table 1 since we
believe that these results are representative of algorithmbehaviour
when using datasets with different characteristics. We show the
results from other datasets whenever the trends deviate from the
medium class datasets. Our extensive experimental resultsover all
the 29 datasets in Table 1 are publicly available at:
http://dblab.cs.toronto.edu/project/stringer/clustering/

3.4.1 Individual Results
Single-pass Algorithms. The table below shows the accuracy

values for the single-pass algorithms over medium-error datasets
and two thresholds that result in the best average F1 measureand
the best average PCPr values in these algorithms. Similar trends
were observed for the other thresholds and datasets.

7http://micans.org/mcl/src/mcl-06-058/
8http://www.avglab.com/andrew/soft.html.

Partitioning CENTER MC
Best Best Best Best Best Best
PCPr F1 PCPr F1 PCPr F1

PCPr 0.554 0.469 0.638 0.298 0.695 0.437
CPr 0.946 0.805 0.818 0.692 0.940 0.795
Pr 0.503 0.934 0.799 0.971 0.658 0.958
Re 0.906 0.891 0.860 0.805 0.950 0.885
F1 0.622 0.910 0.825 0.877 0.776 0.918

Cluster# 354 994 697 1305 459 1030

The results above show that, assuming that the optimal thresh-
old for the similarity join is known for, the CENTER algorithm
performs better than the Partitioning algorithm, and that the MC al-
gorithm is more effective than both CENTER and Partitioningover
these datasets. This is to be expected since Partitioning puts many
unsimilar records in the same cluster resulting in higher recall, but
considerably lower precision. CENTER puts many similar records
in different clusters resulting in lower recall, but higherprecision.
These results show that MC creates clusters with precision lower
than CENTER but higher than Partitioning, with a recall thatis al-
most as high as that of Partitioning.

Note that the number of clusters in the ground truth is 500. The
last row in the table shows the number of clusters generated by
each algorithm. These results show that precision, recall and F1

measures alone cannot determine the best algorithm since they do
not take into account the number of clusters generated, thisjustifies
using the CPr and PCPr measures. Furthermore, we can observe
the high degree of sensitivity of all these algorithms to thethreshold
value used in the similarity join, although MC is less sensitive to
this value among the single-pass algorithms.

Star algorithm. The table below gives the results for the Star
algorithm, revealing that the algorithm has a better performance in
terms of accuracy when a lower threshold value is used. With a
lower threshold value, the Star algorithm significantly outperforms
the Partitioning algorithm, and is less sensitive to the value of the
threshold used. However, for higher thresholds, the quality of the
clustering considerably decreases. This is because the star centers
in this algorithm are chosen based on the degree of the nodes.Using
higher threshold values decreases the degree of all the nodes in the
graph and makes the choice of a proper cluster center harder,which
results in clusters of lower quality. It is also worth mentioning that
even with an ideal threshold, the Star algorithm’s accuracyis less
than the accuracy of the single-pass algorithms.

θ = 0.2 θ = 0.3 θ = 0.4

Part. Star Part. Star Part. Star
PCPr 0.101 0.614 0.554 0.601 0.645 0.445
CPr 0.991 0.726 0.946 0.801 0.879 0.781
Pr 0.104 0.588 0.503 0.778 0.788 0.900
Re 0.953 0.730 0.906 0.842 0.929 0.870
F1 0.177 0.644 0.622 0.805 0.850 0.884

Cluster# 51 521 354 715 704 949

Ricochet family of algorithms. The accuracy results for SR
and BSR, presented in the table below for two similarity threshold
values, show that these algorithms are also more effective at lower
thresholds, but are overall more robust (less sensitive) across vary-
ing threshold values.

θ = 0.2 θ = 0.4

Part. SR BSR Part. SR BSR
PCPr 0.101 0.628 0.466 0.645 0.590 0.578
CPr 0.991 0.821 0.868 0.879 0.754 0.895
Pr 0.104 0.989 0.675 0.788 0.991 0.828
Re 0.953 0.863 0.932 0.929 0.818 0.930
F1 0.177 0.917 0.779 0.850 0.893 0.873

Cluster# 51 735 268 704 703 323

OCR and CR algorithms, on the other hand, are very sensitive
to the threshold value, and are more effective at higherθ values



as shown in the table below. This is again due to different wayof
choosing cluster seeds (or centers) used in these algorithms. Mark-
ing all the nodes as seeds and gradually merging the clusters, as
done in OCR and CR, results in higher quality clusters when the
threshold value is high (i.e., the similarity graph is not dense) but
does not work well when the threshold value is low (i.e., the simi-
larity graph is very dense). On the other hand, when the seedsare
chosen sequentially based on the weight of the nodes, as donein SR
and BSR, a lower threshold value (i.e., a dense similarity graph) re-
sults in more accurate weight values and therefore better choice of
cluster seeds and higher quality clusters.

θ = 0.2 θ = 0.5

Part. CR OCR Part. CR OC
PCPr 0.101 0.494 0.351 0.469 0.402 0.687
CPr 0.991 0.967 0.981 0.805 0.782 0.817
Pr 0.104 0.434 0.299 0.934 0.958 0.862
Re 0.953 0.869 0.952 0.891 0.869 0.883
F1 0.177 0.567 0.454 0.910 0.910 0.872

Cluster# 51 258 180 994 1079 593

Cut Clustering (MinCut). Clustering the similarity graph based
on minimum cuts improves the quality of the clustering when com-
pared to the Partitioning algorithm, as shown in the table below.
This improvement is significant as we increase the thresholdup to
0.4. For θ > 0.4, MinCut Clustering produces the same clusters
as the Partitioning algorithm, since as the input graph becomes less
dense, only significantly related records remain connectedand fur-
ther cutting the edges does not improve the quality of the clusters.

θ = 0.2 θ = 0.3 θ = 0.4

Part. MinCut Part. MinCut Part. MinCut
PCPr 0.101 0.105 0.554 0.683 0.645 0.689
CPr 0.991 0.509 0.946 0.891 0.879 0.875
Pr 0.104 0.833 0.503 0.672 0.788 0.827
Re 0.953 0.564 0.906 0.908 0.929 0.926
F1 0.177 0.671 0.622 0.771 0.850 0.873

Clstr# 51 2450 354 665 704 735

Articulation Point Clustering (ArtPt). As the results show in
the following table, the Articulation Point clustering slightly en-
hances the Partitioning algorithm by splitting some of the compo-
nents in the graph into a few more clusters. This makes the algo-
rithm only slightly less sensitive to the threshold value. The al-
gorithm works best with the optimal threshold for the Partitioning
algorithm (theθ value that creates partitions of highest quality in
the Partitioning algorithm).

θ = 0.2 θ = 0.3 θ = 0.4

Part. ArtPt. Part. ArtPt. Part. ArtPt.
PCPr 0.101 0.169 0.554 0.655 0.645 0.680
CPr 0.991 0.988 0.946 0.941 0.879 0.871
Pr 0.104 0.157 0.503 0.581 0.788 0.825
Re 0.953 0.920 0.906 0.891 0.929 0.925
F1 0.177 0.251 0.622 0.693 0.850 0.871

Cluster# 51 86 354 428 704 754

Markov Clustering (MCL). As shown in the table below, the
MCL algorithm produces clusters of increased quality than those
created by the Partitioning algorithm. The MCL algorithm isalso
most effective when used with the optimal threshold value, although
it is much less sensitive overall across varyingθ values. This shows
the effectiveness of the flow simulation process using random walks
on the graph, and that unlike the Star and SR algorithms, pruning
the edges with low weights does not affect the quality of the clus-
ters significantly, and unlike Partitioning and CR, a dense similar-
ity graph (i.e., not pruning the low-weight edges) does not result in
clusters with low precision.

θ = 0.2 θ = 0.3 θ = 0.4

Part. MCL Part. MCL Part. MCL
PCPr 0.101 0.599 0.554 0.768 0.645 0.644
CPr 0.991 0.934 0.946 0.921 0.879 0.866
Pr 0.104 0.571 0.503 0.754 0.788 0.888
Re 0.953 0.951 0.906 0.952 0.929 0.925
F1 0.177 0.712 0.622 0.841 0.850 0.906

Cluster# 51 323 354 528 704 777

Correlation Clustering (CCL) This algorithm performs best
when using lower threshold values, producing clusters withmuch
higher quality than those created by the Partitioning algorithm. The
quality of the produced clusters degrade at higherθ values. This is
to be expected since the algorithm performs clustering based on
correlation information between the nodes and a higherθ means a
loss of this information.

θ = 0.2 θ = 0.3 θ = 0.4

Part. CCL Part. CCL Part. CCL
PCPr 0.101 0.612 0.554 0.542 0.645 0.406
CPr 0.991 0.711 0.946 0.762 0.879 0.748
Pr 0.104 0.596 0.503 0.803 0.788 0.914
Re 0.953 0.750 0.906 0.822 0.929 0.844
F1 0.177 0.659 0.622 0.808 0.850 0.876

Cluster# 51 538 354 753 704 1000

3.4.2 Overall Comparison
Sensitivity to the value of the threshold.Table 3 shows the ac-

curacy results of all the algorithms for different thresholds over the
medium-error class of datasets. These results can be used tocom-
pare different algorithms when using a fixed threshold, i.e., with
the same similarity graph as input. Among all the algorithms, SR
and BSR are least sensitive to the threshold value. However their
accuracy does not always outperform the other algorithms. In other
algorithms, those that use the weight and degree of the edgesfor
the clustering perform relatively better using lower threshold vlues,
when the similarity graph is more dense. Therefore, CENTER,
Star, Correlation Clustering and MCL algorithms perform better
with low threshold values comparing with the other algorithms.
The single-pass algorithms along with Articulation Point and Min-
Cut algorithms are generally more sensitive to the threshold value
and are considerably more effective when used with the optimal
threshold (when the number of components in the graph is close
to the number of ground truth clusters), with MERGE-CENTER
being the least sensitive among them.

Effect of the amount of errors. The results in Table 4 show the
best accuracy values obtained by the algorithms on datasetswith
different amounts of error, along with the difference (Diff.) be-
tween the value obtained for the high error and low error groups
of datasets. Note that the accuracy numbers in this table cannot
be used to directly compare the algorithms since they are based
on different thresholds and therefore the input similaritygraph is
different for each algorithm. We use these results to compare the
effect of the amount of error on different algorithms. Theseresults
suggest that the Ricochet group of algorithms and MCL algorithm
are relatively more robust on datasets with different amounts of er-
rors, i.e., they perform equally well on the three groups of datasets
with lowest drop in the quality of the clusters on high error datasets
comparing with low error groups of datasets.

Sensitivity to the distribution of the errors. Table 5 shows the
best accuracy values obtained for the algorithms on medium-error
datasets with uniform and Zipfian distributions. Note that in Zip-
fian datasets, there are many records with no duplicates (singleton
clusters) and only a few records with many duplicates. Due tothe
fact that the PCPr measure is the average CPr value for all theclus-
ters and is calculated for clusters of size 2 or more, this accuracy
measure is less indicative of the performance of the algorithms on
this class of datasets. These results show that all the algorithms are



Table 3: Average accuracy of all the algorithms for different thresholds over medium-error datasets
θ Measure Part. CENTER MergeC Star SR BSR CR OCR CCL MCL MinCut ArtPt.

0.2 PCPr 0.101 0.593 0.257 0.614 0.628 0.466 0.494 0.351 0.612 0.599 0.105 0.169
F1 0.177 0.666 0.389 0.644 0.917 0.779 0.567 0.454 0.659 0.712 0.671 0.251

Cluster# 51 472 134 521 735 268 258 180 538 323 2450 86
0.3 PCPr 0.554 0.638 0.695 0.601 0.616 0.564 0.718 0.578 0.542 0.768 0.683 0.655

F1 0.622 0.825 0.776 0.805 0.907 0.863 0.791 0.718 0.808 0.841 0.771 0.693
Cluster# 354 697 459 715 721 315 527 306 753 528 665 428

0.4 PCPr 0.645 0.445 0.692 0.445 0.590 0.578 0.640 0.629 0.406 0.644 0.689 0.680
F1 0.850 0.887 0.894 0.884 0.893 0.873 0.887 0.819 0.876 0.906 0.873 0.871

Cluster# 704 956 750 949 703 323 786 454 1000 777 735 754
0.6 PCPr 0.284 0.225 0.275 0.234 0.546 0.527 0.264 0.546 0.000 0.273 0.284 0.264

F1 0.897 0.841 0.892 0.861 0.847 0.839 0.886 0.851 0.183 0.892 0.897 0.887
Cluster# 1345 1650 1378 1593 634 323 1435 746 4979 1382 1345 1438

0.8 PCPr 0.175 0.173 0.174 0.173 0.604 0.458 0.174 0.340 0.000 0.175 0.175 0.174
F1 0.773 0.757 0.768 0.761 0.768 0.730 0.768 0.730 0.183 0.772 0.773 0.765

Cluster# 2173 2232 2188 2227 504 307 2196 1709 4979 2176 2173 2209

Table 4: Best accuracy values for all the algorithms over different groups of datasets
Measure Group Part. CENTER MergeC Star SR BSR CR OCR CCL MCL MinCut ArtPt.

Max. Low 0.842 0.849 0.904 0.841 0.854 0.661 0.918 0.847 0.818 0.921 0.855 0.900
PCPr Medium 0.645 0.638 0.695 0.614 0.633 0.578 0.718 0.687 0.612 0.768 0.689 0.680

High 0.399 0.217 0.340 0.197 0.538 0.461 0.632 0.557 0.175 0.476 0.232 0.278
Diff. -0.443 -0.632 -0.565 -0.644 -0.316 -0.201 -0.286 -0.290 -0.642 -0.445 -0.623 -0.621

Max. Low 0.959 0.956 0.960 0.953 0.976 0.918 0.957 0.917 0.951 0.960 0.959 0.957
F1 Medium 0.910 0.887 0.918 0.892 0.920 0.873 0.910 0.872 0.876 0.921 0.913 0.907

High 0.685 0.640 0.734 0.660 0.853 0.695 0.733 0.640 0.624 0.760 0.760 0.668
Diff. -0.273 -0.316 -0.225 -0.292 -0.123 -0.223 -0.223 -0.277 -0.327 -0.199 -0.198 -0.288

Best Low 428 460 460 471 501 364 468 445 489 471 434 458
Cluster# Medium 354 472 459 521 504 386 527 454 538 528 665 428

High 919 203 200 221 470 356 643 455 236 236 1404 143
Diff. +491 -257 -260 -250 -32 -8 +175 +11 -254 -235 +970 -315

equally robust with respect to the distribution of the errors in the
data except SR, BSR and OCR algorithms from the Ricochet fam-
ily which produce clusters of significantly lower quality. This is
mainly due to the inability of these algorithms in finding singleton
clusters.

Effectiveness in predicting the correct number of clusters.
The results of our experiments, partly shown in Tables 3,4 and 5,
show that none of the algorithms are capable of accurately predict-
ing the number of clusters regardless of the characteristics of the
dataset. For uniform datasets, SR algorithms perform extremely
well for finding the correct number of clusters on datasets with
different amounts of errors. However, this algorithm failswhen
it comes to datasets with a Zipfian distribution of errors. Over-
all, algorithms that find star-shaped clusters, namely CENTER,
MERGE-CENTER, Star, CR and OCR algorithms, can effectively
find the right number of datasets with an optimal threshold. The
graph-theoretic algorithms Correlation clustering and Markov clus-
tering also find a reasonable number of clusters at lower thresholds.

3.4.3 Running Time
As stated previously, in this work we are focusing mainly on

comparing the quality of the duplicates detected by each algorithm.
However we do report the running times in this section, but the
times taken by the different algorithms are not directly compara-
ble, and should be taken as an upper bound on the computation
time. All the implementations (our own and those of others) could
be optimized further, and more notably for our study, we havenot
tried to ensure the time optimization is equitable. Different imple-
mentations and machines are used to run these experiments. The
table below shows the running times for 8 of the algorithms run us-
ing a dataset of 100K records of DBLP titles described in Section
3.1, and with thresholdθ = 0.4, giving 386, 068 edges in the sim-
ilarity graph. PC1 is a Dell 390 Precision desktop with 2.66 GHz
Intel Core2 Extreme Quad-Core Processor QX6700, 4GB of RAM
running 32-bit Windows Vista. PC2 is an AMD OPTERON 850

2.4GHz, 16 GB of RAM running Red Hat Linux 3.4. PC3 is a Dual
Core AMD Opteron Processor 270 (2GHz) with 6GB of memory
running Red Hat Linux 2.6. Each experiment is run multiple times
to obtain statistical significance.

Algorithm Time Lang./Machine
Partitioning 1.790 sec Java/PC1
CENTER 3.270 sec Java/PC1
MERGE-CENTER 3.581 sec Java/PC1
Star 5.9 min Java/PC1
CCL 83.5 min Java/PC2
MCL 8.395 sec C/PC2
MinCut 52.1 min C & Perl/PC3
ArtPt. 17.563 sec Perl/PC3

The implementation for the Ricochet algorithms required build-
ing a complete similarity graph in memory. Therefore, running the
algorithm on the dataset of 100K records required keeping a graph
with 100 billion edges in memory which was not possible. We
therefore had to limit the size of the dataset for these experiments.
We used a dataset of 5K records with thresholdθ = 0.1 resulting
in 391,706 edges. The running times are shown in the table below.

Algorithm Time Lang./Machine
SR 19.687 sec Java/PC1
BSR 54.115 sec Java/PC1
CR 9.211 sec Java/PC1
OCR 8.972 sec Java/PC1

These results support the scalability of single-pass algorithms as
well as MCL and Articulation Point clustering algorithms. Note
that we used the original implementation of the MCL algorithm
which is highly optimized. Such an optimized implementation was
not available for the Correlation Clustering algorithm.

4. SUMMARY AND CONCLUSION
In this paper, we evaluated and compared several unconstrained

clustering algorithms for duplicate detection by extensive experi-
ments over various sets of string data with different characteristics.



Table 5: Best accuracy values for all the algorithms over medium-error datasets with different distributions
Measure Group Part. CENTER MergeC Star SR BSR CR OCR CCL MCL MinCut ArtPt.

F1 Uniform 0.910 0.887 0.918 0.892 0.920 0.873 0.910 0.872 0.876 0.921 0.721 0.907
Zipfian 0.936 0.936 0.938 0.934 0.873 0.463 0.935 0.697 0.929 0.937 0.819 0.934
Diff. +0.026 +0.049 +0.020 +0.041 -0.047 -0.411 +0.025 -0.175 +0.054 +0.016 +0.098 +0.027

Cluster# Uniform 354 472 459 521 504 386 527 454 538 528 665 428
Zipfian 1018 934 1047.5 933 698.5 158 1061 992 955.25 1021 1038 1067

We made the results of our extensive experiments publicly available
and we intend to keep the results up-to-date with state-of-the-art
clustering algorithms and various synthetic and real datasets. We
hope these results serve as a guideline for researchers and practi-
tioners interested in using unconstrained clustering algorithms es-
pecially for the task of duplicate detection.

A summary of the results is presented in Figure 5. Our results
using partitioning of the similarity graph (finding the transitive clo-
sure of the similarity relation) which is the common approach in
many early duplicate detection techniques, confirms the common
wisdom that this scalable approach results in poor quality of du-
plicate groups. But more importantly, we show that this quality is
poor even when compared to other clustering algorithms thatare as
efficient. The Ricochet algorithms produce high quality clusterings
when used with uniformly distributed duplicates, but failed in other
distributions. All other algorithms were robust to the distribution of
the duplicates. Our results also show that sophisticated but popu-
lar algorithms, like Cut clustering and Correlation clustering, gave
lower accuracy than some of the more efficient single-pass algo-
rithms. We were the first to propose the use of Markov clustering
as an unconstrained algorithm for duplicate detection and showed
that in fact it is among the most accurate algorithms for thistask
and is also very efficient.

A basic observation here is that none of the clustering algorithms
produce perfect clusterings. Therefore a reasonable approach is to
not only keep the clustering that results from our algorithms, but to
also keep the important quantitative information producedby these
algorithms. In [30], we show how this quantitative information can
be used to provide an accurate confidence score for each duplicate
that can be used in probabilistic query answering.
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