
DataSynth: Generating Synthetic Data using Declarative
Constraints

Arvind Arasu
Microsoft Research

Redmond, WA
arvinda@microsoft.com

Raghav Kaushik
Microsoft Research

Redmond, WA
skaushi@microsoft.com

Jian Li
University of Maryland

College Park, MD

lijian@cs.umd.edu

ABSTRACT
A variety of scenarios such as database system and applica-
tion testing, data masking, and benchmarking require syn-
thetic database instances, often having complex data char-
acteristics. We present DataSynth, a flexible tool for gen-
erating synthetic databases. DataSynth uses a simple and
powerful declarative abstraction based on cardinality con-
straints to specify data characteristics, and uses sophisti-
cated algorithms to efficiently generate database instances
satisfying the specified characteristics. The demo will show-
case various features of DataSynth using two real-world data
generation scenarios.

1. INTRODUCTION
We propose to demonstrate DataSynth, a tool for gener-

ating synthetic database instances. The need for synthetic
data arises in a variety of scenarios:

1. DBMS Testing: When we design a new DBMS compo-
nent such as a new join operator or a new memory manager,
we require synthetic database instances with specific char-
acteristics to test correctness and performance of the new
component [3, 8]. For example, to test the code module
of a hybrid hash join that handles spills to disk, we might
need a database instance with a high skew on the outer join
attribute.

2. Data masking and database application testing: Organi-
zations sometimes outsource the testing of their database
applications to other organizations. However an outsourc-
ing organization might not be able to share its internal
databases (over which the applications run) with the testing
organization due to privacy considerations, requiring us to
generate a masked database that behaves like the original
database for the purposes of testing.

3. Benchmarking: In order to decide between multiple com-
peting data management solutions, a customer might be in-
terested in benchmarking the solutions [8]. The standard
benchmarks such as TPC-H might not capture many of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

application scenarios and data characteristics of interest to
the customer, motivating the need for synthetic data genera-
tion. A related scenario is upscaling, where we are interested
in generating a synthetic database that is an upscaled ver-
sion of an existing database. Upscaling is useful for future
capacity planning purposes.

Data Characteristics: To be useful and meaningful for
applications, synthetic databases often need to have a va-
riety of data characteristics. A natural class of charac-
teristics are schema properties such as key and referential
integrity constraints, functional dependencies, and domain
constraints (e.g., age is an integer between 0 and 120). A
synthetic database for DB application testing often needs
to satisfy such constraints since the application being tested
might require these constraints for correct functioning. If
DB application testing involves a visual component with
a tester entering values in fields of a form, the synthetic
database might need to satisfy naturalness properties, e.g.,
the values in an address field should “look like” real ad-
dresses.

In benchmarking and DBMS testing, we typically need to
capture characteristics that can influence the performance
of a query over the generated database. These include, for
example, ensuring that values in a column be distributed in
a particular way, ensuring that values in a column have a
certain skew, or ensuring that two or more columns are cor-
related. We note correlations can involve joining multiple
tables. For example, in a customer-product-order database,
we might need to capture correlations between the age of
customers and the category of products they purchase. In
data masking, we might require synthetic data to result in
the same application performance as the original data, with-
out revealing sensitive information from the original data.

Cardinality Constraints: Most prior approaches to data
generation are procedural [3, 5, 7, 9, 10]. These approaches
provide some basic procedural primitives and a programmer
combines these primitives to design a program that outputs
a synthetic database. (Some of these approaches [5, 9] are
visual tools that allow an user to configure using a menu
of pre-programmed options. We classify them as procedural
since they are not declarative.) Even with the right proce-
dural primitives, designing a program to realize synthetic
data with complex characteristics can be difficult: As a
concrete example, consider generating a customer-product-
order database where we need to capture correlations be-
tween several pairs of columns such as customer age and
product category, customer age and income, and product
category and supplier location.

1418

In recent work [1] we explore declarative approaches to
synthetic data generation and we argue that cardinality con-
straints represent a natural, expressive, and declarative mech-
anism for specifying complex data characteristics. We also
present efficient algorithms that can handle large number
of constraints and scale well in the size of the generated
data. The DataSynth tool is based on the techniques pre-
sented in [1]; Section 2 provides a brief overview of these
techniques.

MyBenchmark [8] is closely related to our work and also
uses cardinality constraints, but has limitations in function-
ality and performance that we elaborate in [1]. Briefly, My-
Benchmark produces as output a small number of database
instances that collectively “cover” all constraints. In other
words, MyBenchmark is not guaranteed to produce a single
database instance and this functionality can be unsuitable
for some applications requiring synthetic data. For example,
we can not use multiple database instances for DB applica-
tion testing, since no single instance reflects all the charac-
teristics of the original database.

2. DATASYNTH: OVERVIEW
DataSynth is a visual data generation tool based on the

techniques presented in [1]. In this section, we provide a
brief overview of these techniques and describe the end-to-
end functionality provided by DataSynth.

2.1 Cardinality Constraints
LetD denote the database being generated and letR1, . . . ,

Rl denote the relations in the database. A cardinality con-
straint is of the form:

|πAσP (Ri1 1 · · · 1 Rip)| = k

where A is a set of attributes, P is a selection predicate, and
k is a non-negative integer. A database instance satisfies a
cardinality constraint if evaluating the relational expression
over the instance produces k tuples in the output. More
generally, constraints can also involve non-equality operators
such as ≤,≥, <, and >.

We can customize data characteristics using a set of car-
dinality constraints and requiring the generated database
satisfy all the constraints in the set. For example, we can
specify that a set of attributes Ak is a key for relation R
using two constraints |πAk (R)| = N and |R| = N , where
π is duplicate eliminating. We can approximately capture
the value distribution of a column using a histogram. We
can specify a single dimensional histogram by including one
constraint for each histogram bucket. The constraint cor-
responding to the bucket with boundaries [l, h] having k
tuples is |σl≤A≤h(R)| = k. We can capture correlations be-
tween attributes using multi-dimensional histograms such
as STHoles [4], which can again be encoded using one con-
straint for each histogram bucket. We can approximately
constrain the performance of a query plan over generated
data by specifying intermediate cardinalities as shown in
Figure 1. Each intermediate cardinality maps to a cardinal-
ity constraint. In the data masking scenario from Section 1,
these intermediate cardinalities can be obtained by evaluat-
ing the query plan on the original data to ensure that the
performance of the plan on original and synthetic data are
similar. We refer the reader to [1] for a detailed discussion of
pros and cons of cardinality constraints for data generation.

LINEITEM

ORDERS

CUSTOMER

σ

σ
150000

70000600000

150000

20000

17550

100000

Type = ‘M’

Age > 40

Figure 1: Query Plan intermediate cardinalities.

2.2 Algorithms
The formal data generation problem (DGP) is to identify

a database instance that satisfies an input set of cardinal-
ity constraints C1, . . . , Cm. The DGP problem is NEXP-
complete, but there exist efficient probabilistically approxi-
mate algorithms for a large and useful class of constraints [1].
The following example illustrates some ideas underlying the
algorithms.

Example 1. Consider a DGP instance involving a sin-
gle table R with a single attribute A and the following three
constraints: |σ20≤A<60(R)| = 30, |σ40≤A<101(R)| = 40, and
|R| = 50. Assume the domain of A is [1, . . . , 100]. Using the
constraints we can identify 4 “relevant” intervals: [1, 20),
[20, 40), [40, 60), [60, 101). For each interval [l, h), we intro-
duce a variable x[l,h) to represent the number of tuples in R
with A values in the interval. The three constraints can be
expressed using the following (integer) linear program (LP).

x[1,20) + x[20,40) + x[40,60) + x[60,101) = 50

x[20,40) + x[40,60) = 30

x[40,60) + x[60,101) = 40

One solution to the LP is x[1,20) = 2, x[20,40) = 8, x[40,60) =
22, and x[60,101) = 18. To generate R(A), we pick 2 values
(e.g., at random) from [1, 20), 8 values from [20, 40), etc.

A straightforward generalization of this idea to multiple at-
tributes is exponential in the number of attributes and there-
fore inefficient. The algorithms presented in [1] go beyond
simple generalization of the above approach and use “fac-
torization” ideas from probabilistic graphical models for a
more efficient solution. An important feature of our algo-
rithms is that they are based on solving an LP; in contrast,
the algorithms of [2, 8] rely on general purpose constraint
solvers, which are less efficient than LP solvers.

2.3 DataSynth Tool Functionality
We now briefly describe the end-to-end functionality sup-

ported by DataSynth. Data generation using DataSynth
involves a configuration step where the user configures a
data generation task, and a data generation step, where the
actual data generation takes place.

1419

Configuration: To configure a data generation task, the
user provides the schema of the output database and any
primary and foreign key constraints that need to hold in the
output. For each column in the schema, the user can specify
a domain. A domain is a range of values for linear data
types such as integer and date. For textual data types, the
domain can be an explicit enumeration of values, a regular
expression, or an implicit enumeration: the user points to a
column of an existing table and the set of distinct values in
the column comprise the values in the enumeration.

For many data generation applications, there exists a nat-
ural reference database that forms the basis for generating
the synthetic database. For example, in data masking, the
synthetic database is a masked version of an original (ref-
erence) database; in upscaling, the synthetic database is a
scaled version of an original database. DataSynth allows the
user to specify a reference database to make configuration
simpler. In particular, the user can specify that the schema
information (including primary and foreign keys) for the
generated database be copied from the reference database.

As discussed above, the user can provide cardinality con-
straints to customize the data generation. The user can pro-
vide cardinality constraints manually by specifying a query
expression and cardinality. The tool also allows the user to
specify the distribution of values for certain column types
and some limited form of two dimensional correlations us-
ing a visual interface. These configurations are internally
converted to cardinality constraints.

When a reference database is defined, the user can specify
more complex constraints in a semi-automated fashion. The
user can use the tool to learn single- and multi-dimensional
histograms from corresponding columns in the reference
database and use them to constrain values in the gener-
ated database. We are currently working on another utility,
which would allow the user to specify a workload of queries,
identify intermediate cardinalities from query plans in the
workload (e.g., Figure 1) and use these as constraints. As
mentioned earlier, this functionality is useful in data mask-
ing to generate synthetic data that has same application per-
formance as original data. (We have not fully explored the
privacy related issues in this setting. We note that cardinal-
ity constraints integrate nicely with differential privacy [6];
instead of using actual intermediate cardinalities, we can
fudge cardinalities using differential privacy algorithms and
use the fudged constraints for data generation. We are cur-
rently exploring these directions.) At any given point in
time, the user can view the current set of cardinality con-
straints as shown in Figure 2.

Data Generation: At any given point in time during con-
figuration, a sample of the generated data based on the cur-
rent set of constraints is shown to the user. This provides
immediate feedback to the user which the user can use to
tweak constraints and change configuration. This feature is
shown in Figure 3: The top pane shows the original data
from a reference database table and the bottom pane shows
partially generated data. Once the user is satisfied with the
configuration, she can use the tool to materialize the full
synthetic database to a back-end DBMS.

3. DEMONSTRATION CONTENT
This section discusses two data generation scenarios we

plan to demonstrate.

3.1 Simple Data Generation Scenario
Here, we plan to demonstrate the basic functionality of

DataSynth. In particular, we plan to show how using a
few configuration settings a user can generate a TPC-H like
data. We will also demonstrate how the user can easily
introduce skew in column values, change the scale of gener-
ated data, and make other customizations by adding a few
constraints and changing some configuration settings.

The scenario is interactive and an audience member can
play around with the tool and generate synthetic data with
various characteristics interactively. This interactive sce-
nario should also give the audience member a sense for the
efficiency of the underlying algorithms.

3.2 Data Masking Scenario
Here, we plan to demonstrate a data masking scenario

using real-world data and workload. Briefly, the goal of the
demo scenario is to generate a synthetic instance of data
that has similar performance characteristics as original data
for the given workload.

We start off with an existing database instance and iden-
tify the subset of columns that need to be masked. To pre-
serve performance of a workload, we identify various inter-
mediate cardinalities of the queries in the workload using the
utility mentioned earlier and provide these as constraints to
DataSynth. We finally generate a synthetic database in-
stance that satisfies these constraints and we will show (by
running some queries) how performance of the queries in
the workload are similar for both the synthetic and original
database. Some parts of this scenario will be pre-computed
off-line to keep the overall demo short.

4. REFERENCES

[1] A. Arasu, R. Kaushik, and J. Li. Data generation
using declarative constraints. In SIGMOD, 2011. To
Appear.

[2] C. Binnig, D. Kossmann, E. Lo, et al. QAGen:
generating query-aware test databases. In SIGMOD,
pages 341–352, 2007.

[3] N. Bruno and S. Chaudhuri. Flexible database
generators. In VLDB, pages 1097–1107, 2005.

[4] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
multidimensional workload-aware histogram. In
SIGMOD, pages 211–222, 2001.

[5] DTM data generator. http://www.sqledit.com/dg/.

[6] C. Dwork. Differential privacy. In ICALP (2), pages
1–12, 2006.

[7] J. Gray, P. Sundaresan, S. Englert, et al. Quickly
generating billion-record synthetic databases. In
SIGMOD, pages 243–252, 1994.

[8] E. Lo, N. Cheng, and W.-K. Hon. Generating
databases for query workloads. In VLDB, pages
848–859, 2010.

[9] Red gate sql data generator.
http://www.red-gate.com/products/

sql-development/sql-data-generator/.

[10] J. M. Stephens and M. Poess. MUDD: a
multi-dimensional data generator. In Proc. of the 4th
Intl. workshop on Software and Performance, pages
104–109, 2004.

1420

Figure 2: DataSynth: Constraints View.

Figure 3: DataSynth: DataMasking View.

1421

