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ABSTRACT
We present a generic framework to make wrapper induction algo-
rithms tolerant to noise in the training data. This enables us to learn
wrappers in a completely unsupervised manner from automatically
and cheaply obtained noisy training data, e.g., using dictionaries
and regular expressions. By removing the site-level supervision
that wrapper-based techniques require, we are able to perform in-
formation extraction at web-scale, with accuracy unattained with
existing unsupervised extraction techniques. Our system is used in
production at Yahoo! and powers live applications.

1. INTRODUCTION
Several websites use scripts to generate highly structured

HTML: this includes shopping sites, entertainment sites, aca-
demic repositories, library catalogs, and virtually any website
that uses forms to fetch content from a database and serve it
to the users. The structural similarity of script-generated web-
pages is a powerful feature that allows information extraction sys-
tems to use simple rules to effectively extract information from
these websites. For example, consider the dealer locator form at
albanyindustries.com/dealers.asp. Given any zip-
code, this form generates a page that lists the dealers in the zip-
code. An HTML snippet of such a webpage for the zipcode 38652
is shown in Figure 1. (Figure 5 in Appendix shows the rendered
webpage.) When viewed as an XML document tree, the follow-
ing simple xpath extracts all the dealer names from this webpage:

//div[@class =� dealerlinks�]/tr/td/u/text()
This rule says that all the dealer names can be found under u tag,
inside a td tag, inside a tr tag, which is within a div whose class
is dealerlinks.

The rule above not only works on this particular webpage, it
works on any page generated by this form. Such a rule is called
a wrapper, and the problem of inducing wrappers from labeled ex-
amples has been extensively studied [15, 13, 11, 19, 18, 1]. For
instance, such a rule can easily be learned if a few business names
in few such pages are labeled, e.g., if labels 1 and 2 are specified
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<div class=‘dealer links’> 

    <tr><td> 

               <u>PORTER FURNITURE</u><br> 

               201 HWY.30 West<br> 

               NEW ALBANY, MS 38652                 

          </td> 

          … 

     </tr> 

     <tr><td> 

               <u>WOODLAND FURNITURE</u><br> 

               123 Main St.<br> 

               WOODLAND, MS 3977                 

          </td> 

          … 

     </tr> 

</div> 
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Figure 1: A sample HTML snippet.

in Figure 1. Wrappers provide an effective mechanism to extract
information for a given website, and can often be learned using a
very small number of labeled examples.
Wrappers and annotations. Wrappers, however, only work at
site-level, which traditionally has put a fundamental limitation on
their use for web-scale extraction. For example, consider the fol-
lowing task: extract business listings from all the store locator
pages on the Web. (Compiling such a database can be immensely
useful and can enable powerful Web applications.) For each store
locator page, we can use automatic form-filling techniques [16] to
easily generate a large collection of HTML pages, each correspond-
ing to store listing in a particular location. While pages for each
store locator, being script-generated, have similar structure that is
amenable to rule-based extraction, a human still needs to label a
few sample pages from every single store locator, making wrap-
pers infeasible for this extraction task.

Fortunately, for several domains, it is relatively easy to automat-
ically obtain a decent set of annotations. E.g., for business listings,
if we compile a small dictionary of popular business names (Of-
fice Depot, BestBuy, etc.), we can annotate these names when they
appear among the store locator listings. Alternatively, we can iden-
tify certain names containing words like “.Inc” and “Shop” to most
likely be business names.

Such an automated annotation process will inherently be noisy,
and some fraction of labels will be incorrect. Traditional wrapper
induction methods are not designed to handle noise in the training
data, and often a single bad annotation can result in an incorrect
extraction rule. For example, in Figure 1, suppose we are given the
incorrect label 3 along with the two correct labels 1 and 2. Then,
in order to accommodate all the labels, the learned rule might be

//div[@class =� dealerlinks�]/tr/td//text(),
which extracts all the text nodes under the td tag. Thus, a single
incorrect label can grossly over-generalize the extraction rule.

!
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The focus of our work is to enable noise-tolerant wrapper induc-
tion, allowing us to learn wrappers from automatically and cheaply
obtained noisy training data. By removing the site-level supervi-
sion that wrapper-based techniques require, we are able to perform
information extraction at web-scale with high accuracy.1.

Our contributions. We present a generic framework for mak-
ing supervised wrapper induction noise-tolerant. Given any wrap-
per inductor that satisfies mild technical conditions, the framework
shows how to use it as a blackbox when the labels of the training
data are noisy. The framework is based on a natural modeling of
the web publication process using domain-specific knowledge and
a probabilistic modeling of the noisy labeling process.

The main idea is to generate-and-test: given a set of labels that
are noisy, we enumerate all possible wrappers generated by subsets
of the labels. Each such wrapper is ranked according to its quality,
which depends on its likelihood of generating the (noisy) labels ac-
cording to our annotation model and its likelihood of being a good
wrapper as guided by our web publication model. The intuition is
that if the label noise is not too excessive, then one of the generated
wrappers will be trained on sufficiently many noise-free labels and
our careful definition of quality will cause it to be ranked high. En
route, we obtain provably efficient algorithms for the enumeration
problem that may be of independent interest.

We demonstrate the generality of our framework by applying it
to two wrapper induction algorithms from the literature, namely,
the WIEN system from Kushmerick et al. [15, 14] and the xpath-
based method from Dalvi et al. [6]. Using these, we perform an
extensive set of experiments covering over 300 websites over mul-
tiple domains, and are able to achieve very high precision and re-
call. Our system is used in production in Yahoo! for large-scale
high-quality information extraction from the Web, powering live
search applications.

2. MODEL AND PROBLEM
We formally describe here our model for web publication and

annotations, and the problem of extracting structured information
from webpages.

Overview. Our objective is to learn, given a website, a wrapper
that can extract the information of interest from the website. We
want to use automatic annotators to obtain our training data. Thus,
we want to model the possibility that the annotations have errors.
We call this the annotation model. Further, in the presence of er-
rors, we want to use the background knowledge about websites to
distinguish between good and bad wrappers. We call this the web
publication model. In Section 2.1, we describe the two models, and
then in Section 2.2, we formally define our extraction problem in
terms of the two models.

2.1 Publication and annotation models
Web publication model. We now state a model for generating a
set of webpages in a given domain of interest. First, we pick a
schema S over a set T of types. Second, we pick a rendering script
that takes elements of the schema S and renders them into HTML
documents. Third, we pick a set of elements over S and apply the
rendering script over them to obtain a set H of HTML webpages.

1It is important to note that our aim is not to propose a new wrapper
induction language/algorithm but rather show how to incorporate
an existing wrapper induction system. There are several languages
proposed in the literature for expressing wrappers, e.g., prefix-
suffix pairs [15, 14], finite-state automaton [17] and xpaths [6, 1,
18], and various algorithms designed for learning wrappers.

We take the domain of business listings as our running exam-
ple. Consider a set of webpages from the website of a brand,
each listing its authorized stores in a particular city. The set T
of types is {name, address, phone} and the schema is given by
S = (name, address, phone)∗, denoting a list of tuples, each
having name, address, and phone. The rendering script might dis-
play it as a table, with a td tag enclosing each tuple and a tr tag
enclosing each attribute, and additionally a <b> tag enclosing each
name. The same script is used to generate webpages for displaying
the list of stores for each city.

Annotation model. Let H be a set of webpages. Each webpage
contains a set of text elements and a set of tags. We represent the
entire H using a single vector Â = �A1, . . . , An�, where each Ai

is either a text element or an HTML tag in some page in H. Each
Ai either belongs to one of the types in T or is part of the script.

We assume that we have a set of annotators, each corresponding
to a type, where each annotator labels a subset of the text elements.
We use L to denote the set of all annotations, where each annotation
is of the form (Ai, τ) where Ai is a node and τ ∈ T is a type.

We assume that the annotators are noisy. So an annotator for a
type τ might miss some nodes of type τ and might incorrectly la-
bel some nodes that are not of type τ . We characterize annotators
by their precision pτ and recall rτ . For example, consider the
dictionary-based business name annotator described in Section 1.
This will have a low recall, depending on the size of the dictionary,
and will have a high, but not perfect precision, since it can occa-
sionally match words outside the list that look like business names.

2.2 The extraction problem
Given a set of webpages represented as a vector Â, we are inter-

ested in finding the data items that generated the webpages. For-
mally, we want to deduce the most likely type for Ai’s of interest,
i.e., output a partial mapping X : Â → T . We are given a set of
annotations L over Â and we wish to maximize P(X | L). We can
rewrite this as P(L | X)P(X)/P(L). Since L is a constant, we
can formulate the extraction problem as finding X given by

arg max
X

P(L | X)P(X). (1)

The first term P(L | X) models the errors in the annotation pro-
cess. It gives the probability of obtaining the label set L on Â if the
true labels were given by X . The second term P(X) models the
prior probability of obtaining X as given by the web publication
process, e.g., if X has a good repeating structure, then its probabil-
ity should be higher. Notice that the extraction problem as formu-
lated in Equation (1) is not yet fully-specified since we still have
not specified the probability distributions P(L | X) and P(X).
We give the formal definitions in Section 3.

In general, we are only interested in extracting a subset of types,
and not the full grammar that generated the webpage. E.g. if a
website has a list of businesses with name, address, a link to map,
and a flag for featured businesses, we might only be interested in
extracting the names and addresses. In this case, we only want to
construct a partial mapping X that maps nodes of types name and
address and leaving other nodes unmapped without caring if these
other nodes map to link or flag or are part of the script.

For the sake of presentation, we will present all our results for
a simplified version of the problem, which we call the single-type
extraction, in the main body of the paper. In this problem, we are
only interested in extracting a single type τ , and we also assume
that we only have annotations of type τ . Thus, we can assume L
to be simply a set of nodes (implicitly, of type τ ). Similarly, we
will assume X to denote a set of nodes, rather than a mapping from
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nodes to types. In our running example of business listings, we will
consider the problem of extracting the business names.

Although we only discuss single-type extraction, our techniques
are general and it is straightforward to apply them to the multi-
type extraction problem; for completeness, Appendix A contains
the details, including experimentation with multi-type extraction.
Our formulation vs. existing work. Equation (1) ties together
two existing lines of work on extracting structured data from the
web. The first line of work is on grammar learning [2, 5], which
focus on the web publication process, and try to infer the grammar
that generated the given set of webpages. This can be viewed as
optimizing the P(X) term. Union-free regular expressions and its
variants have been proposed as a good abstraction for describing
the structure of websites. This line of work tries to find the X
that can be explained by the smallest grammar, in a suitably chosen
language.

The second line of work [14, 15, 6] uses rule induction to learn
wrappers from a small number of labeled examples. Several lan-
guages have been proposed for expressing the rules that vary in
their expressibility and efficiency. This line of work can be viewed
as optimizing the P(L | X) term in Equation (1). However, they
assume that the annotation process is noise-free. Thus, P(L | X)
is 1 if X is consistent with L, and 0 otherwise. The problem in this
setting is to find a rule, in a suitably chosen wrapper language, that
results in an X consistent with the labels.

3. OUR APPROACH
We assume that we have a rule induction system φ that learns a

rule in a specific language from a set of noise-free labeled examples
L, e.g., Wien [15] or XPath learner [6]. Our objective is to make φ
noise-tolerant.

EXAMPLE 1. To illustrate our approach, we consider a
simple hypothetical wrapper inductor that we call TABLE.
This inductor works on a table, like the one shown below.

name
business1 n1� a1 z1 p1

business2 n2� a2 z2 p2

business3 n3 a3 z3 p3

business4 n4� a4� z4 p4

business5 n5 a5 z5� p5

If L consists of a single label, e.g., {n1}, then TABLE learns
a rule that returns just the label itself. If L consists of labels
all from the same row (or column), e.g., {n4, a4}, then TABLE
generalizes it to the entire row (or column). If L consists of labels
that spans at least two rows and columns, e.g., {a4, z5}, then
TABLE generalizes it to the entire table.

We will use the table above as our running example. In this table,
each row contains a business listing and the first column of each
row contains the business name. We have five labels as shown in
the table above. However, two of them are wrong. We want to learn
a wrapper to extract all the names, which, when expressed as a rule
in TABLE, is simply the first column.

Given a wrapper inductor φ, which in the example above is TA-
BLE, we want to find the wrapper, among the space of all possible
wrappers, that maximizes the probability as given in Equation (1).
Enumeration. The first step is to enumerate the space of wrappers.
In Example 1, since L contains 5 labels and we do not know which
of them are correct, each of the 32 possible subsets of L, when
given as input to φ, can potentially give us the correct wrapper. In
principle, we want to consider wrappers from this space, and rank
the resulting wrappers using Equation (1) to pick the best wrapper.

This brings us to the first issue: efficient enumeration of the
wrapper space. In Example 1, the 32 subsets of L only result in
8 unique wrappers: each of the five individual cells, the first col-
umn, the fourth row and the entire table. Denoting row i by Ri,
column i by Ci, and the entire table by T , we have the following 8
wrappers:

{{n1}, {n2}, {n4}, {a4}, {z5}, C1, R4, T}. (2)

In general, if given all possible n2 labels on an n × n table, the
2n2

subsets will result in only n2 +2n+1 unique wrappers for the
TABLE wrapper inductor.

This motivates the following enumeration problem: given a
wrapper inductor φ and a set of labels L, output the set of unique
wrappers that the subsets of L generate, without calling φ on each
of the 2L subsets. We present an efficient solution to the enumera-
tion problem in Section 4.
Ranking. The second issue at hand is the ranking of the result-
ing wrappers. We want to use Equation (1) to rank wrappers. We
again illustrate the ideas behind ranking using the table in Exam-
ple 1. Suppose we have three wrappers that we want to rank: w1,
which consists of the first column, w2, which consists of the first
two columns, and w3, which is the entire table. Note that w1 and
w3 are expressible in the TABLE wrapper language, while w2 is a
hypothetical wrapper included only for the sake of illustration.

Let X1 denote the set of nodes in the first column, X2 denote the
set of nodes in the first two columns, and X3 denote the set of all
nodes in the table. Thus, the score of wi is P(L | Xi)P(Xi).

Let us look at the first component of the score, P(L | Xi),
which corresponds to the labeling errors. P(L | X1) is the prob-
ability that the labeling process results in 2 mistakes and 3 cor-
rect labels. P(L | X2) is the probability that there is 1 mistake
and 4 correct labels, while P(L | X3) is the probability that there
are no mistakes. When the probability of errors is low, we expect

P(L | X1) < P(L | X2) < P(L | X3).
Note that the recall of the annotator also plays a role in the above
equation. E.g., P(L | X3) might be low if the annotator is known
to have high recall, since L only includes 5 out of 20 nodes in X3,
as opposed to 4 out of 10 nodes in X2 and 3 out of 5 nodes in X1.

The second component of the score is P(Xi), which denotes the
goodness of Xi as a list. Let us evaluate the goodness on two mea-
sures, the schema size and the repeating structure. For X1, since
each cell in the first column corresponds to a name in a business
listing, the cells between one name and next corresponds to an en-
tire business listing. Thus, each business listing has 4 cells, so X1

corresponds to a list with schema size 4. Also, the list has a perfect
repeating structure, since each listing is one row. For X3, each cell
is a name, and thus, each business listing comprises of just one cell.
Again, this has a perfect repeating structure, but the schema size is
only 1. Given the domain knowledge that each business listing typ-
ically has name, address, phone, etc., the list X1 is very unlikely.
Thus, we expect P(X3) < P(X1). List X2, on the other hand, has
a poor repeating structure, since the gap between first two elements
(n1 and a1) is 0, while gap between next two elements (a1 and n2)
is 2. So again, we expect P(X3) < P(X2).

At the end, w1 should be ranked as the top wrapper, since even
though it misses two labels, it has good list properties. In Section 6,
we describe our ranking model formally. But first, we address the
issue of efficiently enumerating the candidate wrappers.

4. ENUMERATION
We have a set of labeled nodes L and a wrapper inductor φ. We

use φ(L) to denote the wrapper learned from L. Since we work
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with a single type, φ(L) will also denote the set of nodes obtained
by applying the wrapper on the given set of pages.

The wrapper space of a set of labels L, denoted Wφ(L), is
the set of unique wrappers defined by the subsets of L, i.e.,

Wφ(L) = {φ(L1) | L1 ⊆ L}.
When φ is clear from context, we simply use W(L) to denote

the wrapper space of L. In general, while the number of subsets of
L is exponential in size of L, W(L) is usually a small set, as we
discussed in Section 3.

PROBLEM 1 (ENUMERATION). Given a wrapper inductor φ
and a set of labels L, output W(L) efficiently in time polynomial
in the size of L and W(L).

In general, for an arbitrary blackbox φ, we cannot solve the enu-
meration problem without invoking φ on all possible subsets of L.
However, any reasonable wrapper inductor algorithm has some ba-
sic properties that we can expect to hold and that we can exploit.

DEFINITION 1. We say that a wrapper inductor φ is well-
behaved if it satisfies the following properties:

1. [FIDELITY] L ⊆ φ(L) for all L,
2. [CLOSURE] � ∈ φ(L) ⇒ φ(L) = φ(L ∪ {�}),
3. [MONOTONICITY] L1 ⊆ L2 ⇒ φ(L1) ⊆ φ(L2).

The goal of a wrapper inductor is to generalize from a set of la-
beled examples. The fidelity property simply states that the gener-
alization includes the original examples. E.g., TABLE from Exam-
ple 1 trivially satisfies fidelity. The closure property states that the
wrapper does not change if its output is given as additional training
data. Monotonicity implies that if we add more labels, we do not
extract fewer nodes. It is easy to see that TABLE is monotonic and
closed, e.g., {n1, n2} gets generalized to the entire first column
that also includes n4. If we start with {n1, n2, n4}, then we will
still get the entire first column. Thus, TABLE is well-behaved.

The properties in Definition 1 are very natural. As we show in
Section 5, the Wien system [15] that generates wrapper rules in
terms of prefixes and suffixes, and the XPath system [6] that gener-
ates xpath rules, are both well-behaved. In the next section, we give
an efficient algorithm that takes a well-behaved φ as a blackbox, a
set of labels L, and efficiently enumerates the wrapper space of L.

4.1 A bottom-up algorithm
We fix here a set of labels L. Given any subset s ⊆ L, define the

closure of s, denoted φ̆(s), as φ̆(s) = φ(s) ∩ L. The algorithm is
very simple to describe and is called BottomUp. The pseudocode
is given in Appendix D (Algorithm 1). It works bottom-up starting
from the empty set. It maintains a list Z of subsets of L that are
candidates for learning wrappers. At each iteration, the smallest set
inZ is chosen for expansion (step 4). It is expanded by one element
in all possible ways (step 6), and for each expansion, the resulting
wrapper is added to the set W . Also, the closure of the expanded
set is added back to Z . Step 8 is the step that makes the algorithm
efficient. If we do not take closures, then this would amount to a
full enumeration over all 2|L| subsets of L. We have included the
run-time analysis of the algorithm below. First, we illustrate using
an example.

EXAMPLE 2. We revisit Example 1. The label set is given by
L = {n1, n2, n4, a4, z5}, and φ is the TABLE wrapper induc-
tor that we have devised. Let Ri denote row i, Ci denote col-
umn i, and T denote the whole table. When the algorithm starts,
we have W = ∅ and Z = {∅}. After ∅ is expanded, we get

W = {{n1}, {n2}, {n4}, {a4}, {z5}},

Z = {{n1}, {n2}, {n4}, {a4}, {z5}},
since each call to φ on a singleton label results in itself.
Next we pick {n1} for expansion (we can pick any set
since each of them is smallest). We get φ({n1, n2}) =
φ({n1, n4}) = C1, with corresponding snew = {n1, n2, n4},
and φ({n1, a4}) = φ({n1, z5}) = T , with the corre-
sponding snew = L. Thus, after expanding n1, we get

W = {{n1}, {n2}, {n4}, {a4}, {z5}, C1, T},
Z = {{n2}, {n4}, {a4}, {z5}, {n1, n2, n4}}.

When {n2} is expanded, it is removed from Z and it does
not contribute any new set in either W or Z . When {n4} is
expanded, with a4 it gives φ({n4, a4}) = R4 with the cor-
responding snew = {a4, n4}. After {n4} is done we get

W = {{n1}, {n2}, {n4}, {a4}, {z5}, C1, R4, T},
Z = {{a4}, {z5}, {n4, a4}, {n1, n2, n4}}.

No further set in Z contributes anything new, and successively gets
removed from Z . The final W contains the 8 wrappers as shown
above. These are precisely the set of wrappers in Equation (2).

We see that the algorithm correctly generates the wrapper space
of L in the above example. We prove that this is always the case.

THEOREM 1. BottomUp is sound and complete, i.e., it pre-
cisely outputs the wrapper space of L.

THEOREM 2. Let k be the size of the wrapper space of L. Then,
BottomUp makes at most k · |L| calls to the wrapper inductor.

4.2 A top-down approach
While the bottom-up algorithm runs in time polynomial in the

size of the wrapper space, it still, in the worst case, makes k · |L|
calls to the wrapper, where k is the number of unique wrappers. In
this section, we look at non-blackbox algorithms for enumeration,
where we use the form of the wrappers to devise optimal algorithms
that generate the wrapper space with exactly k calls to the wrapper.
We define a special class of wrapper inductors, called feature-based
inductors, as defined below.

A wrapper inductor φ is called feature-based if it can be ex-
pressed in the following form. Every node n in a document
is associated with a set of features F (n), where a feature is an
(attribute, value) pair. Given a set L of labeled nodes, φ(L) is
defined as φ(L) = {n | F (n) ⊇

T
�∈L F (�)}.

EXAMPLE 3. Consider the TABLE wrapper from Example 1.
We can view it as a feature-based wrapper in the following way.
With each cell in the table, we associate two attributes, row and
col, that denote the row number and column number of the
cell. E.g., n1 has features {(row, 1), (col, 1)}, a4 has features
{(row, 4), (col, 2)} and so on. Thus, if L = {n1, n2, n4}, φ(L)
will take the intersection of their features, which is {(col, 1)}.
Thus, it will generalize L to the entire first column. Similarly, if
L = {n1, a4}, the intersection of their features is empty. Hence,
φ(L) is the whole table. One can check that with this feature set,
the resulting φ is equivalent to TABLE.

Though feature-based inductors seem to be a very special class
of wrapper inductors, many current wrappers can be expressed in
this form. For instance, as we show in Section 5, both the Wien
system [15] that generates wrapper rules in terms of prefixes and
suffixes, and the XPath system [6] that generates xpath rules, have
a natural representation as a feature-based inductor.

Let F(L) be the union of all the features of all nodes in L. Let
attrs(L) denote all the set of unique attributes in F(L). Given
a ∈ attrs(L) and a subset s of L, let v1, . . . , vt be the set of
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values that a takes on s. Define subdivision(s, a) to be the set
{s1, . . . , st}, where si contains all the nodes in s that have a feature
(a, vi). Note that a subdivision need not cover s, since there might
be nodes in s that do not have the attribute a at all.

The enumeration algorithm is called TopDown. The pseu-
docode is given in Appendix D (Algorithm 2). It starts with
the entire set of labels L, and starts creating smaller sets based
on their features. We illustrate it on Example 1. Here L =
{n1, n2, n4, a4, z5}. There are two attributes, row and col. At
the beginning, Z = {L}. The col attribute divided it into fol-
lowing sets: {n1, n2, n4}, {a4}, and {z5}. Thus, after process-
ing col, we have Z = {{n1, n2, n4}, {a4}, {z5}, L}. When
row is used, it divides {n1, n2, n4} into {n1}, {n2}, and {n4}.
It does not create any new sets in {a4} and {z5}. For L, it
creates {n1}, {n2}, {n4, a4}, and {z5}. At the end, we have
Z = {{n1}, {n2}, {n4}, {a4}, {z5}, {n4, a4}, {n1, n2, n4}, L}.
Recall that there are 8 unique wrappers for L in Example 1 as given
in Equation (2). When we call φ on each of the 8 subsets in Z , we
precisely get these 8 unique wrappers.

THEOREM 3. TopDown makes exactly k calls to the wrapper
inductor, where k is the size of the wrapper space.

5. WRAPPER INDUCTORS
In this section, we analyze two wrapper induction algorithms

from the literature in detail, in the context of our framework.
The WIEN system. The WIEN system from Kushmerick et al. [15,
14, 10] considers documents as a sequence of characters. It defines
various class of wrapper languages, with the simplest being the LR
wrappers. Given a set of labeled examples, the LR wrapper finds
longest common strings preceding and following each of the exam-
ples. The wrapper consists of this pair of strings. Thus, the nodes
obtained by the wrapper consists of all the minimal strings that are
delimited by these pairs of strings. E.g., a wrapper consisting of the
pair (“<td>”, “</td>”) will fetch all data items in all the tables
in the documents. If extracting multiple types, there is a pair of
delimiters for each type. There are various extensions of this basic
languages, e.g., HLRT wrappers, which, in addition, have strings
H and T that limit the context under which LR can be applied.
Although we only present here the analysis for LR wrappers, the
analysis also extends to HLRT and its other variants.

THEOREM 4. LR is a well-behaved wrapper inductor.

The above result is not surprising. However, it comes as a sur-
prise that LR can be expressed as a feature-based wrapper. To see
this, consider the following set of features for each substring � in
the document: for each k there is an attribute Lk with value equal
to the string of length k immediately preceding �, and an attribute
Rk with value equal to the string of length k immediately follow-
ing �. It is easy to see that the resulting feature-based wrapper is
equivalent to LR. E.g., given a set of labeled strings, if their longest
preceding string has length k, then they will share common features
corresponding to L1, . . . , Lk, and so on.

Since we can express LR as a feature-based wrapper, we can ap-
ply the TopDown algorithm to enumerate its wrapper space. How-
ever, note that in this feature space, each label will have a large
number of features, equal to the length of the document. The charm
of the algorithm is that we do not need to construct the feature
space, as long as we can efficiently implement the subdivision
routine. For LR wrappers, it is easy to implement subdivision,
and we omit the details here for lack of space.
The XPATH wrapper. Several papers consider the approach of
looking at documents as trees given by their parsed HTML mark-

up, and using xpaths to extract information. The algorithm we
describe here is from Dalvi et al. [6], which we refer to in this
paper as XPATH 2. XPATH considers a simple fragment of the
xpath language, consisting of child edges (/), descendant edges
(//), attribute filters ([@fontsize=2]) and child number filters
(td[2]). For example, the following xpath

//div[@class =� content�]/table[1]/tr/td[2]/text(), (3)

extracts the text from the second column of each row in the first ta-
ble from a specific div. The wrapper induction consists of starting
from the “//*” xpath and specializing it till the precision cannot be
further improved, while maintaining a recall of 1. One can verify:

THEOREM 5. XPATH is a well-behaved wrapper inductor.

Again, while not intuitive, XPATH can in fact be expressed
as a feature-based inductor as follows. For each node n in
the document, we consider the path from n to the root, and
look at the properties at each position in the path. We will
omit the details and the formal construction owing to lack of
space, but instead illustrate the set of features for the xpath in
Equation (3). It has td[2] at position 1, tr at position 2,
table[1] at position 3 and so on. Its set of features is given by

{(1:tagname, td), (1:childnumber, 2), (2:tagname, tr),
(3:tagname, tagname), (3:childnumber, 1), . . .}.

Given a set of labeled nodes in this representation, one can con-
struct an xpath by taking the intersection of the features of all the
nodes. The formal details are omitted. The above representation
enables us to express XPATH as a feature-based wrapper using a
small number of features, and TopDown algorithm can be used to
enumerate the wrapper space for XPATH.

Note that extractors based on machine-learning methods need
not be well-behaved since they may not satisfy monotonicity. Fur-
thermore, if a wrapper inductor already handles noise perhaps using
different techniques, it may not be well-behaved.

6. RANKING MODEL
In this section, we describe the ranking model we use to assign

a probability to each wrapper in the set of enumerated wrappers.
We assume that we are given a wrapper w. Let X be the set of
nodes returned by w on the given set of webpages. The score of
w, according to Equation (1), is given by P(L | X)P(X), where
the first term models the annotation process and the second models
the web publication process. Note that the actual language used to
express w does not matter, as the score of a wrapper only depends
on its output. We describe each component of the score below.
Annotation process. P(L | X) is the probability that the anno-
tator outputs the labeled set L given that the correct list is X . We
assume a simple annotation model, where the annotator looks at
each node in the document, and independently decides whether to
include it in L. E.g., a dictionary-based annotator might label a
node if it belongs to the dictionary, and a zipcode-based annotator
might label a node if it consists of a sequence of 5 digits.

We characterize an annotator by two parameters, p and r. For
each node in the correct list X , it is added to the label set L with
probability r. Also, for each node not in X , it is also added to L
with probability 1 − p. An annotator with p = r = 1 corresponds
to the perfect annotator that labels all the correct nodes and only
correct nodes.
2While XPATH [6] focuses on robustness of wrappers w.r.t changes
in website, this aspect is orthogonal to our setting, and we are only
concerned here with their wrapper induction algorithm as described
in Section 5 in their paper.
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We can compute P(L | X) as follows. Let A be the set of all
nodes other than X in the given set of webpages. Let X1 = X∩L,
X2 = X \ L, A1 = A ∩ L, A2 = A \ L. Then,

P(L|X) = r|X1| · (1− r)|X2| · (1− p)|A1| · p|A2|

=
“

r
1−p

”|X1|
·

“
1−r

p

”|X2|
· (1− p)|A1∪X1| · p|A2∪X2|.

We observe that while X and A differ for each wrapper, A1 ∪

X1, which is equal to L, remains invariant. Similarly, A2 ∪ X2,
which is equal to the complement of L, again remains invariant
over different wrappers. Thus, we have

P(L|X) ∝
“

r
1−p

”|L∩X|
·

“
1−r

p

”|X\L|
. (4)

We use Equation (4) to model the annotation process. The reader
can notice that the term p, as we have defined, is not the precision
of the annotator, though the two are closely related. Assuming that
1− p < r, Equation (4) is indeed maximized when X = L. If 1−
p > r, it means that the annotator picks wrong nodes with higher
probability than right nodes, and indeed Equation (4) is maximized
when X is complement of L. In such a case, equivalently, we can
flip the output of the annotator and use it instead.
Web publication model. The second term, P(X), models the
“goodness” of the list in terms of its structure. There are several
work that model the web publication process [2, 5], and try to in-
fer the grammar that generated the given set of webpages. We can
measure the goodness of a list by studying its grammar. A regu-
lar, structurally repeating list results in a simple grammar, while an
irregular list requires a complex grammar.

While we can adapt any of these grammar inference technique to
our setting, there are differences unique to our setting that we can
exploit to device simpler and more efficient alternate techniques.
First, we do not use the grammar directly for extraction, but only
use it as a means to rank wrappers. Thus, we only need the charac-
teristics of the grammar and the actual grammar is not important for
us. Second, the grammar inference techniques work on unsuper-
vised pages, and try to segment the pages into structurally similar
segments that align well. On the other hand, since we are evaluat-
ing the goodness of a list, we already have the target list X that we
can use for segmentation. Thus, we only need to check the struc-
tural similarity of the segments. We present below our technique
that exploits these two properties.

We consider the parsed DOM trees of the websites, replacing
each piece of text with a special node called <#text>, since we
are only concerned with the structure and not the content. Next we
use the nodes in X as record boundaries to obtain record segments.
Note that this might lead to shifted record segments, since elements
in X might occur in the middle of the records. E.g., if we have a
sequence

a1n1z1p1 a2n2z2p2 a3n2z3p3 . . .

and if X contains all the ni, then the record segments will be

(n1z1p1a2), (n2, z2, p2, z3)

and so on, which are cyclically shifted, but the structural similarity
of the records is preserved, which is what matters to us. This trick
allows us to obtain record segments easily. In the parsed DOM
trees, this segmentation is performed by doing an pre-order traver-
sal of tree nodes from one consecutive element of X to the next.
See Figure 7 in the Appendix for an illustration of this process on a
simple HTML page. The result is a list of record segments, where
each segment is a fragment of HTML tree.

6.1 Features
To compute P(X), we define a set F of features on the list of

record segments, along with a probability distribution on the values
for each feature, and compute P(X) as

Q
f∈F P(f). Several use-

ful features can be defined that encapsulate the domain knowledge.
In this paper, we only consider the following two features:

(1) Schema size: This is the number of text nodes in the longest
common substring between pairs of segments; notice that this is an
approximation for the number of text attributes that are present in
every record in the list. E.g., as discussed in Section 3, if we are
extracting addresses, then it is unlike to see a schema size 1 or a
schema size of 50. We learn the schema size distribution for each
domain from a sample consisting of websites in the domain.

(2) Alignment: This is the maximum pairwise edit distance be-
tween pairs of segments; this feature is meant to capture how well
the records align. Once again, we learn the alignment distribution
for each domain from a sample of websites in the domain. An
alignment score of 0 corresponds to a perfect list. Section 3 gives
examples of wrappers leading well-aligned and badly-aligned lists.

Note that these features are applicable in all domains, though
their value distribution might be domain-specific. It is possible to
use features specific to a domain, e.g. every address has a zip-
code and a business typically has 1 or 2 phone numbers. In our
experiments, we find that even the two domain-independent simple
features described above are sufficient to identify good lists.

To learn the probability distribution on the values of features,
we take a small sample of websites, look at the list of segments on
each website and learn the distribution. Since both schema size and
alignment are discrete valued features, we use the kernel density
methods that learn a smooth distribution from finite data samples.

7. EXPERIMENTS
We first describe the setup of our experiments, our test data, and

the wrapper induction techniques we use for evaluation.
Datasets. We created two datasets in two different domains. In the
first dataset, the task is to extract store names from dealer locator
pages of various businesses. We compiled a list of 330 businesses
over various categories like furniture, home appliances, and elec-
tronics. Each business had a dealer locator webpage, where, by
automatically filling the US zipcode, we obtained the list of dealers
for each business for each zipcode. Note that pages for different
zipcodes from the same business have the same structure, while
different businesses have completely different websites. We want
to automatically learn wrappers for each of the 330 websites. We
call this dataset DEALERS.

In the second dataset, the task is to extract track names from mu-
sic albums. We crawled 15 different discography sites, where each
site contained structurally similar pages for albums along with their
track information listing. Again, we want to automatically learn
wrappers for each of the website. Figure 8 in Appendix contains
the details of this dataset, which can be used for repeatability of the
experiments. We call this dataset DISC.
Annotators. Our annotator for DEALERS is based on the Ya-
hoo! Local database of about 600,000 business names, e.g., Home
Depot and BestBuy, which overlaps with some of the business
names for each directory. We annotate a text node if it contains an
exact mention of a business name from our database. The result-
ing annotator has a 0.95 precision and 0.24 recall. The errors stem
from a business names matching street addresses and product de-
scriptions. For the DISC dataset, we compiled a list of 11 popular
albums along with their track information, spanning various genres
and decades. We expect any discography website to have at least
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a few of these albums, if not all, allowing us to automatically la-
bel and learn a wrapper for the website. Again, we look for exact
track names on the webpages. The annotator has precision 0.8 and
recall 0.9. Note that the recall is only measured w.r.t to pages with
at least one annotation. Thus, a recall of 0.9 does not mean that we
had 90% of the albums in our database (we only had 11). It means
that on the pages corresponding to the albums from our database,
we locate around 90% of the track titles. Errors in annotations stem
from track titles matching album titles, or present inside album de-
scriptions/user comments on the page.

For evaluation of our methods, we manually created the correct
extraction rule for each website in DEALERS and DISC.
Algorithms. We experimented with two different wrapper induc-
tion algorithms, XPATH and LR, as defined in Section 5. We
have implemented our framework in Java. All our experiments are
run on an Intel 2.13GHz machine running Linux with 4GB RAM.
We use the tidy (http://sourceforge.net/projects/
jtidy) utility to clean up and parse HTML pages.
Learning the model parameters. For each domain, the probabil-
ity distribution of the two features, namely, schema size and align-
ment, and the p and r of the annotators are learned from a sample
of half the websites.

7.1 Wrapper enumeration
In this experiment, we evaluate the performance of TopDown

and BottomUp wrapper enumeration algorithms, and compare
them with the naive algorithm that does an exhaustive search over
all possible subsets of L.

Figure 2(a) shows the number of wrapper calls made by the three
approaches for the LR wrappers. All the websites are arranged
along the x-axis in increasing order of the TopDown time, and
for each website there are three points corresponding to the three
approaches. The naive method is not plotted when it gets too large.
Figure 2(b) shows the same graph for the XPATH wrappers. We
see that both TopDown and BottomUp show excellent efficiency
as compared to the naive enumeration, with BottomUp making an
order of magnitude more calls to the wrapper.

Figure 2(c) shows the physical running times of the two algo-
rithms for XPATH wrapper. The naive algorithm was not run as it
was prohibitively expensive. Again, we see a similar trend. The
TopDown algorithm was really efficient and finished in under a
second for most of the websites. The BottomUp was again an
order of magnitude slower, but still finished in under a couple of
minutes for most websites.

7.2 Ranking
In this experiment we evaluate the improvement in extraction

quality obtained using our techniques. For each wrapper inductor,
we compare two algorithms: (1) the naive algorithm (NAIVE) that
directly runs the inductor on the given set of noisy annotations, and
(2) our noise-tolerant wrapper framework (NTW).

Note that we do not need to evaluate the TopDown and Bot-

tomUp algorithms separately for ranking, since both of them sim-
ply enumerate the wrapper space, which is orthogonal to perfor-
mance of the ranking algorithm.

Figure 2(d) shows the precision, recall, and the f1-measure,
which is the harmonic mean of the precision and recall, for the
naive algorithm and our methods using XPATH wrappers. We ob-
serve a nearly perfect precision and recall using our noise-tolerant
wrapper framework. The naive algorithm has a perfect recall. This
is because, due to noise in the training, it over-generalizes the
matching rule, leading to a very low precision. We are able to im-
prove the precision to 1 with a negligible drop in the recall.

Figure 2(e) shows the same graph on LR wrappers. It shows the
same trend, but the effect is more pronounced. Since LR wrappers
are less expressive than XPATH wrappers, the over-generalization
due to the noise is more severe, leading to a really low precision
of the naive method. Secondly, we see that the accuracy of the
noise-tolerant framework, while quite high, is still only 90% while
XPATH performs close to 100% on the same dataset. This is again
due to the fact that LR wrappers are not as expressive as XPATH
wrappers and for some of the websites, a perfect LR wrapper does
not exist. Thus, LR wrappers cannot achieve perfect accuracy on
this dataset even when there is zero noise.

Figures 2(f) and 2(g) shows the same graphs on the DISC dataset.
We see that our noise tolerant framework achieves a perfect preci-
sion and recall on this dataset for both wrapper inductors.

7.3 Ranking model components
Our ranking model has two components, the labeling error term

P(X | L), and the term P (X) that models the goodness of the
list. In this experiment, we analyze the contribution of each com-
ponent to the accuracy of the wrapper induction. We define two
variants of NTW corresponding to the two components, denoted
NTW-L and NTW-X respectively, where each variant only takes
into account one component of the ranking. Figures 2(h) and 2(i)
show the accuracy of each variant. We see that none of the indi-
vidual components can account for the total accuracy of the tech-
nique. Furthermore, we observe that the individual contribution of
the components differ significantly for XPATH and LR wrappers.
For XPATH wrappers, simply using the labeling errors almost takes
us all the way to the maximum accuracy, while for LR, labeling
errors by themselves do not help much.

7.4 Effect of annotators
In this experiment, we study the ability of our techniques to han-

dle annotators with different precision and recall characteristics.
So far, we have looked at two annotators : the DEALERS annotator
with a 0.95 precision and a 0.24 recall, and the DISC annotator with
a 0.81 precision and a 0.9 recall.

Here, we vary the precision/recall of annotators in a controlled
way, and study the effect on our techniques. For this study, we
consider the following annotator: it takes the set of corrects nodes
as input. For each correct node, it annotates it with probability p1.
Also, for each incorrect node, it annotates it with probability p2.
Note that the expected recall of the annotator is precisely p1. The
expected precision of the annotator, assuming n1 correct nodes and
n2 incorrect nodes, is n1p1/(n1p1 + n2p2). Thus, by controlling
p1 and p2, we can construct annotators with any desired precision
and recall. For each website, we use this annotator to annotate 25
webpages.

We take the DEALERS dataset and the XPATH wrappers, and
study the accuracy (F1 measure) of our techniques as a function
of precision/recall of annotators. The result is shown in Table 1.
The region with more than 90% accuracy is highlighted. We ob-
serve that our techniques have a very effective noise tolerance over
a broad range of annotators, and have very modest precision and
recall requirements.

8. CONCLUSIONS
We present a generic framework to learn wrappers from noisy

training data. This framework combines supervised wrapper induc-
tion techniques with domain knowledge and unsupervised grammar
induction techniques and allows to (i) plug in any wrapper language
and wrapper induction system and (ii) learn wrappers effectively
from automatically and cheaply obtained noisy training data.
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(i) LR variants on DEALERS.

Figure 2: Evaluation.

❍❍❍❍❍p
r 0.05 0.1 0.15 0.2 0.25 0.3

0.1 0.41 0.67 0.72 0.75 0.73 0.73
0.3 0.56 0.82 0.88 0.89 0.93 0.93
0.5 0.67 0.82 0.88 0.92 0.93 0.95
0.7 0.69 0.85 0.92 0.93 0.95 0.95
0.9 0.73 0.88 0.93 0.94 0.96 0.97

Table 1: Accuracy of NTW as a function of annotator
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APPENDIX
A. MULTI-TYPE EXTRACTION

In the main paper, for ease of exposition, we only presented
techniques for single-type extraction. However, our techniques are
equally applicable for the general multi-type extraction problem,
and we present its treatment here.

A.1 Methodology
A multi-type wrapper inductor seeks to extract a list of records,

where a record consists of a set of types. An example is the task
of extracting business listings consisting of name, address, and
phone from dealer locator pages. Each type has a corresponding
annotator for it. Learning a multi-type wrapper is a significantly
harder task than learning wrappers for individual types, since in ad-
dition, the wrapper needs to assemble records by putting together
corresponding data items. The task of assembling records is fur-
ther complicated when some of the fields are missing from certain
records, e.g., a business name with no phone number.

While wrapper induction for multi-type extraction from clean
labeled data is a hard problem and a topic of continuing research,
our focus here is to make such an extractor noise-tolerant. As we
show below, we can extend our techniques is a straightforward way.
Enumeration. The algorithms described in Section 4 can also be
used for enumerating multi-type wrappers. The labeled nodes now
additionally have a type associated with them. The type informa-
tion is passed along when calls are made to the wrapper inductor.
Ranking. There are two components in ranking, P(L | X) and
P(X). We assume that we have multiple annotators, one for each
type, each with a precision and recall associated with it, as defined
in Section 6. The P(L | X) term, which models the annotation
errors, is computed by multiplying the annotation errors of each
individual annotator, computed independently using Eq. (4). For
the P(X) term, we obtain the DOM tree segments corresponding
to individual records by using any of the types as a record boundary.
Then we compute the schema size and the edit distance between
segments; for the latter, we enforce the additional constraint that
nodes corresponding to each type align with each other.

A.2 Experiments
We use the DEALERS dataset described in Section 7 that con-

sists of dealer locator pages of various businesses. To evaluate
the effectiveness of our techniques on multi-type wrapper induc-
tors, we developed an inductor operating on two types: name and
zipcode. The inductor takes a set of nodes labeled as names
and a set of nodes labeled as zipcodes, learns xpath rules for each
type and constructs records by assembling together the interleaved
names and zipcodes. The wrapper produces empty results on a page
if it cannot assemble records successfully.

We also created two annotators: the name annotator, which is
based on a database of business names as described in Section 7,
and the zipcode annotator which is a regular expression identify-
ing five-digit US zipcodes. In addition to the noise in names that
we observed previously, there is noise in the zipcode labels, where
match all five-digit street address, as well as text from page head-
ers/footers.

When given clean manual labeled examples, the wrapper induc-
tor was able to learn correct rules for names and zipcodes and
successfully construct records. However, the effect of noise was
more dramatic than the single-type extraction case, since an error
in learning even one of the types made the wrapper fail in success-
fully assembling records. Thus, automatically learning a multi-type
extractor warranted an even stronger need for noise-tolerance.

1. bizrate.com

2. shopping.yahoo.com

3. pricegrabber.com

4. google.com/products

5. shopper.cnet.com

6. puremobile.com

7. letstalk.com

8. mysimon.com

9. tigerdirect.com

10. shopping.com

Figure 4: List of websites used in PRODUCTS dataset.

Figure 3(a) shows the precision, recall, and the f1-measure for
the naive algorithm (NAIVE), which involves running the wrapper
inductor directly on the noisy labeled data, and our noise-tolerant
wrapper (NTW). The figure shows the dramatic effect of noise
on the naive multi-type wrapper. The recall (and hence the f1-
measure) is close to 0, since NAIVE learns imperfect wrapper for
either name or zipcode (or both) and fails to assemble records. On
the other hand, NTW is able to achieve precision and recall close
to 1.

We also observed that while NAIVE for multi-type extraction be-
haves significantly worse than in single-type extraction case, NTW

actually performs slightly better. Figure 3(b) shows the average
accuracy (f1-measure) for names and zipcodes given by the noise-
tolerant multi-type wrapper, as compared to the accuracy of each
type when extracted singly. We see that when extracted jointly, the
accuracy of zipcodes matches the single extraction, while the accu-
racy of names is slightly higher. The reason for NTW performing
as good (or slightly better) in multi-type setting is that annotations
of each type, even though not clean, help in evaluating the wrapper
for the other type, since their joint alignment is measured during
ranking. In NAIVE, in stark contrast, the imperfect annotations of
one type adversely affect the other type since records cannot be
assembled correctly.

B. OTHER EXPERIMENTS

B.1 Products domain
We created a third dataset, called PRODUCTS, consisting of

shopping websites. We focused on websites selling cellphones,
and the task is to extract all cellphones sold on each website. We
crawled 10 different websites, listed in Figure 4. We constructed
the dictionary by looking at five popular brands, and consulting
the Wikipedia pages that list all the cellphone models for each of
these brands. The total size of the dictionary was 463. Figure 3(c)
shows the precision, recall, and the f1-measure of NAIVE and
NTW methods using XPath wrappers on this dataset. We note that
the graphs show a behavior similar to DEALERS and DISC datasets.

B.2 Single-entity extraction
Our techniques are also applicable for the easier problem of

single-entity extraction. In single-entity extraction problem, each
page contains only one entity of interest, as opposed to a list of en-
tities. Many of the classic wrapper induction systems only handle
single-entity extraction.

There are some salient differences between single-entity extrac-
tion and list extraction. First, in the absence of lists, we cannot
exploit the repeated structure within a page to identify good lists.
The P(X) component of our ranking, that models the goodness of
a list, is not applicable for single-entity extraction. On the other

227



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

FRecallPrecision

NTW
NAIVE

(a) Accuracy of multi-type extractor.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ZipcodeName

MULTI
SINGLE

(b) Multi-type vs. single-type extraction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

FRecallPrecision

NTW
NAIVE

(c) Accuracy of XPath on PRODUCTS.

Figure 3: More evaluation.

hand, the constraint of having a single entity on a page greatly sim-
plifies the problem. In list extraction, there is a tension between
two conflicting objectives : (1) expand the set of annotations to the
entire list in the pages, and (2) contract the set of annotations to ac-
count for noise. This tension is not present when extracting single
entities, since we are not expanding the set of annotations in a page.

We can define the single-entity extraction problem as : find a
wrapper that extracts a single entity from each webpage and covers
most number of annotations. Note that covering the most number
of annotations is equivalent to maximizing P(L | X).

Our techniques provide a direct way to solve the single-entity
extraction problem (with noisy annotations) for any wrapper algo-
rithm. We simply enumerate the set of distinct wrappers, using any
of the applicable method, discard the wrappers that extract multiple
items from a single page, and then pick the wrapper that covers the
largest number of labels. The intuition is that any wrapper trained
on a subset of annotations containing errors will most likely over-
generalize, match multiple nodes from a single page, and will be
discarded.

We evaluated the performance of single-entity extraction on the
DISC dataset. The task is to extract the album title from each
page on each website. We use the same set of albums as our seed
database for annotations. The annotator is very noisy, since al-
bum names are present at several locations in a page, including title
tracks in some cases, as well as comments and reviews. However,
the noise-tolerant wrapper was able to learn the correct wrapper in
all the websites. In some of the websites, the system returned mul-
tiple wrappers with the same rank at the top, i.e. multiple wrappers
matching one label on each page. These websites had multiple cor-
rect wrappers: there are multiple (consistent) locations containing
album names in each page, like in the head tag, the meta tag, as
well as album details tab.

In general, we expect single-entity extraction to be very
amenable to noise in our framework.

C. PROOFS
THEOREM 6. BottomUp is sound and complete, i.e., it pre-

cisely outputs the wrapper space of L.
PROOF. The soundness of the algorithm is obvious, since each

wrapper in W is produced by a call to the wrapper inductor on
some subset of L.

To show completeness, suppose on the contrary that a wrapper
w = φ(s0) is never produced. Let s1 be the largest subset of φ̆(s0)
that was ever added to Z in step 11, and let s1 = φ̆(s ∪ �), where
s and � are from step 8.

Suppose s1 = s0. Since s1 = φ̆(s ∪ �), by the closure property
of φ, we have φ(s1) = φ(s ∪ �). But φ(s ∪ �) was added to W in

step 9. Thus, if s1 = s2, this implies that W contains φ(s0) which
is a contradiction.

Hence, we can assume s1 ⊂ s0. Let �1 be any label in s0 \ s1.
Since s1 was inZ , at some point it was expanded, and �1 was added
to s1. So consider snew = φ̆(s1 ∪ �1).

Since s1 ∪ �1 ⊆ s0, by the monotonicity property, φ(s1 ∪ �1) ⊆

φ(s0), which implies (̆s1∪ �1) ⊆ φ̆(s0). Thus, we have a set snew,
such that snew ⊆ φ̆(s0), and which is strictly larger than s1 since it
contains �1 by the fidelity property. This contradicts the definition
of s1, and proves the completeness of the algorithm.

Before we present the run time analysis of BottomUp, we need
some notation. Call a subset s of L closed if φ̆(s) = s.

LEMMA C.1. For any s, φ(s) = φ(φ̆(s)). Also, for any s, φ̆(s)
is closed.

The lemma follows easily from the definition of φ̆(s) and the
closure property of φ.

LEMMA C.2. The size of the wrapper space of L is equal to the
number of closed subsets of L.

PROOF. Consider the set of wrappers S = {φ(s) | s is closed}.
We will show that S includes all the wrappers in the wrapper space
of L. For given any wrapper w = φ(so), where so is any set,
φ(s0) = φ(φ̆(s0)) because of Lemma C.1. Also, φ̆(s0) is a closed
set, again by Lemma C.1. Thus, S contains φ(φ̆(s0)) = w.

Further, each closed set contributes a unique wrapper to S. This
is because if s1 and s2 are closed sets and s1 �= s2, this implies
φ̆(s1) = s1 �= s2 = φ̆(s2) ⇒ φ(s1) �= φ(s2).

THEOREM 7. Let k be the size of the wrapper space of L. Then,
BottomUp makes at most k · |L| calls to the wrapper inductor.

PROOF. First, we observe that the only sets we add to Z are of
the form φ̆(s ∪ �), which, by Lemma C.1, are closed. Thus, Z
only contains closed sets. Further, once a set is removed from Z ,
it is never added back. This is because we always pick the smallest
set for expansion in step 4. Thus, if a set s is removed from Z at
some step, all the remaining sets in Z are at least as big as s. Thus,
any set ever added back to Z after this step is strictly bigger in size
than s (since at least one new label is added during step 8). So s
can never be added back to Z at a later stage.

Consider the set s ∪ � on which φ is called in step 7. Since s
comes from Z , it is a closed set. Hence, φ is called at most once
for each (s, �) pair, where s is a closed set and � is a label. Since
number of closed sets is k, BottomUp makes at most k · |L| calls
to the wrapper φ.

228



D. PSEUDOCODE
The pseudocode for BottomUp is shown in Algorithm 1 and for

TopDown is shown in Algorithm 2.

Algorithm 1 BottomUp

Require: L: a set of training labels, and φ: a well-behaved black-
box wrapper inductor.

Ensure: W: the wrapper space of L.
1: W ← ∅ {initialize wrapper space}
2: Z ← {∅} {initialize set of label subsets}
3: while Z �= ∅ do
4: s ← smallest set in Z
5: Z ← Z \ {s}
6: for (each label � ∈ L \ {s}) do
7: w = φ(s ∪ �)
8: snew = φ̆(s ∪ �)
9: W ←W ∪ {w}

10: if (snew �= L) then
11: Z ← Z ∪ {snew}

12: end if
13: end for
14: end while
15: return W

Algorithm 2 TopDown

Require: L: a set of training labels
Ensure: W: the wrapper space of L.
1: W ← ∅

2: Z ← {L}
3: for (each attribute a ∈ attrs(L)) do
4: for (each set s ∈ Z) do
5: {s1, . . . , st} = subdivision(s, a)
6: Z ← Z ∪ {s1, . . . , st}

7: end for
8: end for
9: for (each set s ∈ Z) do

10: W ←W ∪ {φ(s)}
11: end for
12: return W

E. SUPPLEMENTARY FIGURES
Figure 5 and Figure 6 contain sample business listings pages.

Figure 7 illustrates finding boundaries of records spanned by a
given wrapper. Figures 8 and 9 contain the list of websites and
albums used in DISC dataset.

F. RELATED WORK
There are two existing lines of work related to our problem,

which we describe here and outline their shortcomings. The
first line of work is the non-wrapper based information extrac-
tion techniques that do not use the structure of the webpages, e.g.,
techniques from natural language processing [8], machine-learned
probabilistic models like Conditional Random Fields (CRFs).
While the techniques are not domain-centric, they are still source-
centric, i.e., they perform poorly if the test data differs in charac-
teristic from the training data. It is not possible to train, or even
represent, a probabilistic model that can capture the full diversity
of the entire web.
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Figure 6: Business listings webpage.
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Figure 7: Boundaries of records spanned by a given wrapper.
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1. cduniverse.com

2. music.barnesandnoble.com

3. tower.com

4. cdbaby.com

5. musicishere.com

6. home.napster.com

7. mog.com

8. mp3.rhapsody.com

9. shockhound.com

10. rollingstone.com

11. play.com

12. wayango.com

13. audiolunchbox.com

14. amazon.com

15. allmusic.com

Figure 8: List of websites used in DISC dataset.

1. Bach for Breakfast, Johann Sebastian Bach.
2. Abbey Road, Beatles.
3. If It Rains on Tuesday, Michelle Suesens.
4. Notre Dame Lullabies, The O’Neill Brothers.
5. Love is the Answer, Barbra Streisand.
6. Strangers In the Night, Frank Sinatra.
7. I Left My Heart In San Francisco, Tony Bennett.
8. Au Nom d’Une Femme, Helcne Segara.
9. Yesterday & Forever, Beatles.
10. Mi Plan, Nelly Furtado.
11. She Walks In Beauty, Danielle Woerner.

Figure 9: List of albums used in DISC dataset.

For instance, it is hard to imagine a CRF that can extract busi-
ness names from a collection of webpages, and do it over any given
store website with any reasonable accuracy. An interesting piece of
work [20], with the exact problem setting as ours, use (an exten-
sion of) CRFs for information extraction, and learn them automat-
ically from noisy labels. The reported accuracy, however, ranges
between 60% to 80% based on 10 websites, which shows the fun-
damental limitation of this approach. Our experiments cover more
than 300 websites yet achieve close to 100% accuracy. Ensemble-
learning techniques have been applied to the problem of schema
matching with noise [12]. These techniques, however, are bagging-
type: they assume that the underlying schema matcher is already
noise-tolerant to a certain extent. Wrapper inductors, on the other
hand, are very sensitive to even small amounts of noise.

The second line of work, which is more directly related to ours,
is that on grammar induction techniques [5, 21, 2], which learn a
grammar to capture the repeating structure of pages in websites in
a completely unsupervised way. Various languages (e.g., union-
free regular expressions) have been proposed as good abstraction
for describing the structure of websites, and these works try to find
the minimal grammar in these languages that generate the given
set of webpages. Note however that a learned grammar does not
directly translate into an extraction rule. For example, consider a

table where the second td in each tr is the business name that we
want to extract. A grammar inductor can easily infer the grammar
for a table as (tr(td∗))∗. However, the underlying problem still
remains: figuring out the rule that the second td in each tr is the
business name. In general, a grammar is much more complex, and
by itself, it does not tell how to extract the types that are of interest
to us. In this work, we use ideas from grammar induction, and
combine them with supervised wrapper induction methods.

Philosophically, our approach to scalable information extraction
can be deemed as domain-centric, in contrast to some of the re-
cent approaches for scaling extraction, which are web-centric. The
WebTables [4] and its extension to list extraction [7] and the NLP-
based KnowItAll system of Etzioni et al. [8] are well-known web-
centric approaches. By being domain-centric, (1) we are able to
leverage domain-knowledge, dictionaries for annotations, and ac-
curate models for identifying lists in the domain, and (2) our ex-
tractors (by definition) also attach types to the extracted data, in
contrast to web-centric approaches, that need a separate schema
matching process to attach semantic meaning to the extraction re-
sults: a challenging task on a web-scale. Our approach is the first
to achieve very high accuracy in scaling domain-specific extraction
to the entire web.
Ensemble-based methods. Ensemble-based methods use multiple
models to obtain better predictive performance than individual con-
stituent models, and have been successfully used in Machine Learn-
ing to handle noise in input labels. However, these techniques do
not apply well to the wrapper learning problem. We describe here
some of the ensemble techniques and their limitations.

Multi-strategy learning [9] assumes that there are multiple learn-
ers making “complementary” errors when given noisy labels, and
combine the predictions of multiple matchers using some sort of a
voting scheme to obtain accuracy higher than that of any individ-
ual learner. However, the classic wrapper learning algorithms only
work on a clean set of annotations, and when given noisy annota-
tions, perform really bad and moreover, make the same errors. E.g.
every learner will try to fit all the input annotations, and every in-
correct annotation will be in the output of all the learners. Thus,
combining the predictions will not generally reduce the noise.

Further, multi-strategy learning is a supervised technique. In our
setting, we cannot evaluate if a wrapper rule is correct, since our
input annotations are not only noisy, but also incomplete (they only
match a subset of items on each page).

Another closely related ensemble technique is called bag-
ging [3]. In bagging, a single learner is trained on multiple
randomly-drawn subsets of the training data, and the resulting set of
models are combined using some ensemble scheme. This method
has been applied for problems like schema matching with noisy at-
tributes [12]. The idea is that each sample contains fewer errors,
and further, different models are learnt on different sets of errors.
So, when they are combined, errors are canceled out. However,
again, bagging works when the underlying learner has at least some
tolerance to noise. In our setting, even one error in annotation re-
sults in a highly over-generalized wrapper. Thus, wrappers are not
very amenable to bagging-style approaches.
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