Scalable Transactions across Heterogeneous NoSQL
Key-Value Data Stores

Akon Dey

Supervised by Alan Fekete and Uwe Ré6hm
University of Sydney

akon.dey@student.usyd.edu.au, {fekete, roehm}@it.usyd.edu.au

ABSTRACT

Many cloud systems provide data stores with limited fea-
tures, especially they may not provide transactions, or else
restrict transactions to a single item. We propose a approach
that gives multi-item transactions across heterogeneous data
stores, using only a minimal set of features from each store
such as single item consistency, conditional update, and the
ability to include extra metadata within a value. We offer a
client-coordinated transaction protocol that does not need a
central coordinating infrastructure. A prototype implemen-
tation has been built as a Java library and measured with an
extension of YCSB benchmark to exercise multi-item trans-
actions.

1. INTRODUCTION

Cloud computing infrastructures are emerging as the pre-
ferred deployment platforms for a wide variety of appli-
cations, particularly web-based applications. Increasingly,
desktop and mobile applications are using the cloud infras-
tructure to take advantage of the high-availability and scal-
ability characteristics. In the past, these type of systems
used local databases to store information and application
state. There are many new applications that share some or
all their data with applications running on other hosts or in
the cloud and use these data stores for persistence.

The data management infrastructure available in the cloud
such as Google Cloud Storage (GCS), Windows Azure Stor-
age (WAS), Amazon SimpleDB, and others are simple to
setup, access, and require little system administration. They
scale in and out seamlessly and are highly available and
fault-tolerant.

However, many cloud-based distributed data stores have
some limitations. Firstly, there is limited capability to query
the data, often restricted to access via the primary key.
Complex queries that involve other fields or joins may not
be possible. Secondly, the services often provide no trans-
actions or only transactions that access a single record.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 12

Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

1434

The limited query capability is usually worked around by
designing new data structures and using different data ac-
cess patterns. However, the weak transaction guarantees
are a severe hindrance to application development and re-
quires major application rearchitecture and often prevent of
the application from being deployed using these technologies
altogether.

There are a few ways to support multi-item ACID [13]
transactions when using a data store that provides only sin-
gle item transactional guarantees. The obvious choice is for
every application to manage transactional access to the data
store. This is complex, prone to programmer error, and al-
most certainly results in incorrect behavior.

One way is to implement transaction support in the data
store itself. This is complicated and is difficult to implement
without compromising scalability and availability.

Another approach is to use middleware to coordinate tran-
sactional access to the data store. This approach has similar
implementation complexities but is suitable for situations
where the applications are deployed in a controlled environ-
ment.

A different approach is to define a transactional access
protocol to each data store and provide a transaction and
data store abstraction API to enable the client applications
to access the data with transactional semantics while con-
tinuing to take advantage of scalable and reliable access to
the data store.

We use this approach to implement a library with an
easy-to-use API that defines a client coordinated transaction
management protocol with a plugable data store abstraction
layer enabling it to handle transactions across more than one
data stores.

In this paper we make the following contributions:

We define a client coordinated transaction protocol to
enable efficient multi-item transactions across hetero-
geneous key-value store by distributed applications.
We define a data store implementation that provides
a corresponding interface to support multi-item trans-
actions.

We describe the implementation of a library in Java
that uses the protocol to perform multi-item transac-
tions across Windows Azure Storage and Google Cloud
Storage.

We describe an extension of the YCSB [7] benchmark,
we call YCSB+T, that we use to evaluate the transac-
tion throughput.



2. BACKGROUND

In recent years there have been numerous implementa-
tions of distributed key-value stores, each exhibiting differ-
ent mix of performance, scalability, availability characteris-
tics and alternate architectures. These include Amazon Dy-
namo [11], Google BigTable [5], Yahoo! PNUTS [6], HBase,
and Cassandra [15], Amazon SimpleDB, Amazon S3. These
systems use commodity hardware and exhibit scalability and
high-availability but provided lower consistency guarantees,
often limited to only eventual consistency [21]. Typically
only single item transactions are guaranteed and query ca-
pability is limited. Data is accessed using the primary key
and data scan support is limited to only a few systems like
PNUTS and SimpleDB.

More recently, there have been developments like Spin-
naker [20], Windows Azure Storage [4], Google Cloud Stor-
age provide single item consistency guarantees. The sys-
tem design focuses on scalability, performance and single
key consistency. Spinnaker uses a Paxos-based protocol to
ensure consistency while COPS [17] and Granola [9] use
replication protocol optimizations to achieve greater perfor-
mance while supporting native multi-item transactions.

Despite these advances, the bulk of the systems leave
multi-item transactional data access to the client applica-
tion. This is prone to programmer error and the results are
often completely incorrect.

In order to address these issues, some systems have imple-
mented a relational database engine to provide the query ca-
pabilities and transaction support with the raw data stored
in a distributed key-value store [3]. This is suitable for ap-
plications that require an RDBMS for persistence with the
advantage that it provides a complete SQL interface with
full transaction support. The performance and transaction
throughput of the system is limited only by the underlying
queue implementation.

Most applications built using key value stores work well
because of the relative simplicity of the programming in-
terface to the data store. Many of these applications use
write-once-read-many (WORM) data access to the key value
store and function well under the eventual consistency set-
ting. However, there are applications that are built to run
on the same data that require better consistency across mul-
tiple keys.

The first approach to address this issue is to implement
transactional capabilities within the data store itself. The
data store manages the storage as well as transaction man-
agement. The Spanner [8] is a distributed data store that
supports transactions.

The COPS [17] and Granole [9] implement the distributed
key-value store with a custom API to enable applications
to transactional access the data store. Similarly, Hyper-
Dex Warp [12] is a high-performance distributed key-value
store that provides a client library that supports lineariz-
able transactions. The client library simplifies the access to
the data items on behalf of the application using an API
provided by the data store which maintains multiple ver-
sions of each data item. These systems support transactions
across multiple keys with a distributed, homogeneous key-
value store. The focus of these systems is to build a better,
more capable distributed data store and optimize the trans-
action coordination across it.

Another way is to use middleware to provide caching and
transactional data access. Google Megastore [1] is a transac-

1435

tional key-value store built on top of BigTable. Records are
collocated in a tree structure called entity groups where each
leaf record is associated with the root record using a foreign
key. The foreign key is used to cluster related records and
partition data across storage nodes and transactions across
records spanning clusters is done using 2PC.

In G-Store [10], related data items are grouped into key
groups that are cached locally on a single node. Transac-
tions are only allowed within key groups and keys are al-
lowed to migrate from one key group to another using a
group migration protocol. Greater transaction throughput
is achieved because data items are cached on the local node.

Deuteromony [16] unbundle the data storage and trans-
action manager into two separate entities. It defines a pro-
tocol, which is an optimization of their earlier work [18],
to perform transactional data access using the transaction
component (TC) and the data component (DC). This sys-
tem allows multiple hybrid data stores to be used.

The CloudTPS [22] design uses data store access through
a transaction manager split across multiple nodes into lo-
cal transaction managers (LTM). LTM failures are handled
using transaction logs replication across LTMs.

The middleware approach works well when the application
is hosted in the cloud and there is a known and controlled set
of data stores used by the application. They perform well in
this situations and provides one programming interface to
the application simplifying the data store access. However,
these systems require to be setup and maintained separately.

This is not suitable in our use case where individual ap-
plication instances need the hands-off, low maintenance fea-
tures of key value stores and each may have different access
privileges to individual data stores.

Another way of implementing multi-key transaction sup-
port for distributed key-value stores is to incorporate the
transaction coordinator into the client. We know of two
implementations that use this approach. Percolator [19]
implements multi-key transactions with snapshot isolation
semantics [2]. It depends on a central fault-tolerant times-
tamp service called a timestamp oracle (TO) to generate
timestamps to help coordinate transactions and a locking
protocol to implement isolation. The locking protocol relies
on a read-evaluate-write operation on records to check for
a lock field associated with each record. It does not take
advantage of test-and-set operations available in most key
value stores making this technique unsuitable for client ap-
plications spread across relatively high-latency WANs. No
deadlock detection or avoidance is implemented further lim-
iting its use over these types of networks.

ReTSO [14] relies on a transaction status oracle (TSO)
that monitors the commit of all transactions to implement
a lock-free commit algorithm resulting in high transaction
throughput. It utilizes a high-reliability distributed write-
ahead log (WAL) system called BookKeeper to implement
the TSO providing snapshot isolation semantics. Times-
tamps are generated by a central timestamp oracle. The
need to have a TSO and a TO for transaction commitment
is a bottleneck over a long-haul network. This prevents this
approach to be effective in a WAN layout.

Our approach is similar in many ways to Percolator and
ReTSO. We use the transaction start time to obtain the
transaction read set. We also use the transaction commit
timestamp to tag all the records that belong to the transac-
tion write set. Unlike these systems ours does not depend on



1

3

5

7

9

11

13

15

17

19

any centralized timestamp oracle or logging infrastructure.
We utilize the underlying key-value store and its features
to provide transaction across multiple records. There is no
need to install or maintain additional infrastructure. Our
approach enables transactions to span across hybrid data
stores that can be deployed in different regions and does
not rely upon a central timestamp manager. In the current
version, we rely on the local clock to keep time but it is com-
patible with approaches like TrueTime [8]. We use a simple
ordered locking protocol to ensure deadlock detection and
recovery without the need of a central lock manager.

3. CONTRIBUTIONS

Current distributed NoSQL data stores exhibit the follow-
ing characteristics:

e Limited transactional capabilities.

e Rudimentary record locking capability without an abil-
ity to avoid or handle deadlocks.

e No standard application interface making it hard for
applications to perform transactions across different
data stores.

It is evident that the current systems do not address the
problem of transaction coordination across heterogeneous
data stores. We expect our work to help us better under-
stand and utilize heterogeneous data stores more efficiently
in an increasingly varied variety of applications.

public void
Datastore

UserTransaction () {
cds Datastore.create (" credentials .xml”);
Datastore gds Datastore.create (” goog._creds.xml” );
Datastore wds Datastore.create (" msft_creds.xml”);
Transaction tx new Transaction (cds);
try {

tx.start ();

Record saving tx.read (gds, ”saving”)

Record checking = tx.read(wds, ”checking”);

int s saving .get (”amount” );
checking.get (”amount” );

int ¢

saving.set ("amount” , s — 5);
checking.set ("amount” , ¢ 4+ 5);
tx.write(gds, “saving”, saving);
tx.write(wds, ”checking”, checking);

tx .commit ();

} catch (Exception e) {
tx.abort ();
}

}

Listing 1: An example using the library API to ac-
cess two data records spanning two data stores

Listing 1 is an example of a Java application using the
library to access multiple items in more than one data stores.

3.1 Client-coordinated transaction protocol

The protocol depends on the following capabilities of mod-
ern distributed key-value data stores:

e single-item strong consistency (always read latest ver-
sion of the item)

e conditional update and delete, similar to Test-and-Set
e ability to add user-defined metadata to the content
of an item; we use this to tag each version with the
information about the creating transaction, and also
to include both current and preceding version within
the item

a data store that can support global read-only access
to records, so we make transaction state visible to all
clients

The essence of our proposal is that each item stores the
last committed and perhaps a currently active version. Each

1436

is tagged with the transaction that created it, and a well-
known globally visible transaction status record is kept so
the client can determine which version to use when reading,
and so that transaction commit can happen just by updat-
ing (in one step) the transaction status record. Based on
transaction status record, any failure can be either rolled
forward to the later version, or rolled back to the previous
version. When transactions attempt concurrent activity, the
test-and-set capability on each item allows a consistent win-
ner to be determined. A global order is put on transactions,
through a consistent hash of their ids, and this can prevent
deadlock. This approach is optimized to have parallel pro-
cessing of the commit activity. Details of the algorithms are
shown in Section 4.

The transaction start time, Tstqrt, is set at the start of
the transaction and is used to pick the correct version of the
items in the read set. The transaction commit timestamp,
Teommit, to tag all the records that belong to the transaction
write set. At transaction start, the transaction start time
Tstart is recorded from the clock.

Data items are read from individual containing data stores
and cached in an in-memory cache in the client library. Mod-
ified objects are kept in the library cache until the transac-
tion is committed.

When the transaction is finished, we perform two stages
of processing.

Phase 1: The transaction commit time, Teommit, 1S
obtained from the clock. Then every dirty record in the
client’s record cache is stamped with the commit timestamp
metadata. Fach record is marked with a PREPARED flag
and written to the respective data store.

Phase 2: If all the records have been successfully writ-
ten, a Transaction Status Record (TSR) is written to a data
store that is globally readable to indicate that the transac-
tion is considered as committed. Any future failure will be
recovered by rolling forward.

Once the TSR is created, the records in the write set are
marked as committed in their respective data stores. This
operation can happen in parallel to improve performance.
Once all records have been committed, the TSR is deleted.

The library does not use any centralized managed infras-
tructure to perform transaction commits. The underlying
key value store and its inherent features are used to im-
plement transaction across multiple records. As there is
no need to install or maintain any central infrastructure it
is suitable for use across hybrid data stores that can span
multiple data centres.

3.2 YCSB+T transactional NoSQL benchmark

Traditional database benchmarks like the TPC-W are de-
signed to measure the transactional performance of RDBMS
implementations against an application domain. Cloud ser-
vices benchmarks like YCSB, on the other hand, are de-
signed to measure the performance of web-services without
focusing on the transactional aspects and data validation.

We are in the process of developing a comprehensive set
of benchmarks to measure the transactional performance
of applications that use key-value stores with web-service
APIs. Performance is measured in terms of both transac-
tion throughput and the probability of data anomalies per
transaction. Operations on data items are performed within
transaction boundaries and performance of individual start,
commit, and abort operations are measured in addition to



Application

Transaction Abstraction

Windows Azure Storage
Datastore
Abstraction

i

Windows Azure

Google Cloud Storage
Datastore
Abstraction

b

Google Cloud

REST API
HTTP

Figure 1: Library architecture

data reads and writes. It also provides a platform for even-
tual users of the library to evaluate their application use
cases against specific data stores.

3.3 Transaction-friendly NoSQL data store

We are in the process of developing a distributed data
store that will have native support for 2-phased updates and
deletes without compromising the scalability and availability
characteristics of typical distributed NoSQL data stores. We
are of the opinion that these extensions to the traditional
API with the operations; PREPARE, COMMIT, ABORT,
and RECOVER in addition the the standard GET, PUT,
and DELETE methods will enable the client-coordinated
transaction commitment protocol to work more efficiently
by reducing the number of API calls to the data store while
continuing to support traditional non-transactional access
using only the basic set.

4. PROTOTYPE IMPLEMENTATION

The system is implemented as a runtime library that is
linked to the client application. The architecture of the li-
brary is described in Figure 1. The library provides pro-
gramming abstraction for transactions and data stores.
The implementation makes the following data store assump-
tions:

e Support for single item transactions - write followed
by read returns the last updated version

e Support for test-and-set operation - conditional writes

e Support for global read-only access

The interface to the data store is provided to the appli-
cation through a library which exposes an abstraction to
transactions through Transaction class and to the data store
through a Datastore class.

Record structure: The data record has a record header
and data. The header is a collection of fields and their val-
ues.

The fields are:

e valid time start (Tyaiia): The timestamp after which
the version of the record is considered committed if in
the COMMITTED state.

valid time end (Tyalidend): The timestamp after which
the record is considered invalid. This is used to indi-
cate that a record is deleted.

lease time (Tieqse_time): The transaction lease time to
complete the transaction commit. The record state
recovery is executed if the lease time expires and the
record is in the PREPARED state.

1437

transaction identifier (TzID): Signifies the URI of the
transaction that last updated the record. The trans-
action URI can be examined to determine the fate of
the transaction.

transaction state (TxzState): The last update state of
the record, whether PREPARED or COMMITTED.
last update time (Tiast_update): The last update time-
stamp on the data store server.

version tag (ETag): A data store generated version
tag for the version of the record. This tag can be used
to perform conditional writes and reads.

previous version (Prev): A reference to the previous
version of the record.

The Datastore class implements the following methods:

e start() - start a transaction

e read(key) - read a record with the specified key from
the data store.

write(key, record) - write a record with the specified
key to the data store.

delete(key) - delete a record identified by the key from
the data store.

prepare(key, record) - if the version of the record ma-
tches the version on the data store or if the record is
a new record, write the contents of the record and its
previous version to the data store and mark it with
the PREPARED state.

commit(key, record) - update record identified by the
key to the COMMITTED state.

The Transaction class implements the following methods:

start() - start the transaction

e read(ds, key) - read a consistent version of the record
specified key from the data store and cache it in the
transaction cache.

write(ds, key, record) - write the record to the trans-
action cache to be persisted in the data store specified
by ds using transaction commitment protocol.
delete(ds, key) - mark the record identified by the
specified key as deleted in the transaction cache to be
deleted from the data store at commit time.
commit() - commit all the changes to the data stores
using the commitment protocol.

e abort() - abort the transaction

e recover(trid) - return the status of the transaction.
The returned state can be used to rollforward or abort
the transaction.

The transaction context is available to the application in
the form of an object of the Transaction class. It has a local
cache that caches objects that have been read or are to be
written to their data store of origin. The cache maps the
key and data store to the corresponding data record.

In addition to this, the transaction context must have a
location to host the TSR. The TSR is a record is that is
identified by the transaction identifier (UUID), is written
to a data store that is called the Coordinating Data Store
(CDS) and must be globally readable. It must be noted that
the choice of the CDS is determined by the application and
is suitable as long as the global read visibility constraints
are fulfilled.



600 - ———— 90% read 10% write
-g 500 - — —B — 80% read 20% write
g 400 ~==&===70% read 30% write
9 4
g 300 -
2 200 -
.2
=]
§ 100
§ 0
* 1 2 4 8 16 32 64 128
Figure 2: YCSB+T on a EC2 host against WAS

A transaction context is created in the application by
specifying the CDS to host TSRs. In addition, the record
cache, a hash table that maps the data store and key to
a record is created. Once this context is successfully cre-
ate it can be used to perform multi-record read and write
transactions.

Start transaction: The transaction is started by creating
a unique transaction identifier using a UUID generator and
setting the transaction start time (Tstart) to the current.
Transactional read: The record is read from the data
store using the supplied key. The data store populates the
record header and contents that can be used by the trans-
action code. The record state is checked to see if the trans-
action has been committed i.e. if it is in the COMMITTED
state. If it is in the COMMITTED state, the Tyaiid_time
record header is compared with the current transaction start
time, Tstqrt. If the version of the record read is created after
the start of the current transaction, the previous version is
inspected for validity. If the record is in the PREPARED
state, the transaction URI is used to inspect the state of
the TSR. If the TSR exists, the record version is considered
committed. If the transaction lease time has expired, the
record is rolled forward and marked COMMITTED.

Once a valid version of the record is read from the data
store, it is put into the transaction record cache and then
returned to the caller.

Transactional write: Transactional writes are simple.
The record associated to the key is written to the cache. If
an earlier version exists it is marked as the previous version.
The record is written to the data store at transaction commit
time.

Transaction commit:
formed in two phases.
Prepare: The record cache is inspected and all dirty ob-
jects are inserted the write-set. The records are marked with
the transaction status record URI, the transaction commit
time, the transaction state to PREPARED then condition-
ally written to their respective data stores in the order of
the hash values of the record keys. This is done by using
the data store prepare() method. This method performs a
conditional write using the record version tag (ETag). The
prepare phase succeeds if all dirty records are successfully
prepared.

Deadlock detection and avoidance: Concurrent con-
flicting transactions prepare the records in the same order
as they use the hash values of the record keys. Only one
of the transactions will succeed in performing a conditional
write operation to the data store. The other transaction
aborts after rolling back its prepared records.

Commit: The TSR is written to the coordinating data

The transaction commit is per-

1438

store to indicate that all the records have been success-
fully prepared. The records are then committed by call-
ing the data store commit() method in parallel. The record
commit method marks the record with the COMMITTED
state. Once the records are committed the transaction sta-
tus record is deleted asynchronously from the coordinating
data store.

Transaction abort: If the transaction commit operation
has not been initiated the abort operation is trivial. The
record cache is cleared and the transaction is marked as
aborted.

If the transaction is partially committed the transaction is
aborted if the TSR has not been written to the transac-
tion coordinating data store. In this case, the abort is per-
formed by undoing the record prepare operation by writing
the previous version of the record to the data store. Once
the transaction status record has been written to the coor-
dinating data store the transaction cannot be aborted.
Transaction recover: Transaction recovery is performed
lazily in case of application failure. The transaction state
is inspected in the record header to see if the record is in
the PREPARED or COMMITTED state. If the record is in
the COMMITTED state the recovery is unnecessary. If the
record is in the PREPARED state, the record is rolled for-
ward and committed if the transaction status record (TSR)
exists and rolled back otherwise. The rollforward is per-
formed by marking the record with the COMMITTED state.
A rollback is performed by overwriting the record with its
previous versions.

There are a number measures we have used in order to
improve the performance of the library and reduce TCP/IP
connection overheads we use a connection pool for each data
store endpoint. In addition, we use a thread pool to imple-
ment parallel asynchronous writes and asynchronous deletes.
The current version does not perform one-phase commit op-
timization for transactions with only one object in the write-
set. We are exploring ways to further improve the perfor-
mance.

5. EVALUATION

We have done preliminary evaluations with YCSB+T run-
ning on Amazon Elastic Compute Cloud (EC2) hosts using
Windows Azure Storage (WAS) and Google Cloud Storage
(GCS). Performance measurements were taken while vary-
ing the ratio of reads to writes from 90:10, 80:20, to 70:30
using 1, 2, 4, 8, 16, 32, 64, and 128 client threads with 10000
records accessed in a Zipfian distribution pattern from a sin-
gle host. The graph in Figure 2 describes the results of the
tests performed with the client running on a cl-xlarge EC2
host against one WAS data store container.

The number of transactions scales linearly up to 16 client
threads (this gives approximately 491 transactions per sec-
ond with a 90:10 mix of read and write transactions re-
spectively using a single WAS data store container). With
32 threads, the number of transactions remains roughly the
same as with 16 threads. This appears to be caused by a
bottleneck in the network or the data store container itself
and needs to be further studied.

Subsequently, increasing the number of client threads to
64 and 128 with the same transaction mix reduces the net
transaction throughput. Our investigations indicate that
this may be a result of thread contention. Increasing the
ratio of writes reduces the throughput but does not change



the performance characteristics. We ran YCSB+T instances
on multiple EC2 hosts but the net transaction throughput
across all parallel instances was similar to the throughput
from the same number of threads on a single host. This
supports our argument that we are hitting a request rate
limit. The initial results look encouraging and we intend to
publish our findings once we have completed our evaluations
against a different data store where we have more control
over the server side performance characteristics.

6. CONCLUSIONS AND FUTURE WORK

This paper describes a reliable and efficient multi-item
transactional data store access protocol. We have described
an implementation that enables ubiquitous client applica-
tions to access large-scale distributed key-value data store in
a transactional manner. The initial evaluations and analy-
sis indicates that this approach is suited for high transaction
rates by applications deployed across vastly diverse network
latencies.

We describe an extension of the YCSB cloud services
benchmark with transaction support, we call YCSB+T. It
is suitable for evaluation of transaction access to distributed
key-value stores by enabling operations on the data store to
be grouped into transactions.

Further, we have given a description of an implementation
of our client library in Java with data store abstraction plu-
gins for Windows Azure Storage (WAS) and Google Cloud
Storage (GCS) and have written applications to evaluate it.

The system described here relies on the local system clock
to obtain transaction timestamps. However, it can be made
to work with the Spanner TrueTime API [8] after a few
modifications. We are currently exploring ways to determine
degree of the uncertainty in the local clock on the client using
the information available from the data exchanged with the
NoSQL data stores participating in a transaction so that it
can be used with techniques like the TrueTime API.

We are continuing to evaluate our library using YCSB+T
on EC2 with data stored in WAS and GCS. Initial results
are promising and we will publish the results once we have
a more information in future publications. The evaluations
conducted so far have focused on YCSB+T instances run-
ning in a single cluster. Next, we will evaluate our system
in a more heterogeneous setup that spans multiple regions
and differing network latencies, bandwidth, and reliability
chatacteristics.

We are currently in the process of implementing a dis-
tributed key-value store with the extended API that will
enable the client coordinated transaction protocol to work
more efficiently and yet continue to support traditional ap-
plication use cases. We will describe the system in more
detail and share our experiences in future publications.

7. REFERENCES
[1] J. Baker, C. Bondg, et al. Megastore: Providing
Scalable, Highly Available Storage for Interactive
Services. In CIDR, pages 223-234, Jan. 2011.
[2] H. Berenson, P. Bernstein, et al. A critique of ANSI
SQL isolation levels. In SIGMOD ’95, pages 1-10,
1995.

1439

3]

[4]

[5]

(10]

(1]

(12]

(13]

(14]

(15]

(18]

(19]

20]

(21]

(22]

M. Brantner, D. Florescu, et al. Building a database
on S3. In SIGMOD ’08, pages 251-264, 2008.

B. Calder et al. Windows Azure Storage: a highly
available cloud storage service with strong
consistency. In SOSP’11, pages 143-157, 2011.

F. Chang, J. Dean, S. Ghemawat, et al. Bigtable: A
Distributed Storage System for Structured Data.
ACM Trans. Comput. Syst., 26(2):1-26, June 2008.
B. F. Cooper, R. Ramakrishnan, et al. PNUTS:
Yahoo!’s hosted data serving platform. Proc. VLDB
Endow., 1:1277-1288, August 2008.

B. F. Cooper, A. Silberstein, et al. Benchmarking
cloud serving systems with YCSB. In SoCC' ’10, pages
143-154, 2010.

J. C. Corbett, J. Dean, et al. Spanner: Google’s
globally-distributed database. In OSDI ’12, pages
251-264, 2012.

J. Cowling and B. Liskov. Granola: low-overhead
distributed transaction coordination. In USENIX
ATC’12, pages 21-21, 2012.

S. Das, D. Agrawal, et al. G-Store: a scalable data
store for transactional multi key access in the cloud.
In SoCC ’10, pages 163-174, 2010.

G. DeCandia, D. Hastorun, et al. Dynamo: amazon’s
highly available key-value store. In SOSP ’07, pages
205-220, 2007.

R. Escriva, B. Wong, et al. Warp: Multi-Key
Transactions for Key-Value Stores. Technical report,
United Networks, LLC, 05 2013.

J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Mogan Kaufmann
Publishing Inc., 1992.

F. Junqueira, B. Reed, et al. Lock-free transactional
support for large-scale storage systems. In IEEE/IFIP
DSN-W ’11, pages 176 —181, June 2011.

A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44:35-40, April 2010.

J. J. Levandoski, D. B. Lomet, et al. Deuteronomy:
Transaction support for cloud data. In CIDR 11,
2011.

W. Lloyd, M. J. Freedmand, et al. Don’t settle for
Eventual: Scalable Causal Consistency for Wide-Area
Storage with COPS. In SOSP ’11, Oct. 2011.

D. B. Lomet, A. Fekete, et al. Unbundling transaction
services in the cloud. In CIDR ’09, 2009.

D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and
notifications. In OSDI’10, pages 1-15, 2010.

J. Rao, E. J. Shekita, et al. Using paxos to build a
scalable, consistent, and highly available datastore.
Proc. VLDB Endow., 4:243-254, January 2011.

W. Vogels. Eventually consistent. Queue, 6:14-19,
October 2008.

W. Zhou, G. Pierre, et al. CloudTPS: Scalable
Transactions for Web Applications in the Cloud. IEEE
Transactions on Services Computing, 2011.



