
A Data­adaptive and Dynamic Segmentation Index for
Whole Matching on Time Series ∗

Yang Wang† Peng Wang† Jian Pei‡ Wei Wang† Sheng Huang§

† School of Computer Science, Fudan University, Shanghai, China
‡ School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

§ Information Management Team, IBM Research China, Shanghai, China

† {081024004, pengwang5, weiwang1}@fudan.edu.cn
‡ jpei@cs.sfu.ca § huangssh@cn.ibm.com

ABSTRACT

Similarity search on time series is an essential operation in many
applications. In the state-of-the-art methods, such as the R-tree
based methods, SAX and iSAX, time series are by default divided
into equi-length segments globally, that is, all time series are seg-
mented in the same way. Those methods then focus on how to
approximate or symbolize the segments and construct indexes. In
this paper, we make an important observation: global segmentation
of all time series may incur unnecessary cost in space and time for
indexing time series. We develop DSTree, a data adaptive and dy-
namic segmentation index on time series. In addition to savings in
space and time, our new index can provide tight upper and lower
bounds on distances between time series. An extensive empirical
study shows that our new index DSTree supports time series simi-
larity search effectively and efficiently.

1. INTRODUCTION
Similarity search on time series is essential in many applica-

tions [10]. Given a set T S of time series, a query time series Q,
and a distance threshold ǫ, a similarity search retrieves the time se-
ries S ∈ T S such that D(Q,S) ≤ ǫ, where D(·, ·) is a distance
function. When the Euclidean distance is used and the time series
in question are assumed of the same length, the problem is called
whole matching [1], which has been popularly used in various ap-
plications. The problem is challenging in practice, since often the
set of time series T S to be searched may contain many time series
and each time series may be long. To tackle the whole matching

∗We sincerely thank Dr. Themis Palpanas for sending us the
iSAX 2.0 code. We are deeply grateful to the anonymous re-
viewers for their insightful and constructive comments and sug-
gestions that help to improve the quality of this paper. We tried
our best to accommodate their suggestions in this camera-ready
version. The work is supported in part by NSFC under grants
61103009, 61170006, 61033010, IBM-Fudan Joint Study pro-
gram JSA201212006, an NSERC Discovery Grant and a BCFRST
NRAS Endowment Research Team Program project. All opinions,
findings, conclusions and recommendations in this paper are those
of the author and do not necessarily reflect the views of the funding
agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th ­ 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 10

Copyright 2013 VLDB Endowment 2150­8097/13/10... $ 10.00.

S2 S3 S4S1

Figure 1: Dynamic segmentation of time series.

problem, many index structures have been proposed [1, 4, 5, 2, 16,
3], which will be briefly reviewed in Section 6, all those indexes
are based on two fundamental principles.

Principle 1: Dimensionality Reduction by
Global Segmentation

A time series can be regarded as a point in a multidimensional
space, one dimension representing a time instant. A fundamental
challenge, however, is that the length of time series is often long. A
time series often contains readings at hundreds or even thousands
of instants. It is highly ineffective to directly index time series us-
ing spatial indexes, such as an R-tree [7].

To tackle this problem, many existing methods apply dimen-
sionality reduction techniques, such as Singular Value Decom-
position (SVD) [8], Discrete Fourier Transform (DFT) [1], Dis-
crete Wavelet Transform (DWT) [4], Piecewise Linear Approxima-
tion (PLA) [14], Piecewise Aggregate Approximation (PAA) [21],
Adaptive Piecewise Constant Approximation (APCA) [21] and
Chebyshev Polynomials (CP) [2]. After dimensionality reduction,
a multidimensional index, such as R-tree [7], can be used as an
index in the lower dimensional space.

Accordingly, in the state-of-the-art time series indexing methods,
such as the R-tree based methods, SAX [15], and iSAX [16], all
time series to be indexed are segmented in the same way. Thus,
they are global segmentation approaches. Those methods focus on
how to approximate or symbolize segments and construct indexes.
The segmentation of time series is not closely integrated with index
building. Does such a global segmentation method provide the best
benefit to time series indexing?

EXAMPLE 1 (SEGMENTATION). Consider the 4 time series
in Figure 1. Each time series has 8 time instants. To reduce the
dimensionality, we can segment each time series into 4 segments,
each segment consisting of 2 instants.

If we notice that time series S1 and S2 have (relatively) stable
values on the first 4 instants, we can segment S1 and S2 into 3
segments: the first segments consist of the first 4 instants, the sec-
ond segments consist of the 5th and the 6th instants, and the last
segments consist of the 7th and the 8th instants, as indicated by the
dotted lines in the figure. To the contrast, time series S3 and S4
have (relatively) stable values both on the first 4 instants and on the
last 4 ones. Accordingly, we can segment them such that the first

793

segments cover the first 4 instants and the second segments cover
the last 4 instants.

By dynamic segmentations adaptive to data, we can reduce di-
mensionality further, in this example, from 4 to 3 for S1 and S2,
and to 2 for S3 and S4,. At the same time, we can retain good
approximation quality.

Example 1, though simple, clearly shows that local segmentation
enables substantial opportunities for more effective indexes. If we
can segment time series in an adaptive way, we may be able to
achieve better dimensionality reduction and thus save more space
and query answering time.

Now, the challenge is how we can dynamically segment time se-
ries in a data adaptive manner, and retain good quality.

Principle 2: Using Lower Bounds in Search

Dimensionality reduction almost unavoidably comes with errors in
data representation. An essential requirement in similarity search,
however, is “no false dismissals”. The lower bounding property
(also known as the contractive property) is an important desirable
property for the dimensionality reduction representation methods
of time series. A dimensionality reduction method is said to hold
the lower bounding property if the method comes with a distance

lower bound function DLB(S̃1, S̃2) ≤ D(S1, S2) for any time

series S1 and S2, where S̃1 and S̃2 are the approximation represen-
tations of S1 and S2, respectively, in the method. A method with
the lower bounding property guarantees no false negative in search.
That is, when a time series S is pruned using the lower bound func-

tion DLB(Q̃, S̃) > ǫ, since D(Q,S) ≥ DLB(S̃1, S̃2) > ǫ, S is
definitely not an answer to the similarity search.

While lower bounding is well explored in literature, to the best of
our knowledge, no existing methods consider using upper bounds
in similarity search systematically. If a method comes with a dis-

tance upper bound function DUB(S̃1, S̃2) ≥ D(S1, S2) for any

time series S1 and S2, where S̃1 and S̃2 are the approximation rep-
resentations of S1 and S2, respectively, in the method, then once

DUB(Q̃, S̃) < ǫ, we can immediately know S is an answer to the
similarity search without computing the exact distance D(Q,S).
Although some previous methods propose upper bound for time se-
ries similarity computation [17], they only consider how to define
and compute the upper bound of the distance between two time se-
ries. How to utilize the upper bound in the index for a large number
of time series is far from trivial and has not been solved.

Moreover, upper bounding can be used to answer interesting
queries beyond similarity search. For example, consider query
“what is the distribution of the distance between Q and the time se-
ries in the database?” With both lower bounding and upper bound-
ing, we may be able to give a bounded histogram quickly as the
answer to the question based on the index only without accessing
the original data. An application example of the histogram obtained
as such is to help to set a meaningful threshold in similarity search.

Now, the challenge is how to develop an effective upper bound-
ing mechanism in indexes for efficient similarity search.

In this paper, we study the whole matching problem [1] where
Euclidean distance is used and time series have the same length. It
is a fundamental time series processing problem tackled by numer-
ous previous studies [1, 4, 5, 2, 16, 3]. Please note that our work
can be easily extended to subsequence matching [6] where query
time series are allowed to have different lengths.

We explore data-adaptive dynamic segmentation and upper
bounding in time series indexes. We propose a new representa-
tion of time series that is an extension of the renowned Adaptive
Piecewise Constant Approximation (APCA). It not only offers bet-
ter representation accuracy, but also supports upper bound estima-
tion, which enriches the functionality of index greatly.

Symbol Meaning

S, S′ time series
|S| the length of time series S
D(S, S′) the (Euclidean) distance between time series S and S′

DLB(N,Q),
DUB(N,Q)

the lower and upper bound of distance between time
series Q and time series in node N

S =
(S1, . . . , Sm)

a time series is divided into m segments

rj the right end time instant of segment j

µS
j the mean of segment j in time series S

σS
j the standard deviation of segment j in time series S

SG a segmentation of a time series
C the number of time series indexed in the subtree

rooted at a node
Z the synopsis at a node
ψ Leaf capacity of DSTree
N a node in a DSTree
T SN the time series assigned to node N

LB
µ
i , LBσ

i ,

UB
µ
i , UBσ

i

the lower and upper bounds using mean or standard
deviation, see Equations 11, 12, 13, and 14 for detail

H-splitM H-split using mean value

H-splitSD H-split using standard deviation

V-splitL V-split using the left subsegment

V-splitR V-split using the right subsegment

Table 1: Some frequently used symbols.

We develop DSTree, a data adaptive and dynamic segmentation
index on time series. In addition to savings in space and time, our
new index can provide tight upper and lower bounds on distances
between time series. An extensive empirical study shows that our
new index DSTree supports time series similarity search effectively
and efficiently.

The rest of the paper is organized as follows. Section 2 intro-
duces the new representation of time series. Section 3 develops the
new index and the construction method. Section 4 applies the new
index in similarity search. Section 5 reports the experiment results.
Section 6 reviews the related work. Section 7 concludes the paper.
Table 1 summarizes the symbols frequently used in this paper.

2. EXTENDING APCA REPRESENTATION
In this section, we extend the well-known Adaptive Piecewise

Constant Approximation (APCA) of time series data. Our exten-
sion, called EAPCA, will be used to represent time series in our
index. We also derive upper and lower bounds of distances among
time series using the extended approximation.

2.1 APCA
A time series S = (s1, . . . , sn) is a sequence of values. Without

loss of generality, in this paper we assume that every time series has
a value at every time instant t = 1, 2, . . . , n. We denote by |S| = n
the length of the time series S, and by S[i] = si (1 ≤ i ≤ |S|) the
value of S at time instant t = i.

Given two time series S and S′ such that |S| = |S′|,
the (Euclidean) distance between S and S′ is D(S, S′) =
√

∑|S|
i=1(S[i] − S′[i])2. The Euclidean distance is popularly used

in time series analysis. Moreover, there are strong evidences show-
ing that the Euclidean distance is superior in accuracy comparing
to other similarity measures [13, 18, 20]. In the rest of the paper,
we assume the Euclidean distance, and, when the distance between
two time series is concerned, the time series have the same length.

In many applications, it is highly desirable to estimate the dis-
tance between two time series quickly. There are existing methods
providing lower bounds by segmenting time series. Here, we re-
view a popularly used method, APCA.

794

APCA divides a time series S = (s1, . . . , sn) into several dis-
joint segments, S = (S1, . . . , Sm), (m ≤ n), where Sj =
(srj−1+1, . . . , srj

) (1 ≤ j ≤ m, r0 = 0, 1 ≤ r1 < · · · < rm =
n). APCA approximates each segment Sj by a pair (µj , rj), where

µj =

∑
rj

k=rj−1+1
sk

rj−rj−1
is the mean value of the segment. That is, S

can be approximated as S̃ = ((µ1, r1), . . . , (µm, rm)).

For two time series X and Y such that |X| = |Y |, let X̃ =

((µX
1 , r1), . . . , (µ

X
m, rm)) and Ỹ = ((µY

1 , r1), . . . , (µ
Y
m, rm)) be

the APCA representations of X and Y , respectively. The segmen-

tations of the two time series are said to be aligned in X̃ and Ỹ ,

sinceX̃ and Ỹ use the same r1, . . . , rm and r0 = 0.
Using the mean values, APCA can give a lower bound of the dis-

tance between two time series. Apparently, we have the following.

LEMMA 1 (APCA LOWER BOUND). Given two time series

X and Y such that |X| = |Y |, let X̃ = ((µX
1 , r1), . . . , (µ

X
m, rm))

and Ỹ = ((µY
1 , r1), . . . , (µ

Y
m, rm)) be two aligned APCA repre-

sentations of X and Y , respectively. Then,

D(X, Y) ≥

√

√

√

√

m
∑

i=1

(ri − ri−1)(µX
i − µY

i)2 (1)

Equipped with only mean values, APCA cannot provide any up-
per bound on distance between time series. Next, we show that
combining standard deviations we can derive an upper bound and a
tighter lower bound on distances.

2.2 EAPCA and Upper/Lower Bounds Using
Standard Deviations

We can extend APCA by including the standard deviation for ev-
ery segment. Concretely, for a time series S = (s1, . . . , sn) and an

APCA representation S̃ = ((µ1, r1), . . . , (µm, rm)), we extend
the approximation to the extended APCA representation (EAPCA

for short), denote by S̃ = ((µ1, σ1, r1), . . . , (µm, σm, rm)),

where σi =

√

∑ri

j=ri−1+1 s
2
j

ri − ri−1
−

(

∑ri

j=ri−1+1 sj

ri − ri−1

)2
is the stan-

dard deviation of the i-th segment (1 ≤ i ≤ m).
We have the following results.

THEOREM 1 (BOUNDS). Given two time series X and Y
such that |X| = |Y |, let X̃ = ((µX

1 , σ
X
1 , r1), . . . , (µ

X
m, σ

X
m , rm))

and Ỹ = ((µY
1 , σ

Y
1 , r1), . . . , (µ

Y
m, σ

Y
m, rm)) be two aligned

EAPCA representations of X and Y , respectively. Then,

D(X,Y) ≥

√

√

√

√

m
∑

i=1

(ri − ri−1)[(µX
i − µY

i)2 + (σX
i − σY

i)2]

(2)
and

D(X,Y) ≤

√

√

√

√

m
∑

i=1

(ri − ri−1)[(µX
i − µY

i)2 + (σX
i + σY

i)2]

(3)
The lower and upper bounds in Equations 2 and 3 are realizable.

PROOF.

D(X,Y)2 =
m

∑

i=1

ri
∑

j=ri−1+1

(xj − yj)
2

=
m

∑

i=1

(ri − ri−1)µ
(X−Y)2

i

=
m

∑

i=1

(ri − ri−1)[(µ
X
i − µY

i)2 + (σX−Y
i)2]

(4)

where µ
(X−Y)2

i =

∑ri
j=ri−1+1

(xj−yj)2

ri−ri−1
and σX−Y

i =
√

∑ri
j=ri−1+1

(xj−yj)2

ri−ri−1
−

(

∑ri
j=ri−1+1

(xj−yj)

ri−ri−1

)2
. Due to the def-

inition of standard deviation, we have

(σX−Y
i)2 = (σX

i)2 + (σY
i)2 − 2Cov(Xi, Yi)

= (σX
i)2 + (σY

i)2 − 2ρ(Xi, Yi)σ
X
i σ

Y
i (5)

where

Cov(Xi, Yi) =

∑ri

j=ri−1+1(xj − µX
i)(yj − µY

i)

ri − ri−1
(6)

is the covariance between Xi and Yi, and

ρ(Xi, Yi) =

∑ri

j=ri−1+1(xj − µX
i)(yj − µY

i)
√

∑ri

j=ri−1+1(xj − µX
i)

√

∑ri

j=ri−1+1(yj − µY
i)

(7)
is the correlation coefficient between segments Xi and Yi. Since
−1 ≤ ρ(Xi, Yi) ≤ 1, we have

(σX
i − σY

i)2 ≤ (σX−Y
i)2 ≤ (σX

i + σY
i)2 (8)

Combining Equations 8 and 4, we have Equations 2 and 3.

Comparing Equations 1 and 2, the lower bound given by EAPCA
uses the standard deviations to achieve a tighter bound. The bounds
are realizable.

2.3 Bounding Distances to a Set of Time Series
Often, we need to estimate the distance between a time series

and a set of time series. We can infer the lower and upper bounds
of the distance based on Equations 2 and 3.

For a time series X and a set of time series Y1, . . . , Yl (|X| =

|Y1| = · · · = |Yl|), let X̃ = ((µX
1 , σ

X
1 , r1), . . . , (µ

X
m, σ

X
m , rm)),

Ỹ1 = ((µY1

1 , σY1

1 , r1), . . . , (µ
Y1
m , σY1

m , rm)), . . . , Ỹl =

((µYl
1 , σ

Yl
1 , r1), . . . , (µ

Yl
m , σ

Yl
m , rm)) be aligned EACPA represen-

tations, respectively. Let the minimal and maximal mean val-

ues in the i-th segments of Y1, . . . , Yl, respectively, be µmin
i =

min
1≤j≤l

{µ
Yj

i } and µmax
i = max

1≤j≤l
{µ

Yj

i }. Moreover, let the min-

imal and maximal standard deviation values in the i-th segments

of Y1, . . . , Yl, respectively, be σmin
i = min

1≤j≤l
{σ

Yj

i } and σmax
i =

max
1≤j≤l

{σ
Yj

i }. We have the following result.

THEOREM 2 (BOUNDS ON SET). For aligned EAPCA repre-

sentations X̃ of a time series X and Ỹ1, . . . , Ỹl of a set of time
series Y1, . . . , Yl,

min
1≤j≤l

{D(X, Yj)} ≥

√

√

√

√

m
∑

i=1

(ri − ri−1)(LB
µ
i + LBσ

i) (9)

795

and

max
1≤j≤l

{D(X, Yj)} ≤

√

√

√

√

m
∑

i=1

(ri − ri−1)(UB
µ
i + UBσ

i) (10)

where

LBµ
i =







(µmin
i − µX

i)2 if µX
i ≤ µmin

i ;

0 if µmin
i < µX

i ≤ µmax
i .

(µmax
i − µX

i)2 if µmax
i < µX

i ;

(11)

LBσ
i =







(σmin
i − σX

i)2 if σX
i ≤ σmin

i ;

0 if σmin
i < σX

i ≤ σmax
i .

(σmax
i − σX

i)2 if σmax
i < σX

i ;

(12)

and,

UBµ
i =

{

(µmax
i − µX

i)2 if µX
i ≤

µmin
i +µmax

i

2
;

(µmin
i − µX

i)2 if
µmin

i +µmax
i

2
< µX

i ;
(13)

UBσ
i = (σmax

i + σX
i)2 (14)

PROOF. (Lower boud) From Equation 2, it is easy to see that for

the i-th segment, the component (µX
i −µY

i)2+(σX
i −σY

i)2 can be

decomposed into two items: (µX
i − µY

i)2, which is only related to

the mean value, and (σX
i − σY

i)2, which is related to the standard
deviation. Since both of them are non-negative, We can obtain a
lower bound from the lower bounds of these two items.

We compare µX
i and the range of mean values of Yj’s,

[µmin
i , µmax

i], and have 3 cases as follows. Case 1: If µX
i is smaller

than the minimal mean value µmin
i of Yj’s, it is obvious that for

any Yj , (µX
i − µ

Yj

i)2 ≥ (µX
i − µmin

i)2. Thus, (µX
i − µmin

i)2 ≤

(µX
i −µY

i)2. We denote by LBµ
i = (µX

i −µmin
i)2. Case 2: If µX

i

falls within the range, (µX
i −µY

i)2 = 0. We set LBµ
i = 0. Case 3:

If µX
i > µmax

i , then for any Yj , (µX
i − µ

Yj

i)2 ≥ (µX
i − µmax

i)2.

We set LBµ
i = (µX

i − µmax
i)2.

We can derive a lower bound LBσ
i similarly. Combining these

items, we can obtain the lower bound in the theorem.
The upper bound can be proved in a similar way.

Theorem 2 indicates that, for a set of time series {Y1, . . . , Yl}, to
compute the lower and upper bounds between the set and any other
time series, we need to maintain only the minimum and maximum
mean values and standard deviation of each segment for all Yj’s:

µmin
i , µmax

i , σmin
i and σmax

i (1 ≤ i ≤ m).

3. THE DSTREE INDEX
In this section, we develop our new dynamic splitting tree index

(DSTree for short) on time series.

3.1 DSTree
One critical feature in our new DSTree is the segmentation infor-

mation. In general, for a time series S = (s1, . . . , sn), a segmenta-
tion of S divides S into m exclusive segments S = (S1, . . . , Sm),
where S1 = (s1, . . . , sr1

) and Si = (sri−1+1, . . . , sri
) (i >

1, rm = n). Apparently, to record a segmentation, we only need
to record m, the number of segments, and (r1, . . . , rm), the right-
endpoints of the segments, where 1 ≤ r1 < · · · < rm = n.

Given a time series S, let SG1 = (r1, . . . , rm) and SG2 =
(r′1, . . . , r

′
m′) be two segmentations. SG2 is called a one-segment

refinement of SG1, denoted by SG1 ≺1 SG2, if m′ = m + 1
and there exists a number i0 (1 ≤ i0 < m) such that, for all
1 ≤ i ≤ i0, ri = r′i; and for i > i0, ri = r′i+1.

Figure 2: DSTree

EXAMPLE 2. Consider a time series S such that |S| = 10, and
two segmentations SG1 = (3, 8, 10) and SG2 = (3, 5, 8, 10).
SG1 divides S into 3 segments, (1, 3), (4, 8), (9, 10). SG2 di-
vides S into 4 segments, (1, 3), (4, 5), (6, 8), (9, 10). SG2 is a
one-segment refinement of SG1 since it further divides the second
segment in SG1 into two smaller segments.

We call a segmentation SG2 a refinement of segmentation SG1,
denoted by SG1 ≺ SG2, if there exist a series of segmentations
SG′

1, . . . , SG
′
l (l ≥ 2) such that SG1 = SG′

1, SG2 = SG′
l, and

SG′
i ≺

1 SG′
i+1 for (1 ≤ i < l).

As illustrated in Figure 2, a DSTree organizes time series to be
indexed into a hierarchy. There are two types of nodes: internal
nodes and leaf nodes. Each node contains the following informa-
tion.

1. The number C of time series indexed in the subtree rooted at
this node.

2. The segmentation SG = (r1, . . . , rm) of the time series in-
dexed at this node, where 1 ≤ r1 < · · · < rm = n, and ri

(1 ≤ i ≤ m) is the right-endpoint of the i-th segment.

3. A synopsis Z = (z1, z2, · · · , zm), where zi =
(µmin

i , µmax
i , σmin

i , σmax
i). The synopsis is used to com-

pute the upper and lower bounds.

4. A leaf node links to a disk file that stores up to ψ time se-
ries represented by the synopsis of this leaf node, where ψ is
the leaf capacity of the DSTree. An internal node has two
pointers pointing to children nodes.

5. An internal node stores a splitting strategy SP , which will
be discussed in detail in Section 3.3.

In Figure 2, a circle represents an internal node, and a rectangle
represents a leaf node, where up to ψ = 2 time series are stored.
In the figure, the segmentation and the number of segments m are
shown for each node, too.

In a DSTree, for an internal node N and its segmentation SGN ,
the segmentation SGN′ in any descendant node N ′ of N is either
the same as SGN or a refinement of SGN . Consequently, differ-
ent nodes in a DSTree may have different segmentations. Different
segmentations may divide time series into different numbers of seg-
ments, such as the segmentations in nodes N4 and N5 in Figure 2.
Even if two segmentations have the same number of segments, they
still can be different. For example, in Figure 2, the segmentations
in nodes N4 and N7 both have 3 segments, but the segmentations
are still different.

796

Algorithm 1 N.Insert(X): N is a node, X is a time series

1: update Z in node N according to X;
2: if N is a leaf node then
3: if C < ψ then ⊲ N has space to hold X
4: Append X to data file pointed by N , C = C + 1;
5: else ⊲ C == ψ, no space in N to hold X
6: Append X to data file pointed by N , C = C + 1;
7: SP = BestSplit();
8: Create two children nodes for N ;
9: for each time series Y in N do

10: N ′ = N.routeToChild(Y, SP); N ′.insert(Y);
11: end for
12: end if
13: else
14: N ′ = N.routeToChild(X, SP); N ′.insert(X);
15: end if

3.2 DSTree Construction
Given a set T S of time series, each of length n, a DSTree is

constructed in two steps as follows.
Step 1: Initialization. We initialize a DSTree that contains only

the root node NR. The segmentation SG = (n), that is, each time
series is regarded as containing only one segment.

Step 2: Insertion. We insert the time series in T S one by one
into the DSTree. The insertion step is to assign every time seriesX
to a leaf node. Ideally, similar time series are allocated to the same
leaf node or a subtree, so that they can be deliberated in similarity
search using the same segmentations. For the interest of computa-
tional efficiency, we heuristically follow a path from the root node
to assign a time series X to a leaf node.

Specifically, for each time series X ∈ T S, we first visit the root
node NR. In the case that NR is a leaf node, we assign X to NR

if NR has space; otherwise, we split NR according to the splitting
strategy SP of NR, which will be discussed later in Section 3.3. If
NR is an internal node, we select the child node of NR that X fits
better, and recursively search until a leaf node is met. The pseudo-
code of function Insert is shown in Algorithm 1.

A critical step of this algorithm is the function BestSplit(),
which selects the best splitting strategy whenever a node is split.
We provide multiple types of splitting strategies. Whenever split-
ting a node, we call BestSplit() to find the best one, denoted as
SP . Function routeToChild() uses SP to determine which child
node one time series belongs to. These two functions will be dis-
cussed in the next section.

3.3 Node Splitting Strategies
At an internal node whose subtree indexes a subset of time se-

ries, there are multiple possible ways to partition the time series
into smaller subsets and assign them to children nodes. We need to
define a good measurement to assess the benefit of different strate-
gies, and find a good splitting strategy. In this subsection, we first
demonstrate the ideas behind various splitting strategies, and then
present those strategies and a quality measure.

3.3.1 Ideas
We can split a set of time series in two ways: horizontal splitting

(H-split for short) and vertical splitting (V-split for short).
In an H-split, the segmentation remains unchanged, but the set of

time series are split into two disjoint sets. To split, the time series
are assigned to different subsets according to a selected segment.
Either mean or standard deviation of the selected segment can be
used to make the assignments. Two examples are shown in Fig-
ure 3, in which only the i-th segment is shown. Figure 3(b) shows
an example where the time series cannot be divided well into two

(a) Splitting using mean (b) Splitting using standard deviation

Figure 3: Horizontal splitting

(a) Using H-split (b) Using V-split

Figure 4: Vertical splitting

subsets using the mean, but can be partitioned well using standard
deviation.

V-split leads to a one-segment refinement of the current segmen-
tation. We illustrate this process in Figure 4. The time series in Fig-
ure 4(a) cannot be split well using an H-split for the i-th segment,
since the 4 time series have similar mean and standard deviation
values. In a V-split, we first split the segment into two, and then
cluster time series according to the mean of the left subsegment, as
shown in Figure 4(b).

DSTree provides more possible ways to divide and conquer time
series, and thus has the potential to achieve more similar time series
in leaf nodes. All the state-of-the-art methods, such as the R-tree
based methods and iSAX, only support horizontal splitting, and
only the mean values can be used in splitting. No segmentation
refinement is allowed in those methods.

3.3.2 Splitting Strategies
A selection of splitting strategies happens only when a leaf node

has no space to accommodate a newly assigned time series, and
thus has to be split to host two children nodes. The global user-
specified parameter ψ defines the maximum number of time series
that can be indexed by a leaf node. Consider a leaf node N that
needs to hold a set T SN of ψ + 1 time series, where the segmen-
tation is SG. We need to split N into two nodes. Now we specify
the splitting strategies H-split and V-split as follows.

H­split. Suppose the i-th segment is selected to be used in split-
ting. We will discuss the choice of segment when we discuss the
quality measure in Section 3.3.3. In an H-splitM (for H-split us-
ing mean values), suppose the range of the mean values in the
i-th segment of T SN is [µmin

i , µmax
i], we split N and generate

two children nodes Nl and Nr with the same segmentation SG
in N . The range of mean values of the i-th segment in Nl is

[µmin
i ,

µmin
i +µmax

i

2
), and that in Nr is [

µmin
i +µmax

i

2
, µmax

i]. The
time series in N will be assigned to Nl and Nr according to their
mean values.

Similarly, in an H-splitSD (for H-split using standard deviation
values), suppose the range of the standard deviation value in the
i-th segment is [σmin

i , σmax
i], the range of standard deviation in

the i-th segment in Nl is [σmin
i ,

σmin
i +σmax

i

2
), and that in Nr is

797

[
σmin

i +σmax
i

2
, σmax

i].

V­split. Suppose the i-th segment is selected to be used in split-
ting. Again, we will discuss the choice of segment when we discuss
the quality measure in Section 3.3.3. We refine the segmentation
SG by splitting the i-th segment into two equal-length segments:

Si = [ri−1 + 1, ri−1 + ⌊
ri−ri−1

2
⌋] and S′

i = [⌊ri −
ri−ri−1

2
⌋ +

1, ri]. We use one of the two new subsegments and apply an H-split

to partition the time series. We denote by V-splitL and V-splitR,
respectively, the left and the right subsegment is chosen. Conse-
quently, two children nodes are created for nodeN . Clearly, V-split
contains an H-split step.

A splitting strategy can be written as a tuple SP =(sid, strategy,
measure), where sid ∈ [1, m] is the segment id that is selected in
the splitting, m is the number of segments in the current segmen-
tation SG, strategy ∈ {H-split, V-splitL, V-splitR} is the choice of
H- or V-split (and the subsegment in the case of V-split), and mea-
sure∈ {M,SD} records whether the mean values or the standard
deviation values are used in the H-split.

For example, in Figure 2, SP in node N2 is (2, V-splitL,M),
which means that the second segment is selected, a V-split is ap-
plied, the left subsegment and the mean values are used in the H-
split. SP of node N3 is (2, H-split, M), which means the second
segment is selected, an H-split is applied using the mean values.

3.3.3 Splitting Strategy Quality Measure
When a node is split, the time series assigned to the node are then

assigned to the two children nodes created in the splitting process.
As just discussed, several different strategies can be used to make
the assignment, including choosing H-split or V-split, the segment
used and the measurement (mean or standard deviation). We need a
quality measure to evaluate the benefit of various splitting strategies
in order to choose a good one.

A brute-force method to evaluate the quality of a splitting strat-
egy is that, for every possible strategy, we compute the similarity
among the time series assigned to each child node. This brute-force
method, however, is very costly. For each splitting strategy, the
time complexity is O(ψ2). If there are m segments, then the total

cost to find the best strategy is O(m× 2× 2× ψ2) = O(m · ψ2).
In this subsection, we tackle the cost by using the upper and

lower bounds of the time series in the children nodes to evaluate
the split quality.

Given a node N in a DSTree, let Q be a query time series. The
effectiveness of the upper and lower bounds in nodeN with respect
to Q can be measured by the bound range, which is the difference
between the upper bound and the lower bound of the distances be-
tween Q and the set of time series indexed in N , that is,

R(Q) =
m

∑

i=1

(ri−ri−1)((UB
µ
i +UBσ

i)−(LBµ
i +LBσ

i)), (15)

where UBµ
i , UBσ

i ,LBµ
i ,LBσ

i are defined in Equations 13, 14, 11,
and 12, respectively.

From Equation 15,we have R(Q) =

m
∑

i=1

(ri − ri−1)(R
µ
i +Rσ

i),

where Rµ
i = UBµ

i − LBµ
i and Rσ

i = UBσ
i − LBσ

i .

For Rµ
i , according to the relationship of µQ

i and [µmin
i , µmax

i],

Rµ
i =



















(µmax
i − µQ

i)2 − (µmin
i − µQ

i)2, if µQ
i ≤ µmin

i ;

(µmax
i − µQ

i)2, if µmin
i < µQ

i ≤
(µmin

i +µmax
i)

2
;

(µmin
i − µQ

i)2, if
(µmin

i +µmax
i)

2
< µQ

i ≤ µmax
i ;

(µmin
i − µQ

i)2 − (µmax
i − µQ

i)2, if µmax
i < µQ

i ;
(16)

In the second and third cases, the range has the same upper bound
(µmax

i − µmin
i)2. The more similar µmax

i and µmin
i are, the

smaller the range is. In the first and fourth cases, it also holds
that the more similar µmax

i and µmin
i are, the smaller the range is.

Thus, we can use (µmax
i − µmin

i)2 to evaluate the range related to
the mean value.

Similarly, for Rσ
i ,

Rσ
i =







(σmax
i + σQ

i)2 − (σmin
i − σQ

i)2, if σQ
i ≤ σmin

i ;

(σmax
i + σQ

i)2, if σmin
i < σQ

i ≤ σmax
i ;

(σmax
i + σQ

i)2 − (σmax
i − σQ

i)2, if σmax
i < σQ

i ;
(17)

By simple transformation, we can see that, in both the first and sec-
ond cases, the range is smaller than (2σmax

i)2. Moreover, in the

third case, the range equals to 4σmax
i σQ

i . In all cases, it holds that
the smaller σmax

i is, the smaller the range related to standard devi-
ation is. Thus, we can use (σmax

i)2 to evaluate the range related to
standard deviation.

We combine the above two components and define our measure-
ment of estimation quality as

Qos =

m
∑

i=1

(ri − rr−1)((µ
max
i − µmin

i)2 + (σmax
i)2) (18)

The measurement Qos does not depend on query time series. The
smaller Qos is, the more effective the bounds in a node are for
similarity estimation.

3.3.4 Finding Splitting Strategies
Denote by N the node to be split, and by QosN its Qos value.

We split N to two children nodes Nl and Nr , and denote theirQos
values by Qosl and Qosr, respectively. We define the splitting

benefit asB = QosN − Qosl+Qosr

2
. The largerB is, the better the

splitting strategy.
Now, we introduce function BestSplit. For each segment, we

compute B for all possible vertical and horizontal splitting strate-
gies, and select the one with the maximum B value as the best
strategy. After the index building, each internal node maintains its
own splitting strategy, SP . Given splitting strategy SP of node N
and a query time series Q, the function routeToChild can cor-
rectly find the appropriate child node. The process is similar to that
of reassigning time series when splitting occurs. We first transform
Q according to the segmentation of N . Then, we re-transform Q
according to the corresponding splitting strategy and check which
child node it belongs to, and assign Q to it.

3.4 Analysis of DSTree
In this section, we discuss some factors that are related to the

performance of the DSTree index.
Adaptive segmentation. In all previous approaches, one has to

specify the dimensionality of the time series representation, such
as the number of coefficients in DFT and DWT, and the number
of segments in iSAX and APCA. However, it is hard to determine
the optimal parameters. DSTree avoids this difficulty by automatic
segmentation splitting.

Data distribution. Ideally, the performance of an index is insen-
sitive to the distribution of time series to be indexed. Many existing
methods assume or target at some distributions in design. For ex-
ample, the R-tree based approaches assume that all time series can
be represented well using the same number of coefficients, which
may not hold in many applications. If some time series are domi-
nated by low-frequency data and the others are dominated by high-
frequency data, DFT-based index may have poor performance.

DSTree does not assume any data distribution since different
nodes have their own representations. For this reason, time series
with dramatically different characteristics can still be handled well
by DSTree using different nodes.

Balance of DSTree. iSAX and DSTree both may generate im-
balanced index trees. Our experimental results (Table 2) show that

798

DSTree is better than iSAX 2.0 in terms of balancing because of
the multiple splitting strategies.

Heuristically, we can improve the balance of DSTrees in two
ways. First, we can shuffle the data set and build the index several
(e.g., 3-5) times using different input orders of time series, and then
pick the best one as the final index. Second, we can adjust the tree
by a post-process where we move the extraordinarily deep subtrees
toward the root node. Limited by space, we omit the details here.

The major search cost in DSTree and also some other time series
indexes, such as iSAX, is to retrieve time series data from disk.
Searching internal nodes in the index is relatively quick. Therefore,
keeping similar time series in a leaf node can help to reduce the
number of I/O operations needed in a similarity search. This is
very different from lookup queries using B+-tree or similar indexes,
where the whole index is stored on disk.

Extension to subsequence matching. The subsequence match-
ing problem is to find matching subsequences between two time
series, which may have different lengths. The state-of-the-art ap-
proaches partition (long) time series into a set of equal-length sub-
sequences based on overlapped windows, and then build the index
for these subsequences for fast similarity search. The search results
are assembled to compute matching subsequences. Since the time
series after partitioning for similarity search are of the same length,
DSTree can be used to support subsequence matching directly.

4. QUERY ANSWERING ALGORITHMS
A DSTree supports two types of queries. The first one is the

traditional similarity search, which returns the time series nearest
to the query time series. The second type is to estimate the distance
distribution, which returns a histogram of distances between the
query time series and all indexed time series.

Algorithm 2 exactSearch(Q)

1: Input: A query time series Q
2: Output: The nearest time series TS with distance Dbsf

3: Nbsf = HeuristicSearch(Q);
4: (TS,Dbsf) = calcMinDist(Nbsf , Q);
5: Initialize distance priority queue pq;
6: pq.Add(NR,DLB(NR, Q));
7: while !pq.isEmpty() do
8: (Ncur, LBcur) = pq.PopMin();
9: if LBcur > Dbsf then

10: break;
11: end if
12: if Ncur is a leaf node then
13: (X,Dist) = calcMinDist(Ncur , Q);
14: if Dist < Dbsf then
15: Dbsf = Dist; TS = X;
16: end if
17: else
18: for all children nodes N ′ of Ncur do
19: if DLB(N ′, Q) < Dbsf then
20: pq.add(N ′,DLB(N ′, Q));
21: end if
22: end for
23: end if
24: end while
25: return TS,Dbsf ;

4.1 Similarity Search
Before introducing the exact similarity search, we first introduce

a heuristic search method, which is more efficient and will be used
in the exact search method later.

4.1.1 A Heuristic Method

Algorithm 3 Histogram(Q)

1: Input: A query time series Q
2: Output: A distance histogram Hist
3: Initialize a distance range count list L;
4: Initialize a node stack Stack;
5: Stack.push(Root,−∞,+∞);
6: while !Stack.isEmpty() do
7: (N,LBp, UBp) = Stack.Pop();
8: LB = DLB(N,Q);
9: UB = DUB(N,Q);

10: LB = max(LB,LBp);
11: UB = min(UB,UBp);
12: if N is a leaf node then
13: Count = N.C; L.add(LB,UB,Count);
14: else
15: for all child node of N , N ′ do
16: Stack.Push(N ′, LB,UB);
17: end for
18: end if
19: end while
20: Hist = BuildHistogram(L);
21: return Hist;

Instead of finding the exact most similar time series by checking
all possible nodes in a DSTree, a heuristic search only investigates
one leaf node, and tries to find the most similar time series in this
node. This method is based on the heuristic that similar time series
are often indexed in the same node.

Specifically, given a query Q, we start from the root node. If
the root node is not a leaf node, then we find a child node of the
root node that can hold Q as if Q ware inserted into the index.
This search process is conducted recursively until a leaf node N
is met. Then, we calculate the distance D(S,Q) for every time
series S ∈ T SN , and return the time series of the shortest distance.
Please note that the heuristic method, as the name suggests, may
not find the most similar time series in the whole data set.

4.1.2 The Exact Search
To speed up search, we combine the heuristic search method and

the lower bounding distance function to prune the search space.
The pseudo-code is given in Algorithm 2.

The algorithm begins with a best-so-far (BSF) answer returned
by the heuristic search method. The intuition is that, by quickly
obtaining a time series that is likely similar to the query time series,
a large portion of the search space may be pruned effectively.

Once a BSF is obtained, a priority queue, denoted by pq, is cre-
ated to examine nodes that may host time series that are potentially
more similar to the query time series than the BSF answer. This
priority queue is initialized to include only the root node.

The algorithm then repeatedly extracts the node with the small-
est lower bound distance from the priority queue until either the
priority queue becomes empty or an early termination condition is
met. The early termination occurs when the lower bound distance
is greater than or equal to the distance of the BSF answer. When
the condition is satisfied, the remaining time series in the priority
queue cannot qualify as the nearest neighbor and can be pruned.

To process a node from the priority queue, two possible cases
may happen. (1) In the case that the node is a leaf node, we fetch the
time series from disk and compute the distance from the query to
these time series, recording the minimum distance. If this distance
is less than our BSF answer, we update the BSF answer. (2) In the
case that the node is an internal node, its children nodes are inserted
into the priority queue provided their lower bound distances to the
query time series are less than the distance of the BSF answer.

799

4.2 Distance Distribution Histogram
Algorithm 3 gives the pseudocode of computing an equi-width

histogram of the distances from a query time series to all time se-
ries indexed by a DSTree. We collect all statistical information of
the leaf nodes to form a list, denoted by L, in which each entry rep-
resents the number of time series falling in certain distance range.
The range can be estimated based on Theorem 2.

EXAMPLE 3. A list L = 〈([10, 20], 10), ([15, 30], 15),
([40, 50], 2)〉 means that there are 3 leaf nodes: N1, N2 and N3.
N1 includes 10 time series, and their distance from Q is between
[10, 20]. The distance range and number of time series in N2 and
N3 are ([15, 30], 15) and ([40, 50], 2) respectively.

Since the entries of any two leaf nodes are disjoint, there is not
redundant information in L. Thus, we can obtain a corresponding
histogram quickly. One issue is that in some cases, the lower (or
upper) bound of a child node may be smaller (or larger) than that of
its parent node. In other words, the bounds in the parent node may
be tighter than those in the children nodes. Using the bounds at
such children nodes causes less accurate estimation of the children
nodes. We address it with Theorem 3, which is easy to show.

THEOREM 3. If the estimated range of the distance in a node
is [LB,UB], and that in its parent nodes is [LBp, UBp], then
[max(LB,LBp),min(UB, UBp)] is a tighter and correct range
of this node.

Using Theorem 3, whenever a node is traversed, we first com-
pute the lower and upper bounds according to Theorem 2. Then
we compare the bounds with those in its parent node, and use the
tighter bounds instead Lines 7-11 in Algorithm 3.

Furthermore, one may build a histogram more quickly by
traversing some internal nodes instead of all leaf nodes. Specifi-
cally, we propose an approach here, called α-level (0 < α ≤ 1), to
compute a histogram.

Denote by H the height of a DSTree. For each path from the
root to a leaf node, we select the ⌈α ∗H⌉-th internal node instead
of the corresponding leaf node to generate the list L. If the length
of a path is shorter than ⌈α ∗H⌉, we simply use the leaf node. In
other words, we use the nodes located in certain cross section of
the whole tree to generate L. Algorithm 3 can be extended to this
case easily. The experimental results show that we can obtain good
estimation with 2

3
-level.

Once we obtain the list L, we can compute a histogram based on
it. There are multiple ways to compute a histogram. A straightfor-
ward way is to assume that the time series contained in a node are
distributed uniformly.

EXAMPLE 4. Consider the list L in Example 3. We can es-
timate the number of time series within the range [15, 20] as
15−10
20−10

∗ 10 + 20−15
30−15

∗ 15 = 10.

In general, we can assume that the time series in a node follow
some distribution, such as Gaussian distribution. We can spend
some extra space to maintain the parameters of the model, such as
mean and variance, which allow more accurate and efficient esti-
mation. Limited by space, we omit the details here.

5. EMPIRICAL EVALUATION
In this section, we report extensive experiments to verify the ef-

fectiveness of DSTree. We compare both PAA-index (using PAA
as representation and R-tree as index) and iSAX2.0 with DStree in
index efficiency, approximate search error rate and pruning power.
We also showcase the lower bound tightness and accuracy of his-
togram estimation. All experiments were executed on a laptop
computer with an Intel Core i5 2.5GHz CPU and 4GB main mem-
ory. All experimental results were averaged over 50 runs.

5.1 Data Sets and Default Setting
The time series in both synthetic and real data sets were normal-

ized with Z-normalization.

5.1.1 Synthetic Data sets
Each of our synthetic data set is a combination of four types of

time series as follows.

• Random walk times series. The start point is picked ran-
domly from range [−5, 5] and the step length is chosen ran-
domly in range [0, 2];

• One-segment Gaussian time series. The values in the whole
time series are picked from a Gaussian Distribution with
mean value and standard deviation randomly selected in
ranges [−5, 5] and [0, 2], respectively;

• Multi-segment Gaussian time series. Such a time series is
concatenated by multiple one-segment Gaussian time series.
The number of segments is randomly set between 3 to 10.

• A mixed sine time series. Each time series is a mixture of
several sine waves whose period is randomly set in range
[2, 10], amplitude is randomly set in range [2, 10], and mean
value randomly chosen in range [−5, 5].

To generate a time series, the synthetic data generator first ran-
domly chooses a type, and then picks the corresponding parameters
randomly to generate the time series. We generated four synthetic
data sets of time series lengths 64, 128, 256 and 512, respectively.
Each data set contains one million time series by default. We also
use synthetic data sets of up to 200 million time series in the scala-
bility test.

5.1.2 Real Data sets
We used a real data set collected in a bridge condition monitoring

system. In this system, data was collected from about one thousand
sensors of more than 20 types, such as thermometers, accelerom-
eters, strain gauges, displacement meters, and fatigue meters. The
length of each time series is 256, and one million times series were
collected. The total storage space is about 3GB.

5.1.3 Parameters
To verify the effectiveness of data-adaptive and dynamic seg-

mentation versus global segmentation, we compared DSTree with
PAA-index (implemented by ourselves) and iSAX2.0 (source code
provided by the authors). Both PAA-index and iSAX2.0 use fixed,
global segmentations. To test the performance extensively, we built
PAA-index and iSAX2.0 with segment sizes of 8, 12, 16 and 20
respectively. The leaf capacity threshold, ψ, was set to 100. The
FBL size for iSAX2.0 was set to 200,000. The fill factor of R-tree
in PAA-index was set to 0.5.

5.2 Index Size
We did not implement iSAX2.0 by ourselves. Instead, we used

the implementation provided by the authors. We realize that the
the implementation details, particularly the storage methods, in
iSAX2.0 and DSTree may be different. To avoid any confusion,
we report the absolute index size for the methods we implemented
but not for iSAX2.0.

The first group of experiments compare the index space cost of
DSTree, PAA-index and iSAX2.0 with respect to the length of time
series. Specifically, we report three measurements, namely the
number of nodes in the tree, the physical index size, and the av-
erage number of time series contained by a leaf node. The number
of nodes includes both internal and leaf nodes. Considering the
difference on data representations in the three approaches, we also
compare the physical index size for DSTree and PAA. We use the
average number of time series in leaf nodes to evaluate the balance

800

 DSTree PAA−8 PAA−12 PAA−16 PAA−20 ISAX2−8 ISAX2−12 ISAX2−16 ISAX2−20

64 128 256 512

2

4

6

8

10

Length of Time Series

N
o
d
e
 C

o
u
n
t(

*1
0
0
0
0
)

64 128 256 512
5

10

15

20

25

Length of Time Series

In
d
e
x
 S

iz
e
(M

B
)

64 128 256 512
0

20

40

60

80

Length of Time Series

#
T

im
e
 S

e
ri
e
s

64 128 256 512
4

8

12

16

20

Length of Time Series

#
s
e
g
m

e
n
ts

/n
o
d
e

(a) Number of nodes (b) Index size (c) Average #ts per leaf (d) # segments/node

Figure 5: Index size on the synthetic data sets.

0

3

6

9

12

D
STre

e

PA
A
−8

PA
A
−1

2

PA
A
−1

6

PA
A
−2

0

IS
A
X2−

8

IS
A
X2−

12

IS
A
X2−

16

IS
A
X2−

20

N
o
d
e
 C

o
u
n
t(

*1
0
0
0
0
)

0

5

10

15

20

25

D
STre

e

PA
A
−8

PA
A
−1

2

PA
A
−1

6

PA
A
−2

0

In
d
e
x
 S

iz
e
(M

B
)

0

20

40

60

80

D
STre

e

PA
A
−8

PA
A
−1

2

PA
A
−1

6

PA
A
−2

0

IS
A
X2−

8

IS
A
X2−

12

IS
A
X2−

16

IS
A
X2−

20

#
T

im
e
 S

e
ri
e
s

0

5

10

15

25

D
STre

e

PA
A
−8

PA
A
−1

2

PA
A
−1

6

PA
A
−2

0

IS
A
X2−

8

IS
A
X2−

12

IS
A
X2−

16

IS
A
X2−

20

#
s
e
g
m

e
n
ts

/n
o
d
e

(a) Number of nodes (b) Index size (c) Average #ts per leaf (d) # segments/node

Figure 6: Index size on the real data set.

of the index nodes. The results on the synthetic data sets are shown
in Figure 5, and those on the real data set are in Figure 6. Four
different segmentation sizes, 8, 12, 16 and 20, were tested for both
PAA-index and iSAX2.0. Label “PAA-16” means PAA-index with
16 segments.

Figure 5(a) shows that, in all the three approaches, the number
of nodes is insensitive to the length of time series. However, the
number of segments has different effects on iSAX2.0 and PAA-
index. In iSAX2.0, the number of nodes increases exponentially
as the number of segments increases, for example, iSAX2-16 and
iSAX2-20 have much more nodes. PAA-index is insensitive to the
number of segments. The number of nodes in DSTree is stable and
far less than those in iSAX2-16 and iSAX2-20. The number of
nodes affects the search efficiency. If it is too large, the average
number of time series per leaf node decreases and more I/O cost is
needed to read data from disk.

Figure 5(b) compares the absolute index size, the smaller, the
better. The size of an index is determined by two factors: the num-
ber of nodes and the unit space cost per node. For PAA-index, the
space cost of each node increases almost linearly as the number of
segments increases. Since DSTree needs to maintain both mean
and standard deviation values, it has a larger unit space cost. How-
ever, benefitting from the dynamic splitting strategies, the average
segment size of DSTree is small.

Figure 5(c) shows the average number of time series per leaf
node. The smaller the number, the fewer time series in expectation
can be retrieved from a leaf node. The number in DSTree is about
50. The number in PAA-index is the largest (about 60) due to the R-
tree structure. In iSAX 2.0, this value decreases when the number
of segments increases for two reasons. First, in iSAX2.0, the root
node has too many children nodes (for example, 216 for iSAX2-16).
Second, it uses fixed segmentation. In some cases, it is difficult to
split a set of time series only based on the mean value.

Since DSTree uses a dynamic segmentation strategy, the segment
size varies in different nodes. We report the average segment size
with respect to length of time series, that is, the ratio of the total
number of segments in all nodes against the number of nodes. Fig-

ure 5(d) shows the results. The average segment size of DSTree in-
creases moderately when the length of time series increases, which
confirms the effectiveness of our splitting strategies. The average
segment sizes of the other approaches are insensitive to the length
of time series.

Figure 6 shows the results on the real data set. The trends are
similar to those on the synthetic data sets. The number of nodes
of DSTree is similar to those of iSAX2-12 and smaller than those
of iSAX2-16 and iSAX2-20. The average number of segments per
node of DSTree is 8.38. Although the time series in the real data
set are more diverse, DSTree can still represent the time series with
a small number of segments, which verifies the effectiveness of the
dynamic splitting strategy in DSTree.

Both iSAX2.0 and DSTree are binary trees. To examine the
balance of those indexes, Table 2 compares the average height of
iSAX2.0 and DSTree. We use the normalized standard deviation
(that is, standard deviation divided by the average) of the tree height
to measure the balance of the trees. We do not consider PAA-index
in this comparison because R-tree, though balanced, has a much
larger fan-out factor.

The height of all indexes increases very moderately as the time
series length increases. These indexes are all scalable with re-
spect to long time series. iSAX2.0 are substantially shorter than
DSTree in average height, but clearly taller than DSTree in maxi-
mum height. The dynamic splitting strategy in DSTree can effec-
tively avoid long branches. The small normalized standard devia-
tion values in DSTree clearly show that DSTree has good balance.

Table 3 examines the effect of the leaf capacity threshold ψ. The
number of nodes and index size of DSTree, iSAX2-12, and iSAX2-
8 decrease dramatically as ψ increases. iSAX2-16 and iSAX2-20
do not gain much from a larger leaf capacity threshold. One reason
is that iSAX2.0 withm segments may have up to 2m children nodes
of the root node, though many such nodes may contain a very small
number of time series.

5.3 Accuracy
We tested the effectiveness of the indexes in similarity search,

801

Data DSTree iSAX2-8 iSAX2-12 iSAX2-16 iSAX2-20
set Avg NSD Max Avg NSD Max Avg NSD Max Avg NSD Max Avg NSD Max

S64 18.09 0.26 29 11.40 0.39 44 7.38 0.59 38 2.58 1.25 36 1.57 1.13 36
S128 18.44 0.26 30 11.60 0.38 42 7.56 0.59 39 2.67 1.25 32 1.63 1.17 36
S256 18.57 0.28 29 11.60 0.39 44 7.63 0.59 41 2.73 1.26 36 1.69 1.22 37
S512 18.96 0.29 30 11.74 0.39 43 7.70 0.60 42 2.81 1.26 38 1.74 1.21 34
R256 18.67 0.29 30 11.53 0.39 35 7.61 0.59 35 2.69 1.26 32 1.67 1.21 30

Table 2: Average height (Avg), normalized standard deviation (NSD), and maximum length (Max) of the indexes. (“S256” denotes
the synthetic data set with the length of time series 256, and “R256” denotes the real data set with length 256.)

Leaf capacity DSTree iSAX2-8 iSAX2-12 iSAX2-16 iSAX2-20
threshold ψ # nodes Size (MB) # nodes # nodes # nodes # nodes

100 19338 10.07 15632 19754 44244 98796
1000 2163 0.99 1784 5003 36592 93356
2000 1196 0.56 957 4431 36325 93191
5000 485 0.21 452 4177 36196 93121

Table 3: Number of nodes and index size (MB) versus leaf capacity threshold ψ.

including both heuristic search and exact search. The accuracy of

heuristic search is measured by the error rate E = |D−D|
D

, where

D and D are the distance between the query time series and the
exact nearest neighbor and the heuristic search result, respectively.

For exact search, we compare the pruning power, which is the
ratio of the number of time series pruned against the total number
of time series. For both heuristic and exact search, 100 time series
were used as the queries, half of them picked randomly from the
data set, and the rest generated randomly. Figures 7 and 8, respec-
tively, show the results on the synthetic and real data sets.

In Figure 7(a), although the error rate increases as the length of
time series increases for all three methods, DSTree outperforms
the others clearly. In Figure 8(a), the error rate decreases for PAA-
index and iSAX2.0 when the size of segment increases, since using
more segments can represent the time series more accurately. With
the same segment size, iSAX2.0 outperforms PAA-index. Interest-
ingly, when the query time series is picked from the data sets, both
iSAX2.0 and DSTree correctly find the leaf node containing the
right time series due to the disjoint space division property of these
two approaches. PAA-index finds the wrong node in some of such
cases, because of the intersection of MBR in R-tree. When the
query is generated randomly, DSTree is more accurate in finding
the corresponding leaf nodes than iSAX2.0 because of our data-
adaptive splitting strategy.

Figures 7(b) and 8(b) show the pruning power of exact similarity
search. The pruning power of DSTree is greater than 95% on all
synthetic data sets and is 98% on the real data set, which is clearly
better than those of the other two approaches. The pruning power
of PAA-index increases dramatically as the segment size increases
from 8 to 20. However, the marginal performance gain decreases as
the segment size increases further. A reason is that R-tree performs
poorly with high dimensionality. iSAX2.0 has a similar trend.

The advantages of DSTree are from two factors. First, a tighter
lower bound helps to prune more nodes. Second and more im-
portantly, the proposed data adaptive splitting strategies can clus-
ter similar time series better. Consequently, the heuristic search in
DSTree is more accurate, which gives DSTree a good starting point
in exact search. Moreover, fewer data files are visited since similar
time series are clustered better into fewer nodes.

5.4 Lower Bound Tightness
We tested the tightness of the proposed lower bound estimation

approach. We measure the lower bound tightness by the ratio of the
estimated lower bound distance against the minimum distance from
a query to all time series indexed in a node. This ratio is between

 DSTree PAA− 8 PAA−12 PAA−16 PAA−20

ISAX2−8 ISAX2−12 ISAX2−16 ISAX2−20

64 128 256 512
0

0.2

0.4

0.6

0.8

Length of Time Series

E
rr

o
r

R
a
te

64 128 256 512
0.7

0.75

0.8

0.85

0.9

0.95

1

Length of Time Series

P
ru

n
in

g
 P

o
w

e
r

(a) Heuristic search (b) Exact search pruning
error rate power

Figure 7: Error rate and pruning power on the synthetic data
sets.

0

0.1

0.2

0.3

0.4

0.5

D
S
Tr

ee

P
A
A
−8

P
A
A
−1

2

P
A
A
−1

6

P
A
A
−2

0

IS
A
X
2−

8

IS
A
X
2−

12

IS
A
X
2−

16

IS
A
X
2−

20

E
rr

o
r

R
a

te

0.75

0.8

0.85

0.9

0.95

1

D
S
Tr

ee

P
A
A
−8

P
A
A
−1

2

P
A
A
−1

6

P
A
A
−2

0

IS
A
X
2−

8

IS
A
X
2−

12

IS
A
X
2−

16

IS
A
X
2−

20

P
ru

n
in

g
 P

o
w

e
r

(a) Heuristic search (b) Exact search pruning
error rate power

Figure 8: Error rate and pruning power on the real data set.

0 and 1, the larger, the better. We collected this information during
the processing of exact search. Figure 9 shows the results on both
the synthetic and real data sets.

The lower bound using both mean and standard deviation values
is tighter than that using only mean values.

5.5 Histogram Computation
Figure 10 compares the exact distance histogram by a full scan of

the data and the distance histogram estimated the α-level method
(Section 4.2) . For the latter, three cases are shown. “Full level”
uses all leaf nodes to estimate. “2/3 level” and “1/3 level”, re-
spectively, use internal nodes located at the 2/3-level and 1/3-level
cross sections to compute the histogram. Although the full and 2/3

802

time series DSTree iSAX2-8 iSAX2-12 iSAX2-16 iSAX2-20
(millions) # nodes Size (MB) # nodes # nodes # nodes # nodes

10 4,335 2.43 3,643 5,966 59,676 235,558
50 20,576 12.88 16,394 20,642 77,579 287,904

100 38,559 27.31 30,985 38,957 93,095 340,250
200 69,987 42.57 57,239 59,801 113,404 392,597

Table 4: Number of nodes and index size (MB) vs. #time series

S64 S128 S256 S512 R256
0.2

0.4

0.6

0.8

1

Length of Time Series

L
o

w
e

r
B

o
u

n
d

 T
ig

h
tn

e
s
s

M
M+SD

Figure 9: Lower bound tightness (M: lower bounds using only
mean values; M+SD: lower bounds using both mean and stan-
dard deviation values.)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

5

Distance(*100)

#
 T

im
e

 S
e

ri
e

s

Exact
Full level
2/3 level
1/3 level

0 5 10 15 20 25 30
0

1

2

3

4

5
x 10

5

Distance(*100)

#
 T

im
e

 S
e

ri
e

s

Exact
Full level
2/3 level
1/3 level

(a) S64 (b) S256

0 5 10 15 20 25 30 35
0

1

2

3

4
x 10

5

Distance(*100)

#
 T

im
e

 S
e

ri
e

s

Exact
Full level
2/3 level
1/3 level

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2
x 10

5

Distance(*100)

#
 T

im
e

 S
e

ri
e

s

Exact
Full level
2/3 level
1/3 level

(c) S512 (d) Real Data set

Figure 10: Histogram of distance distribution.

level estimation do not access the time series data and build the
histogram by only merging list L computed from the index, the ob-
tained histograms are still very close to the exact one. Even the 1/3
level estimation gives an acceptable estimation.

The α-level method saves substantial time in histogram estima-
tion. For example, on the data set S512, a full scan to compute the
exact histogram takes 161 seconds, while the α-level method takes
only 115 ms, 84 ms, and 8 ms, respectively, when α is set to 1, 2/3,
and 1/3.

5.6 Scalability
To test the scalability of DSTree and iSAX2.0, we use the data

generator provided by iSAX2.0 to generate 4 data sets containing
10 million, 50 million, 100 million and 200 million time series,
respectively. Each time series is of length 256. In all experiments,
the leaf capacity ψ is set to 5,000. The results of the number of
nodes and absolute index size are shown in Table 4, and the results
of pruning power and index building time are shown in Figure 11.

As shown in Table 4, the number of nodes of DSTree is similar

 DSTree

10M 50M 100M 200M

0.85

0.9

0.95

P
ru

n
in

g
 P

o
w

e
r

10M 50M 100M 200M
0

50

100

150

200

T
im

e
(h

o
u

rs
)

(a) Pruning power (b) Building time

Figure 11: Scalability of the indexes.

0

200

400

600

800

1000

1200

S
e
a
rc

h
 T

im
e
(s

e
c
o
n
d
s
)

DSTree

ISAX2−8

ISAX2−12

ISAX2−16

ISAX2−20

IO
CPU

Figure 12: Searching time (200 million time series, length=256,
ψ = 5, 000)

to those of iSAX2-8 and iSAX2-12, and much less than those of
iSAX2-16 and iSAX2-20. Figure 11(a) shows that DSTree has a
higher pruning power than all iSAX2.0 indexes. Moreover, in all
the methods, the pruning power is larger on bigger data sets. When
a data set has more time series, the time series in each leaf node
are more similar. Consequently, more irrelevant time series can be
pruned, and fewer data files are needed to visit to find the most
similar time series.

Figure 11(b) shows that the building time of all indexes are
roughly linear to the data set size. The building time of DSTree
is a little longer than that of iSAX2-8 and iSAX2-12, and clearly
shorter than that of iSAX2-16 and iSAX2-20.

5.7 Search Efficiency
To compare the search efficiency of iSAX2.0 and DSTree, we

used the synthetic data set of 200 million time series of length 256
each, which is used in the scalability test. The leaf capacity was set
to 5,000. 100 time series were used as the queries, half of which
were picked randomly from the data set, and the rest were gener-
ated randomly. For iSAX2.0, the number of segments were set to
8, 12, 16 and 20. The results are shown in Figure 12. Since the
index size is not large (less than 100 MB), we hold the whole index
in the main memory during searching.

It can be seen that the search time of DSTree is less than those
of all iSAX index. We investigate the reason by analyzing the com-
ponents of the search time in more detail. In general, the search
time is composed of three parts: time to traverse the index, time
to read data files from disk and time to compare query and target
time series, in which, the first and third ones are related to CPU
computing, and the second related to disk I/O. We also distinguish

803

CPU related time and I/O related time in Figure 12.
In all methods, the CPU cost is only less than 10% of the total

search time, and the I/O cost dominates the search time. The I/O
efficiency is affected by two factors: the pruning power and the
number of nodes. A high pruning power and a small number of
nodes can reduce the number of time series that have to be retrieved
from disk. DSTree achieves the best search efficiency overall.

6. RELATED WORK
Many studies on similarity search over time-series databases

have been conducted in the past decade. The pioneering work by
Agrawal et al. [1] used Euclidean distance as the similarity mea-
sure, Discrete Fourier Transform (DFT) as the dimensionality re-
duction tool, and R-tree [7] as the underlying search index. Falout-
sos et al. [6] later allowed subsequence matching and proposed the
FRM framework for indexing time series.

The subsequent work focused on two major aspects: new di-
mensionality reduction techniques (assuming that Euclidean dis-
tance is the underlying measure) and index building techniques
based on dimensionality reduction techniques. Existing dimension-
ality reduction techniques include SVD [8], DFT [1], DWT [4],
PLA [14], PAA [21], APCA [12] and CP [2]. These methods first
reduce the dimensionality of each time series to a lower dimen-
sional space, and then apply a new metric distance function to mea-
sure the similarity between any two transformed (reduced) time se-
ries. In order to guarantee no-false-dismissals during the similarity
search, the metric distance function must satisfy the lower bound-
ing lemma [6].

Among all the reduction methods, SVD is accurate, but, at the
same time, costly in both time and space, since SVD needs to
calculate eigenvectors and store large matrices using extra space.
Furthermore, APCA [12] and CP [2] are the two state-of-the-art
reduction approaches. Keogh et al. [12] indicated that APCA out-
performs DFT, DWT, and PAA in terms of the pruning power by
orders of magnitude.

Approaches to building indexes can be categorized into two
types. First, the traditional multi-dimensional index approaches,
like R-tree, are used without modification [1, 11, 6]. Second, the R-
tree method is modified according to the representation of time se-
ries [12, 5]. Since APCA contains both mean values and right end-
ing points in the approximate representation, Keogh et al. [12] re-
defined the MBR (Minimal Bound Rectangle) according to APCA.
PLA represents time series by disjoint lines. Each line is repre-
sented by two parameters: slope and intercept. Chen et al. [5] pro-
posed a new MBR definition accordingly.

Most of the previous index approaches can be split into two
phases: dimension reduction first and then building the index.
Representing time series approximately is independent from build-
ing the index. Most recently, a new family of index approaches,
iSAX [16] and iSAX 2.0 [3], were proposed based on the represen-
tation technique, named SAX, which is a symbolic representation
for time series that allows dimensionality reduction and indexing
with a lower bounding distance measure. To the best of our knowl-
edge, iSAX and iSAX 2.0 are the only approaches that transform
time series during index building, and are data adaptive. Particu-
larly, iSAX is based on SAX representation of time series. It seg-
ments all time series into equi-length segments, and symbolizes the
mean value of each segment. The symbolization is executed during
the index building, which makes iSAX a data-adaptive approach.
However, the fixed number of segments and the fixed length of seg-
ments constrain their capability of being fully data-adaptive.

Some existing methods use upper and lower bounds. For exam-
ple, Vlachos et al. [17] proposed optimal lower and upper bounds
of distance between two time series, which are based on Discrete
Fourier Transform. Karamitopoulos and Evangelidis [9] extended
APCA by using standard deviation to define the lower bound.
Wei et al. [19] bounded the distance between a query time series

and a set of time series. Our approach differs from those meth-
ods in several aspects. First, in a DSTree different nodes may use
different numbers of segments to represent time series, while all
previous approaches use a fixed number of dimensions. Second,
in a DSTree different nodes may use different splitting strategies.
Moreover, the previous methods do not define an upper bound by
extending APCA. We combine lower bound and upper bound to
measure the quality of splitting.

7. CONCLUSIONS
In this paper, we made a critical observation: global segmenta-

tion of time series may lead to unnecessary cost in space and time
for indexing. To tackle the problem, we developed a data-adaptive
and dynamic segmentation index, DSTree, which saves space and
time in indexing, and achieves tighter upper and lower bounds on
distance estimation. We presented an extensive performance study
on synthetic and real data sets to verify the effectiveness and effi-
ciency of our new approach in both similarity search and histogram
estimation.

8. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity

search in sequence databases. In FODO, pages 69–84, 1993.
[2] Y. Cai and R. Ng. Indexing spatio-temporal trajectories with

chebyshev polynomials. In SIGMOD, pages 599–610, 2004.

[3] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. isax 2.0: Indexing
and mining one billion time series. In ICDM, pages 58–67, 2010.

[4] K. Chan and A. Fu. Efficient time series matching by wavelets. In
ICDE, pages 126–133, 1999.

[5] Q. Chen, L. Chen, X. Lian, Y. Liu, and J. Yu. Indexable pla for
efficient similarity search. In VLDB, pages 435–446, 2007.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In SIGMOD, pages
419–429, 1994.

[7] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD, 1984.

[8] K. Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for
similarity searching in dynamic databases. In SIGMOD, pages
166–176, 1998.

[9] L. Karamitopoulos and G. Evangelidis. A dispersion-based paa
representation for time series. In CSIE, pages 490–494, 2009.

[10] E. Keogh. A decade of progress in indexing and mining large time
series databases. In VLDB, page 1268, 2006.

[11] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra.
Dimensionality reduction for fast similarity search in large time
series databases. In KAIS, pages 263–286, 2000.

[12] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally
adaptive dimensionality reduction for indexing large time series
databases. In SIGMOD, pages 151–162, 2001.

[13] E. Keogh and S. Kasetty. On the need for time series data mining
benchmarks: a survey and empirical demonstration. In SIGKDD,
pages 102–111, 2002.

[14] E. Keogh and M. Pazzani. An enhanced representation of time series
which allows fast and accurate classification, clustering and
relevance feedback. In SIGKDD, 1998.

[15] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation
of time series, with implications for streaming algorithms. In DMKD,
pages 2–11, 2003.

[16] J. Shieh and E. Keogh. isax: Indexing and mining terabyte sized time
series. In SIGKDD, pages 623–631, 2008.

[17] M. Vlachos, S. S. Kozat, and P. S. Yu. Optimal distance bounds on
time-series data. In SDM, pages 109–120, 2009.

[18] L. Wei and E. Keogh. Semi-supervised time series classification. In
SIGKDD, pages 748–753, 2006.

[19] L. Wei, E. Keogh, H. Van Herle, and A. Mafra-Neto. Atomic wedgie:
Efficient query filtering for streaming time series. In ICDM, pages
490–497, 2005.

[20] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. Ratanamahatana. Fast
time series classification using numerosity reduction. In ICML, pages
1033–1040, 2006.

[21] B. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp
norms. In VLDB, pages 385–394, 2000.

804

