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ABSTRACT
We study supergraph search (SPS), that is, given a query graph q
and a graph database G that contains a collection of graphs , return
graphs that have q as a supergraph from G. SPS has broad appli-
cations in bioinformatics, cheminformatics and other scientific and
commercial fields. Determining whether a graph is a subgraph (or
supergraph) of another is an NP-complete problem. Hence, it is in-
tractable to compute SPS for large graph databases. Two separate
indexing methods, a “filter + verify”-based method and a “prefix-
sharing”-based method, have been studied to efficiently compute
SPS. To implement the above two methods, subgraph patterns are
mined from the graph database to build an index. Those subgraphs
are mined to optimize either the filtering gain or the prefix-sharing
gain. However, no single subgraph-mining algorithm considers
both gains.

This work is the first one to mine subgraphs to optimize both
the filtering gain and the prefix-sharing gain while processing SPS
queries. First, we show that the subgraph-mining problem is NP-
hard. Then, we propose two polynomial-time algorithms to solve
the problem with an approximation ratio of 1−1/e and 1/4 respec-
tively. In addition, we construct a lattice-like index, LW-index, to
organize the selected subgraph patterns for fast index-lookup. Our
experiments show that our approach improves the query processing
time for SPS queries by a factor of 3 to 10.

1. INTRODUCTION
A number of recent studies have proposed algorithms to address

the graph search problem [3, 5, 14, 17, 19, 20, 21]. There are
two common search scenarios: subgraph search and supergraph
search. In a subgraph search, given a query graph q, the algorithm
searches for all graphs that have q as a subgraph, from a graph
database [5, 14, 17, 19]. A supergraph search, on the other hand,
retrieves all the database graphs that have q as a supergraph [3, 4,
20, 21].

Supergraph search (SPS) has broad applications in various sci-
entific and commercial fields. In Cheminformatics, molecules are
modeled as undirected graphs with nodes representing atoms and
edges representing chemical bonds [15]. SPS is commonly used
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for synthetic planning [15] and for deriving generic reaction knowl-
edge in the process of synthesizing new compounds with already
known chemical molecules [22]. In Computer-Aided Design (CAD),
3-D mechanical parts are often represented as attributed graphs, in
which each node represents a “face” of the solid model and each
edge represents an arc between two connecting faces [8]. SPS is
commonly used to find the existing components within a newly
designed part to facilitate manufacturing planning and cost estima-
tion. In image processing and computer vision, attributed graphs
are also used to model figures [10]. For each figure, a set of vi-
sual features are first extracted, and then an attributed graph is con-
structed with those features as nodes. An edge is drawn to connect
two visual features if they are close in the figure. In figure retrieval,
SPS is used to search for simple fragments contained in the query
figures [3]. Graphs are also constructed to model the system call de-
pendencies with nodes representing system calls and directed edges
representing dependencies [1]. In malware detection, SPS is used
to search for system-call patterns contained in malicious softwares.

1.1 Filtering with Graph Index
Detecting the containment relationship between two graphs, also

referred to as the subgraph isomorphism test (SGI), is an NP-complete
problem. Using SGI to sequentially check each database graph is
computationally expensive for large databases. A filter+verify in-
dexing method has been proposed to quickly process SPS queries [3,
4, 20, 21]. Given a query graph q and a graph database G, the filter
sub-routine first prunes false answers and generates a candidate set
C(q), where |C(q)| " |G|. Then in the verify step, only the can-
didate graphs are verified with SGIs. An exclusive-logic method is
proposed to filter the false answers: if a subgraph p is not contained
in the query graph q, then all database graphs containing p can not
have q as a supergraph, and thus can be safely filtered [3].

The time taken to process SPS queries depends on the patterns
selected for indexing [3, 4, 20, 21]. A set of good quality index pat-
terns filters false answers aggressively, and consequently saves the
query-processing time by computing fewer SGIs. We refer to the
savings of the query-processing time due to the exclusive-logic fil-
tering as the filtering gain. Chen, et al., showed that mining index
patterns to optimize the filtering gain on a set of training queries
Q is NP-hard [3]. They proposed a polynomial-time greedy so-
lution with an approximation ratio of 1 − 1/e [3]. Cheng, et al.,
further proposed a heuristics-based algorithm [4]. The algorithm
mines index patterns from an integrated graph instead of frequent
subgraphs in order to save subgraph-mining time. An integrated
graph is a compact representation of a set of graphs G, such that
the commonality of G are shared [4].

1.2 Prefix Sharing with Graph Index
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Figure 1: An example of the SPS: (a) database graphs, (b) query q
and patterns, (c) prefix index, (d) filter index

Zhang et al. [20] and Zhu et al. [21] proposed prefix-sharing in-
dexes to reduce the time of each SGI and thereby save the verifica-
tion time of processing SPS queries. A prefix of graphs is a com-
mon subgraph of those graphs. For example, in Figure 1(c), prefix
p1 is a common subgraph of database graphs {g1, g2, g3}. Assume
that all of {g1, g2, g3} must be checked with SGIs in the verify step.
To reduce the verification time, the prefix-sharing algorithms first
search for the mappings from a common prefix subgraph p1 to the
query q (dashed lines in Figure 1(b)) with one subgraph isomor-
phism test (SGI). Then, the algorithms reuse these mappings while
searching for subgraph isomorphism mappings from {g1, g2, g3}
to q. As a result, the time taken to verify {g1, g2, g3} are subgraphs
of q decreases from

∑3
i=1 c(gi) to c(p1)+

∑3
i=1 c(gi \p1), where

c(·) is the time for computing SGI and c(gi \ p1) is the time for
computing SGI from gi to q by extending the mappings from p1
to q. One database graph g contains multiple subgraphs, each of
which can be g’s prefix. However, to construct the prefix index,
we can only choose one subgraphs pi as g’s prefix and serialize g
to a string with pi as the string prefix [20, 21]. Choosing multiple
prefixes and thus serializing a graph in multiple ways will increase
the size of the graph database and the size of index multiple times
without significant gains in query-processing time [20, 21].

The choice of the prefix influences the query-processing time of
SPS [20, 21]. For example, in Figure 1, we can choose either p1 or
p2 as the prefix of the database graph g1. When p2 is chosen as the
prefix instead of p1, the time of verifying the graphs {g1, g2, g3}
changes to c(p1) +

∑3
i=2 c(gi \ p1) + c(p2) + c(g1 \ p2). We re-

fer to the savings in the query-processing time using prefix-sharing
as prefix-sharing gain. Zhang et al. showed that mining index pat-
terns to optimize the prefix-sharing gain is NP-hard [20]. They pro-
posed a polynomial-time solution with an approximation ratio of
1/2. Zhu et al. studied empirical improvements to the polynomial-
time algorithm [21].

1.3 Our Method
No previous algorithms have used both the filtering gain and the

prefix-sharing gain together for pattern mining. In this paper, we
propose to mine index patterns to optimize an objective function
that evaluates both the filtering gain and the prefix-sharing gain.
We first show the NP-hardness of the pattern-mining problem re-
ferred herein. Then, we propose a greedy algorithm with an ap-
proximation ratio of 1−1/e. This algorithm has a time complexity
of O(k|H||G||Q|), for selecting k patterns out of all frequent sub-

graphs H on a graph database G and training queries Q. The algo-
rithm is not scalable to large-scale datasets. To improve its scalabil-
ity, we propose a more efficient objective function to approximate
the original one. Using the approximate objective function reduces
the runtime complexity of the greedy algorithm to O(k|H||G|).
The greedy algorithm has a space complexity of O(|H||G|). Given
a large number of frequent subgraphs H , the algorithm will run out
of memory for a large dataset G. To alleviate the memory bottle-
neck, we further propose a memory-efficient algorithm with space
complexity O(k|G|) (k " |H|). The memory-efficient algorithm
has an approximation ratio of 1/4. However, our empirical studies
show that the processing time for SPS queries using an index con-
structed by the memory-efficient algorithm is almost the same as
that using an index constructed using the greedy algorithm.

The objective function of our pattern-mining algorithm requires
training queries. Training queries are commonly used for query
optimization [2] and graph mining [3, 14, 19]. First, we show the
merit of training queries by proving that it is insufficient to mine
patterns solely based on the database graphs. Then, we show that
our algorithm does not overfit to a certain set of queries. When the
training queries are not available, we use the graph database as a
surrogate of the training queries for a “cold” start, assuming that
both the queries and the database graphs have similar statistical
distributions. Similar assumptions are made in related works [3,
14]. Our experiment results show that the patterns mined with a
cold start are as effective as patterns mined with training queries on
processing SPS queries.

Besides mining index patterns to reduce the verification time for
processing SPS queries, we also propose an index structure, LW-
index, to reduce the index-lookup time, which is the other compo-
nent of the query-processing time. We design LW-index by orga-
nizing index patterns in a graph lattice (see Section 3.2). A query q
is processed as follows (1) lookup index patterns not contained in
q, P (q) = {p ∈ P |p $⊆ q} (2) fetch the value for each p ∈ P (q),
and construct the candidate graphs as C(q) = G − ∪p∈P (q)G(p),
where G(p) contains all database graphs containing p. LW-index
is designed such that the time costs for both (1) and (2) are signifi-
cantly reduced.

Table 1 summarizes related works. See Section 7 for details. The
contributions of this work are as follows:

1. Our algorithm is the first to use both the filtering gain and
the prefix-sharing gain for index pattern mining. A greedy
pattern-mining algorithm is proposed with an approximation
ratio of 1 − 1/e. Further, a memory-efficient algorithm is
proposed to reduce the memory consumption from |H||G|
to k|G|.

2. We design LW-index to support fast index lookup.

3. Our approach outperforms previous works by a factor of 3-
10 on processing SPS queries on real-world data.

Organization: First, we introduce the preliminary in Section 2.
Next, we introduce the query-processing framework and LW-index
structure in Section 3. In Section 4, we introduce the pattern-
mining algorithms . We discuss the use of training queries in Sec-
tion 5. In Section 6, we evaluate the performance of both the
pattern-mining algorithms and the LW-index structure.We discuss
related works in Section 7 and finally conclude in Section 8.

2. PRELIMINARY
A graph is a triple g(V,E, L) defined on a set of vertices V and

a set of edges E such that E ⊆ V × V . A label !(u) or !(e) ∈ L

830



Table 1: SPS Solutions
Methods Index Patterns Mining Time Comments
cIndex Top down and bottom

up index
Mine index pattern considering filtering
gain only.

O(|H||G||Q|) No prefix sharing for pattern selection or
query processing

GPTree CRGraph, FGPTree Mine significant patterns to maximize fil-
tering gain (based on heuristics). Mine an-
other set of patters for prefix sharing.

O(|H||G|) Two sets of patterns. Extra time on index-
lookup. Num of patterns explodes with
decreasing minSupport

PrefixIndex Prefix Index & Hierar-
chical Prefix Index

Mine patterns considering only prefix-
sharing gain.

O(|H||G|2) Low filtering power since patterns are se-
lected without optimizing filtering gain

IGQuery Integrated Graph IG Mine discriminative patterns for filtering
based on heuristics

O(|IG|) Effective for batch queries. Perform simi-
lar to cIndex and GPTree on single query

LW-index Lattice-like index Mine patterns considering both prefix-
sharing and filtering gain.

O(k|H||G||Q|)(Exact)
O(k|H||G|)(Aprox)

is associated with each node v or edge e. In this paper, we ad-
dress only undirected, labeled, and connected graphs for simplic-
ity; however, our methods with minor modifications are applica-
ble to other graphs. A subgraph of a graph g(V,E, L) is a graph
h(V ′, E′, L) with a vertex set V ′ ⊆ V and edge set E′ ⊆ E. A
graph g is a supergraph of h if h is a subgraph of g. We denote
the subgraph relationship between g and h as g ⊃ h and h ⊂ g.
Graphs are commonly serialized to a list of tuples, each of which
represents one edge [16, 12, 20]. For example, the tuple for the
edge e(v1, v2) is (v1, v2, !(v1), !(e), !(v2)). A k-tuple graph p is
a prefix of a serialization of g if p is a subgraph of g and the first k
tuples in the serialization of g equals p.

DEFINITION 1 (SUBGRAPH ISOMORPHISM). Given two
graphs g1 = (V1, E1, L1) and g2 = (V2, E2, L2), an isomorphism
between g1 and g2 is a bijection between V1 and V2 that preserves
the labels and connectivity of the two graphs. This bijection is a
mapping m(g1, g2), which maps any adjacent vertices u1, v1 in
g1 to adjacent vertices u2, v2 in g2 with labels !(u1) = !(u2),
!(v1) = !(v2), and !(e(u1, v1)) = !(e(u2, v2)), and vice versa.
A Subgraph Isomorphism between g1 and g2 is an isomorphism
between g1 and one of g′2s subgraph.

A partial mapping pm(g′1 ⊂ g1, g
′
2 ⊂ g2) is a mapping from a

graph g′1 to a graph g′2, where g′1 is a subgraph of g1 and g′2 is a
subgraph of g2. g1 ⊆ g2 if there exists a partial mapping that can
grow to a full-coverage mapping that covers all nodes and edges
of g1. We use m(g1, g2) to represent a full-coverage (sub)graph
mapping from g1 to g2, and use M(g1, g2) to refer to all the full-
coverage mappings from g1 to g2 since there are multiple ones.
The search for a mapping m(g1, g2) can start from a pre-computed
partial mapping pm(p ⊂ g1, g2), p ≺ g1. This procedure saves
computational cost when more than two graphs having p as a prefix
are tested against g2 for subgraph isomorphism.

Frequent subgraphs are commonly used as index patterns in pro-
cessing graph search [3, 5, 17, 20, 21]. In a graph database G,
the database graphs containing sg comprise the supporting set of
sg, G(sg). The support of sg is |G(sg)|. The subgraph sg is a
frequent subgraph if and only if support(sg) ≥ δ · |G|, where δ is
a tunable parameter, named as the minimum support.

3. PROCESSING SPS QUERIES
Addressing SPS querying involves three steps: (1) mine index

patterns, (2) construct a graph index, and (3) process SPS queries
using the graph index. We study all three steps in this paper. In this
section, we discuss (2) and (3).

3.1 Framework

In this subsection, we study how to process SPS queries on pattern-
based indexes. No-pattern indexes have been shown to perform
worse than pattern-based indexes [7].

A graph index with index patterns P contains (key, value) pairs
where a key is a pattern pi ∈ P and its value is all database graphs
containing pi, that is, G(pi). Each database graph g is also asso-
ciated with a prefix pattern pj , pj ⊆ g and pj ∈ P . The graph g
is labeled by a string with pj as the string prefix. This graph index
can be used for both filtering and prefix-sharing.

Algorithm 1 Process SPS Queries

Input: Graph Index I with Patterns P, Query graph q,
Graph Database G, Supporting Set for Each Pattern p ∈ P , G(p)
Output: Graphs contained in q

1: An(q)← ∅ (An(q) is the answer set)
2: patterns not contained in q, P (q) = ∅.
3: hashtable storing the embeddings, T = ∅
4: for each index pattern p ∈ P do
5: if p ⊆ q then
6: T ← T ∪ (key = p, value= M(p, q)), where M(p, q) is

the set of mappings from p to q
7: else
8: P (q)← P (q) ∪ {p}
9: end if

10: end for
11: fetch the value set for each pattern p ∈ P (q), G(p)
12: for each graph g ∈ G− ∪p∈P (q)G(p) do
13: M(pj , q) = T.get(pi), where pj is the prefix of g
14: search for a mapping m(g, q) by extending each m(pj , q) ∈

M(pj , q).
15: if ∃m(g, q), that is g ⊆ q then
16: put g to An(q).
17: end if
18: end for
19: return An(q).

Algorithm 1 describes the use of the graph index on process-
ing SPS queries. The algorithm integrates both the “filter+verify”
methods (line 11) and the “prefix-sharing” methods (lines 13-17).
Algorithm 1 comprises two parts: index-lookup (lines 4-11) and
verify (lines 12-18). Given a query graph q, first, the SPS algo-
rithm looks up the graph index for the index patterns that are not
subgraphs of the query, P (q) = {p ∈ P |p $⊆ q} (line 8) (see Sec-
tion 3.2 for details). Then, the algorithm fetches the value set of
each p ∈ P (q), and filters graphs in ∪p∈P (q)G(p) based on the
exclusive logic. Finally, in the verify step, each candidate graph in
G − ∪p∈P (q)G(p) is tested with SGI to decide whether it is sub-
graph isomorphic to the query or not. For a graph g labeled with a
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Figure 2: An example of LW-index

pattern pj as its prefix, the mappings from pj to q can be shared and
reused to compute the subgraph isomorphism from g′ to q, where
g′ is another candidate graph labeled with pj as its prefix.

Correspondingly, the time of processing SPS queries comprises
index-lookup time and verification time. The index-lookup time
can be reduced by the structural design of the graph index, as intro-
duced in Section 3.2. The verification time can be reduced by filter-
ing and prefix sharing. As shown in Algorithm 1, the verification
time depends on the index patterns P and prefix graphs pref(g).
We discuss how to mine index patterns and assign prefixes such
that the verification time is optimized in section 4.

3.2 LW-index and Fast Index-lookup
We introduce a lattice-like index structure, LW-index, that sup-

ports fast index-lookup. The graph index should support two oper-
ations: (1)key-lookup: given the query graph q, identify the index
patterns p (keys) that are subgraph isomorphic to q, p ⊂ q, or p $⊂ q
(lines 4-10). (2)value-lookup: given all the identified keys, p $⊂ q,
retrieve and unite the value sets of those keys (line 11).

To support fast key-lookup, LW-index adopts Lindex, a lattice
index structure we introduced [18]. Due to space limitations, we
give only a brief description of Lindex here; for details please refer
to the original work (see [18]). In LW-index, index patterns are
organized in a lattice where the partial order is defined using the
subgraph relationship. That is, if there is an edge from pi pointing
to pj in Lindex, then pi ⊂ pj . Figure 2 shows an example of LW-
index. For simplicity, all edges that can be obtained by transitivity
are ignored. For example, if pi ⊂ px ⊂ pj , then the edge e =
(pi, pj) is not included in the lattice. The root node of the lattice
is an empty pattern p0 = ∅. The advantage of organizing index
patterns in a lattice is that by moving down the lattice, the algorithm
can grow a mapping from a parent pattern pi to q to generate a
mapping from a child pattern pj to q, if pi ≺ pj . In other words,
the mappings M(pj , q) can be obtained by extending the mappings
M(pi, q) instead of computing them afresh. Hence, the key-lookup
time is largely reduced by using Lindex [18].

In LW-index, all the index patterns are organized in a lattice and
stored in memory for fast index-lookup, as shown in Figure 2. The
value associated with each key p is a list of database graphs con-
taining p. The values can be either stored on disks for large G or
in memory. Note that LW-index is different from CRGraph [20],
which also organizes index patterns in a lattice. In CRGraph, there
is an edge from pi to pj iff G(pi) ⊇ G(pj). One major drawback
of CRGraph is that it has to be re-constructed when the database
G updates. In LW-index, only the value sets of the patterns are
updated in response to database insertion, deletion or update. The
index needs re-construction only when the index patterns P are re-
mined. To support fast value-lookup, LW-index filters the union of
value sets of minimum non-subgraph patterns.

DEFINITION 2 (MIN-NON-SUBGRAPHS). Given a LW-index
with index patterns P , for a query graph q, the set of minimum
non-subgraph patterns of q is minP (q) = {p ∈ P |p $⊆ q ∧ !p′ $⊆
q, s.t. p′ ⊂ p}.

For example, in Figure 2, if a query q does not contain both p1
and p2 as subgraphs, then only p1 is a minimum non-subgraph of
q. p2 is not a minimum non-subgraph, because p1 ⊂ p2. minP (q)
can be found by walking through the lattice of LW-index. When
the algorithm reached an index pattern p $⊆ q, and each of p’s
ancestor p′ is subgraph isomorphic to q, p′ ⊂ q, then, p is found
as a minimum non-subgraph pattern of q and put into minP (q).
Then, all of p’s descendants are marked false so that they can be
skipped because they are not the minimum non-subgraphs of q.

4. MINING PATTERNS FOR SPS
The processing times for SPS queries depends upon the subgraph

patterns selected for indexing. In this section, we study the problem
of subgraph pattern mining. We first formulate the problem and
show it is NP-hard. Then, we propose a polynomial-time greedy
algorithm for pattern mining. We show that the algorithm has an
approximation ratio of 1 − 1/e because the objective function is
submodular (see Section 4.2). The greedy algorithm is time con-
suming with a time complexity of O(k|H||G||Q|). To improve its
scalability, we propose an approximate objective function and re-
duce the time complexity of the greedy algorithm to O(k|H||G|).
The greedy algorithm is memory consuming because it needs to
pre-mine and store all frequent subgraphs H in memory. To allevi-
ate the memory bottleneck, we further propose a memory-efficient
algorithm that stores only k index patterns in memory, where k is
the number of selected patterns. We show that the memory-efficient
algorithm has an approximation ratio of 1/4. Although its theoret-
ical approximation ratio is worse than that of the greedy algorithm,
the memory-efficient algorithm empirically mines patterns as good
as the greedy algorithm (see Section 6).

4.1 The Pattern Mining Problem
It is impossible to index all subgraphs given the limited mem-

ory. A pattern p can help to filter false graphs if it is frequent in
G and infrequent in the queries Q. A pattern p can help to reduce
the verification time by prefix sharing if p is frequent in both G and
Q. Therefore, a pattern p is a candidate to be indexed if and only if
it is frequent in G. However, there are still a large number of fre-
quent subgraphs and most of them are redundant to each other, e.g.,
two frequent subgraphs with similar supporting sets are redundant,
because they filter similar graphs for similar queries. Furthermore,
given two frequent subgraphs p1 ⊂ p2 and G(p1) ≈ G(p2), p1
is redundant for prefix-indexing g ∈ G(p1) given that p2 is se-
lected for indexing, because p1 can not further reduce the verifica-
tion time.

The task of pattern mining is to select index patterns P , such that
the query-processing time over the training queries Q is minimized.

DEFINITION 3 (PATTERN MINING). Given a dataset G, train-
ing queries Q, and frequent subgraphs H , we mine k subgraphs
P for indexing, such that the time saving by filtering and prefix-
sharing is maximized:

P = argmax
P⊂H,|P |≤k

Gain(P ) (1)

= argmax
P⊂H,|P |≤k

∑

q∈Q

∑

g∈G

w(g, q), (2)

w(g, q) =

{
c(pref(g), q), g ∈ (G− ∪p &⊂qG(p))
c(g, q) otherwise

(3)

c(g, q) is the time required to test the subgraph isomorphism from g
to q. c(pref(g), q) is the prefix-sharing gain achieved by indexing
g with its prefix, pref(g), when the graph g needs to be verified
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with SGI. c(g, q) is the filtering gain when the graph g can be fil-
tered for query q.

We drop the second parameter of c(g, q) based on the assump-
tion that the time for subgraph isomorphism test from a graph g to
different queries q is approximately the same.

The value of k is constrained by the available memory or accord-
ing to an index-lookup cost given unlimited memory. The index-
lookup cost, |Q|r, is the average time taken to look up one index
pattern to process training queries. The total time cost of looking
up an index with k patterns Pk is k|Q|r. And the total saving of
the query-processing time is Gain(Pk)−k|Q|r. We stop selecting
more patterns if the increase of the Gain function by selecting one
additional index pattern is smaller than the increase of the index-
lookup cost. The algorithm selects k′ patterns, Pk′ , such that k′

is the smallest number with Gain(Pk′+1) − Gain(Pk′) < |Q|r.
The total saving of the query-processing time decreases if we se-
lect more than k′ patterns, because ∀k′′ > k′, Gain(Pk′′+1) −
Gain(Pk′′) ≤ Gain(Pk′+1) − Gain(Pk′) < |Q|r. The above
inequality holds because Gain(P ) is a submodular function (see
Section 4.2).

In related works [3, 20, 21], the index-lookup cost is set to be
the time cost of the subgraph isomorphism test from p to queries.
In this paper, the index-lookup cost is largely reduced because of
the use of LW-index (Section 3.2). Thus, we set r to be a small
constant, e.g., 2 in Section 6.

NP-Hardness: Before showing the pattern-mining problem is
NP-hard, we first re-write the gain function defined in Equation 3.

w(g, q) = maxp∈Pw(g, q, p) (4)

w(g, q, p) =






c(g) p ⊆ g ∧ p $⊆ q
c(p) p ⊆ g ∧ p ⊆ q
0 p $⊆ g

Equation 4 is equivalent to Equation 3, because (1) if there exists
an index pattern pi ∈ P that can help filter the graph g for query
q, pi ⊆ g ∧ pi $⊆ q, then w(g, p) = c(g) ≥ max∀p⊆gc(p). (We
define c(g) as a monotonically increasing function, that is, c(g) ≥
c(p) if g ⊇ p). (2) otherwise, if g can not be filtered for the query q,
then, w(g, p) = c(pref(g)) = maxp⊆gw(g, q, p) = c(pj), and g
chooses pattern pj as its prefix. Hence,

P = argmax
P⊂H,|P |≤k

Gain(P )

= argmax
P⊂H,|P |≤k

∑

q∈Q

∑

g∈G

w(g, q)

= argmax
P⊂H,|P |≤k

∑

q∈Q

∑

g∈G

maxp∈Pw(g, q, p) (5)

To show that the pattern-mining problem is NP-hard, we give
a reduction from a known NP-hard problem, the weighted max-k-
coverage problem.

DEFINITION 4 (WEIGHTED MAX-K-COVERAGE). Given a uni-
verse of n elements U = {e1, e2, . . . , en}, each of which has a
weight w(ej), and a collection of sets {S1, S2, . . . , Sm}, where
Si ⊆ U , find k sets such that

∑
w(ei)y(ei) is maximized, where

y(ei) = 0 if ei is not covered by any of the selected sets, or
y(ei) = 1 otherwise.

CLAIM 1. max-k-coverage is polynomial-time (Karp) reducible
to Pattern Mining.

PROOF. The pattern mining problem is a generalization of the
weighted max-k-coverage problem. In the pattern-mining problem,

the universe contains all (g, q) pairs, U = {(g, q)|g ∈ G, q ∈ Q},
and each pattern is a set S(p) ⊆ U where S(p) covers the ele-
ment (gi, qj) with weight w(gi, qj , p) if w(gi, qj , p) > 0. Hence,
we can reduce the max-k-coverage problem to the pattern-mining
problem by first representing each element e! to a (g, q) pair, e! =
e(gi,qj), and then assigning the weight of w(e(gi,qj)) to w(e!),
∀i, j, in polynomial time.

4.2 A Greedy Algorithm
We propose a greedy algorithm to solve the pattern-mining prob-

lem with approximation guarantee. The algorithm greedily chooses
an unselected pattern in each iteration maximizing the increase of
the objective function. Algorithm 2 describes the procedure in de-
tail. At line 5, the pattern with the maximum increase, Gain(P ∪
{h}) − Gain(P ), is selected, where P is the set of patterns se-
lected before the start of this iteration. The algorithm terminates
when k patterns are selected (line 4), or no candidate patterns have
Gain(P ∪ {h}) − Gain(P ) greater than |Q|r, where |Q|r is the
index-lookup cost (lines 6-8).

Algorithm 2 Greedy Algorithm for Pattern Mining

Input: Frequent Subgraph H
Output: k Index Patterns P , cost r
1: P ← ∅
2: //Objective function defined in Equation 5
3: Define Gain(P ) =

∑
q∈Q

∑
g∈G maxp∈Pw(g, q, p)

4: while |P | < k do
5: Find the pattern h ∈ H \P with the maximum increase of the ob-

jective function, Gain(P ∪ {h})−Gain(P )
6: if increase < |Q|r then
7: break
8: else
9: P ← P ∪ h

10: end if
11: end while
12: return P

The approximation ratio of the greedy algorithm is 1 − 1/e,
which means Gain(Pgre) ≥ (1 − 1/e)Gain(Popt), where Pgre

is the set of patterns found by the greedy algorithm and Popt is the
optimal solution. This is because the objective function Gain(P )
is a monotone submodular function. Gain(P ) is a monotonically
increasing function because Gain(P ) will not decrease by index-
ing more patterns. Next, we prove Gain(P ) is submodular. See [6]
for the proof of the approximation ratio.

CLAIM 2. The Gain function is submodular, that is, Gain(P ∪
{h}) − Gain(P ) ≤ Gain(O ∪ {h}) − Gain(O), given O ⊂ P
and ∀h $∈ P .

PROOF. Based on Equation 5,

Gain(P ∪ {h})−Gain(P )

=
∑

q∈Q

∑

g∈G

(maxp∈(P∪{h})w(g, q, p)−maxp∈Pw(g, q, p))

=
∑

q∈Q

∑

g∈G

max{0, (w(g, q, h)−maxp∈Pw(g, q, p))},

because in P ∪{h}, if h does not achieve maxp∈(P∪{h})w(g, q, p)
then some p in P provides it and the difference is 0. Similarly,

Gain(O ∪ {h})−Gain(O)

=
∑

q∈Q

∑

g∈G

max{0, (w(g, q, h)−maxp∈Ow(g, q, p)}.

maxp∈Pw(g, q, p) ≥ maxp∈Ow(g, q, p), because P ⊃ O. Hence,
Gain(P ∪ {h})−Gain(P ) ≤ Gain(O∪ {h})−Gain(O).
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Time complexity: Algorithm 2 computes the increase of the
objective function for any h ∈ H in each iteration of the while
loop (lines 4-10), and it takes O(|G||Q|) time to compute the in-
crease. Therefore, the greedy algorithm has a time complexity of
O(k|H||G||Q|), which is not scalable to large datasets. In order to
reduce the running time, we introduce an easy-to-compute function
to approximate the objective function, so that the greedy algorithm
optimizing the approximate objective function can be applied to
large datasets.

4.3 An Approximate Objective Function
Computing Gain(P ) is time consuming because it is the sum-

mation of w(gi, qj) for all gi ∈ G and qi ∈ Q (Equation 4). In this
subsection, we propose an easy-to-compute score, appGain, to ap-
proximate the Gain function. appGain is defined with the distri-
butions of queries instead of using the training queries explicitly.
The increase of the approximate objective function appGain(P ∪
{p}) − appGain(P ) (line 5 of Algorithm 2) can be computed in
O(|G|) time, which is much smaller than the O(|G||Q|) time com-
plexity of computing the increase of the Gain function.

DEFINITION 5 (APPROXIMATE OBJECTIVE FUNCTION).

appGain(P ) =
∑

g∈G

w′(g) =
∑

g∈G

maxp∈Pw
′(g, p) (6)

w′(g, p) =

{
|Q|(Pr(q ⊇ p) · c(p) + Pr(q $⊇ p) · c(g)) p ⊆ g
0 p $⊆ g

Pr(q ⊇ p) is the probability that a query q contains a pattern p as
a subgraph.

We explain the definition of w′(g, p) by relating it to the function
w(g, q, p).

w′(g, p) =
∑

q∈Q

w(g, q, p). (7)

The derivation is as follows:
(1) when p $⊆ g, w′(g, p) =

∑
q∈Q w(g, q, p) = 0;

(2) when p ⊆ g,

w′(g, p) = |Q|(Pr(q ⊇ p) · c(p) + Pr(q $⊇ p) · c(g))

=
∑

q⊇p

c(p) +
∑

q &⊇p

c(g) =
∑

q∈Q

w(g, p, q).

However, w′(g) ≤
∑

q∈Q w(g, q) because

w′(g) = maxp∈Pw
′(g, p) = maxp∈P

∑

q∈Q

w(g, q, p)

≤
∑

q∈Q

maxp∈Pw(g, q, p) =
∑

q∈Q

w(g, q).

Hence, appGain(P ) < Gain(P ). However, we argue that
patterns selected to maximize appGain(P ) are similar to those
selected to optimize Gain(P ). The reasons are twofold: firstly,
w′(g, p) =

∑
q∈Q w(g, q, p). That is, w′(g) equals to w(g, q) if P

contains non-overlapping patterns. Two patterns are non-overlapping
if !(g, q) that is covered by both patterns with non-zero weight.
Secondly, patterns selected are irredundant. For example, if two
redundant patterns pi and pj have similar supporting sets on both
G and Q, then, for each database graph g, the score w′(g, pi) ≈
w′(g, pj). Assuming pi is first selected, then pj will not be selected
because the approximate objective will not increase by selecting pj ,
given

∑
g∈G maxp∈Pw

′(g, p) ≈
∑

g∈G maxp∈P∪{pj}w
′(g, p).

This approximate objective function is a monotone submodular
function, as can be shown similarly as Claim 2. Hence, the same

greedy algorithm can be applied to optimize appGain with an ap-
proximation ratio of 1− 1/e. The greedy algorithm runs with time
O(k|H||G|) and space O(|H||G|).

4.4 A Memory-Efficient Algorithm
Algorithm 2 pre-computes and stores all frequent subgraphs H

and their supporting sets in-memory for random access. This is
memory inefficient and not scalable for large datasets, because the
number of frequent subgraphs grows exponentially with the de-
crease of the minimum support. The worst-case space complex-
ity of a pattern mining algorithm is O(k|G|) because the memory
should be big enough to hold all the k selected patterns and their
value sets. In this section, we propose a memory-efficient algo-
rithm, which only stores k index patterns in memory. The algo-
rithm replaces an in-memory pattern p′ with a new subgraph h if h
is “better” than p′ for filtering and prefix-sharing.

Algorithm 3 enumerates frequent subgraphs one after another
according to the DFS code order [16]. The first k enumerated sub-
graphs are first selected and stored in memory. Then, for each new
subgraph h, the algorithm computes the value Gain(P ∪ {h}) −
Gain(P ), where P is the k subgraphs in memory. The algorithm
also finds an in-memory subgraph p′ ∈ P , p′ = argminp∈P

(Gain(P )−Gain(P \ {p})). The algorithm replaces p′ with h if
Gain(P ∪{h})−Gain(P ) > 2 · (Gain(P )−Gain(P \{p′})),
or discards h otherwise. The factor 2 is set to archive a 1/4 approx-
imation ratio (see Appendix A). The algorithm enumerates the next
subgraph and goes through the same procedure until no subgraphs
can be enumerated.

Algorithm 3

Input: Current Database G, Recent Queries Q
Output: Selected Patterns P
1: A Subgraph Enumerator E
2: P← The first k enumerated subgraphs
3: while E has next subgraph do
4: h = E.nextsubgraph
5: Inc← appGain(P ∪ {h})− appGain(P )
6: Find p′ = argmin

p∈P
(appGain(P )− appGain(P \ {p})).

7: if Inc > 2 · (appGain(P )− appGain(P \ {p′})) then
8: Replace p′ with h
9: else

10: Discard h
11: end if
12: end while

Algorithm 3 is adapted a swap-based algorithm for the stream
set-cover problem [11] and it has an approximation ratio of 1/4.
We prove the approximation guarantee in Appendix A. Although
the worst-case approximation ratio of the memory-efficient algo-
rithm is smaller than that of the greedy algorithm, 1/4 < 1− 1/e,
their empirical performance are almost the same (Section 6).

Time Complexity: Algorithm 3 has a time complexity of O(k ·
s|G| + |H||G|). O(|H||G|) time is spent on computing Inc for
each frequent subgraph h ∈ H (line 5). O(k · s|G|) time is spent
on finding the pattern with the minimum score, where s is the num-
ber of times that the algorithm searches for the pattern with the
minimum score (line 6). The algorithm recomputes the min-score
pattern only after it replaces the min-score pattern with a newly
enumerated pattern (line 8). Therefore, s" |H|.

Large Dataset: Given a large-scale database G that cannot fit
in the memory, the memory-efficient algorithm is still time and
space consuming to run. To overcome this difficulty, we propose
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a two-step pattern-mining and index-construction algorithm: (1)
we randomly pick a set of graphs G′ ⊂ G and mine index pat-
terns P out of G′ by Algorithm 2 or Algorithm 3, (2) we build
the value sets of P on G. The rationale behind this strategy is
that G′ preserves the structural properties of the whole database
G; hence, the index patterns mined out of G′ are close to those
mined from G [17]. In addition, specifically for prefix sharing,
each database graph g chooses its prefix pi ∈ P according to
c(pi), pi = argmaxp⊂g∧p∈P c(p). Therefore, the prefix selec-
tion can be applied after the pattern-selection algorithm find the k
index patterns. Hence, the construction of the index can be split
into the above two steps.

5. QUERY-WORKLOAD VERSUS NOQUERY
Previous approaches such as GPTree [20], PrefixIndex [21] and

IGQuery [4] do not use any query workload. We will refer to such
approaches as NoQuery approaches. In essence, these algorithms
use the distribution of subgraphs in the database as a surrogate to
having a query workload. Our algorithm can take a query workload
and create an index based on that. Or, it can create the index by se-
lecting patterns based on distribution of subgraphs in the database.

We acknowledge that the use of the training queries is a double-
edged sword. On one hand, it can help mine better index patterns
to process SPS queries faster than NoQuery approaches that do not
use a query workload. On the other hand, using a query workload
may cause overfitting. Also, when the query interest changes, pat-
terns mined with the old training queries may not perform well on
the new queries. However, we show the results for a “cold” start
where a query workload is not available in Section 6. Our algo-
rithm works reasonably well.

5.1 NoQuery Approaches
The patterns mined by the NoQuery approaches do not optimize

the real query-processing time. The savings of the real query-
processing time by using GPTree patterns and PrefixIndex patterns
vary based on the query workload. The analysis on GPTree (signif-
icant subgraphs) can be applied on IGQuery patterns to show that
the filtering gain of IGQuery is also query dependent.

Prefix-Sharing Gain: Both GPTree [20] and PrefixIndex [21] se-
lect patterns, P , to maximize the prefix-sharing gain, which is de-
fined as

∑
p∈P (|E(p)|−1)·c(p), where E(p) is the set of database

graphs having p as the prefix [20, 21]. As each database graph
chooses only one prefix [20, 21], it can be shown that

∑
p∈P |E(p)| =

|G|. The prefix-sharing gain measures the savings enabled by prefix-
sharing over the time taken to verify all database graphs G. In the
filter+verify framework, most of the false graphs are filtered and
only the candidate graphs are verified. Therefore, the above objec-
tive function failed to capture the real saving of the time by pre-
fix sharing when filtering is also used. The candidate graphs veri-
fied using an isomorphism test depends upon the query workload.
In other words, the set of index patterns mined without training
queries does not optimize the real prefix-sharing gain and thereby
does not create an optimal index.

Filtering Gain: GPTree selects significant subgraph patterns for
filtering based on heuristics [20]. A pattern pi is significant if
|G(pi)| ≥ δmin| ∪pj∈P,pj⊃pi G(pj)|. Significant patterns are
not mined to optimize the real filtering gains because of two rea-
sons. First, GPTree is constructed by only removing the redun-
dancy between patterns with containment relationships. Hence,
given two patterns p1 and p2 with similar supporting sets on both
G and Q, and p1 $⊆ p2 ∧ p2 $⊆ p1, then GPTree will select
both patterns for indexing, although selecting both will not save

more verification time than selecting only one of the two. Sec-
ond, the filtering gain of indexing significant subgraphs depends
on the query distribution PrQ(q). That is, given the complete set
of frequent subgraphs H , the filtering gain of indexing all H is
filG =

∑
q PrQ(q)(|G|−|C(q)|), where C(q) is the set of candi-

date graphs that need to be verified by SGIs. For exclusive-logic fil-
tering, C(q) = G−∪p∈nosub(q,H)G(p) = G−G(nosub(q,H)),
where nosub(q,H) = {p ∈ H, p $⊆ q}. Therefore,

filG =
∑

q

PrQ(q)|G(nosub(q,H))| =
∑

∀F⊂H

PrQ(F )|G(F )|,

where F is a subset of patterns and PrQ(F ) denotes the probability
that a query graph q uses patterns F for filtering.

It is not practical to index all frequent subgraphs. Instead, a small
set of patterns P is mined for indexing. Correspondingly, instead
of F , FP = F ∩ P is used for filtering. Inevitably, the verification
time increases because the candidate set generated by FP is not as
tight as that generated by F . Significant subgraphs are mined to
minimize the verification time increase heuristically.

filG(H)− filG(P ) =
∑

∀F⊂H

PrQ(F )|G(F )|(1− |G(FP )|
|G(F )| )

GPTree removes insignificant pattern p from F if |G(p)| <

δmin|∪pj∈P,pj⊃pG(pj)|, which is a heuristic to confine |G(FP ))|
|G(F )| >

δmin
−n when |F − FP | = n. Therefore,

filG(H)− filG(P ) <
∑

∀F⊂H

PrQ(F )|G(F )|(1− δmin
−n)

Thus, both the increase of the verification time and its upper bound
depend on the underlying query distribution PrQ. Therefore, the
real filtering gain of the GPTree patterns is query dependent.

5.2 Training Queries
No training queries: When there are no training queries avail-

able, it is common to use the graph database as a surrogate of
the training queries, based on the assumption that the database
graphs have similar statistical distributions to the queries. This
strategy has been prevalently used in graph pattern mining [14, 3,
19], database tuning and other related fields and can also be used
with our method.

Overfitting: To avoid overfitting index patterns to a special set of
queries, our objective function is defined by Pr(q ⊃ p), the prob-
ability of a query containing a pattern (Equation 6). Hence, instead
of fitting to a set of training queries, our index patterns are mined
to fit to a class of queries that have similar statistical properties.

Change of query interest: When the query interest changes, in-
dex patterns mined with the old training queries may not perform
well on the new queries. In this case, the index patterns need to be
re-mined to accommodate the query change. One key challenge is
to monitor queries and decide the time to invoke an update of the in-
dex. Pr(q ⊃ p) can be used to monitor the shift of the query inter-
est. When the probability in the recent queries qnew differs largely
from that in the training query workload, the index patterns need
to be re-mined. KL divergence can be used to measure the differ-
ences. Monitoring the divergence does not incur significant extra
cost except for maintaining the probability Pr(q ⊃ p), ∀p ∈ P .
Yuan, et al. have proposed pattern and index updating algorithms
for subgraph search [19]. Similar approaches can be applied to up-
date supergraph search patterns. The pattern update algorithm is
beyond the scope of this paper and we plan to study in the future
work.

835



When the query interest changes, the real time savings of the
NoQuery approaches [20, 21, 4] vary based on the query workload
(see Section 5.1). Because the NoQuery approaches do not model
query distribution, they can not be updated to accommodate the
change of the query interest.

6. EXPERIMENT
We compare LW-index with cIndex [3], GPTree [20], and Pre-

fixIndex [21]. We focus on studying the performance of single
queries and hence, do not study IGQuery because it outperforms
other indexes mainly on batch-query processing [4]. We evaluate
both cIndex-BottomUp (c(BU)) and cIndex-TopDown(c(TD)). For
LW-index, we evaluate both the greedy algorithm (Algorithm 2)
and the memory-efficient algorithm (Algorithm 3) and denote them
as LW(G) and LW(M) respectively. We use the greedy algorithm,
LW(G), by default on moderate-sized datasets. We use LWk to de-
note the case when k is specified.

Parameters: For cIndex-TopDown, we set the number of train-
ing queries in each leaf node to be 100, as suggested in the original
work [3]. For PrefixIndex, we consider the 2-level Hierarchical
PrefixIndex. The exact pattern-mining algorithm is used in GP-
Tree. The index-lookup cost of our algorithms, r, is set to 2 except
when noted differently.

Dataset: We test our algorithm on four datasets. (1) The AIDS
dataset [20, 21, 3] contains more than 40,000 chemical molecules.
First, we mine frequent subgraphs from the AIDS dataset with a
minimum support of 0.5% and obtain more than 500, 000 sub-
graphs. Then, we uniformly sample 5 databases from the sub-
graphs, with size 20, 000, 40, 000, 60, 000, 80, 000 and 100, 000
respectively. We randomly pick 10, 000 graphs from the AIDS
dataset as training queries, and pick another 2, 000 for testing. This
setting is similar to that in related works [3, 4, 20, 21]. (2) To study
the scalability of LW-index on large graphs, we construct a graph
database with the AIDS graphs and generate queries by merging
the AIDS graphs using a graph integration algorithm [4]. Each
query graph is generated by first randomly selecting n database
graphs, where n ∼ N (6, 2), and then merging them into a query
graph. 10, 000 training queries and 2, 000 test queries are gener-
ated in this way with an average edge count of 216 and an aver-
age node count of 184. Each query graph contains more than 40
AIDS graphs as subgraphs. (3) We also study the system call de-
pendency graphs of 2631 malware samples [1] with nodes repre-
senting system calls and directed edges representing dependencies.
We mine frequent subgraphs with the minimum support δ = 0.05
and then randomly sample 40, 000 to create the database. We gen-
erate 14973 queries by partitioning each dependency graph into
densely connected communities. We randomly pick 8, 000 queries
for training and another 2, 000 for testing. (4) We randomly gener-
ate four synthetic graph datasets with density 0.2, 0.3, 0.4 and 0.5
respectively, where the density is defined as the ratio between the
edge count and the square of node count [5]. For each dataset,
we select 8, 000 graphs as training queries and 2, 000 for test-
ing. Then, we construct a 40, 000-graph database for each dataset
by randomly picking frequent subgraphs mined from the synthetic
graphs with the minimum support δ = 0.05.

We implement GPTree, PrefixIndex, and cIndex within the same
framework for fair comparison. We store the value sets in memory
for fast index-lookup. We use the ParMol package [9] to parse
chemical molecules and mine frequent subgraphs. We tested the
pattern-mining algorithms on a machine with 32G RAM, and the
indexes are tested with a maximum heap size of 4G.

6.1 AIDS Small Graphs

6.1.1 LW-index Vs. Others
In this subsection, we mine index patterns on the dataset G4

(40,000 graphs) with minimum support 0.01.

Table 2: Index Construction on G4 with MinSup 0.01
Index Freq

Time
pattern Count Mine

Time
Mine
Space

LW-index 60 s 641 8.3 s 11.3 MB
PrefIndex 30 s 706/87 10.5 s 11.2 MB
GPTree 30 s 972/228/1267 6.2 s 11.2 MB
c(BU) 60 s 264 1807 s 64 MB
LW-indexk 60 s 264 4.1 s 11.3 MB
c(TD) 60 s 1130 455 s 48MB

Pattern Mining: Table 2 shows the performance of various in-
dexes on pattern mining. We mine the frequent subgraphs using
the GSpan algorithm [16] and found 1511 frequent subgraphs. The
frequent-subgraph-mining time is shown in Column 2. cIndex(BU/TD)
and LW-index take longer than GPTree and PrefixTree. This in-
crease is because cIndex(BU/TD) and LW-index also compute the
containment relationship between the frequent subgraphs and the
training queries. Column 3 shows the number of selected index
patterns. For PrefixIndex, 706 patterns were selected for the base-
level index and 87 more patterns were selected for the second-level
index. For GPTree, 972 significant patterns were mined to build the
CRGraph, 228 patterns were mined to build the FGPTree and 1267
patterns were mined as prefix patterns in GPTree. c(BU) mines pat-
terns with r = |Q| (as specified in the original work [3]), so that
the mining algorithm stops when none of unselected subgraphs can
increase the objective function by r. As a result, 264 patterns were
selected. To make the results comparable, we also build LW-indexk

with k = 264 index patterns (same as c(BU)). Column 4 shows the
running time of the pattern-mining algorithms. LW-index has com-
parable running time with PrefixIndex and GPTree. c(BU) runs 200
times slower than LW-index on pattern selection. c(TD) runs faster
than c(BU) on pattern selection, and this is coherent to the original
work [3]. Column 5 shows the memory consumption of the pattern
selection. LW-index, PrefixIndex and GPTree have similar memory
costs because they all have a space complexity of O(|H||G|).

Query Processing: Figure 3(a) shows the time taken to process
2, 000 test queries, which have an average edge count of 25. LW-
index and LW-indexk have the smallest verification time, which
proves the effectiveness of our pattern selection algorithm. In ad-
dition, LW-index has the smallest index-lookup time. Figure 3(b)
shows the time taken to process 2, 000 test queries, which have an
average edge count of 35. In comparison to Figure 3(a), the verifi-
cation time increases on larger queries and it dominates the overall
query-processing time. The 35-edge test queries and the 25-edge
training queries have different edge counts, but they are sampled
from the same dataset and they have similar probability of contain-
ing subgraphs. Therefore, the index patterns mined with edge-25
training queries work well on queries with 35 edges. LW-index is
the fastest on query processing in comparison to other indexes.

Cold Start: We also mine index patterns with a cold start when
no training queries are available. LW-index(Cold) is constructed
with those index patterns. As shown in Figure 3(a) and 3(b), LW(Cold)
has similar index-lookup time to LW-index. In addition, the verifi-
cation time for LW(Cold) is only slightly higher than that of LW-
index, both of which are much smaller than that of other indexes.

6.1.2 Varing-MinSupport Patterns
We mine index patterns with minimum support, δ, ranging from

0.006 to 0.05.
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Figure 3: Performance of Index Patterns Mined with MinSupport 0.01 on the AIDS Small Datasets
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Figure 4: Performance of Index Patterns Mined with Different MinSupports on G4, 35-edge Testing Queries

(1) LW-index (both LW and LWk) maintains a much smaller
index-lookup time than other indexes over different δ, as shown
in Figure 4(a).

(2) In addition, as shown in Figure 4(b), LW-index has the small-
est verification time of all the indexes and the verification time de-
creases with the decrease of δ as more subgraph patterns are se-
lected for indexing. The reasons for the small verification cost are
twofold: first, LW-index patterns can prune more false graphs than
other patterns, as shown in Figure 4(c); second, LW-index patterns
are effective in prefix indexing candidate graphs, so that the veri-
fication time is further reduced. GPTree filters a comparable num-
ber of false answers as LW-index (Figure 4(c)). However, GPTree
indexes a large amount of significant subgraphs and thus its index-
lookup time is high, as can be seen in Figure 4(a) and Figure 5(a).

(3) LWk achieves the second smallest verification time (Fig-
ure 4(b)). Although, as shown in Figure 4(c), LWk does not fil-
ter as many false graphs as cIndex(TD/BU), the verification time
of LWk is much lower than that of cIndex. This is because LWk

also optimizes the prefix-sharing gain, which is not considered in
cIndex(TD/BU). This observation further proves the benefit of the
prefix-sharing methods. In addition, LWk filters less false graphs
than GPTree, because it indexes much less patterns than GPTree.
For example, 3468 patterns are indexed by GPTree at δ = 0.006,
in comparison to the 283 patterns indexed by LWk. However, the
verification time of LWk is lower than that of GPTree. This reduc-
tion is because LWk optimizes the prefix-sharing gain over candi-
date graphs, but GPTree optimizes the prefix-sharing gain over all
database graphs (Section 5). In the filter+verify framework, only
the candidate graphs need to be verified. Thus, patterns mined by
GPTree do not perform as well as those mined by LW-index.

(4) PrefixTree does not filter as many false graphs as other meth-
ods, as shown in Figure 4(c), because the index patterns are mined
considering only the prefix-sharing gain. The prefix-sharing gain
is measured over all database graphs and not only on candidate
graphs. Correspondingly, the verification time of PrefixTree is higher

than that of GPTree, LW-index and LWk, as shown in Figure 4(b).

6.1.3 Varying-sized Datasets
Table 3: Index Large Datasets

Data Selected
patterns

Selection
Time

Space Lucene
Time

G2 479 3 s 6MB 26s
G6 762 14 s 12MB 78s
G8 861 20s 22MB 111s
G10 927 24 s 28MB 143s

We study the performance of LW-index on graph databases of
different sizes. We mine index patterns with a minimum support of
0.01, and obtain 1500 to 1600 frequent subgraphs. Table 3 shows
the cost for index pattern mining. We show the results of the exper-
iments using dataset G4 in Table 2. As can be seen, the running-
time and space cost of the greedy pattern-mining algorithm is linear
with respect to the size of the database. Figure 3(c) shows the time
for processing 2000 queries that have an average edge count of 35.
The query-processing time is also linear with respect to the size of
the graph database.

6.2 AIDS Large Graphs
In this section, we study large database graphs. We set the mini-

mum support as {0.05, 0.03, 0.02, 0.01, 0.008}. Correspondingly,
4098, 9873, 18629, 51353, and 69777 frequent subgraphs are mined.
The number of frequent subgraphs grows significantly with the de-
crease of the minimum support. This shows the necessity of pattern
mining and selection. We omit c(BU) because it does not perform
as well as c(TD) as shown in the previous experiments and related
work [20].

6.2.1 LW-index Vs. Others
Pattern Mining: Table 4 shows the time costs of index pattern

mining. The time for frequent subgraph mining is shown in Col-
umn 3. Column 4 shows the number of selected index patterns.
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Table 4: Pattern Mining on Large Graphs with Diff δ
δ Index T Selected Count Time
0.05 LW-index 1,753 s 349 45 s

PrefIndex 206 s 442/44 34 s
GPTree 206 s 2227/99/1247 51 s
c(TD) 1,753 s 3072 6,982s

0.03 LW-index 3225 s 464 90 s
PrefIndex 324 s 530/61 99 s
GPTree 324 s 5524/184/1883 303 s
c(TD) 3225 4839 12860s

0.02 LW-index 4,635 s 539 171 s
PrefIndex 403 s 602/70 217 s
GPTree 403 s 10759/298/2334 1,126 s
c(TD) 4,635 s 5809 19,683 s

0.01 LW-index 7,686 s 731 310 s
PrefIndex 561 s 664/100 679 s
GPTree 561 s 31144/632/3149 8,472 s
c(TD) 7,686 s 6713 36,319 s

0.008 LW-index 8,838 s 794 381 s
PrefIndex 612 s 702/107 1,007 s
GPTree 612 s 43002/800/3370 15,916 s
c(TD) 8,838 s 6900 43,582 s

Similar to that in Table 2, for PrefixIndex, the two numbers to-
gether denote the pattern count in the two-level indexes. As can be
seen, both LW-index and PrefixIndex selects index patterns judi-
ciously, so that the number of index patterns grows stably with the
decrease of the minimum support, although the total number of fre-
quent subgraphs increases significantly. On the contrary, the num-
ber of index patterns mined by GPTree increases significantly with
the decrease of the minimum support. This increase leads to a cum-
bersome index, which is costly to construct and lookup with respect
to time. The running time for pattern selection algorithms is shown
in Column 5. LW-index is faster than the other algorithms. c(TD)
is almost 200 time slower than LW-index on pattern selection. GP-
Tree mines significant and frequent subgraphs by first finding the
containment relationships of all frequent subgraphs. It is gener-
ally slow given large number of frequent subgraphs. LW-index is
2 to 3 times faster than PrefixIndex in practice. This is because
the PrefixIndex constructed here is a 2-level hierarchy index, and
the running time also includes the frequent subgraph mining and
pattern selection time for the level-2 patterns.

Query Processing: As seen in Figure 5(a), the index-lookup
time increases for all indexes with the decrease of the minimum
support. Figure 5(b) shows the decrease of the verification time for
all indexes with increasing number of index patterns. Figures 5(a)
and 5(b) show that indexing more patterns reduces the verifica-
tion time but increases the index-lookup time. LW-index balances
these two time components using the index-lookup penalty r. For
indexes storing the value sets on disk, r should be set to a larger
value because the value-lookup time increases with intensive disk
operations. For GPTree, because the significant and frequent pat-
terns are selected based on heuristics, the number of selected pat-
terns is hard to control. As shown in Figure 5(a), the index-lookup
time for GPTree grows significantly when a large number of index
patterns are selected at low minimum support. Although the ver-
ification time decreases with more indexing patterns, it does not
compensate for the increase of the index-lookup time. Hence, the
overall query-processing time of GPTree increases significantly, as
shown in Figure 5(c).

6.2.2 Greedy Vs. Memory-Efficient
In this section, we study the performance of the two pattern se-

lection algorithms, the greedy algorithm (LW(G)) and the memory-
efficient algorithm (LW(M)) on the large dataset.

Memory: As can be seen in Figure 6(a), the number of fre-
quent subgraphs, |H|, grows significantly when minimum support
δ decreases. Accordingly, the memory usage of LW(G) grows sig-
nificantly because the greedy algorithm has a O(|H||G|) space
complexity. However, the number of selected patterns, k, does not
change significantly, as in Table 4. As a result, the memory usage
of the memory-efficient algorithm only grows slightly, as shown in
Figure 6(a). This slow growth is because LW(M) has a theoretical
space complexity of k|G|.

Time: Recall that the greedy algorithm has a time complexity of
O(k|H||G|) and the memory-efficient algorithm has a time com-
plexity of O((k × s + |H|)|G|), where s is the number of times
that the algorithm replaces a selected pattern with a new subgraph
(section 4.4). The empirical running time of the two algorithms is
consistent with their theoretical time complexity, as shown in Fig-
ure 6(b). The running time of LW(M) grows at a much slower rate
than the running time of LW(G) because k × s + |H| " k|H|,
given that s" |H|.

Pattern Quality: Although the memory-efficient algorithm only
has an approximation ratio of 1/4, which is smaller than the 1 −
1/e approximation ratio of the greedy algorithm, the index patterns
mined by the memory-efficient algorithm perform as well as those
mined by the greedy algorithm on filtering and prefix-sharing, as
shown in Figure 5(b).

6.3 Other Datasets
Figure 7 shows the performance of our algorithm on the mal-

ware dataset. Index patterns are mined with the minimum sup-
port δ = 0.02. LW-index outperforms all other methods on the
index-lookup time. LW-index has similar verification time as GP-
Tree. However, because GPTree indexes many more patterns than
LW-index, its index-lookup time is significantly higher than that of
LW-index. As a result, GPTree has the longest query-processing
time.

We also study the performance of LW-index on synthetic datasets.
We change the graph density from 0.2 to 0.5, where the density is
defined as the ratio between the edge count to the square of the
node count. Figure 8 shows the index-lookup time (F), verification
time (V) and the total query-processing time (T) of LW-index, Pre-
fixIndex and GPTree separately. As can be seen, LW-index has the
smallest index-lookup time and total query-processing time. Al-
though GPTree has the smallest verification time, its total query-
processing time is higher than that of LW-index because its index-
lookup time is significantly longer than that of LW-index. Pre-
fixIndex has the longest verification time because it does not select
index-patterns to optimize the filtering gain. These observations
are consistend with what we observed on the AIDS dataset.
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Chen, et.al, first modeled the pattern-mining problem for SPS as
a NP-hard optimization problem [3]. They proposed a greedy algo-
rithm to solve the problem with an approximation ratio of 1− 1/e.
This model has three drawbacks. First, it only measures the filter-
ing gain; it does not consider the prefix-sharing gain. Second, the
model assumes that all SGIs take the same amount of time. Clearly,
verifying a 10-edge graph takes more time than verifying a 2-edge
graph. Third, the time complexity for the greedy pattern-selection
algorithm is O(|H||G||Q|), which is not scalable to large datasets
and query sets. Zhang, et al., proposed a heuristic-based algorithm,
selecting significant subgraph patterns for indexing [20]. A pattern
pi is significant if |G(pi)|6 |∪pj∈P,pj⊃pi G(pj)|. Although fast,
this heuristic-based pattern-mining algorithm only removes the re-
dundancy between patterns with containment relationships. In ad-
dition, the number of selected patterns increases significantly when
the number of candidate patterns H increases, because all the max-
imal frequent subgraph patterns are selected. A frequent subgraph
sg is maximal if no supergraphs of sg are frequent.

Zhang, et al. [20], and Zhu, et al. [21], proposed to solve the SSP
problem using prefix sharing. The query-processing time depends
on the prefix assigned to each database graph. Zhang, et al., proved
that the pattern-mining problem optimizing the prefix-sharing gain
is NP-hard and proposed a greedy algorithm with an approxima-
tion ratio of 1/2 [20]. Zhu, et al., further improved the algorithm
empirically by using a different greedy metric [21]. However, the
prefix-sharing gain that both algorithms optimize is measured over
all database graphs, and the real prefix-sharing gain should be mea-
sured over candidate graphs only, because the candidate graphs (not
the whole graph database) are verified in the query-processing al-
gorithm (see Section 5).

Cheng, et al., proposed a fast way of processing SPS queries in
batches [4]. Given a batch of queries Q, the algorithm first identi-
fies the common subgraphs of Q, SubQ, and the common super-
graphs of Q, SupQ. Based on the definition of the SPS, the answer
An(q) for each query q ∈ Q is lower bounded by An(SubQ)

and upper bounded by An(SupQ), given subQ ⊆ q ⊆ supQ.
Hence, the batch queries can be solved by first finding An(SubQ)
and An(SupQ), and then calculating An(q) for each query q, so
that candidate g ∈ An(SubQ) ⊆ An(q) can be directly included
in the answer set without verification and g $∈ An(SupQ) can be
pruned, thereby significantly reduces the number of SGIs. This
strategy can be applied to other algorithms, including LW-index.
Shang, et al., extended the SPS to similarity search and proposed a
no-pattern index, a global SG-Enum index, to facilitate the similar-
ity search [13].

8. CONCLUSION
We study the problem of selecting a set of optimal features for

an index in a graph database to facilitate answering supergraph
search queries. We address this pattern-mining problem so as to
optimize the savings of the query-processing time using both filter-
ing and prefix-sharing. Two algorithms are proposed to solve the
problem with approximation guarantees. In addition, we introduce
an LW-index to reduce the time of index-lookup. We show that the
LW-index with index patterns mined by our algorithms outperforms
other existing methods, including cIndex [3], PrefixIndex [21], and
GPTree [20], on processing SPS queries on a query workload over
an existing benchmark dataset.
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APPENDIX
A. APPROXIMATION GUARANTEE OF THE

MEMORY-EFFICIENT ALGORITHM
We show that Algorithm 3 has an approximation ratio at least 1/4. Our

proof strategy follows from that in Section 2.4 [11]. First, let each sub-
graph pattern p be modeled as a set sp, covering items (g, q) with weight
w(g, q, p) if w(g, q, p) > 0, as in the proof of Claim 1. Let Pt =
{p1, p2, . . . , pk} be the in-memory patterns selected by Algorithm 3 at it-
eration t. We omit t when its value can be derived from the context. We de-
fine rpj = {(g, q) ∈ spj |w(g, q, rpj , P ) > 0}, where w(g, q, rpj , P ) =
w(g, q, pj)−maxpi∈P∧i&=jw(g, q, pi). That is, the set rpj includes all
(g, q) elements, the weight of which decreases from w(g, q, pj) to
maxpi∈P∧i&=jw(g, q, pi) after pj is removed from P . Hence, w(P ) −
w(P \ {pj}) = w(rpj ) =

∑
(g,q)∈rpj

w(g, q, rpj , P ), where w(P ) is
the Gain function for patterns P . Similarly, for a new pattern h, we define
bh = {(g, q) ∈ sh|w(g, q, bh, P ) = w(g, q, h)−maxpi∈Pw(g, q, pi) >
0)}. Accordingly, w(P∪{h})−w(P ) = w(bh) =

∑
(g,q)∈bh

w(g, q, bh, P ).
Without loss of generality, we assume the optimal sets are pair-wise disjoint,
hence w(O) =

∑k
j=1 w(oj).

We define element charge and set charge similar to [11]. Element charge:
When an optimal set oi comes, a weight of w(g, q, boi , P ) is charged on
each of its element if oi is selected. Otherwise, a weight of w(g, q, boi , P )
is charged on each element of

⋃
sj∈S sj∩oi. Set charge: If the optimal set

oi is not selected by the algorithm, charge each element of rpj ,∀pj ∈ P

with
w(boi )w(g,q,rpj ,P )

w(P ) .

LEMMA 1. Each in-memory set spj gets a set charge of at most
2w(rpj )

k
for each optimal set oi which is not selected by Algorithm 3. The total set-
charge in the final selected patterns P is at most 2w(P ).

PROOF. By definition, rpj ⊆ spj and rpj ∩ rp′j
= ∅ for j )= j′.

As oi is not selected, we have, w(boi ) ≤ 2 · w(rpj ), ∀pj ∈ P . Hence,
k · w(boi ) ≤ 2

∑k
j=1 w(rpj )) ≤ 2w(P ). Therefore, any element e ∈

⋃k
j=1 rpj \ oi, set-charge on e is

w(boi )w(g,q,boi ,P )

w(P ) , which is at most
2w(g,q,boi ,P )

k . Set-charge on spj is at most
∑

e∈rpj \oi
2w(g,q,rpj ,P )

k ≤
2w(rpj )

k ≤
2w(spj )

k .
Transfer of set-charge follows a similar way as [11]: (1) If some set h

replaces spj in later iterations, for each element (g, p) ∈ spj \ rpj , the set
charge on spj for (g, p) can be transferred to sp′j

, where w(g, p, sp′j
) =

w(g, p, spj ). After the charge transfer, the charge on the set sp′j is at most
2w(rp′j

)/k. (2) Transfer the rest of the set charge on sj to h. Because
w(bh) ≥ w(rpj ), the set charge transferred to h is less than w(rpj ),
herein less than w(bh) ≤ w(rh). Therefore, the inequality holds after set-

charge transfer. All in all, the total set-charge is at most
∑k

i=1

2w(rpj )

k ≤
2w(P ).

LEMMA 2. The total element-charge in the final selected patterns P is
at most 2w(P ).

PROOF. Let P0 be the first k subgraph selected by Algorithm 3 and
Pf be the final set of subgraphs selected. Then w(Pf ) = w(P0) +∑

t≥1(w(bht ) − w(rp′t
)), where ht is the subgraph selected in iteration

t and p′t is the in-memory subgraph swapped out. Notice that w(bht ) ≥
2w(rp′t

). Hence,
∑

t≥1 w(rp′t
)) ≤ w(Pf ) − w(P0) < w(Pf ). There-

fore, the element-charge on removed elements is at most w(Pf ). Moreover,
the final cover can have an additional element-charge of at most w(Pf ).

Combining Lemma 1 and Lemma 2, we know that, the total set-charge
and element-charge of the final cover is at most 4w(P ). Moreover, it is
at least w(O). Hence, w(O) ≤ 4w(P ). We conclude that the memory-
efficient algorithm has an approximation ratio 1/4.
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