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ABSTRACT interactions between these proteins. Such graphs are constantly

Mining frequent subgraphs is an important operation on graphs; updated to include new proteins and their interactions. A critical

it is defined as finding all subgraphs that appear frequently in a task for piologists is 10 predict thg funptionality (and add the cor-
database according to a given frequency threshold. Most exist- responding label) of a new protein without experimental testing.

ing work assumes a database of many small graphs, but modernThe above task may be accurately preformed by mining frequent

applications, such as social networks, citation graphs, or protein- SUPgraphs with similar interactions to the new protein [5].

protein interactions in bioinformatics, are modeled as a single large COnsider the collaboration graggh of Fig. 1 and a user inter-
graph. In this paper we presenR&M 1, a novel framework for ested to mine important collaborations among authors. Typically,

frequent subgraph mining in a single large grapRA®!1 under- in SL_’Ch graphs, frequent sut_)graphs are mpst likely to s_how collab-
takes a novel approach that only finds thmimalset of instances orations among authors having the same field of work (i.e., collab-

to satisfy the frequency threshold and avoids the costly enumera_orations among DB researchers). In order to reveal more interest-

tion of all instances required by previous approaches. We alccom-ing subgraphs, the user would progressively reduce the frequency

pany our approach with a heuristic and optimizations that signif- threshold until sgbgraphs showing interdisciplinary collaboratiolns
icantly improve performance. Additionally, we present an exten- are discovered (i.e., among Al, DB and IR researcher;_). L_ogerln
sion of GRAMI that mines frequent patterns. Compared to sub- the frequency thrf.eshold. increases the number qfquallfled |nt.erme-
graphs, patterns offer a more powerful version of matching that diate !re_sults and intensifies the already expensive computations of
captures transitive interactions between graph nodes (like friend of the mining Process. For example, a state-of-the-art ”."eth"d for fre-
a friend) which are very common in modern applications. Finally, quent subgraph mining crashes after a day consuming 192GB for
we present C&AMI, a version supporting structural and semantic an input graph O.f .100K nodes and 1M edge_s._ Therefqre, the de-
constraints, and AGAMI, an approximate version producing re- velopment of efficient frequent subgraph mining a.lgorlthms that
sults with no false positives. Our experiments on real data demon- support Iarge graphs and_low frequency thresholds IS very C“JC"'?"-
strate that our framework is up to 2 orders of magnitude faster and Existing literature considers two settings: transactional and sin-

discovers more interesting patterns than existing approaches. gle graph. Theransactionakcase assumes a database of many, rela-
tively small graphs, where each graph represents a transaction [18,

29]. A subgraph is frequent if it exists in at leastransactions,

1. INTRODUCTION wherer is a user-defined threshold. In this paper, the focus is on the

Graphs model complex relationships among objects in a variety single-graptsetting that considers one large graph [17, 19, 20]. For
of applications such as chemical, bioinformatics, computer vision, this setting, a subgraph is frequent if it has at leasppearances
social networks, text retrieval and web analysis. Mining frequent in the graph. Such a context is required in many modern applica-
subgraphs is a central and well studied problem in graphs, and playstions, including social and PPI networks. T$iagle-graphsetting
a critical role in many data mining tasks that include graph classi- is a generalization of the transactional one, since a set of small
fication [9], modeling of user profiles [11], graph clustering [15], graphs can be considered as connected components within a single
database design [10] and index selection [31]. The goal of frequent large graph. Detecting frequent subgraphs in a single graph is more
subgraph mining is to find subgraphs whose appearances exceed aomplicated because multiple instances of identical subgraphs may
user defined threshold. This is useful in several real life applica- overlap. Moreover, it is more computationally demanding because
tions. Consider for example protein-protein interaction (PPI) net- complexity is exponential in the graph size.
works [5]. These networks are graphs where nodes represent pr ~ The most straightforward method to evaluate frequency of a sub-
teins (and are labeled with their functionality) and edges representgraph.S in a graphG is to look forisomorphism®f S in G [12,
16, 19, 20]. Isomorphisms are exact matches af G that pair
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of Fig. 1, subgrapl$; has three isomorphisms.
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appropriately extended ®&aM1. For instance in Fig. 1, &AM

may also considets = us 22 uo to be a match ofS; sinceus
(labeled DB) is indirectly connected s (labeled IR). The sec-
)2 ond extension, C8AMI, allows the user to define a set obn-
straints both structural (e.g., the subgraph is allowed to have up to
« edges) and semantic (e.g., a particular label cannot occur more
thana times in the subgraph). The constraints are used to prune
undesirable matches and limit the search space. The final exten-
sion, AGRAMI, is anapproximateversion, which approximates
subgraph frequencies. The approximation method may miss some
frequent subgraphs (i.e., has false negatives), but the retuened
sults arenot approximate (i.e., does not have false positives).
Noteworthily, GRAM| and its extensions support directed and
undirected graphs and may be applied to both single and multiple
labels (or weights) per node and edge.
In summary, our main contributions are:
e We propose ®AMI, a novel framework to mine frequent sub-
graphs in a large single graph.R&M 1 is based on a novel idea
3. Repeat Step 2 until no more frequent subgraphs can be found.  that refrains from computing and storing large intermediate re-
Existing approaches such asGRAM [20] use variations of this sults (appearances of subgraphs). A key part of the underlying
grow-and-store method. These approaches take advantage of the ideais to evaluate the frequency of subgraphs using CSP.
stored appearances to evaluate the frequency of a subgraph. Thee We offer a heuristic search with novel optimizations that signif-
main bottleneck of such algorithms is the creation and storage of icantly improve GRAMI’s performance by pruning the search
all appearances of each subgraph. The number of such appear- space, postponing searches, and exploring special graph types.
ances depends on the size and the properties of the graph and th@ We develop a variation of @M1 that is able to mine frequent
subgraph; it can be prohibitively large to compute and store, ren-  patterns, a more powerful version of matching that is required in

DB: DatabasesAl: Artificial Intelligence DM: Data Minin

Figure 1: (a) A collaboration graph G; nodes correspond to au-
thors (labeled with their field of work) and edges represent co-
authorship (labeled with number of co-authored papers). (b)
and (c) SubgraphsS; and Ss.

dering grow-and-store solutions infeasible in practice. several modern applications.

In this work, we propose ®Mi (GRAph Mining); a novel e We present C&AMI, a version that supports structural and se-
framework that addresses the frequent subgraph mining problem.  mantic constraints, and A@M 1, an approximate version which
GRAMI undertakes a novel approach differentiating it from grow- produces results with no false positives.

and-store methods. First, it stores only the templates of frequent We experimentally evaluate the performance ef®1 and dem-
subgraphs, but not their appearances on the graph. This eliminates ,,qyrate that it is up to orders of magnitude faster than existing
the limitations of the grow-and-store methods and allovisa@ | methods in large real-life graphs.

to mine large graphs and support low frequency thresholds. Also, . . .
it employs a novel method to evaluate the frequency of a subgraph.. The rest of the paper Is organized as fOHOW.S' Se?“?” 2 formal-
More specifically, @AMI models the frequency evaluation as a 1zes _the pro_blem. Section 3 pres_enus,@m and its _optlmlzatlons.
constraint satisfaction problenCEP. At each iteration, GAMI Section 4_d|scusses the extensions 6lBA 1. Section 5 presents
solves the CSP until it finds threinimalset of appearances that are the gxpenmental evaluation. Section 6 surveys related work, and
enough to evaluate subgraph frequency, and itignores all remainingsectlon 7 concludes.
appearances. The process is repeated by extending the subgraph
until no more frequent subgraphs can be found. 5 PRELIMINARIES

Solving the CSP can still take exponential time in the worstcase. A graph G = (V, E, L) consists of a set of noddg, a set of
In order to support large graphs in real-life application®A®I1 edgesE and a labeling functiod, that assigns labels to nodes and
employs a heuristic search and a series of optimizations that sig-edges. A graplt = (Vs, Es, Ls) is asubgraphof a graphG =
nificantly improve performance. More specificallyR&M1 in- (V,E,L)iff Vs CV,Es C EandLg(v) = L(v) forallv €
troduces novel optimizations thét) prune large portions of the Vs U Fs. Fig. laillustrates an example of a collaboration graph.
search spacéb) prioritize fast and postpone slow searches @)d Node labels represent author’s field of work (e.g., Databases) and
take advantage of special graph types and structures. By avoid-edge labels represent the number of co-authored papers. To sim-
ing the exhaustive enumeration of appearances and using the proplify presentation, all examples illustrate undirected graphs with a
posed optimizations, @M1 supports larger graphs and smaller single label for each node. However, the proposed methods also
frequency thresholds than existing approaches. For example, tosupport directed graphs and multiple labels per node/edge.
compute the frequent patterns of the 100K nodes/1M edges graphpefinition 1 Let § = (Vs, Es, Ls) be a subgraph of a graph
that the state-of-the-art grow-and-store method crashed after a day; — (V, E, L). Asubgraph isomorphisf S to G is an injective
GRAMI needs only 16 minutes. functionf : Vs — V satisfying(a) Ls(v) = L(f(v)) for all nodes

Additionally, we propose three extensions to the originahG®1 v € Vs, and(b) (f(u), f(v)) € EandLs(u,v) = L(f(u), f(v))
framework. The first one considers graphs such as social or re-for all edges(u, v) € Es.

search networks, that may contain incomplete information and tran-

sitive relationships. In such casexdirect relationships (like a . . .
friend of a friend) reveal neighborhood connectivity and proxim- such that each edge | is mapped to a single edge B and vice

ity information. To explore these relationshigmtternswere in- versa. This mapP'”g preserves the Ialbelsl?)n the nodes ar?d edges.
troduced [4, 17, 34]. Patterns establish a more powerful definition FOr €xample in Fig. 1, subgragh (v1 — v2 = v3) has three iso-

of matching, than subgraphs, that captures indirect connections bymorphisms with respect to grajgh namelyu, L oug Boug,us =
replacing edges with paths. To mine frequent patterns, we haveus 22 us andus - ug 22 ug.

Intuitively, a subgraph isomorphism is a mapping fréf to V
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The most intuitive way to measure the support of a subgraph in a
graph is to count its isomorphisms. Unfortunately, such a metric is
not anti-monotonesince there are cases where a subgraph appears
less times than its extension. For instance, in Fig. 1a the single node
subgraph DB appears 3 times while its extension-BER appears '
4 times. Having an anti-monotone support metric is of crucial im-
portance since it allows the development of methods that effec-
tively prune the search space; without an anti-monotone metric ex-
haustive search is unavoidable [12, 20]. The literature defines sev-
eral anti-monotone support metrics suchh@aimum image based
(MNI) [2], harmful overlap(HO) [12], andmaximum independent
sets(MIS) [20]. These metrics differ in the degree of overlap they ()
allow betvyeen subgraph isomorphisms, and the complexity of their Figure 2: (a) The distanceA, for the graph G of Fig. 1. (b) A
computation. In this paper, we adopt thNI [2] metric mainly pattern P;.
because it{a) is the only metric that can be efficiently computed;
the computation oMIS and HO are NP-complete [12, 20] and
(b) provides a superset of the results of the alternative metrics; if A,(us,u7r) = 1/4 + 1/20 = 0.3. Intuitively, a shorter distance
we are interested in tHdlS or HO metric we may pay their expen-  denotes a stronger collaboration. Fig. 2 illustrates the valugs,of
sive computational cost and exclude the unqualified subgraphs [12].for the graphG of Fig. 1. Solid lines correspond to the original
Formally, theMNI metric is defined as follows [2]. edges of the graph, while dotted lines illustrate some additional

Definition 2 Let f1, ..., fn be the set of isomorphisms of a sub- tran.si.ti_ons (for figure clarity, we do not show all transitions).
graphS(Vs, Es, Ls) in a graphG. Also letF (v) = {f1(v),..., Definition 3 A graphP = (Vp, Ep, Lp) is apatternof a graph
fm(v)} be the set that contains the (distinct) nodesinwhose G(\V,E,L) iff Vo C V, Lp(v) = L(v) for all v € Vp and
functionsfi, . .., f, map a nodev € Vs. Theminimum image ~ Lr(e) =0foralle € Ep.

based supporfMNI) of S in G, denoted by (S), is defined as In other words, a pattern is analogous to a subgraph but without
sq(S) =min{ t |t = |F(v)|forallv € Vs}. considering edge labels. For instance, a patfarof the graphG
is presented in Fig. 2b.

Definition 4 LetP = (Vp, Ep, Lp) be a pattern of a grapli’ =
(V, E, L), A be adistance metric function, aide a user-defined
distance threshold. pattern embeddingf P to G is an injective
functiong : Vp — V satisfying(@a) Lp(v) = L(¢(v)) for all nodes
v € Vp and(b) A(¢(u), p(v)) < 6 for all edges(u, v) € Ep.

For instance, for the subgraph of Fig. 1b and the grapt¥ of
Flg 18., we haVQE‘(’lh) = {U1,U5,u6}, F(’UQ) = {U3,U4,u8}
and F(vs) = {us,us,us}, thussg(S1) = 3. To compare, the
respectivéMIS metric is 2 since isomorphisms % u3 2 uy and
us -+ uy 22 us overlap and th&11S metric regards them as one.

The frequent subgraph mining problem is defined as:

Problem 1 Given a graphG' and a minimum support threshotd
the frequent subgraph isomorphism mining problerdefined as
finding all subgraphsS' in G such thatsg(S) > 7.

Problem 1 does not consider finding the actual number of ap-

pearances (i.e., frequency) provided that it is greater thafhis

is very useful in several applications [6, 20], but there are others

The minimum image based support for a pattern, denoted by
o (P), can be computed as in Definition 2 by replacing the iso-
morphismsfi, ..., fm with the pattern embeddingsi, ..., ¢..

For example consider Fig. 2; setting a threshbld 0.3, we have
oc(P1) = 2. The corresponding embeddings are illustrated by the
gray areas. Note that there are other possible match&s tut
only the indicated two satisfy the constraib{¢(u), ¢(v)) < 4.

that demand the exact number of appearances (like graph index-Problem 2 Given a graphG, a distance functiom, a distance
ing [31]). Also note, that Problem 1 is computationally expensive thresholds, and a minimum support threshotd thefrequent pat-

since it relies on thé/P-hard subgraph isomorphism problem [13].

tern embedding mining problem defined as finding all patterns

Definition 1 enforces matching on both node and edge labels. P of G such thatrg (P) > 7.

For instance in Fig. 1, subgraps, has only one isomorphism

(formed by nodes, u» andus). Recent research argues thatthis 3. THE GRAMI APPROACH

matching is rather restrictive, and relaxes it by allowing indirect  GraM; proposed a novel technique that addresses the frequent
relationships and differences between the edges of the graph andsybgraph mining problem without exhaustively enumerating all iso-
the subgraph [4, 17, 34]. Such frameworks may also consider sub-morphisms in the graph. To this endrGMI models the under-
graphus -+ us 22 u7 to be a match o, sinceDM andDB are lying problem as aonstraint satisfaction problerSection 3.1).
indirectly connected. We refer to this match as a pattern. For min- Following, Section 3.2 applies the model to solve the frequent sub-
ing frequent patterns, we adopt the pattern matching definition as graph problem. Section 3.3 proposes several optimizations to en-
outlined in [34]. Specifically, we employ a distance metric to mea- hance performance. The frequent pattern mining problem together
sure the distance between two nodes. To this end, we may use anywith other interesting extensions are discussed in Section 4.

metric function, i.e., a function that satisfies the triangle inequal-
ity [34]. Typically, the distance function is computed based on the 3.1 The CSP Model

edge labels (or weights) but it may also be defined on other graph A constraint satisfaction problem (CSB)represented as a tuple

properties (e.g., the number of hops between two nodes).
For graphG of Fig. 1, we may use a distance function, (u, v)

(X,D,C) where(a) X is an ordered set of variablefh) D is a
set of domains corresponding to variablésand(c) C is a set of

defined as the number of hops in the shortest path that connectsconstraints between the variablestin A solutionfor the CSP is an

u andwv. For instance Ay, (uo, usz) = 2. Alternatively, we may

assignment to the variables i, such that all constraints ifi are

useA,(u,v) defined as the minimum sum of the inverse of edge satisfied. The subgraph isomorphism problem (Definition 1) can be

weights among the paths that connecandv. For an example,
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Definition 5 LetS(Vy, Es, Ls) be a subgraph of a grap&(V, E, Algorithm : FREQUENTSUBGRAPHMINING

L). ThesubgraphS to graphG CSR is a CSP(X, D, C) where: Input: A graphG and the frequency threshotd
. . Output: All subgraphsS of G such thatsg (S) > 7
1. X contains a variabler,, for every node € Vs. pu o orap (8) 2
. . . . 1 resu
2. D is the set of domains for each variahle € X. Each domain 2 Let fEdges be the set of all frequent edgesGf
is a subset of/. 3 foreache € fEdges do
. . . 4 It < It U SUBGRAPHEXTENSION(e, G, T, fEd

3. SetC contains the following constraints: . L Remover from (2 andEdges (e, G, m, fBdges)

a) ., # x,, for all distinct variablest,, z,» € X.
b) L(z,)=Ls(v), for every variabler, € X.

return result

)

) L(zy, zy )=Lg(v,v"), forall z,,, z,,€X such thav,v")eEs. Algorithm : SUBGRAPHEXTENSION
. . . . Input: A subgraphS of a graph data7, the frequency threshold and the set of
To simplify notation, whenever it is clear from the context, we frequent edgegEdges of G

usew to refer to a node of the subgraph and to the corresponding  Output: All frequent subgraphs of that extendS
variablez, of the CSP as we do in the following example. result < S, candidateSet + ()

. . . foreachedgee in fEdges and nodeu of S do
Example 1 Consider Fig. 1. The subgrap$y to graphG CSP is if e can be used to extendthen
defined as:

L Let ext be the extension of with e

oA W NP

if ext is not already generatethen

(vl,vg,vg), {{U07 . .7u9}7 o {U07- . ,UQ}}, candidateSet < candidateSet U ext

{1)1 7& V2 ?é v3, L(’Ul) = DB, L(’Uz) = L(’Ug) = IR,
L(Uhvg) = 4, L(U2,U3) = 10}

foreachc € candidateSet do
L if sg(c) > 7 then

~ o

L result < result U SUBGRAPHEXTENSION(c, G, T, fEdges)

The following proposition relates the subgraph to a graph CSP ¢ return result
with the subgraph isomorphisyh(Definition 1).

FREQUENTSUBGRAPHMINING starts by identifying sefEdges
that contains all frequent edges (i.e., with support greater or equal
to 7) in the graph. Based on the anti-monotone property, only
Intuitively, a solution assigns a different node@to each node  these edges may participate in frequent subgraphs. For each fre-

of S, such that the labels of the corresponding nodes and edgesduent edge, 88GRAPHEXTENSION is executed. This algorithm
match. For instance, a solution to the CSP of Example 1 is the takes as input a subgraphand tries to extend it with the frequent

Proposition 1 A solution of the subgraph to graphG CSP cor-
responds to a subgraph isomorphismSofo G.

assignmentuvy, va, vs) = (u1, us, ta). edges offEdge§ (Lines 2-5_). All applicable e>_<tensions that have
o ] . ) o not been previously considered are storectimdidateSet. To
Definition 6 An assignment of a nodeto a variablev is valid if exclude already generated extensions (Line 5) we adopDEe
and only if there exists a solution that assigngo v. Note that Scodecanonical form as ir6SPAN [29]. Then, $/BGRAPHEX-
each valid assignment corresponds to an isomorphism. TENSION(Lines 6-8) eliminates the membersaididateSet that

do not satisfy the support threshatdsince according to the anti-

In Example 1p; = ug is a valid assignmentj; = u is invalid. . . . .
monotone property, their extensions are also infrequent. Finally,

Proposition 2 Let (X, D, C) be the subgraply' to graphG CSP. SUBGRAPHEXTENSION is recursively executed (Line 8) to further
The MNI support ofS in G satisfiesr, i.e., s¢(S) > 7, iff every extend the frequent subgraphs.
variable inX’ has at least distinct valid assignments (i.e., isomor- According to Proposition 2, a subgraphis frequent inG (i.e.,
phisms ofS in G). sa(S) > 7) if there exist at least nodes in each domaib-, . . .,
Proposition 2 is a key part of this work since it provides a method D" that are valid varlat_JIe ass_lgnments (i-e., are part of a solu-
tion) for the corresponding variables, ..., v,. To evaluate fre-

to determine if a subgrap$i is frequent inG. To this end, we may
consider theS to G CSP and check the number of valid assign-
ments of every variable. If for every variable there exists more

valid assignments, thest;(S) > 7 andS is considered frequent.
Continuing Example 1, we have;(S1) > 3 since all domains
contain at least 3 valid assignments (more specifically, the domains
of variablesv,, v andvs are{u1, us, us }, {us, us, us} and{ua,

us, ug } respectively).

quency, we may uUseSFREQUENTCsSPthat returnstrue iff S'is a
frequent subgraph a¥. Initially, | SFREQUENTCSsPenforcesnode

and arc consistencf22]. Node consistency excludes unqualified
nodes from the domains (like nodes with different labels or with
lower degree) and arc consistency ensures the consistency between
the assignments of two variables. Specifically, for every constraint
C(v,v"), arc consistency ensures that for every node in the domain
of v there exists a node in the domaimdfsatisfyingC'(v, v'). If,

3.2 Frequent Subgraph Mining after node and arc consistency enforcement, the size of a domain

We now apply the CSP model presented in Section 3.1 to solve is smaller thanr the algorithm returngalse (Line 3). Follow-

the frequent subgraph mining problem (Problem 1). We start by ing, ISFREQUENTCSF’C_onS'derS every SOIUI'QSQZ and ma_rks th_e
presenting Algorithms REQUENTSUBGRAPHMINING and SUB- nodes a55|gned to variables to the corresponding domalns_(Llne 5).
GRAPHEXTENSION that are used in many related methods to gen- If all domains have at least marked nodes then (according to
erate candidate subgraphs [29, 20] and are illustrated for complete- i

ness. Then, we consider methods to measure the number of ap- Al9orithm : ISFREQUENTCSP

pearances (frequency) of these subgraphs. AlGOritRREQUE Ot 11t S 18 hequent Subgraph G, faloe othervise

NTCspP shows how we may address frequency evaluation without ]

computing and storing all intermediate results. Algorithsfre- e S i cf CSP

QUENTHEURISTICOffers a heuristic approach and AlgorithsHRE- if the size of any domain is less tharthen retumn false

QUENT supplements it with optimizations that highly improve per-

foreach solutionSol of the S to graphG CSPdo
formance. The frequent pattern embedding mining problem (Prob- L Mark all nodes ofSol in the corresponding domains
lem 2) is discussed in Section 4.

o0 s wN P

if all domains have at least marked nodethen return true

~

return false // Domain is exhausted
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Algorithm : ISFREQUENTHEURISTIC Algorithm : ISFREQUENT

Input: GraphsS andG and the frequency threshotd Input: GraphsS andG and the frequency threshotd
Output: true if S is a frequent subgraph 6F, false otherwise Output: true if S is a frequent subgraph @F, false otherwise

1 Consider the subgrap$i to graphG CSP Consider the subgrap$i to graphG CSP and apply node and arc consistency
2 Apply node and arc consistency

[

/1 Push-down pruning

3 foreachvariable v with domainD do foreach edgee of S do

N

4 count <=0 3 Let S/€ be the graph after removingfrom S
5 Apply arc consistency 4 Remove the values of the domainsSrthat correspond to invalid
6 if the size of any domain is less tharnthen return false : /e
7 foreach elementu of D do assignments of
8 if w is already markedthen count++ /1 Unique | abels
9 else ifa solutionSol that assigna. to v existsthen ) 5 if S andG satisfy the unique labels optim. conditicthen
10 Mark all values ofSol in the corresponding domains 6 if the size of any domain is less tharthen return false
11 count++ 7 else return true
12 elseRemoveu from the domainD /1 Aut onor phi sns
13 if count = 7 then Move to the next variable (Line 3) P )
8 Compute the automorphisms 6f
14 | return false // Domain is exhausted and count < T o foreachvariablez and its domainD do
15 return true 10 count + 0, timedoutSearch < 0
. ) ) . 11 if there is an automorphism with a computed dom&ihthen
Proposition 2)S is frequent inG. Otherwise, $FREQUENTCSP 12 | D« D’ and move to the next variable (Line 9)
continues with the following solution. 13 Apply arc consistency
Complexity. Let N andn be the number of nodes of grapﬁﬁ 14 if the size of a domain is less tharthen return false
and subgrapl$ respectively. The complexity of FEEQUENTSUB- /1 Lazy search
M is determined by the complexity o 8GRAPHEX - 1s | foreachelement. of D do
GRAPHMINING IS y p y 16 if u is already markedhen count++
TENSION and ISFREQUENTCsSP. The former computes all sub- 17 else
. 20 . i i i i
graphs ofG, which takes®(2"") time. The latter evaluates fre-  *° if:;ﬂ;lfgras"'”t'on that assigado z for a given time
quency which is reduced to the computation of subgraph isomor- 3 if search timeoutthen Save the search state in a structure
phisms (a well-knowrNP-hard problem) and take§(N™) time. timedoutSearch
. .. N2 nrm e 20 if a solutionSol is foundthen
ngral!, the complgxny of the mining prpcess(’Ps{2 N ) time ! Mark all values ofSol to the corresponding domains
which is exponential in the problem size. Thus, it is of crucial 22 count++
importance to devise appropriate heuristics and optimizations thatzs else Removeu from the domainD and addu to the invalid
improve execution performance. Several works study the subgraph ?;SS'gnnlentSfiﬁ'” '\7 - variable (Line 9
generation process and propose techniques that significantly im-** L if count = 7 then Move tothe next variable (Line 9)

prove performance [29, 20]. These techniques are implemented // Resume tined-out search if needed

in Algorithm SUBGRAPHEXTENSION. In the following section, 25 if [timedoutSearch| 4 count > T then
we consider the optimization of AlgorithmsFREQUENTCSP that /1 Deconpose
computes subgraph isomorphisms. 26 Decompose graph into a set of graphSet that contain the newly
added edge
.. . 27 foreach s € Set do Remove invalid assignments sffrom the

3.3 Optimizing Frequency Evaluation respective domains o

. . . . 28 foreacht € timedoutSearch do

Algorithm ISFREQUENTCSP nalvely_lterate§ over the soIL_Jtlons % Resume search from the saved state
of the subgraptt to graphG CSP trying to findr valid assign- 30 if a solutionSol is foundthen
ments for every variable. To guide this search process, we proposes: L Mark all values ofSol to the corresponding domains
2 count++

the heuristic illustrated in AlgorithmsFREQUENTHEURISTIC. In- . o
tuitively, the algorithm considers each variable at a time and searche¥ g'sssg?fn”;‘r’]‘t’se“ 1 Trom the domainD and add to the invalid
for 7 valid assignments. If these are found, it moves to the next ., if count = T then Move to the next variable (Line 9)
variable and repeats the process. In more detaIBREQUENT- - o
HEURISTIC starts by enforcing node and arc consistency. Then, ® L "6um folse // Domain is exhausted and count <7

the algorithm considers every variable and counts the valid assign-3 retum true

ments in its domain (stored in variabdeunt). If, during the pro-

cess, any variable domain remains with less thaandidates, then domains (Line 10) Hence, if these nodes are considered in a later

the subgraph cannot be frequent, so the algorithm retfuhs iteration Qf the glgorithm,_ they are recognized as already belonging
(Line 6 and 14). To count the valid assignmentFREQUENT- to a solution (Line 8). This precludes any further search.
HEURISTIC iterates over all nodes in the domainD of a variable In the following, we introduce AlgorithmdFREQUENTthat en-

x and searches for a solution that assign® x. If the search is hances $FREQUENTHEURISTICthrough several optimizations that
successful thermount is incremented byl, and the process con-  significantly improve execution performancesFREQUENT uses
tinues to the next node iM until the number of valid assignments  three novel optimizations, nameBush-down pruning-azy search
(count) becomesr, in which case the algorithm proceeds to the andUnique labels Finally, ISFREQUENT specializes, for frequent
next domain (Line 13). On the other hand, if search is unsuccess- Mining, Decomposition pruningndAutomorphismgthat are known

ful then v is removed fromD and the algorithm continues with ~ t0 speed-up search [8] and frequent subgraph mining [1] respec-
the next node inD. UpdatingD may trigger new inconsistencies  tively. In the sequel, we present the optimization techniques ac-
in other domains, thus, arc consistency (Line 5) is checked again. cording to their execution order in theRREQUENTalgorithm.
ISFREQUENTHEURISTIC also implements the following optimiza- ~ Push-down pruning. The subgraph generation tree is constructed
tion. Assume that for a domaiP a solution was found for some by extending a parent subgraph with one edge at a time. Since
nodeu € D. Then,count is incremented by 1 and all nodes (in- the parent is a substructure of its children, those assignments that
cludingu) that belong to this solution araarkedin the respective were pruned from the domains of the parent, cannot be valid as-
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signments for any of its children. For example, Fig. 3a illustrates a
part of a subgraph generation tree consisting of subggapthich

is extended ts, Ss and then taS, (via S2). Assume that when
considering subgraph;, ISFREQUENTexcludes elementss, b1,
andag from the domain of variables;, v, andwvs respectively
(depicted by light gray ovals in Fig. 3b). This information can be
pushed down such that, b1, a3 are also pruned from all descen-
dants ofS;. This happens recursively; for instance, the assignments
pruned because ¢, are depicted by dark gray dotted ovals.

The same substructure may also appear in subgraphs that do no
have an ancestor/descendant relationship. In the example of Fig. 3,
S, is not a descendant df3; however, both contain substructure
A—B—A-C. SinceSs andS, are in different branches, pushing

down the pruned assignments is not applicable. Instead, we use a
hash table to store the pruned assignments of previously checked

subgraphs. The hash key is thé"Scode canonical representation

of S5 [29]. When S, is generated, the hash table is searched for

matching substructures. If one is found, the corresponding invalid

assignments are pruned from the domainsSef ISFREQUENT
applies this optimization (Lines 2-4) using the invalid assignments

populated while searching for valid nodes (Lines 23 and 33).
Saving the invalid assignments of subgraphs results in a signifi-

cant performance gain for the following two reasons.

e Subgraphs (like5,) take advantage of the respective pruning of
smaller subgraphs (lik€, and.Ss) to prune invalid assignments.
Thus, the domains of the subgraph variables are reduced avoid-
ing the expensive search procedure (Lines 18 and 29). In many
cases, a subgraph may be eliminated without search. For in-
stance, in Fig. 3, assuming that= 3, S4 can be eliminated,
because there are only two valid assignments of variaple-
maining in its domain.

it highly depends on the domain size. For instance, in Fig. 3,

assuming that = 2, when considering variable;, the search

space has a size pf2-3-4 = 48 combinations (bottom of Fig. 3b),

while without using this optimization the respective search space

size is5-3-5-6 = 450 combinations.

To perform push-down pruning, Line 3 constru@$n?) sub-
graphsS’® by removing an edge froifi, (n is the number of nodes

in S) and uses a hash lookup to remove the invalid assignment (Line
4). Thus, the overall complexity ©(n?) time.

Unique labels. In the case of data graphs with a single label per

node and subgraphs having a tree-like structure and unique node

labels, the following optimization can be applied:

Proposition 3 LetG be a graph with a single label per nodg( Vs,
Es, Ls) be a subgraph of7, S’s underlying undirected graph is a
tree, and all of its node labels are unique, i.Bg(v) # Lgs(v') for

all v andv’ in Vs such thatv # v'. To calculates (S) directly,

it suffices to consider th8 to G CSP and refine the domains of
variables by enforcing node and arc consistency.

This domain reduction also speeds up the search process since

Variables and domains

vl V2 U3 /\

al al

Subgraph generation tree

az b2 ag
b
a4 a4
as as

S V1 V2 V3 V4 v1 v2 U3
9 2

3 g m@ a [¢1] ay (gD ay

t ’01 . az C2 az b2 ap

) , 3 @3) C3 bs
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Invalid
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Invalld n é
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az (34
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assignments
. for 593
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Figure 3: (a) Construction of the subgraph tree. (b) Variables
and domains of the corresponding subtrees. Marked nodes rep-
resent the pruned assignments which are pushed down the tree.

A subgraphS with its
valid assignments

V1 v2 v

Input graphGG
oz
OX

(@
Figure 4: Automorphisms. (a) Input graph G. (b) Subgraph.S
and its valid assignments.

(b)

e ForQ with height = R, letT be a subgraph of and its under-
lying undirected graph is a subtree @fsharing the same root
but with height = R — 1. Let L be the set off’s leaf nodes
and assume th&t has a solution() is composed of" and the
set of treesZ with height 1 (or 0) each rooted at a distinct node
from L. Since each element ii has a solution iz, and each
solution joins withT"s solution only by its corresponding root
in Z, hence, a valid solution faof exists.

Note that the final step cannot be applied when the underlying undi-
rected grapl) contains a cycle. For exampleSfis an undirected
triangle of 3 nodes labelg4, B, C) and the data grap& is undi-
rected and contains 6 nodes forming a cydld; B,C, A, B, C).
When considering th& to G CSP after enforcing node and arc
consistency the coustz (.S) is 2, but, the correctresultis. O

PROOF Since each graph node has a single label and the query has .
unique labels, no node can appear in more than one domain. ForExample 2 Consider the subgrappB—IR and the graphG of

any S, we will use induction to prove that each vallyein each do-
main of S (after applying the node and arc consistency constraints)
is part of a valid solution. Le€) be a copy ofS where all ofS’s
directed edges are replaced with undirected odkss connected,
undirected, and acyclic, therefore it is a tree. {Jdbe rooted at the
node corresponding t&’s domain.
e For@ with height = 1, N is guaranteed to be part of a valid so-
lution (by definition of the node and arc consistency constraints

Fig. 1. Letwv; (resp.v2) be the variable that corresponds to nodes
labeled withDB (resp.IR). The initial domains ard,,, = D,, =
{uo,...,ug}. After applying node and arc consistency we have
Dy, = {u1,us,us} and Dy, = {uo,us, us,us} which encodes
the actual isomorphisms of the subgraph to grdaph

If the conditions hold (Line 5), @AM uses the current domain
sizes to directly decide whethét is frequent or not (Lines 6-7).
The overall process can be performedl(n) time.

and by considering the fact that the same node cannot appear inAutomorphisms. Automorphism is an isomorphism of a graph to

other domains).
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itself. Automorphisms appear because of symmetries. Following



[1], such symmetries in the subgraph can be used to prune equiv- S e St

alent branches and reduce the search space. For example, con- 9'@ \

sider subgrapt$ of graphG presented in Fig. 45 has automor- e\@‘e e @ Variable correspondin
phisms. To determine 1§ is frequent inGG, while iterating over the 1t nod§|ab,3'|e%
domain ofwv;, ISFREQUENT finds the assignmer(v1, vz, v3) = /\ @ with K

Vi

Decompos
(u1,u4,u2) to be a solution (i.e., an isomorphism 6fto G).

Due to the symmetry of the subgraghassignmentv:, vz, v3) = e e

(u2, u4,u1) is also a solution. The benefits of this observation are \“

twofold. First, we may identify the valid assignments of a variable @ @ Q

more efficiently. More importantly, when we compute all valid as- S

signments of a variable (like;) we also compute the valid assign- @

ments for its symmetric counterpart (i.es,).

®
g
T

S

&
()

ISFREQUENT detects automorphisms in Line 8. This requires () Invalid assignments faf; k7
O(n™) time wheren is the number of nodes in subgraph In ) Invalid assignments fof» @ @ S3
practice, despite the exponential worst-case bound, the cost of au- [ ] invalid assignments fa5 3
tomorphisms is very low since the size of subgraph S is negligible @
compared to the size of the graph G. @) (b)

Lazy search.Intuitively, to prove that a partial assignment does not Figure 5: (a) Subgraph S is generated by extendingS’ with
contribute to any valid solution, the search algorithm has to exhaust edgeC — K. (b) S is decomposed into overlapping subgraphs

all available options; a rather time consuming process. Thus, if a g, tg g, containing the newly extended edg€’ — K.

search for a solution that pertains to a specific partial assignment

takes a long time, then this is probably because the partial assign-\,aduesk1 to k. Further, assume that using subgraghsS: and
ment cannot contribute to a complete valid assignment. To addressg, e can exclude valuge: , ks }, {k2, ke } and{ks } respectively.
such cases, initiallySFREQUENT searches for a solution only for  The decomposition optimization removes all these values from the
a limited time threshold (Line 18). The intuition of the optimi-  qomain ofuy,, therefore, it only contains the valugs andkr.

zation is that other assignments may produce much faster results Decomposition pruning can be donec{n?). Resuming timed-

that will help indicate if the subgraph is frequent(S) > 7). out searches (Lines 28-34) requires solving a CSR en1 vari-
In such a case, the result of the timed out search would be irrel- gpjes with domain of siz& and can be done i@(anl) time.

evant, hence, there is no reason to waste time in further search. . .
Nevertheless, this cannot guarantee that a timed out partial assign-complexlty analysis ofl SFREQUENT. Let V andn be the num

ment will not eventually be essential for proving the frequency of ber of nodes it and 5 respectively. Push-down pruning, unique
the subgraph. Thus ?; search is timed I{Z)ut tt?e algori(tqhm st);res labels and automorphisms can be don@im*), O(n) andO(n")
the search state in themedoutSearch set of nodes with incom- respectively. Subgraph size is negligible in comparison to the data

. raph size, and thus these procedures are not expensiFer-|
lete check. These searches will only be resumed when the non-9 . : :
tFi)med out cases are not sufficient to )s/how that a subgraph is fre-QUE'\ITappIIeS arc consistency, lazy search and resumes timed-out

quent. More specifically, timed-out searches are considered if afters.wrch that can be done@(Nn), O(N) an.dO(N”‘.l) respec-
the tirﬁe limited search;ount < 7 and count plus the size of tively. Thus, the complexity ofSFREQUENTIs determined by the

. ) . resumed timed-out searches. More specifically,iff the possibil-
timedoutSearch (i.e., the number of timed out searches) surpasses . . : ! . . .
the threshold- (Line 25). Only then, the algorithm resumes each ity expressing that a node in a domain of a variable is valid, then
. e ' . . to find the required- valid assignments we need to considep
timed out search € timedoutSearch from its saved state but with- .
out a time-out option until enough assignments are found to prove noqesl and solvel/ph CSPs (I)f S.'ZGS - }jfor each onengfl ther
frequency (Line 34). Note that, if necessargFREQUENT even- variables. In total, the complexity boundd¥n - 7/p - N"7).
tually searches the entire search space for each variable to provide,
tho oot solution. P P . GRAMI EXTENSIONS

The complexity of Lazy search (Lines 15-24) can be done in Generalization to pattern mining. Section 3 models the subgraph
O(N) time (note that the search of Line 18 takes constant time isomorphism problem (Definition 1) as a subgraph to graph CSP
since it is performed for a specific time frame). (Definition 5). Similarly, a pattern embedding(Definition 4) can
Decomposition pruning. The final optimization is performed in ~ be mapped to a CSP by replacing Condition 3c of Definition 5 as
Lines 26 and 27. At this point, the algorithm is about to resume follows.
the timed out searches. To reduce the problem size, the algorithnBc) A(z,, z,/) < 4, for everyz,, x,» € X such that(v,v’) € Ep
decomposes the input subgrafhinto a set of distinct subgraphs (whereA is the distance metric andlis the distance threshold).
Set. Recall that algorithm SBGRAPHEXTENSION extends sub-
graphs by adding an edgdrom the set of frequent edgé¢Bdges.
SetSet is constructed by removing one edge at a time fr6m
and adding tdSet the connected component that includes edge
Any other decomposition has already been considered Hyubkb- Example 3 Consider Fig. 2. Fow = 0.3, the patternP; of graph
down pruningoptimization. Finding and removing invalid assign- G CSP is defined as:
ments from the domains of the elementsSeft is a much easier
task because they are smaller than the original subgsaph

For example, consider Fig. 5. SubgraplextendsS’ with edge {v1# vz # vs, L(v1)=DM, L(v2)=IR, L(v3)=DB,
C—K and, thus, it is decomposed iret that contains subgraphs A(vr,v2) <03, Avz,v3) <03, Avr,va) <03}
S1 to S3. Let us assume that the variable corresponding to the new  The notations for a solution (Proposition 1) and valid (or invalid)
node labeled withi is v, and the initial domain oby. contains assignments (Definition 6) are easily extended to support pattern to

Whenever it is clear from the context, we uséo refer to a node
of the pattern and:, to refer to the corresponding variable of the
CSP as we do in the following example.

(1}1,1)2,1}3), {{UO,...,’LLQ}, ey {UQ,...,UQ}},
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Table 1: Definitions of the anti-monotonic structural con- Table 3: Datasets and their characteristics

straints for pattern P, implemented in CGRAMI Dataset Nodes Distinct node labels Edges Density
Twitter 11,316,811 100 85,331,846  Dense
[Vp| < a Number of nodes should not excead Patents 3,942,797 453 16,522,438  Medium
|Ep| < a Number of edges should not excesd Aviation 101,185 6,173 133,087  Sparse
max(degree(Vp)) < o The maximum node degreeds MiCo 100,000 29 1,080,298  Dense
CiteSeer 3,312 6 4,732 Medium
Table 2: Definitions of the anti-monotonic semantic constraints
for pattern P, implemented in CGRAMI
(Vv € Vp)(L(v) € L) P contains only labels front way ISFREQUENT handles time-outs (Line 18) as follows: we set
(Vv € Vp)(L(v) ¢ L) P does not contain any label frof the time-out to occur aftef(«) iterations of the search. If a solu-
(vo, v € Bp)(L(v,v) €E) P contains only edges frod tion is found before this time-out, theunt is updated as normal.
(Vv,v" € Ep)(L(v,v")¢ &) P does not contain any edges fradm R . .
(~subgraph(P', P)) PatternP must not contain a specific subgragh On the other hand, if a time-out occurs it is assumed that the search
(Vv € Vp)(count(L(v)) < a) Anode label cannot appear more thatimes inP was unsuccessful. If enough time-outs occur during the search of a

specific domain such that it9unt remains less than, the pattern
is considered to be infrequent. Paramgfter) = o" [T |Di|+ 5,

graph CSPs. For instance, assignment v2, vs) = (ur, us, ue) whereg is a constantD; are the domains of the variablesijs the

is a solution of the CSP of Example 3 and a pattern embedding of number of variables anl < « < 1 is a user-defined approxi-
P, to G. Moreover,vs = ug is a valid assignment while; = o mation parameter] [} | D;| grows exponentially; thus it has to be
is invalid (and thus, cannot be extended to a solution). bounded by an exponential weight. Increasingy decreases the

approximation error at the expense of longer execution time. When

Proposition 4 Let(X, D, C) be the patterrP to graphG CSP. The a = 1, AGRAMI becomes equivalent toFAM .

MNI support ofP in G satisfiesr, i.e.,o¢(S) > T, iff every vari-
able inX" has at least distinct valid assignments (i.e., embeddings

of Pin G). 5. EXPERIMENTAL EVALUATION
Continuing Example 3, we have; (P;) > 2 since all domains In this section, we experimentally evaluat&&M1 and its ex-
contain at least 2 valid assignments (the domains of variahles  tensions. For comparison, we have implemente®STOREthat
vo andvs are{us, ur}, {us, us} and{u1, ue} respectively). follows a patterrgrow-and-storeapproach [20, 29]. B®OWSTORE
To address the frequent pattern mining problem (Problem 2), we uses the original code @fSPAN [29] and takes advantage of all its
can also employ AlgorithmssFREQUENTHEURISTICand ISFRE- optimizations. The only difference is thaRGWSTORE, similarly

QUENT, with the following additional preprocessing step. For each to GRAMI, use the efficienMNI metric. Both GRoOwSTORE and
frequent node, we precompute the set of nodes that are reachabléSRAMI are completely memory based. All experiments are con-
within distance’. We run a distance-bound Dijkstra algorithm from  ducted using Java JRE v1.6.0 on a Linux (Ubuntu 12) machine with
each frequent node to find the shortest path to the reachable nodes3 cores running at 2.67GHz with 192GB RAM and 1TB disk. Our
where the path distance is defined by the distance funciiptie experimental machine used an exotic memory size to accommodate
algorithm terminates when the distance of the shortest path exceedg¢he memory requirements off@WSTORE, GRAMI may also run

5. All optimizations of Section 3.3 apply directly in this setting as  on ordinary machines with 4GB RAM for all datasets but Twitter.
well. To avoid confusion, we usefM for the subgraph mining  Datasets.We experiment on several different workload settings by
problem and @AM () for the pattern mining problem. employing the following real graph datasets; their main character-
User-defined constraints. Typically, frequent patterns show in-  istics are summarized in Table 3.

teractions between nodes bearing the same label. For instance, infwitter (soci al conput i ng. asu. edu/ dat aset s/ Twi t t er ). This graph
citation graphs, most collaborations are among authors working in models the social news of Twitter and consists-@fLM nodes and

the same field. In many applications, interactions among nodes of ~85M edges. Each node represents a Twitter user and each edge
different types (like interdisciplinary collaborations) are more in- represents an interaction between two users. The original graph
teresting and important [33]. To allow the user to focus on the does not have labels, so we randomly added labels to the nodes.

interesting patterns, we developed £@M1, a version of RAMI The number of distinct labels was set to 100 and the randomization
that supports two types of user-defined constrairits: Structural follows a Gaussian distribution.

such as “the number of vertices in pattéPrshould be at most’ Patents. This dataset models U.S. patents’ citations and consists
and(b) Semanticsuch as P must not contain specific labels”. of a directed graph with-4M nodes and-16M edges. Each node

Although not a requirement, it is desirable that the user-defined represents a patent and each edge represents a citation. The graph
constraints are anti-monotonic. In such cases, the constraints can bés maintained by the National Bureau of Economic Research [32].
pushed down in the subgraph extension search tree to early pruneAs a preprocessing step, we remove all unlabeled nodes.
large parts of the search space, thus accelerating the process. TamiCo. This dataset models the Microsoft co-authorship informa-
bles 1 and 2 present a set of useful structural and semantic anti-tion and consists of an undirected graph with 100K nodes-ar
monotonic constraints that are supported byra®11. edges. Nodes represent authors and are labeled with the author’s
Approximate mining. Frequent subgraph mining is a computa- field of interest. Edges represent collaboration between two authors
tionally intensive task since it is dominated by the NP-hard sub- and are labeled with the number of co-authored papers. To populate
graph isomorphism problem. Thus, its performance is prohibitively MiCo we crawled the computer science collaboration graph from
expensive when applied to large graphs. Motivated by this, we acadeni c. research. ni crosoft. com
introduce AGRAMI, an approximate version of our framework, CiteSeer ¢s. und. edu/ proj ects/lings/ projects/1bc). CiteSeer
which is able to scale to larger graphs. To maintain the quality of represents a directed graph consisting-8K publications (nodes)
results, AGRAMI does not return any infrequent pattern (i.e., does and~4K citations between them (edges). Each node has a single
not have false positives), although it may miss some frequent oneslabel representing a Computer Science area. Each edge has a label
(i.e., may have false negatives). To achieve this, we modified the (0 to 100) that measures the similarity between the corresponding

524


academic.research.microsoft.com

i Twitter dataset Patents dataset . .
© 10% ¢ ~ MiCo = Citeseer sample (1400 edges)
[}
% 10° . 3 : g 104 K] L 3
[=2} E e g ~ Q .
2 [ GROWSTORE —— 2 . . 2 10 . E
8 3 GRAMI 5] t } =} GROWSTOREMS 3
g GROWSTORE —R 10° g o Y £ g GRAMMS ]
8 4 GRAMI - s | £ 103 GROWSTORE —— | <€ 10 .
o 10° p- F ‘ <3 GRAMI 3
£ : o o
@ 102 poee AT 2 £ 10
= I i E I I e £ g
(9] : & %
3000 3500 4000 4500 65000 70000 75000 80000 = 10 . = 10° .
Support threshole Support threshole 10400 10600 10800 55 60 65 70
(a) (b) Support threshole Support threshole

™ 3 MiCo dataset Aviation dataset @ ()
3 107 —:\ Figure 7: (a) Memory requirements for GRAMI and GROW-
2 i \ StorEand (b) UsingMI S metric
= 10% b= :
> E
T 102 L GROWSTORE —}— _| E \_
c F
o GRAMI + B .
g L ‘ datasets (Twitter and Patents) and for the lowg8K and 65K
2] 3 .
< 10t GR“"E’;:{;IE ey respectively), ®OWSTORE was not able to produce results even
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Memory requirements. Fig.7a illustrates the memory require-

11000 12000 13000 140001900 2050 ~ 2200 2350 ments for ROWSTORE and GRAM 1 for the MiCo dataset. Since

Support threshold Support threshold GROWSTORE needs to store all intermediate results, it consumes
© @ about an order of magnitude more memory. Fer10, 400 the size
Figure 6: Performance of GRAMI and GROWSTORE of the intermediate results exceed the available memory (192GB),

and hence EOWSTORE crashes. For this frequency, there is an
increase in the number of the frequent subgraphs and thus an expo-
pair of publications, a smaller label denotes a stronger similarity.  nential increase in the number of intermediate candidates that need
Aviation (i I ab. wsu. edu/ subdue). This dataset contains a list of  to be stored and checked for frequency. This trend also appears
records extracted from the aviation safety database and was usedor the other datasets. @M1 on the other hand is not affected by
in [7, 20] for evaluation. Each record corresponds to an event the increase in the output size. Most of the memoraGI | uses,
and has several attributes (like event type, location, flight condi- is required for the storage of the input gra@gh The most costly
tion). This information is represented by a graph having two types data structure ofdFREQUENTIs the hash table used by push-down
of nodes and edges. The first type of nodes represents the eventgruning, but, still it does not exceed 2% for the overall required
(and are labeled with the ids of the event) while the second repre- memory. Also the space needed to store timed-out searches (set
sents attribute values (and are labeled with the actual value). ThetimedoutSearch) was never above 1% of the total memory. For all
first type of edges links events and is labeled with their relation- our experiments, 8AM1I could be also executed in machines with
ship (e.g., near to) while the second type links events with attribute the typical memory size of 4GB except for the Twitter dataset.
values and is labeled with the attribute name. Aviation consists of ysingMISmetric. In this experiment, we compareRBWSTORE"S
100K nodes and 133K edges. Note that Aviation is a fundamen- the original version of ®owSTORE that uses thé1S metric with
tally different dataset when compared with the previous ones. The GraM 'S, the modified version of @AM that also supportsliS.
Aviation graph has on average one edge per node, thus, it is veryFor the Aviation dataset, &M ™S takes slightly more time than
sparse. Also it has a very large number of distinct node labels.  GraMi while GRowSTORE"S could not produce results even if it
Metrics. The support threshold is the key evaluation metric as  was allotecthreeorders of magnitude more time tharr&M M'S.
it determines when a subgraph or a pattern is frequent. Decreas-Interestingly, GRowSTORE"'S cannot produce results in reason-
ing 7 results in an exponential increase in the number of possible able time even for the much smaller Citeseer dataset. To achieve a
candidates and thus exponential decrease in the performance of theomparison, we have constructed a new dataset by randomly sam-
mining algorithms. For a given time budget, an efficient algorithm pling 1400 edges from the Citeseer dataset. The results are illus-
should be able to solve mining problems for lewalues. When trated in Fig. 7b. Clearly, 8AM ™S outperforms @owSTOREV'S
is given, efficiency is determined by the execution time. by up to 3 orders of magnitude.

To evaluate a result set, we consider the number and the maxi- Computing frequent patterns. We now consider Problem 2 that
mum size of subgraphs/patterns in the set. Obviously, these valuesmines frequent pattern embeddings. We evaluate the performance
should be as large as possible. of GROWSTORE and GRaM1(6) for several values of the distance
Computing frequent subgraphs.Initially, we consider Problem 1 threshold§. We use the CiteSeer dataset and distance function
that mines frequent subgraph isomorphisms. Fig. 6 shows the per-Ay(u,v) defined as the number of hops in the shortest path that
formance of ROWSTORE and GRAMI on Twitter, Patents, MiCo connectsu andv. For GRAMI(§), we test on two different dis-
and Aviation datasets. The number of results (intermediate and ac-tance thresholds namely 1 and 4. Intuitively, Jo= 1 (respectively
tual) grows exponentially when the support thresholdecreases. 0 = 4) two pattern nodes that are connected with an edge may be
Thus, the running time of all algorithms also grows exponentially. matched with two graph nodes that are one hop (respectively four
Unlike GROWSTORE, GRAMI does not need to enumerate all in- hops) away. ®owWSTORE can only find matches that are only one
termediate results, thus, it is more efficient. Our results indicate hop away. Thus, only 8@owSTORE and GRAMI(1) are directly
that GRAMI outperforms ®ROWSTORE by at least two orders of comparable since they both compute the same results. As shown
magnitude for Patents and MiCo datasets and by at least an or-in Fig. 8a, &RRAMI(1) is an order of magnitude faster thamr@w-
der of magnitude for Twitter and Aviation datasets. For the larger STORE (note the logarithmic scale). As expectee&vi1(4) com-
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Figure 8: Performance evaluation for mining frequent pat-
terns in CiteSeer dataset comparing betwee®ROWSTORE and
GRAMI(4) where ¢ is the distance threshold

putes more and larger patterns thaRaG®STORE and QRAMI(1)
(Figs. 8b and 8c). An example of a frequent pattern discovered by
GRAM I is illustrated on the right of Fig. 8d and contains 5 nodes
involving 3 different Computer Science areas. To compar¥e
STORE computes the 3 nodes patterns at the left of Fig. 8d that in-
volve 1 and 2 areas. To compute these resul®aldi(4) takes
more time than @AM (1) but is still faster than GOWSTORE.

To further illustrate the benefits of @MI(5) we have con-
ducted another set of experiments (Fig. 9). The aim of the experi-
ments is to illustrate the properties of the patterns that can be gen-
erated within a specific time budget. Figs. 9a,b, consider the Cite-
seer dataset with the distance functidp and compare between
GROWSTORE, GRAMI(1) and GRAMI(4). Specifically, Fig. 9a
shows the minimum support threshaithat can be achieved, when
the above algorithms are allotted a time budget that ranges from 1
to 5 seconds (lower is better). For this budget range, Fig. 9b illus-

Figure 9: Comparing (a,c) the minimum support threshold
and (b,d) the maximum number of frequent patterns that can
be achieved within an allotted time budget. For (a,b) we used
GRAMI(0) and for (c,d) we use GSRAMI(4) constrained to re-
ject patterns with more than 4 nodes with the same label

than GRAMI. Additionally, CGRAMI generates patterns having
about 3 times more label interactions tharABA 1.

AGRAMI: Approximate mining. AGRAMI, which offers ap-
proximate subgraph and pattern mining (Section 4), can be tuned
by the approximation parametet 0 < o < 1 (value 1 means no
approximation). Fig. 10 illustrates the performance &AM and
AGRAMI for several values for tha parameter in the Patents and
MiCo datasets. We evaluate two parameters, execution time and
recall, i.e., the percentage of subgraphs returned brAGI with
respect to the actual complete set of frequent subgraphs. For the
Patents dataset, the performance gain is significant, nearly an order
of magnitude for botlv=2-10"° anda=3-10"°. Fora=3-10"°

the recall is always 100% (i.e., A& M| provides all subgraphs)
except forr = 63.600 that is 95%. Forx = 2-107° the recall is
always over 90%. For the MiCo dataset, the performance gain is

trates the number of result patterns (higher is better). In both cases Significant, nearly an order of magnitude when= 4-10~* and

GRAMI(1) and GRAMI(4) accomplish lower thresholds and result
in more patterns than WSTORE.

Patents dataset MiCo dataset

— —~1n4

CGRAM : User-defined constraints CGRAM supports the addi- 3" $ f f

tion of constraints on the returned results (Section 4). Using these? s j

constraints, the focus can be on more interesting pattern types likeS =5 ) :

the ones that show interactions between nodes of a different type.§ ﬁlog =

To evaluate C&AMI, we use the experimental setting of Fig. 9a,b. § § V2
The only difference is that we now use @8Mi(5) with a con- 2 2 FacraMiaciiot %
straint that does not allow more than 4 nodes with the same label @ 10° 2 TAGRAMI @=2-10"* —H
in a pattern. The corresponding results are illustrated in Fig. 9c,d = = 102 W‘\,_,__
and are directly comparable to Fig. 9a,b. In every case and within

the same timey budg%t allowed fgr bottREM | ar)(d CRAMI, 63600 63800 64000 64200 9220 9260 9300 9340
CGRAM I results in a significantly lower minimum support thresh- Support threshold Support threshold

old 7 and significantly larger frequent patterns set. For instance, for (@) (b)

the Citeseer dataset with a time budget of 3 secondRAMA(1)

achieves a 3 times lower threshold and almost 3 times more patternsyith different values for the approximation parameter.
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Figure 10: Performance evaluation of GRAMI and AGRAMI
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Figure 11: The effect of optimizations.No opt: Algorithm ISFREQUENTHEURISTIC (Section 3.2).Lazy: Lazy search and decom-
position optimizations enabled.Pruning:Only pruning push-down optimization enabled. Unique: Only unique labels optimization
enabled.GRAMI: All optimization enabled (Algorithm |SFREQUENT).

) MiCo dataset Aviation dataset phism techniques [21]. Clearly, as illustrated in Fig. 1AM
z 5 ] 1 outperforms GGQL by at least 3 times and up to more than an or-
g1 e - 107 "B \ E der of magnitude. This is easily justifiable since&vi1 uses sev-
3 GGOL —— \ eral optimizations and visits only the necessary nodes in the input
§ GRAMI : \ graph to solve the frequent subgraph mining problem.
. 10" FosoL —— X
i . ] 6. RELATED WORK
11000 12000 13000 14000 1900 2050 2200 2350 2500 This section discusses related work in many different directions.
Support threshole: Support threshole Transactional mining. This setting is concerned with mining fre-
(@) (b) quent subgraphs on a dataset of many, usually small, gragt. F

[18] construct new candidate patterns by joining smaller frequent
ones. The drawback of this approach is the costly join operation
and the pruning of false positivesSPAN [29] proposes a variation

of the patterrgrowth approach. It uses an extension mechanism,
nearly two orders of magnitude when= 2-10~*. Interestingly, where subgraphs grow directly from a single subgraph instead of
the recall is always 100%. joining two previous subgraphs. Other methods focus on particular
subsets of frequent subgraphsARGIN [26] returns maximal sub-
graphs only, whereasl@SEGRAPH [30] generates subgraphs that
have strictly smaller support than any of their partsak [28] and
GRAPHSIG[24], on the other hand, discover important subgraphs
that are not necessarily frequent.

Figure 12: Performance comparison betweenGRAMI and
GGQL; a modified version of GRAMI that replaces ISFRE-
QUENT with a counting function based on GraphQL

Optimizations. This experiment demonstrates the effect of the op-

timizations discussed in Section 3.3 on mining the different datasets

A summary is illustrated in Fig. 11. For the MiCo dataset, the most

effective optimization ifPush-down pruningdenoted by Pruning

in Fig. 11a) that achieves an improvement of up to 2 orders of mag- . . .

nitude. Following that, are thieazy searcland theDecomposition Although _GRAM'_fO_CUSGS on the single large graph s_ettlng, It

pruning optimizations, both are combined and denoted by Lazy in may be easily specialized to also support graph transactions.

Fig. 11a. The two optimizations accomplish an improvement of Single graph mining. On the equally important single graph set-

up to an order of magnitude_ Last comes mﬁomorphisn'and tlng there exists less work. The major difference is the defini-

Unique labelsoptimizations that achieve only 4% improvement, tion of an appropriate anti-monotone support metric (Section 2).

since most of the frequent subgraphs in the MiCo dataset neither SIGRAM [20] uses theMIS metric and proposes an algorithm that

have automorphisms nor unique labels. For presentation clarity in finds frequent connected subgraphs in a single, labeled, sparse and

Fig. 11a, we do not illustrate the results of the last two optimiza- undirected graph. I&RAM follows a grow-and-storeapproach,

tion methods. A similar trend also app"es to Patents and Citeseeri.e., it needs to store intermediate results in order to evaluate fre-

datasets (Figs. 11b and 11c). guencies. Overall, &RAM needs to enumerate all isomorphisms
For the Aviation dataset (Fig. 11d), a different optimization trend and relies on the expensive computationMifS (which is NP-

is noticed since this dataset is fundamentally different than MiCo complete), thus the method is very expensive in practice.

Patents and Citeseer. In this case, the most effective optimizationis Since the number of intermediate embeddings increases expo-

Unique labels (denoted by Unique in Fig. 11d). As discussed ear- nentially with the graph size, such approaches do not scale for large

lier, the Aviation dataset is extremely sparse and has a very largegraphs. In contrast, @M1 does not need to construct all the iso-

number of distinct node labels, thus, the Unique label optimization morphisms, hence, it can scale to much larger graphs. More im-

is very effective. In contrast to the previous cases, all other opti- Portantly, GRAMI supports frequent subgraph and pattern mining

mizations do not offer any improvement and are not illustrated. ~ (Problems 1 and 2 respectively). Thus, it allows for exact isomor-

Comparison with Subgraph isomorphism techniques_ To ad- phlsm matching a.nd the more general diStance-ConStl’ained pattem

dress the frequent data mining problem, we may also employ sub-matching. Additionally, ®AM1 supports constraint-based mining

graph isomorphism techniques [21] For Comparison’ we have im- and works on directed, undirected, Single and multi-labeled graphs.

plemented GGQL; a modified version ofRGMI that replaces Approximate mining. There is work on approximate techniques

I SFREQUENTWiIth a frequency evaluation function based orRAG for solving the frequent subgraph mining problem as well. Rre@

PHQL [16]; one of the fastest state-of-the-art subgraph isomor- [19], the authors propose a heuristic approach that prunes large
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parts of the search space, but discovers only a small subset of the3.
answersGAPPROX3] employs an approximate version of thBS 1]
metric. It mainly relies on enumerating all intermediate isomor-

: . . 2
phisms but allows approximate matches.USH14] is another ap-
proximate method that constructs a compact summary of the input 3]
graph. This facilitates pruning many infrequent candidates, how-
ever, it is only useful when the input graph contains few and very [4
frequent subgraphs.UB DUE [7] is a branch-and-bound technique [5]
that mines subgraphs that can be used to compress the original
graph. Finally, Kharet al.[17] propose proximity patterns, which
relax the connectivity constraint of subgraphs and identify frequent [©!
patterns that cannot be found by other approaches.

In contrast to the existing work, ARQAMI, approximate version [71
of GRAMI, may miss some frequent subgraphs, but the returned
results do not have false positives. i8]

Subgraph isomorphism.The frequent subgraph mining problem
relies on the computation of subgraph isomorphisms. This prob- [©]
lem is NP-complete and the first practical algorithm that addresses
this problem follows a backtracking technique [27]. Since then, [1q
several performance enhancements were proposed, ranging fro
CSP based techniques [23], search order optimization [16], index- [11]
ing [31] and parallelization [25]. [12
Although the state-of-the-art subgraph isomorphism techniques
lead to significant improvements, they are not as effective in the [13]
frequent subgraph mining problem for two reasons: First, subgraph
isomorphism techniques are effective in finding all appearances of [14]
a subgraph, while for the frequent subgraph mining task, it is suf- (15
ficient to find the minimum appearances that satisfy the support
threshold; this difference affects the way graph nodes are traversed|16]
minimizing the number of node visits during search. Addition-
ally, modern techniques employ global pruning and indexing tech- 7]
nigues. Forming such structures on large graphs results in a huggzg;
and often unacceptable overheadAB/1 is based on a novel CSP
method that overcomes the previous shortcomings and outperformg19]
state-of-the-art subgraph isomorphism techniques by up to an order[zo]
of magnitude. This is experimentally validated in Section 5.

Pattern matching. There is work on pattern matching over graphs
as well. R-dIN [4] supports reachability queries in a directed
graph; If two nodes andv’ are reachable in the query then their
corresponding mappingsandu’ in the graph must also be reach-
able. DSTANCE-JOIN [34] extends the idea to undirected graphs
and accommodates constraints on the distance in the pathMG
presents an extension to support frequent pattern mining, the ex-p24)
tended version adopts the pattern definition from [34].

[21]

[22]

[23]

[25]

7. CONCLUSIONS

Many important applications, ranging from bioinformatics to so-
cial network study and from personalized advertisement (e.g., rec- [27]
ommendation systems) to security (e.g., identification of terrorist 28]
groups), depend on graph mining. This paper introducesNGi;
a versatile algorithm for discovering frequent patterns in a single [29]
large graph, a significantly more difficult problem compared to the
usual case of mining a set of small graph transactions. The mod- %
eling of the frequency evaluation operation as a constraint satis- 31
faction problem is the crux idea of @@MI1. We complement this
idea with a set of optimizations that allows for the efficient per- [32]
formance of ®AMI. We also implement a version that supports 33!
structural and semantic constraints and an approximate version that, ,
scales to larger graphs. Our experimental results with real datasets
demonstrate the effectiveness okR&M1 which is up to 2 orders of
magnitude faster than existing approaches while discovering larger
and more interesting frequent patterns.

[26]

528

REFERENCES

B. Bringmann.Mining Patterns in Structured Dat&hD thesis, KU Leuven,
2009.

B. Bringmann and S. Nijssen. What is frequent in a single graptPdn. of
PAKDD, pages 858-863, 2008.

C. Chen, X. Yan, F. Zhu, and J. HaeAPPROX Mining frequent approximate
patterns from a massive network.Pnoc. of ICDM pages 445-450, 2007.

J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast graph pattern
matching. InProc. of ICDE pages 913-922, 2008.

Y.-R. Cho and A. Zhang. Predicting protein function by frequent functional
association pattern mining in protein interaction netwofkans. Info. Tech.
Biomed, 14(1):30-36, Jan. 2010.

W.-T. Chu and M.-H. Tsai. Visual pattern discovery for architecture image
classification and product image searchPhc. of ICMR pages 27:1-27:8,
2012.

D. J. Cook and L. B. Holder. Substructure discovery using minimum
description length and background knowledgmurnal of Artificial Intelligence
Research1(1):231-255, 1994.

S. de Givry, T. Schiex, and G. Verfaillie. Exploiting tree decompositand soft
local consistency in weighted CSP.Pmoc. of AAA| pages 22-27, 2006.

M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure-based
approaches for classifying chemical compound$1oc. of ICDM, pages
35-42, 2003.

A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with
stored. InProc. of SIGMOD pages 431-442, 1999.

C. Domshlak, R. I. Brafman, and S. E. Shimony. Preference-based
configuration of web page content. Rmoc. of IJCA| pages 1451-1456, 2001.
M. Fiedler and C. Borgelt. Subgraph support in a single large gragrda. of
ICDMW, pages 399-404, 2007.

M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide to the
Theory of NP-Completened#. H. Freeman & Co., 1979.

S. Ghazizadeh and S. S. Chawathe. Seus: Structure extraction using summaries

In Proc. of DS pages 71-85, 2002.

] V. Guralnik and G. Karypis. A scalable algorithm for clustering sequenétd.d

In Proc. of ICDM pages 179-186, 2001.
H. He and A. K. Singh. Graphs-at-a-time: query language and access methods
for graph databases. Rroc. of SIGMOD pages 405-418, 2008.

A. Khan, X. Yan, and K.-L. Wu. Towards proximity pattern mining in larg
graphs. InProc. of SIGMOD pages 867-878, 2010.

M. Kuramochi and G. Karypis. Frequent subgraph discoverfrbe. of ICDM
pages 313-320, 2001.

M. Kuramochi and G. Karypis. 8Ew - A scalable frequent subgraph discovery
algorithm. InProc. of ICDM pages 439-442, 2004.

M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse
graph.Data Mining and Knowledge Discovery1(3):243-271, 2005.

J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth comparison of
subgraph isomorphism algorithms in graph databd@®¥EDB, 6(2):133-144,
Dec. 2012.

A. Mackworth. Consistency in networks of relatiodstificial Intelligence
8(1):99-118, 1977.

J. J. McGregor. Relational consistency algorithms and their applicatio
finding subgraph and graph isomorphisimormation Sciences9:228-250,
1979.

S. Ranu and A. K. Singh. RAPHSIG: A scalable approach to mining
significant subgraphs in large graph databaseBrde. of ICDE pages

844-855, 2009.

Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph magain
billion node graphsPVLDB, 5(9):788-799, May 2012.

L. T. Thomas, S. R. Valluri, and K. Karlapalem.A®GIN: Maximal frequent
subgraph miningTKDD, 4(3):10:1-10:42, 2010.

J. R. Ullmann. An algorithm for subgraph isomorphistournal of ACM
23:31-42, 1976.

X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patteyns
leap search. IiProc. of SIGMOD pages 433-444, 2008.

X. Yan and J. HanGSPAN: Graph-based substructure pattern mining?tac.

of ICDM, pages 721-724, 2002.

X. Yan and J. Han. CoseGRAPH: mining closed frequent graph patterns. In
Proc. of SIGKDD pages 286-295, 2003.

X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based
approach. IrProc. of SIGMOD pages 335-346, 2004.

R. Zafarani and H. Liu. Social computing data repository at ASU, 2009.

F. Zhu, X. Yan, J. Han, and P. S. YaPRUNE: A constraint pushing framework
for graph pattern mining. Ifroc. of PAKDD pages 388—400, 2007.

] L. Zou, L. Chen, and M. TOzsu. Distance-join: pattern match query in a large

graph databas®VLDB, 2(1):886-897, 2009.



	Introduction
	Preliminaries
	The GraMi Approach
	The CSP Model
	Frequent Subgraph Mining
	Optimizing Frequency Evaluation

	GraMi Extensions
	Experimental Evaluation
	Related Work
	Conclusions
	References

