
GRAM I: Frequent Subgraph and Pattern Mining in a Single
Large Graph

Mohammed Elseidy Ehab Abdelhamid Spiros Skiadopoulos ∗ Panos Kalnis
Ecole Polytechnique King Abdullah University University of King Abdullah University
Féd́erale de Lausanne of Science and Technology Peloponnese of Science and Technology
mohammed.elseidy@epfl.ch ehab.abdelhamid@kaust.edu.sa spiros@uop.gr panos.kalnis@kaust.edu.sa

ABSTRACT
Mining frequent subgraphs is an important operation on graphs;
it is defined as finding all subgraphs that appear frequently in a
database according to a given frequency threshold. Most exist-
ing work assumes a database of many small graphs, but modern
applications, such as social networks, citation graphs, or protein-
protein interactions in bioinformatics, are modeled as a single large
graph. In this paper we present GRAM I, a novel framework for
frequent subgraph mining in a single large graph. GRAM I under-
takes a novel approach that only finds theminimalset of instances
to satisfy the frequency threshold and avoids the costly enumera-
tion of all instances required by previous approaches. We accom-
pany our approach with a heuristic and optimizations that signif-
icantly improve performance. Additionally, we present an exten-
sion of GRAM I that mines frequent patterns. Compared to sub-
graphs, patterns offer a more powerful version of matching that
captures transitive interactions between graph nodes (like friend of
a friend) which are very common in modern applications. Finally,
we present CGRAM I, a version supporting structural and semantic
constraints, and AGRAM I, an approximate version producing re-
sults with no false positives. Our experiments on real data demon-
strate that our framework is up to 2 orders of magnitude faster and
discovers more interesting patterns than existing approaches.

1. INTRODUCTION
Graphs model complex relationships among objects in a variety

of applications such as chemical, bioinformatics, computer vision,
social networks, text retrieval and web analysis. Mining frequent
subgraphs is a central and well studied problem in graphs, and plays
a critical role in many data mining tasks that include graph classi-
fication [9], modeling of user profiles [11], graph clustering [15],
database design [10] and index selection [31]. The goal of frequent
subgraph mining is to find subgraphs whose appearances exceed a
user defined threshold. This is useful in several real life applica-
tions. Consider for example protein-protein interaction (PPI) net-
works [5]. These networks are graphs where nodes represent pro-
teins (and are labeled with their functionality) and edges represent

∗Supported by EU/Greece Research Funding Program: Thales

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment,Vol. 7, No. 7
Copyright 2014 VLDB Endowment 2150-8097/14/03.

interactions between these proteins. Such graphs are constantly
updated to include new proteins and their interactions. A critical
task for biologists is to predict the functionality (and add the cor-
responding label) of a new protein without experimental testing.
The above task may be accurately preformed by mining frequent
subgraphs with similar interactions to the new protein [5].

Consider the collaboration graphG of Fig. 1 and a user inter-
ested to mine important collaborations among authors. Typically,
in such graphs, frequent subgraphs are most likely to show collab-
orations among authors having the same field of work (i.e., collab-
orations among DB researchers). In order to reveal more interest-
ing subgraphs, the user would progressively reduce the frequency
threshold until subgraphs showing interdisciplinary collaborations
are discovered (i.e., among AI, DB and IR researchers). Lowering
the frequency threshold increases the number of qualified interme-
diate results and intensifies the already expensive computations of
the mining process. For example, a state-of-the-art method for fre-
quent subgraph mining crashes after a day consuming 192GB for
an input graph of 100K nodes and 1M edges. Therefore, the de-
velopment of efficient frequent subgraph mining algorithms that
support large graphs and low frequency thresholds is very crucial.

Existing literature considers two settings: transactional and sin-
gle graph. Thetransactionalcase assumes a database of many, rela-
tively small graphs, where each graph represents a transaction [18,
29]. A subgraph is frequent if it exists in at leastτ transactions,
whereτ is a user-defined threshold. In this paper, the focus is on the
single-graphsetting that considers one large graph [17, 19, 20]. For
this setting, a subgraph is frequent if it has at leastτ appearances
in the graph. Such a context is required in many modern applica-
tions, including social and PPI networks. Thesingle-graphsetting
is a generalization of the transactional one, since a set of small
graphs can be considered as connected components within a single
large graph. Detecting frequent subgraphs in a single graph is more
complicated because multiple instances of identical subgraphs may
overlap. Moreover, it is more computationally demanding because
complexity is exponential in the graph size.

The most straightforward method to evaluate frequency of a sub-
graphS in a graphG is to look for isomorphismsof S in G [12,
16, 19, 20]. Isomorphisms are exact matches ofS in G that pair
nodes, edges and labels. For example, in the collaboration graphG
of Fig. 1, subgraphS1 has three isomorphisms.

A typical method to mine frequent subgraphs in a single graph,
is agrow-and-storemethod that proceeds with the following steps:

1. Find all nodes that appear at leastτ times and store all of their
appearances.

2. Extend the stored appearances to construct larger potential fre-
quent subgraphs, evaluate their frequency, and store all the ap-
pearances of the new frequent subgraphs.

517

DB

DM

DM

IR

IR

IR IR

DB

DB

IR

DB

IR IR

DB

(b)

(a) (c)

4

20 10

DB: Databases DM: Data Mining

10

IR

4

4

4

4

10

4

20G

S1

u1

u3

u4

u5

u6

u8u9

v1

v2v3

DM

4 4

20

AI: Artificial Intelligence

S2

10

u0

u2

u7

Figure 1: (a) A collaboration graph G; nodes correspond to au-
thors (labeled with their field of work) and edges represent co-
authorship (labeled with number of co-authored papers). (b)
and (c) SubgraphsS1 and S2.

3. Repeat Step 2 until no more frequent subgraphs can be found.
Existing approaches such as SIGRAM [20] use variations of this

grow-and-store method. These approaches take advantage of the
stored appearances to evaluate the frequency of a subgraph. The
main bottleneck of such algorithms is the creation and storage of
all appearances of each subgraph. The number of such appear-
ances depends on the size and the properties of the graph and the
subgraph; it can be prohibitively large to compute and store, ren-
dering grow-and-store solutions infeasible in practice.

In this work, we propose GRAM I (GRAph M Ining); a novel
framework that addresses the frequent subgraph mining problem.
GRAM I undertakes a novel approach differentiating it from grow-
and-store methods. First, it stores only the templates of frequent
subgraphs, but not their appearances on the graph. This eliminates
the limitations of the grow-and-store methods and allows GRAM I

to mine large graphs and support low frequency thresholds. Also,
it employs a novel method to evaluate the frequency of a subgraph.
More specifically, GRAM I models the frequency evaluation as a
constraint satisfaction problem (CSP). At each iteration, GRAM I

solves the CSP until it finds theminimalset of appearances that are
enough to evaluate subgraph frequency, and it ignores all remaining
appearances. The process is repeated by extending the subgraphs
until no more frequent subgraphs can be found.

Solving the CSP can still take exponential time in the worst case.
In order to support large graphs in real-life applications, GRAM I

employs a heuristic search and a series of optimizations that sig-
nificantly improve performance. More specifically, GRAM I in-
troduces novel optimizations that(a) prune large portions of the
search space,(b) prioritize fast and postpone slow searches and(c)
take advantage of special graph types and structures. By avoid-
ing the exhaustive enumeration of appearances and using the pro-
posed optimizations, GRAM I supports larger graphs and smaller
frequency thresholds than existing approaches. For example, to
compute the frequent patterns of the 100K nodes/1M edges graph
that the state-of-the-art grow-and-store method crashed after a day,
GRAM I needs only 16 minutes.

Additionally, we propose three extensions to the original GRAM I

framework. The first one considers graphs such as social or re-
search networks, that may contain incomplete information and tran-
sitive relationships. In such casesindirect relationships (like a
friend of a friend) reveal neighborhood connectivity and proxim-
ity information. To explore these relationships,patternswere in-
troduced [4, 17, 34]. Patterns establish a more powerful definition
of matching, than subgraphs, that captures indirect connections by
replacing edges with paths. To mine frequent patterns, we have

appropriately extended GRAM I. For instance in Fig. 1, GRAM I

may also consideru5
··· u8

10 u9 to be a match ofS1 sinceu5

(labeled DB) is indirectly connected tou8 (labeled IR). The sec-
ond extension, CGRAM I, allows the user to define a set ofcon-
straints, both structural (e.g., the subgraph is allowed to have up to
α edges) and semantic (e.g., a particular label cannot occur more
thanα times in the subgraph). The constraints are used to prune
undesirable matches and limit the search space. The final exten-
sion, AGRAM I, is an approximateversion, which approximates
subgraph frequencies. The approximation method may miss some
frequent subgraphs (i.e., has false negatives), but the returnedre-
sults arenot approximate (i.e., does not have false positives).

Noteworthily, GRAM I and its extensions support directed and
undirected graphs and may be applied to both single and multiple
labels (or weights) per node and edge.

In summary, our main contributions are:
• We propose GRAM I, a novel framework to mine frequent sub-

graphs in a large single graph. GRAM I is based on a novel idea
that refrains from computing and storing large intermediate re-
sults (appearances of subgraphs). A key part of the underlying
idea is to evaluate the frequency of subgraphs using CSP.

• We offer a heuristic search with novel optimizations that signif-
icantly improve GRAM I ’s performance by pruning the search
space, postponing searches, and exploring special graph types.

• We develop a variation of GRAM I that is able to mine frequent
patterns, a more powerful version of matching that is required in
several modern applications.

• We present CGRAM I, a version that supports structural and se-
mantic constraints, and AGRAM I, an approximate version which
produces results with no false positives.

• We experimentally evaluate the performance of GRAM I and dem-
onstrate that it is up to2 orders of magnitude faster than existing
methods in large real-life graphs.

The rest of the paper is organized as follows. Section 2 formal-
izes the problem. Section 3 presents GRAM I and its optimizations.
Section 4 discusses the extensions of GRAM I. Section 5 presents
the experimental evaluation. Section 6 surveys related work, and
Section 7 concludes.

2. PRELIMINARIES
A graphG = (V,E, L) consists of a set of nodesV , a set of

edgesE and a labeling functionL that assigns labels to nodes and
edges. A graphS = (VS , ES , LS) is asubgraphof a graphG =
(V,E, L) iff VS ⊆ V , ES ⊆ E andLS(v) = L(v) for all v ∈
VS ∪ ES . Fig. 1a illustrates an example of a collaboration graph.
Node labels represent author’s field of work (e.g., Databases) and
edge labels represent the number of co-authored papers. To sim-
plify presentation, all examples illustrate undirected graphs with a
single label for each node. However, the proposed methods also
support directed graphs and multiple labels per node/edge.

Definition 1 Let S = (VS , ES , LS) be a subgraph of a graph
G = (V,E, L). A subgraph isomorphismof S to G is an injective
functionf : VS → V satisfying(a)LS(v) = L(f(v)) for all nodes
v ∈ VS , and(b) (f(u), f(v)) ∈ E andLS(u, v) = L(f(u), f(v))
for all edges(u, v) ∈ ES .

Intuitively, a subgraph isomorphism is a mapping fromVS to V
such that each edge inE is mapped to a single edge inES and vice
versa. This mapping preserves the labels on the nodes and edges.
For example in Fig. 1, subgraphS1 (v1

4 v2
10 v3) has three iso-

morphisms with respect to graphG, namelyu1
4 u3

10 u4, u5
4

u4
10 u3 andu6

4 u8
10 u9.

518

The most intuitive way to measure the support of a subgraph in a
graph is to count its isomorphisms. Unfortunately, such a metric is
not anti-monotonesince there are cases where a subgraph appears
less times than its extension. For instance, in Fig. 1a the single node
subgraph DB appears 3 times while its extension DB4 IR appears
4 times. Having an anti-monotone support metric is of crucial im-
portance since it allows the development of methods that effec-
tively prune the search space; without an anti-monotone metric ex-
haustive search is unavoidable [12, 20]. The literature defines sev-
eral anti-monotone support metrics such asminimum image based
(MNI) [2], harmful overlap(HO) [12], andmaximum independent
sets(MIS) [20]. These metrics differ in the degree of overlap they
allow between subgraph isomorphisms, and the complexity of their
computation. In this paper, we adopt theMNI [2] metric mainly
because it:(a) is the only metric that can be efficiently computed;
the computation ofMIS and HO areNP -complete [12, 20] and
(b) provides a superset of the results of the alternative metrics; if
we are interested in theMISor HO metric we may pay their expen-
sive computational cost and exclude the unqualified subgraphs [12].
Formally, theMNI metric is defined as follows [2].

Definition 2 Let f1, . . . , fm be the set of isomorphisms of a sub-
graphS(VS , ES , LS) in a graphG. Also letF (v) = {f1(v), . . . ,
fm(v)} be the set that contains the (distinct) nodes inG whose
functionsf1, . . . , fm map a nodev ∈ VS . Theminimum image
based support(MNI) of S in G, denoted bysG(S), is defined as
sG(S) = min{ t | t = |F (v)| for all v ∈ VS}.

For instance, for the subgraphS1 of Fig. 1b and the graphG of
Fig. 1a, we haveF (v1) = {u1, u5, u6}, F (v2) = {u3, u4, u8}
andF (v3) = {u3, u4, u9}, thussG(S1) = 3. To compare, the
respectiveMISmetric is 2 since isomorphismsu1

4 u3
10 u4 and

u5
4 u4

10 u3 overlap and theMIS metric regards them as one.
The frequent subgraph mining problem is defined as:

Problem 1 Given a graphG and a minimum support thresholdτ ,
the frequent subgraph isomorphism mining problemis defined as
finding all subgraphsS in G such thatsG(S) ≥ τ .

Problem 1 does not consider finding the actual number of ap-
pearances (i.e., frequency) provided that it is greater thanτ . This
is very useful in several applications [6, 20], but there are others
that demand the exact number of appearances (like graph index-
ing [31]). Also note, that Problem 1 is computationally expensive
since it relies on theNP -hard subgraph isomorphism problem [13].

Definition 1 enforces matching on both node and edge labels.
For instance in Fig. 1, subgraphS2 has only one isomorphism
(formed by nodesu1, u2 andu3). Recent research argues that this
matching is rather restrictive, and relaxes it by allowing indirect
relationships and differences between the edges of the graph and
the subgraph [4, 17, 34]. Such frameworks may also consider sub-
graphu6

4 u8
20 u7 to be a match ofS2 sinceDM andDB are

indirectly connected. We refer to this match as a pattern. For min-
ing frequent patterns, we adopt the pattern matching definition as
outlined in [34]. Specifically, we employ a distance metric to mea-
sure the distance between two nodes. To this end, we may use any
metric function, i.e., a function that satisfies the triangle inequal-
ity [34]. Typically, the distance function is computed based on the
edge labels (or weights) but it may also be defined on other graph
properties (e.g., the number of hops between two nodes).

For graphG of Fig. 1, we may use a distance function∆h(u, v)
defined as the number of hops in the shortest path that connects
u andv. For instance,∆h(u0, u3) = 2. Alternatively, we may
use∆p(u, v) defined as the minimum sum of the inverse of edge
weights among the paths that connectu andv. For an example,

DB

DM

IR

IR

IR IR

DB

DB

(b)(a)

0.05 0.1
IR

0.25

0.25

0.25

0.25

0.1

0.1

G
P1

v1 v2

v3

IR

DB

DM

DM
0.05

0.25

0.3

0.5

0.35
u1

u3 u4

u5

u6

u8u9

u0

u2

u7

Figure 2: (a) The distance∆p for the graph G of Fig. 1. (b) A
pattern P1.

∆p(u6, u7) = 1/4 + 1/20 = 0.3. Intuitively, a shorter distance
denotes a stronger collaboration. Fig. 2 illustrates the values of∆p

for the graphG of Fig. 1. Solid lines correspond to the original
edges of the graph, while dotted lines illustrate some additional
transitions (for figure clarity, we do not show all transitions).

Definition 3 A graphP = (VP , EP , LP) is a patternof a graph
G(V,E, L) iff VP ⊆ V , LP (v) = L(v) for all v ∈ VP and
LP (e) = ∅ for all e ∈ EP .

In other words, a pattern is analogous to a subgraph but without
considering edge labels. For instance, a patternP1 of the graphG
is presented in Fig. 2b.

Definition 4 LetP = (VP , EP , LP) be a pattern of a graphG =
(V,E, L), ∆ be a distance metric function, andδ be a user-defined
distance threshold. Apattern embeddingof P to G is an injective
functionφ :VP → V satisfying(a)LP (v) = L(φ(v)) for all nodes
v ∈ VP and (b)∆(φ(u), φ(v)) ≤ δ for all edges(u, v) ∈ EP .

The minimum image based support for a pattern, denoted by
σG(P), can be computed as in Definition 2 by replacing the iso-
morphismsf1, . . . , fm with the pattern embeddingsφ1, . . . , φµ.
For example consider Fig. 2; setting a thresholdδ = 0.3, we have
σG(P1) = 2. The corresponding embeddings are illustrated by the
gray areas. Note that there are other possible matches toP1 but
only the indicated two satisfy the constraint∆(φ(u), φ(v)) ≤ δ.

Problem 2 Given a graphG, a distance function∆, a distance
thresholdδ, and a minimum support thresholdτ , thefrequent pat-
tern embedding mining problemis defined as finding all patterns
P of G such thatσG(P) ≥ τ .

3. THE GRAM I APPROACH
GRAM I proposed a novel technique that addresses the frequent

subgraph mining problem without exhaustively enumerating all iso-
morphisms in the graph. To this end, GRAM I models the under-
lying problem as aconstraint satisfaction problem(Section 3.1).
Following, Section 3.2 applies the model to solve the frequent sub-
graph problem. Section 3.3 proposes several optimizations to en-
hance performance. The frequent pattern mining problem together
with other interesting extensions are discussed in Section 4.

3.1 The CSP Model
A constraint satisfaction problem (CSP)is represented as a tuple

(X ,D, C) where(a) X is an ordered set of variables,(b) D is a
set of domains corresponding to variablesX , and(c) C is a set of
constraints between the variables inX . A solutionfor the CSP is an
assignment to the variables inX , such that all constraints inC are
satisfied. The subgraph isomorphism problem (Definition 1) can be
mapped to a CSP as follows.

519

Definition 5 LetS(VS , ES , LS) be a subgraph of a graphG(V,E,
L). ThesubgraphS to graphG CSP, is a CSP(X ,D, C) where:

1. X contains a variablexv for every nodev ∈ VS .
2. D is the set of domains for each variablexv ∈ X . Each domain

is a subset ofV .
3. SetC contains the following constraints:
a) xv 6= xv′ , for all distinct variablesxv, xv′ ∈ X .
b)L(xv)=LS(v), for every variablexv ∈ X .
c)L(xv, xv′)=LS(v, v

′), for all xv, xv′∈X such that(v, v′)∈ES .

To simplify notation, whenever it is clear from the context, we
usev to refer to a node of the subgraph and to the corresponding
variablexv of the CSP as we do in the following example.

Example 1 Consider Fig. 1. The subgraphS1 to graphG CSP is
defined as:




(v1, v2, v3),
{

{u0, . . . , u9}, . . . , {u0, . . . , u9}
}

,
{

v1 6= v2 6= v3, L(v1) = DB, L(v2) = L(v3) = IR,
L(v1, v2) = 4, L(v2, v3) = 10

}





The following proposition relates the subgraph to a graph CSP
with the subgraph isomorphismf (Definition 1).

Proposition 1 A solution of the subgraphS to graphG CSP cor-
responds to a subgraph isomorphism ofS toG.

Intuitively, a solution assigns a different node ofG to each node
of S, such that the labels of the corresponding nodes and edges
match. For instance, a solution to the CSP of Example 1 is the
assignment(v1, v2, v3) = (u1, u3, u4).

Definition 6 An assignment of a nodeu to a variablev is valid if
and only if there exists a solution that assignsu to v. Note that
each valid assignment corresponds to an isomorphism.

In Example 1,v2 = u3 is a valid assignment;v2 = u0 is invalid.

Proposition 2 Let (X ,D, C) be the subgraphS to graphG CSP.
The MNI support ofS in G satisfiesτ , i.e., sG(S) ≥ τ , iff every
variable inX has at leastτ distinct valid assignments (i.e., isomor-
phisms ofS in G).

Proposition 2 is a key part of this work since it provides a method
to determine if a subgraphS is frequent inG. To this end, we may
consider theS to G CSP and check the number of valid assign-
ments of every variable. If for every variable there existsτ or more
valid assignments, thensG(S) ≥ τ andS is considered frequent.
Continuing Example 1, we havesG(S1) ≥ 3 since all domains
contain at least 3 valid assignments (more specifically, the domains
of variablesv1, v2 andv3 are{u1, u5, u6}, {u3, u4, u8} and{u4,
u3, u9} respectively).

3.2 Frequent Subgraph Mining
We now apply the CSP model presented in Section 3.1 to solve

the frequent subgraph mining problem (Problem 1). We start by
presenting Algorithms FREQUENTSUBGRAPHM INING and SUB-
GRAPHEXTENSION that are used in many related methods to gen-
erate candidate subgraphs [29, 20] and are illustrated for complete-
ness. Then, we consider methods to measure the number of ap-
pearances (frequency) of these subgraphs. Algorithm ISFREQUE-
NTCSP shows how we may address frequency evaluation without
computing and storing all intermediate results. Algorithm ISFRE-
QUENTHEURISTICoffers a heuristic approach and Algorithm ISFRE-
QUENT supplements it with optimizations that highly improve per-
formance. The frequent pattern embedding mining problem (Prob-
lem 2) is discussed in Section 4.

Algorithm : FREQUENTSUBGRAPHM INING

Input : A graphG and the frequency thresholdτ
Output : All subgraphsS of G such thatsG(S) ≥ τ

1 result ← ∅
2 Let fEdges be the set of all frequent edges ofG
3 foreache ∈ fEdges do
4 result ← result ∪ SUBGRAPHEXTENSION(e,G, τ, fEdges)
5 Removee from G andfEdges

6 return result

Algorithm : SUBGRAPHEXTENSION

Input : A subgraphS of a graph dataG, the frequency thresholdτ and the set of
frequent edgesfEdges of G

Output : All frequent subgraphs ofG that extendS

1 result ← S, candidateSet ← ∅
2 foreachedgee in fEdges and nodeu of S do
3 if e can be used to extendu then
4 Let ext be the extension ofS with e
5 if ext is not already generatedthen

candidateSet ← candidateSet ∪ ext

6 foreachc ∈ candidateSet do
7 if sG(c) ≥ τ then
8 result ← result ∪ SUBGRAPHEXTENSION(c,G, τ, fEdges)

9 return result

FREQUENTSUBGRAPHM INING starts by identifying setfEdges
that contains all frequent edges (i.e., with support greater or equal
to τ) in the graph. Based on the anti-monotone property, only
these edges may participate in frequent subgraphs. For each fre-
quent edge, SUBGRAPHEXTENSION is executed. This algorithm
takes as input a subgraphS and tries to extend it with the frequent
edges offEdges (Lines 2-5). All applicable extensions that have
not been previously considered are stored incandidateSet . To
exclude already generated extensions (Line 5) we adopt theDF-
Scodecanonical form as inGSPAN [29]. Then, SUBGRAPHEX-
TENSION(Lines 6-8) eliminates the members ofcandidateSet that
do not satisfy the support thresholdτ since according to the anti-
monotone property, their extensions are also infrequent. Finally,
SUBGRAPHEXTENSION is recursively executed (Line 8) to further
extend the frequent subgraphs.

According to Proposition 2, a subgraphS is frequent inG (i.e.,
sG(S) ≥ τ) if there exist at leastτ nodes in each domainD1, . . . ,
Dn that are valid variable assignments (i.e., are part of a solu-
tion) for the corresponding variablesv1, . . . , vn. To evaluate fre-
quency, we may use ISFREQUENTCSP that returnstrue iff S is a
frequent subgraph ofG. Initially, I SFREQUENTCSPenforcesnode
and arc consistency[22]. Node consistency excludes unqualified
nodes from the domains (like nodes with different labels or with
lower degree) and arc consistency ensures the consistency between
the assignments of two variables. Specifically, for every constraint
C(v, v′), arc consistency ensures that for every node in the domain
of v there exists a node in the domain ofv′ satisfyingC(v, v′). If,
after node and arc consistency enforcement, the size of a domain
is smaller thanτ the algorithm returnsfalse (Line 3). Follow-
ing, ISFREQUENTCSPconsiders every solutionSol and marks the
nodes assigned to variables to the corresponding domains (Line 5).
If all domains have at leastτ marked nodes then (according to

Algorithm : ISFREQUENTCSP

Input : GraphsS andG and the frequency thresholdτ
Output : true if S is a frequent subgraph ofG, false otherwise

1 Consider the subgraphS to graphG CSP
2 Apply node and arc consistency
3 if the size of any domain is less thanτ then return false

4 foreachsolutionSol of theS to graphG CSPdo
5 Mark all nodes ofSol in the corresponding domains
6 if all domains have at leastτ marked nodesthen return true

7 return false // Domain is exhausted

520

Algorithm : ISFREQUENTHEURISTIC

Input : GraphsS andG and the frequency thresholdτ
Output : true if S is a frequent subgraph ofG, false otherwise

1 Consider the subgraphS to graphG CSP
2 Apply node and arc consistency

3 foreachvariablev with domainD do
4 count← 0
5 Apply arc consistency
6 if the size of any domain is less thanτ then return false

7 foreachelementu ofD do
8 if u is already markedthen count++
9 else ifa solutionSol that assignsu to v existsthen

10 Mark all values ofSol in the corresponding domains
11 count++

12 elseRemoveu from the domainD
13 if count = τ then Move to the nextv variable (Line 3)

14 return false // Domain is exhausted and count < τ

15 return true

Proposition 2)S is frequent inG. Otherwise, ISFREQUENTCSP

continues with the following solution.
Complexity. Let N andn be the number of nodes of graphG
and subgraphS respectively. The complexity of FREQUENTSUB-
GRAPHM INING is determined by the complexity of SUBGRAPHEX-
TENSION and ISFREQUENTCSP. The former computes all sub-
graphs ofG, which takesO(2N

2

) time. The latter evaluates fre-
quency which is reduced to the computation of subgraph isomor-
phisms (a well-knownNP-hard problem) and takesO(Nn) time.

Overall, the complexity of the mining process isO(2N
2

·Nn) time
which is exponential in the problem size. Thus, it is of crucial
importance to devise appropriate heuristics and optimizations that
improve execution performance. Several works study the subgraph
generation process and propose techniques that significantly im-
prove performance [29, 20]. These techniques are implemented
in Algorithm SUBGRAPHEXTENSION. In the following section,
we consider the optimization of Algorithm ISFREQUENTCSP that
computes subgraph isomorphisms.

3.3 Optimizing Frequency Evaluation
Algorithm ISFREQUENTCSP naively iterates over the solutions

of the subgraphS to graphG CSP trying to findτ valid assign-
ments for every variable. To guide this search process, we propose
the heuristic illustrated in Algorithm ISFREQUENTHEURISTIC. In-
tuitively, the algorithm considers each variable at a time and searches
for τ valid assignments. If these are found, it moves to the next
variable and repeats the process. In more details, ISFREQUENT-
HEURISTIC starts by enforcing node and arc consistency. Then,
the algorithm considers every variable and counts the valid assign-
ments in its domain (stored in variablecount). If, during the pro-
cess, any variable domain remains with less thanτ candidates, then
the subgraph cannot be frequent, so the algorithm returnsfalse

(Line 6 and 14). To count the valid assignments, ISFREQUENT-
HEURISTIC iterates over all nodesu in the domainD of a variable
x and searches for a solution that assignsu to x. If the search is
successful thencount is incremented by1, and the process con-
tinues to the next node inD until the number of valid assignments
(count) becomesτ , in which case the algorithm proceeds to the
next domain (Line 13). On the other hand, if search is unsuccess-
ful then u is removed fromD and the algorithm continues with
the next node inD. UpdatingD may trigger new inconsistencies
in other domains, thus, arc consistency (Line 5) is checked again.
ISFREQUENTHEURISTICalso implements the following optimiza-
tion. Assume that for a domainD a solution was found for some
nodeu ∈ D. Then,count is incremented by 1 and all nodes (in-
cludingu) that belong to this solution aremarkedin the respective

Algorithm : ISFREQUENT

Input : GraphsS andG and the frequency thresholdτ
Output : true if S is a frequent subgraph ofG, false otherwise

1 Consider the subgraphS to graphG CSP and apply node and arc consistency

// Push-down pruning
2 foreachedgee of S do
3 LetS/e be the graph after removinge from S
4 Remove the values of the domains inS that correspond to invalid

assignments ofS/e

// Unique labels
5 if S andG satisfy the unique labels optim. conditionsthen
6 if the size of any domain is less thanτ then return false

7 else return true

// Automorphisms
8 Compute the automorphisms ofS

9 foreachvariablex and its domainD do
10 count← 0, timedoutSearch ← ∅

11 if there is an automorphism with a computed domainD′ then
12 D ← D′ and move to the nextx variable (Line 9)

13 Apply arc consistency
14 if the size of a domain is less thanτ then return false

// Lazy search
15 foreachelementu ofD do
16 if u is already markedthen count++
17 else
18 Search for a solution that assignsu tox for a given time

threshold
19 if search timeoutsthen Save the search state in a structure

timedoutSearch

20 if a solutionSol is foundthen
21 Mark all values ofSol to the corresponding domains
22 count++

23 else Removeu from the domainD and addu to the invalid
assignments ofD in S

24 if count = τ then Move to the next variable (Line 9)

// Resume timed-out search if needed
25 if |timedoutSearch|+ count ≥ τ then

// Decompose
26 Decompose graphS into a set of graphsSet that contain the newly

added edge
27 foreachs ∈ Set do Remove invalid assignments ofs from the

respective domains ofS
28 foreach t ∈ timedoutSearch do
29 Resume search from the saved statet
30 if a solutionSol is foundthen
31 Mark all values ofSol to the corresponding domains
32 count++

33 else Removeu from the domainD and addu to the invalid
assignments ofD in S

34 if count = τ then Move to the next variable (Line 9)

35 return false // Domain is exhausted and count < τ

36 return true

domains (Line 10). Hence, if these nodes are considered in a later
iteration of the algorithm, they are recognized as already belonging
to a solution (Line 8). This precludes any further search.

In the following, we introduce Algorithm ISFREQUENT that en-
hances ISFREQUENTHEURISTICthrough several optimizations that
significantly improve execution performance. ISFREQUENT uses
three novel optimizations, namely,Push-down pruning, Lazy search
andUnique labels. Finally, ISFREQUENTspecializes, for frequent
mining,Decomposition pruningandAutomorphisms, that are known
to speed-up search [8] and frequent subgraph mining [1] respec-
tively. In the sequel, we present the optimization techniques ac-
cording to their execution order in the ISFREQUENTalgorithm.
Push-down pruning. The subgraph generation tree is constructed
by extending a parent subgraph with one edge at a time. Since
the parent is a substructure of its children, those assignments that
were pruned from the domains of the parent, cannot be valid as-

521

signments for any of its children. For example, Fig. 3a illustrates a
part of a subgraph generation tree consisting of subgraphS1 which
is extended toS2, S3 and then toS4 (via S2). Assume that when
considering subgraphS1, ISFREQUENTexcludes elementsa3, b1,
anda3 from the domain of variablesv1, v2, andv3 respectively
(depicted by light gray ovals in Fig. 3b). This information can be
pushed down such thata3, b1, a3 are also pruned from all descen-
dants ofS1. This happens recursively; for instance, the assignments
pruned because ofS2 are depicted by dark gray dotted ovals.

The same substructure may also appear in subgraphs that do not
have an ancestor/descendant relationship. In the example of Fig. 3,
S4 is not a descendant ofS3; however, both contain substructure
A−B−A−C. SinceS3 andS4 are in different branches, pushing
down the pruned assignments is not applicable. Instead, we use a
hash table to store the pruned assignments of previously checked
subgraphs. The hash key is theDFScode canonical representation
of S3 [29]. WhenS4 is generated, the hash table is searched for
matching substructures. If one is found, the corresponding invalid
assignments are pruned from the domains ofS4. ISFREQUENT

applies this optimization (Lines 2-4) using the invalid assignments
populated while searching for valid nodes (Lines 23 and 33).

Saving the invalid assignments of subgraphs results in a signifi-
cant performance gain for the following two reasons.
• Subgraphs (likeS4) take advantage of the respective pruning of

smaller subgraphs (likeS1 andS2) to prune invalid assignments.
Thus, the domains of the subgraph variables are reduced avoid-
ing the expensive search procedure (Lines 18 and 29). In many
cases, a subgraph may be eliminated without search. For in-
stance, in Fig. 3, assuming thatτ = 3, S4 can be eliminated,
because there are only two valid assignments of variablev1 re-
maining in its domain.

• This domain reduction also speeds up the search process since
it highly depends on the domain size. For instance, in Fig. 3,
assuming thatτ = 2, when considering variablev1, the search
space has a size of2·2·3·4 = 48 combinations (bottom of Fig. 3b),
while without using this optimization the respective search space
size is5·3·5·6 = 450 combinations.

To perform push-down pruning, Line 3 constructsO(n2) sub-
graphsS/e by removing an edge fromS, (n is the number of nodes
in S) and uses a hash lookup to remove the invalid assignment (Line
4). Thus, the overall complexity isO(n2) time.
Unique labels. In the case of data graphs with a single label per
node and subgraphs having a tree-like structure and unique node
labels, the following optimization can be applied:

Proposition 3 LetG be a graph with a single label per node,S(VS ,
ES , LS) be a subgraph ofG, S’s underlying undirected graph is a
tree, and all of its node labels are unique, i.e.,LS(v) 6= LS(v

′) for
all v andv′ in VS such thatv 6= v′. To calculatesG(S) directly,
it suffices to consider theS to G CSP and refine the domains of
variables by enforcing node and arc consistency.
PROOF: Since each graph node has a single label and the query has
unique labels, no node can appear in more than one domain. For
anyS, we will use induction to prove that each valueN in each do-
main ofS (after applying the node and arc consistency constraints)
is part of a valid solution. LetQ be a copy ofS where all ofS’s
directed edges are replaced with undirected ones.Q is connected,
undirected, and acyclic, therefore it is a tree. LetQ be rooted at the
node corresponding toN ’s domain.
• ForQ with height = 1,N is guaranteed to be part of a valid so-

lution (by definition of the node and arc consistency constraints
and by considering the fact that the same node cannot appear in
other domains).

a3

b1

a3
A A

B

C

(a) (b)

Subgraph generation tree Variables and domains

S1

S2

S4

A A

B

C

A A

B

A A

B

v3v1

v2

S3

v3v1

v2

v4

...

...

b2
b3

v2

a5

a1

a4

a2

v3

a5

a1

a4

a2

v1

c5

c1

c4

c2
c3

v4

c6

...

......

a3

b1

a3

b2
b3

v2

a5

a1

a4

a2

v3

a5

a1

a4

a2

v1

a3

b1

a3

b2
b3

v2

a5

a1

a4

a2

v3

a5

a1

a4

a2

v1

...

c5

c1

c4

c2
c3

v4

c6

a3

b1

a3

b2
b3

v2

a5

a1

a4

a2

v3

a5

a1

a4

a2

v1

Invalid

for S1

assignments

Invalid

for S3

assignments

Invalid

for S2

assignments

Figure 3: (a) Construction of the subgraph tree. (b) Variables
and domains of the corresponding subtrees. Marked nodes rep-
resent the pruned assignments which are pushed down the tree.

(a) (b)

Input graphG

BB
u2

B

A

u3

u1

u4

B BA

u1

u2

u3

u4 u1

u2

u3

v1 v3v2

valid assignments
A subgraphS with its

Figure 4: Automorphisms. (a) Input graph G. (b) SubgraphS
and its valid assignments.

• ForQ with height = R, letT be a subgraph ofS and its under-
lying undirected graph is a subtree ofQ sharing the same root
but with height = R − 1. Let L be the set ofT ’s leaf nodes
and assume thatT has a solution.Q is composed ofT and the
set of treesZ with height 1 (or 0) each rooted at a distinct node
from L. Since each element inZ has a solution inG, and each
solution joins withT ’s solution only by its corresponding root
in Z, hence, a valid solution forS exists.

Note that the final step cannot be applied when the underlying undi-
rected graphQ contains a cycle. For example ifS is an undirected
triangle of 3 nodes labeled(A,B,C) and the data graphG is undi-
rected and contains 6 nodes forming a cycle:(A,B,C,A,B,C).
When considering theS to G CSP after enforcing node and arc
consistency the countsG(S) is 2, but, the correct result is0. �

Example 2 Consider the subgraphDB−IR and the graphG of
Fig. 1. Letv1 (resp.v2) be the variable that corresponds to nodes
labeled withDB (resp.IR). The initial domains areDv1 = Dv2 =
{u0, . . . , u9}. After applying node and arc consistency we have
Dv1 = {u1, u5, u6} andDv2 = {u0, u3, u4, u8} which encodes
the actual isomorphisms of the subgraph to graphG.

If the conditions hold (Line 5), GRAM I uses the current domain
sizes to directly decide whetherS is frequent or not (Lines 6-7).
The overall process can be performed inO(n) time.
Automorphisms. Automorphism is an isomorphism of a graph to
itself. Automorphisms appear because of symmetries. Following

522

[1], such symmetries in the subgraph can be used to prune equiv-
alent branches and reduce the search space. For example, con-
sider subgraphS of graphG presented in Fig. 4;S has automor-
phisms. To determine ifS is frequent inG, while iterating over the
domain ofv1, ISFREQUENT finds the assignment(v1, v2, v3) =
(u1, u4, u2) to be a solution (i.e., an isomorphism ofS to G).
Due to the symmetry of the subgraphS, assignment(v1, v2, v3) =
(u2, u4, u1) is also a solution. The benefits of this observation are
twofold. First, we may identify the valid assignments of a variable
more efficiently. More importantly, when we compute all valid as-
signments of a variable (likev1) we also compute the valid assign-
ments for its symmetric counterpart (i.e.,v3).

ISFREQUENT detects automorphisms in Line 8. This requires
O(nn) time wheren is the number of nodes in subgraphS. In
practice, despite the exponential worst-case bound, the cost of au-
tomorphisms is very low since the size of subgraph S is negligible
compared to the size of the graph G.
Lazy search.Intuitively, to prove that a partial assignment does not
contribute to any valid solution, the search algorithm has to exhaust
all available options; a rather time consuming process. Thus, if a
search for a solution that pertains to a specific partial assignment
takes a long time, then this is probably because the partial assign-
ment cannot contribute to a complete valid assignment. To address
such cases, initially ISFREQUENT searches for a solution only for
a limited time threshold (Line 18). The intuition of the optimi-
zation is that other assignments may produce much faster results
that will help indicate if the subgraph is frequent (sG(S) ≥ τ).
In such a case, the result of the timed out search would be irrel-
evant, hence, there is no reason to waste time in further search.
Nevertheless, this cannot guarantee that a timed out partial assign-
ment will not eventually be essential for proving the frequency of
the subgraph. Thus, if search is timed out, the algorithm stores
the search state in thetimedoutSearch set of nodes with incom-
plete check. These searches will only be resumed when the non-
timed out cases are not sufficient to show that a subgraph is fre-
quent. More specifically, timed-out searches are considered if after
the time limited search,count < τ and count plus the size of
timedoutSearch (i.e., the number of timed out searches) surpasses
the thresholdτ (Line 25). Only then, the algorithm resumes each
timed out searcht ∈ timedoutSearch from its saved state but with-
out a time-out option until enough assignments are found to prove
frequency (Line 34). Note that, if necessary, ISFREQUENT even-
tually searches the entire search space for each variable to provide
the exact solution.

The complexity of Lazy search (Lines 15-24) can be done in
O(N) time (note that the search of Line 18 takes constant time
since it is performed for a specific time frame).
Decomposition pruning. The final optimization is performed in
Lines 26 and 27. At this point, the algorithm is about to resume
the timed out searches. To reduce the problem size, the algorithm
decomposes the input subgraphS into a set of distinct subgraphs
Set. Recall that algorithm SUBGRAPHEXTENSION extends sub-
graphs by adding an edgee from the set of frequent edgesfEdges.
SetSet is constructed by removing one edge at a time fromS
and adding toSet the connected component that includes edgee.
Any other decomposition has already been considered by thePush-
down pruningoptimization. Finding and removing invalid assign-
ments from the domains of the elements ofSet is a much easier
task because they are smaller than the original subgraphS.

For example, consider Fig. 5. SubgraphS extendsS′ with edge
C−K and, thus, it is decomposed intoSet that contains subgraphs
S1 to S3. Let us assume that the variable corresponding to the new
node labeled withK is vk and the initial domain ofvk contains

(a) (b)

Decompose

A

D

A

A

D

A

D

...

K

K

K
S

B
B

B
C

C

C

C
C

E

E
E

E

Invalid assignments forS1

S
′

Invalid assignments forS3

Invalid assignments forS2

K

k3

k5

k1

k4

k2

vk

k6

k7

S3

S2

S1

Variable corresponding
to the new node labeled

with K

Figure 5: (a) SubgraphS is generated by extendingS′ with
edgeC−K. (b) S is decomposed into overlapping subgraphs
S1 to S3 containing the newly extended edgeC−K.

valuesk1 to k7. Further, assume that using subgraphsS1, S2 and
S3 we can exclude values{k1, k5}, {k2, k6} and{k3} respectively.
The decomposition optimization removes all these values from the
domain ofvk, therefore, it only contains the valuesk4 andk7.

Decomposition pruning can be done inO(n2). Resuming timed-
out searches (Lines 28-34) requires solving a CSP onn − 1 vari-
ables with domain of sizeN and can be done inO(Nn−1) time.
Complexity analysis of ISFREQUENT. Let N andn be the num-
ber of nodes inG andS respectively. Push-down pruning, unique
labels and automorphisms can be done inO(n2),O(n) andO(nn)
respectively. Subgraph size is negligible in comparison to the data
graph size, and thus these procedures are not expensive. ISFRE-
QUENT applies arc consistency, lazy search and resumes timed-out
search that can be done inO(Nn), O(N) andO(Nn−1) respec-
tively. Thus, the complexity of ISFREQUENT is determined by the
resumed timed-out searches. More specifically, ifp is the possibil-
ity expressing that a node in a domain of a variable is valid, then
to find the requiredτ valid assignments we need to considerτ/p
nodes and solveτ/p CSPs of sizen − 1 for each one of then
variables. In total, the complexity bound isO(n · τ/p ·Nn−1).

4. GRAM I EXTENSIONS
Generalization to pattern mining. Section 3 models the subgraph
isomorphism problem (Definition 1) as a subgraph to graph CSP
(Definition 5). Similarly, a pattern embeddingφ (Definition 4) can
be mapped to a CSP by replacing Condition 3c of Definition 5 as
follows.
3c) ∆(xv, xv′)≤ δ, for everyxv, xv′ ∈X such that(v, v′) ∈EP

(where∆ is the distance metric andδ is the distance threshold).

Whenever it is clear from the context, we usev to refer to a node
of the pattern andxv to refer to the corresponding variable of the
CSP as we do in the following example.

Example 3 Consider Fig. 2. Forδ = 0.3, the patternP1 of graph
G CSP is defined as:




(v1, v2, v3),
{

{u0, . . . , u9}, . . . , {u0, . . . , u9}
}

,
{

v1 6= v2 6= v3, L(v1)=DM, L(v2)=IR, L(v3)=DB,
∆(v1, v2) ≤ 0.3, ∆(v2, v3) ≤ 0.3, ∆(v1, v3) ≤ 0.3

}





The notations for a solution (Proposition 1) and valid (or invalid)
assignments (Definition 6) are easily extended to support pattern to

523

Table 1: Definitions of the anti-monotonic structural con-
straints for pattern P , implemented in CGRAM I

|VP | ≤ α Number of nodes should not exceedα
|EP | ≤ α Number of edges should not exceedα
max(degree(VP)) ≤ α The maximum node degree isα

Table 2: Definitions of the anti-monotonic semantic constraints
for pattern P , implemented in CGRAM I

(∀v ∈ VP)(L(v) ∈ L) P contains only labels fromL
(∀v ∈ VP)(L(v) /∈ L) P does not contain any label fromL
(∀v, v′∈EP)(L(v, v′)∈E) P contains only edges fromE
(∀v, v′∈EP)(L(v, v′) /∈E) P does not contain any edges fromE
(¬subgraph(P ′, P)) PatternP must not contain a specific subgraphP ′

(∀v∈VP)(count(L(v))≤α) A node label cannot appear more thanα times inP

graph CSPs. For instance, assignment(v1, v2, v3) = (u7, u8, u6)
is a solution of the CSP of Example 3 and a pattern embedding of
P1 to G. Moreover,v2 = u3 is a valid assignment whilev2 = u0

is invalid (and thus, cannot be extended to a solution).

Proposition 4 Let(X ,D, C) be the patternP to graphG CSP. The
MNI support ofP in G satisfiesτ , i.e.,σG(S) ≥ τ , iff every vari-
able inX has at leastτ distinct valid assignments (i.e., embeddings
ofP in G).

Continuing Example 3, we haveσG(P1) ≥ 2 since all domains
contain at least 2 valid assignments (the domains of variablesv1,
v2 andv3 are{u2, u7}, {u3, u8} and{u1, u6} respectively).

To address the frequent pattern mining problem (Problem 2), we
can also employ Algorithms ISFREQUENTHEURISTICand ISFRE-
QUENT, with the following additional preprocessing step. For each
frequent node, we precompute the set of nodes that are reachable
within distanceδ. We run a distance-bound Dijkstra algorithm from
each frequent node to find the shortest path to the reachable nodes,
where the path distance is defined by the distance function∆; the
algorithm terminates when the distance of the shortest path exceeds
δ. All optimizations of Section 3.3 apply directly in this setting as
well. To avoid confusion, we use GRAM I for the subgraph mining
problem and GRAM I(δ) for the pattern mining problem.
User-defined constraints. Typically, frequent patterns show in-
teractions between nodes bearing the same label. For instance, in
citation graphs, most collaborations are among authors working in
the same field. In many applications, interactions among nodes of
different types (like interdisciplinary collaborations) are more in-
teresting and important [33]. To allow the user to focus on the
interesting patterns, we developed CGRAM I, a version of GRAM I

that supports two types of user-defined constraints:(a) Structural,
such as “the number of vertices in patternP should be at mostα’
and(b) Semantic, such as “P must not contain specific labels”.

Although not a requirement, it is desirable that the user-defined
constraints are anti-monotonic. In such cases, the constraints can be
pushed down in the subgraph extension search tree to early prune
large parts of the search space, thus accelerating the process. Ta-
bles 1 and 2 present a set of useful structural and semantic anti-
monotonic constraints that are supported by CGRAM I.
Approximate mining. Frequent subgraph mining is a computa-
tionally intensive task since it is dominated by the NP-hard sub-
graph isomorphism problem. Thus, its performance is prohibitively
expensive when applied to large graphs. Motivated by this, we
introduce AGRAM I, an approximate version of our framework,
which is able to scale to larger graphs. To maintain the quality of
results, AGRAM I does not return any infrequent pattern (i.e., does
not have false positives), although it may miss some frequent ones
(i.e., may have false negatives). To achieve this, we modified the

Table 3: Datasets and their characteristics
Dataset Nodes Distinct node labels Edges Density

Twitter 11,316,811 100 85,331,846 Dense
Patents 3,942,797 453 16,522,438 Medium
Aviation 101,185 6,173 133,087 Sparse
MiCo 100,000 29 1,080,298 Dense

CiteSeer 3,312 6 4,732 Medium

way ISFREQUENT handles time-outs (Line 18) as follows: we set
the time-out to occur afterf(α) iterations of the search. If a solu-
tion is found before this time-out, thecount is updated as normal.
On the other hand, if a time-out occurs it is assumed that the search
was unsuccessful. If enough time-outs occur during the search of a
specific domain such that itscount remains less thanτ , the pattern
is considered to be infrequent. Parameterf(α) = αn ∏n

1
|Di|+β,

whereβ is a constant,Di are the domains of the variables,n is the
number of variables and0 < α ≤ 1 is a user-defined approxi-
mation parameter.

∏n
1
|Di| grows exponentially; thus it has to be

bounded by an exponential weightαn. Increasingα decreases the
approximation error at the expense of longer execution time. When
α = 1, AGRAM I becomes equivalent to GRAM I.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate GRAM I and its ex-

tensions. For comparison, we have implemented GROWSTORE that
follows a patterngrow-and-storeapproach [20, 29]. GROWSTORE

uses the original code ofGSPAN [29] and takes advantage of all its
optimizations. The only difference is that GROWSTORE, similarly
to GRAM I, use the efficientMNI metric. Both GROWSTORE and
GRAM I are completely memory based. All experiments are con-
ducted using Java JRE v1.6.0 on a Linux (Ubuntu 12) machine with
8 cores running at 2.67GHz with 192GB RAM and 1TB disk. Our
experimental machine used an exotic memory size to accommodate
the memory requirements of GROWSTORE; GRAM I may also run
on ordinary machines with 4GB RAM for all datasets but Twitter.
Datasets.We experiment on several different workload settings by
employing the following real graph datasets; their main character-
istics are summarized in Table 3.
Twitter (socialcomputing.asu.edu/datasets/Twitter). This graph
models the social news of Twitter and consists of∼11M nodes and
∼85M edges. Each node represents a Twitter user and each edge
represents an interaction between two users. The original graph
does not have labels, so we randomly added labels to the nodes.
The number of distinct labels was set to 100 and the randomization
follows a Gaussian distribution.
Patents. This dataset models U.S. patents’ citations and consists
of a directed graph with∼4M nodes and∼16M edges. Each node
represents a patent and each edge represents a citation. The graph
is maintained by the National Bureau of Economic Research [32].
As a preprocessing step, we remove all unlabeled nodes.
MiCo. This dataset models the Microsoft co-authorship informa-
tion and consists of an undirected graph with 100K nodes and∼1M
edges. Nodes represent authors and are labeled with the author’s
field of interest. Edges represent collaboration between two authors
and are labeled with the number of co-authored papers. To populate
MiCo we crawled the computer science collaboration graph from
academic.research.microsoft.com.
CiteSeer (cs.umd.edu/projects/linqs/projects/lbc). CiteSeer
represents a directed graph consisting of∼3K publications (nodes)
and∼4K citations between them (edges). Each node has a single
label representing a Computer Science area. Each edge has a label
(0 to 100) that measures the similarity between the corresponding

524

academic.research.microsoft.com

104

105

3000 3500 4000 4500

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)

Support thresholdτ

Twitter dataset

GROWSTORE
GRAM I

102

103

104

65000 70000 75000 80000

Support thresholdτ

Patents dataset

GROWSTORE
GRAM I

(a) (b)

101

102

103

11000 12000 13000 14000

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)

Support thresholdτ

MiCo dataset

GROWSTORE
GRAM I

101

102

1900 2050 2200 2350

Support thresholdτ

Aviation dataset

GROWSTORE
GRAM I

(c) (d)

Figure 6: Performance ofGRAM I and GROWSTORE

pair of publications, a smaller label denotes a stronger similarity.
Aviation (ailab.wsu.edu/subdue). This dataset contains a list of
records extracted from the aviation safety database and was used
in [7, 20] for evaluation. Each record corresponds to an event
and has several attributes (like event type, location, flight condi-
tion). This information is represented by a graph having two types
of nodes and edges. The first type of nodes represents the events
(and are labeled with the ids of the event) while the second repre-
sents attribute values (and are labeled with the actual value). The
first type of edges links events and is labeled with their relation-
ship (e.g., near to) while the second type links events with attribute
values and is labeled with the attribute name. Aviation consists of
100K nodes and 133K edges. Note that Aviation is a fundamen-
tally different dataset when compared with the previous ones. The
Aviation graph has on average one edge per node, thus, it is very
sparse. Also it has a very large number of distinct node labels.
Metrics. The support thresholdτ is the key evaluation metric as
it determines when a subgraph or a pattern is frequent. Decreas-
ing τ results in an exponential increase in the number of possible
candidates and thus exponential decrease in the performance of the
mining algorithms. For a given time budget, an efficient algorithm
should be able to solve mining problems for lowτ values. Whenτ
is given, efficiency is determined by the execution time.

To evaluate a result set, we consider the number and the maxi-
mum size of subgraphs/patterns in the set. Obviously, these values
should be as large as possible.
Computing frequent subgraphs.Initially, we consider Problem 1
that mines frequent subgraph isomorphisms. Fig. 6 shows the per-
formance of GROWSTORE and GRAM I on Twitter, Patents, MiCo
and Aviation datasets. The number of results (intermediate and ac-
tual) grows exponentially when the support thresholdτ decreases.
Thus, the running time of all algorithms also grows exponentially.
Unlike GROWSTORE, GRAM I does not need to enumerate all in-
termediate results, thus, it is more efficient. Our results indicate
that GRAM I outperforms GROWSTORE by at least two orders of
magnitude for Patents and MiCo datasets and by at least an or-
der of magnitude for Twitter and Aviation datasets. For the larger

102

103

104

10400 10600 10800

M
em

or
y

re
qu

ire
m

en
ts

(M
B

)

Support thresholdτ

MiCo

GROWSTORE
GRAM I

100

101

102

103

55 60 65 70

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)

Support thresholdτ

Citeseer sample (1400 edges)

GROWSTOREMIS

GRAM IMIS

(a) (b)

Figure 7: (a) Memory requirements for GRAM I and GROW-
STORE and (b) UsingMIS metric

datasets (Twitter and Patents) and for the lowerτ (3K and 65K
respectively), GROWSTORE was not able to produce results even
when it was alloted 2 orders of magnitude more time than GRAM I.
Memory requirements. Fig.7a illustrates the memory require-
ments for GROWSTORE and GRAM I for the MiCo dataset. Since
GROWSTORE needs to store all intermediate results, it consumes
about an order of magnitude more memory. Forτ=10, 400 the size
of the intermediate results exceed the available memory (192GB),
and hence GROWSTORE crashes. For this frequency, there is an
increase in the number of the frequent subgraphs and thus an expo-
nential increase in the number of intermediate candidates that need
to be stored and checked for frequency. This trend also appears
for the other datasets. GRAM I on the other hand is not affected by
the increase in the output size. Most of the memory GRAM I uses,
is required for the storage of the input graphG. The most costly
data structure of ISFREQUENTis the hash table used by push-down
pruning, but, still it does not exceed 2% for the overall required
memory. Also the space needed to store timed-out searches (set
timedoutSearch) was never above 1% of the total memory. For all
our experiments, GRAM I could be also executed in machines with
the typical memory size of 4GB except for the Twitter dataset.
UsingMIS metric. In this experiment, we compare GROWSTOREMIS

the original version of GROWSTORE that uses theMIS metric with
GRAM IMIS, the modified version of GRAM I that also supportsMIS.
For the Aviation dataset, GRAM IMIS takes slightly more time than
GRAM I while GROWSTOREMIS could not produce results even if it
was allotedthreeorders of magnitude more time than GRAM IMIS.
Interestingly, GROWSTOREMIS cannot produce results in reason-
able time even for the much smaller Citeseer dataset. To achieve a
comparison, we have constructed a new dataset by randomly sam-
pling 1400 edges from the Citeseer dataset. The results are illus-
trated in Fig. 7b. Clearly, GRAM IMIS outperforms GROWSTOREMIS

by up to 3 orders of magnitude.
Computing frequent patterns. We now consider Problem 2 that
mines frequent pattern embeddings. We evaluate the performance
of GROWSTORE and GRAM I(δ) for several values of the distance
thresholdδ. We use the CiteSeer dataset and distance function
∆h(u, v) defined as the number of hops in the shortest path that
connectsu andv. For GRAM I(δ), we test on two different dis-
tance thresholds namely 1 and 4. Intuitively, forδ = 1 (respectively
δ = 4) two pattern nodes that are connected with an edge may be
matched with two graph nodes that are one hop (respectively four
hops) away. GROWSTORE can only find matches that are only one
hop away. Thus, only GROWSTORE and GRAM I(1) are directly
comparable since they both compute the same results. As shown
in Fig. 8a, GRAM I(1) is an order of magnitude faster than GROW-
STORE (note the logarithmic scale). As expected GRAM I(4) com-

525

ailab.wsu.edu/subdue

1

10

160 170 180 190 200

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)

Support thresholdτ

CiteSeer dataset –∆h

GROWSTORE
GRAM I(4)
GRAM I(1)

5

10

15

20

25

160 170 180 190 200

N
um

be
r

of
pa

tte
rn

s
Support thresholdτ

CiteSeer dataset –∆h

GRAM I(4)
GRAM I(1)

GROWSTORE

(a) (b)

3

4

5

6

160 170 180 190 200

M
ax

im
um

pa
tte

rn
si

ze

Support thresholdτ

CiteSeer dataset –∆h

GRAM I(4)
GRAM I(1)

GROWSTORE

IR
DB

IR

IR

IR

IR

DB

IR

ML

IR

IR

(c) (d)

Figure 8: Performance evaluation for mining frequent pat-
terns in CiteSeer dataset comparing betweenGROWSTOREand
GRAM I(δ) where δ is the distance threshold

putes more and larger patterns than GROWSTORE and GRAM I(1)
(Figs. 8b and 8c). An example of a frequent pattern discovered by
GRAM I is illustrated on the right of Fig. 8d and contains 5 nodes
involving 3 different Computer Science areas. To compare, GROW-
STORE computes the 3 nodes patterns at the left of Fig. 8d that in-
volve 1 and 2 areas. To compute these results, GRAM I(4) takes
more time than GRAM I(1) but is still faster than GROWSTORE.

To further illustrate the benefits of GRAM I(δ) we have con-
ducted another set of experiments (Fig. 9). The aim of the experi-
ments is to illustrate the properties of the patterns that can be gen-
erated within a specific time budget. Figs. 9a,b, consider the Cite-
seer dataset with the distance function∆h and compare between
GROWSTORE, GRAM I(1) and GRAM I(4). Specifically, Fig. 9a
shows the minimum support thresholdτ that can be achieved, when
the above algorithms are allotted a time budget that ranges from 1
to 5 seconds (lower is better). For this budget range, Fig. 9b illus-
trates the number of result patterns (higher is better). In both cases,
GRAM I(1) and GRAM I(4) accomplish lower thresholds and result
in more patterns than GROWSTORE.
CGRAM I: User-defined constraints.CGRAM I supports the addi-
tion of constraints on the returned results (Section 4). Using these
constraints, the focus can be on more interesting pattern types like
the ones that show interactions between nodes of a different type.
To evaluate CGRAM I, we use the experimental setting of Fig. 9a,b.
The only difference is that we now use CGRAM I(δ) with a con-
straint that does not allow more than 4 nodes with the same label
in a pattern. The corresponding results are illustrated in Fig. 9c,d
and are directly comparable to Fig. 9a,b. In every case and within
the same time budget allowed for both GRAM I and CGRAM I,
CGRAM I results in a significantly lower minimum support thresh-
old τ and significantly larger frequent patterns set. For instance, for
the Citeseer dataset with a time budget of 3 seconds, CGRAM I(1)
achieves a 3 times lower threshold and almost 3 times more patterns

90

130

170

210

250

290

330

1 2 3 4 5

M
in

im
un

su
pp

or
tt

hr
es

ho
ldτ

Time budget in seconds

Citeseer dataset –∆h

GROWSTORE
GRAM I(4)
GRAM I(1)

0

10

20

30

40

50

1 2 3 4 5

M
ax

im
um

nu
m

be
r

of
pa

tte
rn

s

Time budget in seconds

Citeseer dataset –∆h

GRAM I(1)
GRAM I(4)

GROWSTORE

(a) (b)

0

50

100

150

200

250

300

1 2 3 4 5

M
in

im
un

su
pp

or
tt

hr
es

ho
ldτ

Time budget in seconds

Citeseer dataset –∆h

CGRAM I(4)
CGRAM I(1)

0

40

80

120

160

200

1 2 3 4 5

M
ax

im
um

nu
m

be
r

of
pa

tte
rn

s

Time budget in seconds

Citeseer dataset –∆h

CGRAM I(1)
CGRAM I(4)

(c) (d)

Figure 9: Comparing (a,c) the minimum support threshold
and (b,d) the maximum number of frequent patterns that can
be achieved within an allotted time budget. For (a,b) we used
GRAM I(δ) and for (c,d) we use CGRAM I(δ) constrained to re-
ject patterns with more than 4 nodes with the same label

than GRAM I. Additionally, CGRAM I generates patterns having
about 3 times more label interactions than GRAM I.
AGRAM I : Approximate mining. AGRAM I, which offers ap-
proximate subgraph and pattern mining (Section 4), can be tuned
by the approximation parameterα, 0 < α ≤ 1 (value 1 means no
approximation). Fig. 10 illustrates the performance of GRAM I and
AGRAM I for several values for theα parameter in the Patents and
MiCo datasets. We evaluate two parameters, execution time and
recall, i.e., the percentage of subgraphs returned by AGRAM I with
respect to the actual complete set of frequent subgraphs. For the
Patents dataset, the performance gain is significant, nearly an order
of magnitude for bothα=2·10−5 andα=3·10−5. Forα=3·10−5

the recall is always 100% (i.e., AGRAM I provides all subgraphs)
except forτ = 63.600 that is 95%. Forα = 2·10−5 the recall is
always over 90%. For the MiCo dataset, the performance gain is
significant, nearly an order of magnitude whenα = 4·10−4 and

103

104

63600 63800 64000 64200

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)

Support thresholdτ

Patents dataset

GRAM I

AGRAM I α=3·10−5

AGRAM I α=2·10−5

102

103

104

9220 9260 9300 9340

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)

Support thresholdτ

MiCo dataset

GRAM I

AGRAM I α=4·10−4

AGRAM I α=2·10−4

(a) (b)

Figure 10: Performance evaluation ofGRAM I and AGRAM I

with different values for the approximation parameter.

526

101

102

103

104

105

9460 9470 9480

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)

Support thresholdτ

MiCo dataset

No opt
Lazy

Pruning
GRAM I

103

104

105

64000 64200 64400

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)
Support thresholdτ

Patents dataset

No opt
Pruning

Lazy
GRAM I

101

102

103

104

105

95 96 97

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)

Support thresholdτ

Citeseer dataset

No opt
Pruning
GRAM I

0

50

100

150

200

250

300

350

400

1900 2050 2200

T
im

e
in

se
co

nd
s

Support thresholdτ

Aviation dataset

No opt
Unique
GRAM I

(a) (b) (c) (d)

Figure 11: The effect of optimizations.No opt: Algorithm ISFREQUENTHEURISTIC (Section 3.2).Lazy: Lazy search and decom-
position optimizations enabled.Pruning:Only pruning push-down optimization enabled. Unique:Only unique labels optimization
enabled.GRAM I: All optimization enabled (Algorithm ISFREQUENT).

101

102

11000 12000 13000 14000

T
im

e
in

se
co

nd
s

(lo
g

sc
al

e)

Support thresholdτ

MiCo dataset

GGQL
GRAM I

101

102

1900 2050 2200 2350 2500

Support thresholdτ

Aviation dataset

GGQL
GRAM I

(a) (b)

Figure 12: Performance comparison betweenGRAM I and
GGQL; a modified version of GRAM I that replaces ISFRE-
QUENT with a counting function based on GraphQL

nearly two orders of magnitude whenα = 2·10−4. Interestingly,
the recall is always 100%.
Optimizations. This experiment demonstrates the effect of the op-
timizations discussed in Section 3.3 on mining the different datasets.
A summary is illustrated in Fig. 11. For the MiCo dataset, the most
effective optimization isPush-down pruning(denoted by Pruning
in Fig. 11a) that achieves an improvement of up to 2 orders of mag-
nitude. Following that, are theLazy searchand theDecomposition
pruningoptimizations, both are combined and denoted by Lazy in
Fig. 11a. The two optimizations accomplish an improvement of
up to an order of magnitude. Last comes theAutomorphismand
Unique labelsoptimizations that achieve only 4% improvement,
since most of the frequent subgraphs in the MiCo dataset neither
have automorphisms nor unique labels. For presentation clarity in
Fig. 11a, we do not illustrate the results of the last two optimiza-
tion methods. A similar trend also applies to Patents and Citeseer
datasets (Figs. 11b and 11c).

For the Aviation dataset (Fig. 11d), a different optimization trend
is noticed since this dataset is fundamentally different than MiCo
Patents and Citeseer. In this case, the most effective optimization is
Unique labels (denoted by Unique in Fig. 11d). As discussed ear-
lier, the Aviation dataset is extremely sparse and has a very large
number of distinct node labels, thus, the Unique label optimization
is very effective. In contrast to the previous cases, all other opti-
mizations do not offer any improvement and are not illustrated.
Comparison with subgraph isomorphism techniques. To ad-
dress the frequent data mining problem, we may also employ sub-
graph isomorphism techniques [21]. For comparison, we have im-
plemented GGQL; a modified version of GRAM I that replaces
ISFREQUENTwith a frequency evaluation function based on GRA-
PHQL [16]; one of the fastest state-of-the-art subgraph isomor-

phism techniques [21]. Clearly, as illustrated in Fig. 12, GRAM I

outperforms GGQL by at least 3 times and up to more than an or-
der of magnitude. This is easily justifiable since GRAM I uses sev-
eral optimizations and visits only the necessary nodes in the input
graph to solve the frequent subgraph mining problem.

6. RELATED WORK
This section discusses related work in many different directions.

Transactional mining. This setting is concerned with mining fre-
quent subgraphs on a dataset of many, usually small, graphs. FSQ

[18] construct new candidate patterns by joining smaller frequent
ones. The drawback of this approach is the costly join operation
and the pruning of false positives.GSPAN [29] proposes a variation
of the patterngrowth approach. It uses an extension mechanism,
where subgraphs grow directly from a single subgraph instead of
joining two previous subgraphs. Other methods focus on particular
subsets of frequent subgraphs. MARGIN [26] returns maximal sub-
graphs only, whereas CLOSEGRAPH [30] generates subgraphs that
have strictly smaller support than any of their parts. LEAP [28] and
GRAPHSIG [24], on the other hand, discover important subgraphs
that are not necessarily frequent.

Although GRAM I focuses on the single large graph setting, it
may be easily specialized to also support graph transactions.
Single graph mining. On the equally important single graph set-
ting there exists less work. The major difference is the defini-
tion of an appropriate anti-monotone support metric (Section 2).
SIGRAM [20] uses theMIS metric and proposes an algorithm that
finds frequent connected subgraphs in a single, labeled, sparse and
undirected graph. SIGRAM follows a grow-and-storeapproach,
i.e., it needs to store intermediate results in order to evaluate fre-
quencies. Overall, SIGRAM needs to enumerate all isomorphisms
and relies on the expensive computation ofMIS (which is NP -
complete), thus the method is very expensive in practice.

Since the number of intermediate embeddings increases expo-
nentially with the graph size, such approaches do not scale for large
graphs. In contrast, GRAM I does not need to construct all the iso-
morphisms, hence, it can scale to much larger graphs. More im-
portantly, GRAM I supports frequent subgraph and pattern mining
(Problems 1 and 2 respectively). Thus, it allows for exact isomor-
phism matching and the more general distance-constrained pattern
matching. Additionally, GRAM I supports constraint-based mining
and works on directed, undirected, single and multi-labeled graphs.
Approximate mining. There is work on approximate techniques
for solving the frequent subgraph mining problem as well. In GREW

[19], the authors propose a heuristic approach that prunes large

527

parts of the search space, but discovers only a small subset of the
answers.GAPPROX[3] employs an approximate version of theMIS
metric. It mainly relies on enumerating all intermediate isomor-
phisms but allows approximate matches. SEUS [14] is another ap-
proximate method that constructs a compact summary of the input
graph. This facilitates pruning many infrequent candidates, how-
ever, it is only useful when the input graph contains few and very
frequent subgraphs. SUBDUE [7] is a branch-and-bound technique
that mines subgraphs that can be used to compress the original
graph. Finally, Khanet al. [17] propose proximity patterns, which
relax the connectivity constraint of subgraphs and identify frequent
patterns that cannot be found by other approaches.

In contrast to the existing work, AGRAM I, approximate version
of GRAM I, may miss some frequent subgraphs, but the returned
results do not have false positives.
Subgraph isomorphism.The frequent subgraph mining problem
relies on the computation of subgraph isomorphisms. This prob-
lem is NP-complete and the first practical algorithm that addresses
this problem follows a backtracking technique [27]. Since then,
several performance enhancements were proposed, ranging from
CSP based techniques [23], search order optimization [16], index-
ing [31] and parallelization [25].

Although the state-of-the-art subgraph isomorphism techniques
lead to significant improvements, they are not as effective in the
frequent subgraph mining problem for two reasons: First, subgraph
isomorphism techniques are effective in finding all appearances of
a subgraph, while for the frequent subgraph mining task, it is suf-
ficient to find the minimum appearances that satisfy the support
threshold; this difference affects the way graph nodes are traversed,
minimizing the number of node visits during search. Addition-
ally, modern techniques employ global pruning and indexing tech-
niques. Forming such structures on large graphs results in a huge
and often unacceptable overhead. GRAM I is based on a novel CSP
method that overcomes the previous shortcomings and outperforms
state-of-the-art subgraph isomorphism techniques by up to an order
of magnitude. This is experimentally validated in Section 5.
Pattern matching. There is work on pattern matching over graphs
as well. R-JOIN [4] supports reachability queries in a directed
graph; If two nodesv andv′ are reachable in the query then their
corresponding mappingsu andu′ in the graph must also be reach-
able. DISTANCE-JOIN [34] extends the idea to undirected graphs
and accommodates constraints on the distance in the path. GRAM I

presents an extension to support frequent pattern mining, the ex-
tended version adopts the pattern definition from [34].

7. CONCLUSIONS
Many important applications, ranging from bioinformatics to so-

cial network study and from personalized advertisement (e.g., rec-
ommendation systems) to security (e.g., identification of terrorist
groups), depend on graph mining. This paper introduces GRAM I;
a versatile algorithm for discovering frequent patterns in a single
large graph, a significantly more difficult problem compared to the
usual case of mining a set of small graph transactions. The mod-
eling of the frequency evaluation operation as a constraint satis-
faction problem is the crux idea of GRAM I. We complement this
idea with a set of optimizations that allows for the efficient per-
formance of GRAM I. We also implement a version that supports
structural and semantic constraints and an approximate version that
scales to larger graphs. Our experimental results with real datasets
demonstrate the effectiveness of GRAM I which is up to 2 orders of
magnitude faster than existing approaches while discovering larger
and more interesting frequent patterns.

8. REFERENCES
[1] B. Bringmann.Mining Patterns in Structured Data. PhD thesis, KU Leuven,

2009.
[2] B. Bringmann and S. Nijssen. What is frequent in a single graph? InProc. of

PAKDD, pages 858–863, 2008.
[3] C. Chen, X. Yan, F. Zhu, and J. Han.GAPPROX: Mining frequent approximate

patterns from a massive network. InProc. of ICDM, pages 445–450, 2007.
[4] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast graph pattern

matching. InProc. of ICDE, pages 913–922, 2008.
[5] Y.-R. Cho and A. Zhang. Predicting protein function by frequent functional

association pattern mining in protein interaction networks.Trans. Info. Tech.
Biomed., 14(1):30–36, Jan. 2010.

[6] W.-T. Chu and M.-H. Tsai. Visual pattern discovery for architecture image
classification and product image search. InProc. of ICMR, pages 27:1–27:8,
2012.

[7] D. J. Cook and L. B. Holder. Substructure discovery using minimum
description length and background knowledge.Journal of Artificial Intelligence
Research, 1(1):231–255, 1994.

[8] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting tree decomposition and soft
local consistency in weighted CSP. InProc. of AAAI, pages 22–27, 2006.

[9] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure-based
approaches for classifying chemical compounds. InProc. of ICDM, pages
35–42, 2003.

[10] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with
stored. InProc. of SIGMOD, pages 431–442, 1999.

[11] C. Domshlak, R. I. Brafman, and S. E. Shimony. Preference-based
configuration of web page content. InProc. of IJCAI, pages 1451–1456, 2001.

[12] M. Fiedler and C. Borgelt. Subgraph support in a single large graph. InProc. of
ICDMW, pages 399–404, 2007.

[13] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[14] S. Ghazizadeh and S. S. Chawathe. Seus: Structure extraction using summaries.
In Proc. of DS, pages 71–85, 2002.

[15] V. Guralnik and G. Karypis. A scalable algorithm for clustering sequential data.
In Proc. of ICDM, pages 179–186, 2001.

[16] H. He and A. K. Singh. Graphs-at-a-time: query language and access methods
for graph databases. InProc. of SIGMOD, pages 405–418, 2008.

[17] A. Khan, X. Yan, and K.-L. Wu. Towards proximity pattern mining in large
graphs. InProc. of SIGMOD, pages 867–878, 2010.

[18] M. Kuramochi and G. Karypis. Frequent subgraph discovery. InProc. of ICDM,
pages 313–320, 2001.

[19] M. Kuramochi and G. Karypis. GREW - A scalable frequent subgraph discovery
algorithm. InProc. of ICDM, pages 439–442, 2004.

[20] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse
graph.Data Mining and Knowledge Discovery, 11(3):243–271, 2005.

[21] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth comparison of
subgraph isomorphism algorithms in graph databases.PVLDB, 6(2):133–144,
Dec. 2012.

[22] A. Mackworth. Consistency in networks of relations.Artificial Intelligence,
8(1):99–118, 1977.

[23] J. J. McGregor. Relational consistency algorithms and their application in
finding subgraph and graph isomorphisms.Information Sciences, 19:228–250,
1979.

[24] S. Ranu and A. K. Singh. GRAPHSIG: A scalable approach to mining
significant subgraphs in large graph databases. InProc. of ICDE, pages
844–855, 2009.

[25] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on
billion node graphs.PVLDB, 5(9):788–799, May 2012.

[26] L. T. Thomas, S. R. Valluri, and K. Karlapalem. MARGIN: Maximal frequent
subgraph mining.TKDD, 4(3):10:1–10:42, 2010.

[27] J. R. Ullmann. An algorithm for subgraph isomorphism.Journal of ACM,
23:31–42, 1976.

[28] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patternsby
leap search. InProc. of SIGMOD, pages 433–444, 2008.

[29] X. Yan and J. Han.GSPAN: Graph-based substructure pattern mining. InProc.
of ICDM, pages 721–724, 2002.

[30] X. Yan and J. Han. CLOSEGRAPH: mining closed frequent graph patterns. In
Proc. of SIGKDD, pages 286–295, 2003.

[31] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based
approach. InProc. of SIGMOD, pages 335–346, 2004.

[32] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009.
[33] F. Zhu, X. Yan, J. Han, and P. S. Yu.GPRUNE: A constraint pushing framework

for graph pattern mining. InProc. of PAKDD, pages 388–400, 2007.
[34] L. Zou, L. Chen, and M. T.̈Ozsu. Distance-join: pattern match query in a large

graph database.PVLDB, 2(1):886–897, 2009.

528

	Introduction
	Preliminaries
	The GraMi Approach
	The CSP Model
	Frequent Subgraph Mining
	Optimizing Frequency Evaluation

	GraMi Extensions
	Experimental Evaluation
	Related Work
	Conclusions
	References

