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ABSTRACT
RDF data are used to model knowledge in various areas such as life
sciences, Semantic Web, bioinformatics, and social graphs. The
size of real RDF data reaches billions of triples. This calls for a
framework for efficiently processing RDF data. The core function
of processing RDF data is subgraph pattern matching. There have
been two completely different directions for supporting efficient
subgraph pattern matching. One direction is to develop specialized
RDF query processing engines exploiting the properties of RDF
data for the last decade, while the other direction is to develop effi-
cient subgraph isomorphism algorithms for general, labeled graphs
for over 30 years. Although both directions have a similar goal
(i.e., finding subgraphs in data graphs for a given query graph),
they have been independently researched without clear reason. We
argue that a subgraph isomorphism algorithm can be easily modi-
fied to handle the graph homomorphism, which is the RDF pattern
matching semantics, by just removing the injectivity constraint. In
this paper, based on the state-of-the-art subgraph isomorphism al-
gorithm, we propose an in-memory solution, TurboHOM++, which
is tamed for the RDF processing, and we compare it with the repre-
sentative RDF processing engines for several RDF benchmarks in a
server machine where billions of triples can be loaded in memory.
In order to speed up TurboHOM++, we also provide a simple yet
effective transformation and a series of optimization techniques.
Extensive experiments using several RDF benchmarks show that
TurboHOM++ consistently and significantly outperforms the repre-
sentative RDF engines. Specifically, TurboHOM++ outperforms its
competitors by up to five orders of magnitude.

1. INTRODUCTION
The Resource Description Framework (RDF) is a standard for

representing knowledge on the web. It is primarily designed for
building the Semantic web and has been widely adopted in database
and data mining communities. RDF models a fact as a triple which
consists of a subject (S), a predicate (P), and an object (O). Due
to its simple structure, many practitioners materialize their data in
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an RDF format. For example, RDF datasets are now pervasive in
various areas including life sciences, bioinformatics, and social net-
works. The size of real RDF data reaches billions of triples. Such
billion-scale RDF data are fully loaded in main memory of today’s
server machine (The cost of a 1TB machine is less than $40,000).

The SPARQL query language is a standard language for query-
ing RDF data in a declarative fashion. Its core function is subgraph
pattern matching, which corresponds to finding all graph homo-
morphisms in the data graph for a query graph [19].

In recent years, there have been significant efforts to speed up the
processing of SPARQL queries by developing novel RDF query
processing engines. Many engines [1, 18, 19, 25, 26, 29] model
RDF data as tabular structures and process SPARQL queries using
specialized join methods. For example, RDF-3X [19] treats RDF
data as an edge table, EDGE(S,P,O), and materializes six differ-
ent orderings for this table, so that it can support many SPARQL
queries just by using merge based join. Note that this approach
is efficient for both disk-based and in-memory environments since
merge join exploits only sequential scans. Some engines [2, 30, 35]
treat RDF data as graphs (or matrices) and develop specialized
graph processing methods for processing SPARQL queries. For
example, gStore [35] uses specialized index structures to process
SPARQL queries. Note that these index structures are based on
gCode [34], which was originally proposed for graph indexing.

Subgraph isomorphism, on the other hand, has been studied since
the 1970s. The representative algorithms are VF2 [20], QuickSI
[21], GraphQL [11], GADDI [32], SPATH [33], and TurboISO [9].
In order to speed up performance, these algorithms exploit good
matching orders and effective pruning rules. A recent study [14]
shows that good subgraph isomorphism algorithms significantly
outperform graph indexing based ones. However, all of these al-
gorithms use only small graphs in their experiments, and thus, it
still remains unclear whether these algorithms can show good per-
formance for billion-scale graphs such as RDF data.

Although subgraph isomorphism processing and RDF query pro-
cessing have similar goals (i.e., finding subgraphs in data graphs
for a given query graph), they have two inexplicably different di-
rections. A subgraph isomorphism algorithm can be easily modi-
fied to handle the graph homomorphism, which is the RDF pattern
matching semantics, just by removing the injectivity constraint.

In this paper, based on the state-of-the-art subgraph isomorphism
algorithm [9], we propose an in-memory solution, TurboHOM++,
which is tamed for the RDF processing, and we compare it with
the representative RDF processing engines for several RDF bench-
marks in a server machine where billions of triples can be loaded
in memory. We believe that this approach opens a new direction
for RDF processing so that both traditional directions can merge or
benefit from each other.
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By transforming RDF graphs into labeled graphs, we can ap-
ply subgraph homomorphism methods to RDF query processing.
Extensive experiments using several benchmarks show that a di-
rect modification of TurboISO outperforms the RDF processing en-
gines for queries which require a small amount of graph explo-
ration. However, for some queries which require a large amount
of graph exploration, the direct modification is slower than some
of its competitors. This poses an important research question: “Is
this phenomenon due to inherent limitations of the graph homo-
morphism (subgraph isomorphism) algorithm?” Our profile results
show that two major subtasks of TurboISO — 1) exploring candi-
date subgraphs inExploreCandidateRegion and 2) enumerating
solutions based on candidate regions in SubgraphSearch — re-
quire performance improvement. TurboHOM++ resolves such per-
formance hurdles by proposing the type-aware transformation and
tailored optimization techniques.

First, in order to speed upExploreCandidateRegion, we pro-
pose a novel transformation (Section 4.1), called type-aware trans-
formation, which is simple yet effective in processing SPARQL
queries. In type-aware transformation, by embedding the types of
an entity (i.e., a subject or object) into a vertex label set, we can
eliminate corresponding query vertices/edges from a query graph.
With type-aware transformation, the query graph size decreases, its
topology becomes simpler than the original query, and thus, this
transformation improves performance accordingly by reducing the
amount of graph exploration.

In order to optimize performance in depth, in both Explore-
CandidateRegion and SubgraphSearch, we propose a series
of optimization techniques (Section 4.3), each of which contributes
to performance improvement significantly for such slow queries.
In addition, we explain how TurboHOM++ is extended to support
1) general SPARQL features such as OPTIONAL, and FILTER,
and 2) parallel execution for TurboHOM++ in a non-uniform mem-
ory access (NUMA) architecture [15, 16]. These general features
are necessary to execute comprehensive benchmarks such as Berlin
SPARQL benchmark (BSBM) [3]. Note also that, when the RDF
data size grows large, we have to rely on the NUMA architecture.

Extensive experiments using several representative benchmarks
show that TurboHOM++ consistently and significantly outperforms
all its competitors for all queries tested. Specifically, our method
outperforms the competitors by up to five orders of magnitude with
only a single thread. This indicates that a subgraph isomorphism
algorithm tamed for RDF processing can serve as an in-memory
RDF accelerator on top of a commercial RDF engine for real-time
RDF query processing.

Our contributions are as follows. 1) We provide the first direct
comparison between RDF engines and the state-of-the-art subgraph
isomorphism method tamed for RDF processing, TurboHOM++, thro-
ugh extensive experiments and analyze experimental results in depth.
2) In order to simplify a query graph, we propose a novel trans-
formation method called type-aware transformation, which con-
tributes to boosting query performance. 3) In order to speed up
query performance further, we propose a series of performance
optimizations as well as NUMA-aware parallelism for fast RDF
query processing. 4) Extensive experiments using several bench-
marks show that the optimized subgraph isomorphism method con-
sistently and significantly outperforms representative RDF query
processing engines.

The rest of the paper is organized as follows. Section 2 de-
scribes the subgraph isomorphism, its state-of-the-art algorithms,
TurboISO, and their modification for the graph homomorphism. Sec-
tion 3 presents how a direct modification of TurboISO, TurboHOM,
handles the SPARQL pattern matching. Section 4 describes how we

obtain TurboHOM++ from TurboHOM using the type-aware transfor-
mation and optimizations for the efficient SPARQL pattern match-
ing. Section 5 reviews the related work. Section 6 presents the ex-
perimental result. Finally, Section 7 presents our conclusion. Note
that due to the space limit, please refer [13] for how TurboHOM++
handle OPTIONAL, UNION, FILTER keywords, and parallelize.

2. PRELIMINARY

2.1 Subgraph Isomorphism and RDF Pattern
Matching Semantic

Suppose that a labeled graph is defined as g(V,E, L), where V
is a set of vertices,E(⊆ V ×V ) is a set of edges, andL is a labeling
function which maps from a vertex or an edge to the corresponding
label set or label, respectively. Then, the subgraph isomorphism is
defined as follows.

Definition 1. [14] Given a query graph q(V,E, L) and a data
graph g(V ′, E′, L′), a subgraph isomorphism is an injective func-
tion M : V → V ′ such that 1) ∀v ∈ V,L(v) ⊆ L′(M(v)) and 2)
∀(u, v) ∈ E, (M(u),M(v)) ∈ E′ andL(u, v) = L′(M(u),M(v)).

If a query vertex, u, has a blank label set (or does not spec-
ify vertex label equivalently), it can match any data vertex. Here,
L(u) = ∅, and thus, the subset condition, L(u) ⊆ L′(M(u)), is
always satisfied. Similarly, if a query edge (u, v) has a blank label,
it can match any data edge by generalizing the equality condition
L(u, v) = L′(M(u),M(v)) to L(u, v) ⊆ L′(M(u),M(v)).

The graph homomorphism [6] is easily obtained from the sub-
graph isomorphism by just removing the injective constraint on M
in Definition 1. Even though the RDF pattern matching semantics
is based on the graph homomorphism, to answer SPARQL queries
which have variables on predicates, a mapping from a query edge
to an edge label is also required. We call such graph homomor-
phism the e(xtended)-graph homomorphism and present a formal
definition for it as follows.

Definition 2. Given a query graph q(V,E, L) and a data graph
g(V ′, E′, L′), an e(xtended)-graph homomorphism is a pair of two
mapping functions, a query vertex to data vertex function Mv :
V → V ′ such that 1) ∀v ∈ V,L(v) ⊆ L′(Mv(v)) and 2) ∀(u, v) ∈
E, (Mv(u),Mv(v)) ∈ E′, and L(u, v) = L′(Mv(u),Mv(v)),
and a query edge to edge label function Me : V × V → L such
that ∀(u, v) ∈ E,Me(u, v) = L′(Mv(u),Mv(v)).

The subgraph isomorphism problem (resp. the e-graph homo-
morphism problem) is to find all distinct subgraph isomorphisms
(resp. e-graph homomorphisms) of a query graph in a data graph.

Figure 1 shows a query q1 and a data graph g1. In q1, _ means a
blank vertex label set or blank edge label. In the subgraph isomor-
phism, there is only one solution – M1 = {(u0, v0), (u1, v1), (u2,
v2), (u3, v3), (u4, v4)}. In the e-graph homomorphism, there are
three solutions – M1

v = M1, M1
e = {((u0, u1), a), ((u0, u4), b),

((u2, u1), a), ((u2, u3), a), ((u3, u4), c)}, M2
v = {(u0, v2), (u1,

v3), (u2, v2), (u3, v3), (u4, v5)},M2
e =M1

e , andM3
v = {(u0, v2),

(u1, v1), (u2, v2), (u3, v3), (u4, v5)}, M3
e =M1

e .

2.2 TurboISO

In this subsection, we introduce the state-of-the art subgraph iso-
morphism solution, TurboISO[9], and its modification for the e-
graph homomorphism. Although we only describe the modifica-
tion of TurboISO for the e-graph homomorphism, such modification
is applicable to other subgraph isomorphism algorithms including
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(b) data graph g1.

Figure 1: Example of subgraph isomorphism and e-graph ho-
momorphism.

VF2 [20], QuickSI [21], GraphQL [11], GADDI [32], and SPATH
[33], since all of the subgraph algorithms mentioned are instances
of a generic subgraph isomorphism framework [14].

TurboISO presents an effective method for the notorious match-
ing order problem from which all the previous subgraph isomor-
phism algorithms have suffered [14]. Figure 2 illustrates an exam-
ple of the matching order problem, where q2 is the query graph,
and g2 is the data graph1. Note that this example query results
in no answers. However, the time to finish this query can differ
drastically by how one chooses the matching order, as it leads to
different number of comparisons. For instance, a matching order
< u0, u2, u1, u3 > requires 1+10000 ∗ 10 ∗ 5 comparisons while
a different matching order < u0, u3, u1, u2 > requires only 1 + 5
* 10 comparisons.

query graph: q
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(a) query graph q2.

query graph: q

X
u1

A

u0

u2

Y

15 36

��
���	��� ���

X Y

v0 A

X. . .
v1 v11

Z
u3

ZZ . . .Y. . .

10Xs 10000Ys 5Zs

v12 v10011 v10012 v10016

Z Z X X. . .. . .

CR(v0)

(b) data graph g2.

Figure 2: Example of showing the matching order problem.

TurboISO solves the matching order problem with candidate re-
gion exploration, a technique that accurately estimates the num-
ber of candidate vertices for a given query path [9]. In particu-
lar, TurboISO first identifies candidate data subgraphs (i.e., candi-
date regions) from the starting vertices (e.g. the shaded area in
Figure 2b), then explores each region by performing a depth-first
search, which allows almost exact selectivity for each query path.

Algorithm 1 outlines the overall procedure of TurboISO in de-
tail. First, if a query graph has only one vertex u and no edge,
it is sufficient to retrieve all data vertices which have u’s labels
(= V (g)L(u)) and to find a subgraph isomorphism for each of them
(lines 2–4). Otherwise, it selects the starting query vertex from the
query graph (line 6). Then, it transforms the query graph into its
corresponding query tree (line 7). After getting the query tree, for
each data vertex that contains the vertex label of the starting query
vertex, the candidate region is obtained by exploring the data graph
1For simplicity, we omit the edge labels and allow only one vertex
label in the data graph.

(lines 9). If the candidate region is not empty, its matching order
is determined (line 11). The data vertex, vs, is mapped to the first
query vertex us by assigning M(us) = vs and F (vs) = true
where F : V → boolean is a function which checks whether
a data vertex is mapped or not (line 12). Then, the remaining
subgraph matching is conducted (line 13). Lastly, the mapping
(us, vs) is restored by removing the mapping for us and assign-
ing F (vs) = false (line 14).

Algorithm 1 TurboISO(g(V,E, L), q(V ′, E′, L′))
Require: q: query graph, g: data graph
Ensure: all subgraph isomorphisms from q to g.
1: if V (q) = {u} and E = φ then
2: for each v ∈ V (g)L(u) do
3: report M = {(u, v)}
4: end for
5: else
6: us ← ChooseStartQueryV ertex(q, g)
7: q′ ←WriteQueryTree(q, us)
8: for each vs ∈ {v|v ∈ V,L(us) ⊆ L(v)} do
9: CR← ExploreCandidateRegion(us, vs)

10: if CR is not empty then
11: order ← DetermineMatchingOrder(q′, CR)
12: UpdateState(M,F, us, vs)
13: SubgraphSearch(q, q′, g, CR, order, 1)
14: RestoreState(M,F, us, vs)
15: end if
16: end for
17: end if

ChooseStartQueryVertex. ChooseStartQueryV ertex tries
to pick the starting query vertex which has the least number of
candidate regions. First, as a rough estimation, the query ver-
tices are ranked by their scores. The score of a query vertex u
is rank(u) = freq(g,L(u))

deg(u)
, where freq(g, L(u)) is the number of

data vertices that have u’s vertex labels. The score function prefers
lower frequencies and higher degrees. After obtaining the top-
k least-scored query vertices, the number of candidate regions is
more accurately estimated for each of them by using the degree fil-
ter and the neighborhood label frequency (NLF) filter. The degree
filter qualifies the data vertices which have equal or higher degree
than their corresponding query vertices. The NLF filter qualifies
the data vertices which have equal or larger number of neighbors
for all distinct labels of the query vertex. In Figure 2, for example,
u0 becomes the starting query vertex since it has the least number
of candidate regions (= 1).

WriteQueryTree. Next,WriteQueryTree transforms the query
graph to the query tree. From the starting query vertex obtained by
ChooseStartQueryV ertex, a breath-first tree traversal is con-
ducted. Every non-tree edge (u, v) of the query graph also is recorded
in the corresponding query tree. For example, when u0 is the
starting query vertex, the non-tree edges of q2’s query tree are
(u1, u2),(u1, u3), and (u2, u3).

ExploreCandidateRegion. Using the query tree and the starting
query vertex, ExploreCandidateRegion collects the candidate
regions. A candidate region is obtained by exploring the data graph
from the starting query vertex in a depth-first manner following the
topology of the query tree. During the exploration, the injectivity
constraint should be enforced. The shaded area of Figure 2b is the
candidate region CR(v0) based on q2’s query tree. Note that the
candidate region expansion is conducted only after the current data
vertex satisfies the constraints of the degree filter and the NLF filter.
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DetermineMatchingOrder. After obtaining the candidate re-
gions for a starting data vertex, the matching order is determined for
each candidate region. Using the candidate region, Determine-
MatchingOrder can accurately estimate the number of candidate
vertices for each query path. Then, it orders all query paths in the
query tree by the number of candidate vertices. For example, from
CR(v0), the ordered list of query paths is [u0.u3, u0.u1, u0.u2].
Thus, we can easily see that < u0, u3, u1, u2 > is the best match-
ing order based on this ordered list.

SubgraphSearch. Exploiting the data structures obtained from
the previous steps, SubgraphSearch (Algorithm 2) enumerates
all distinct subgraph isomorphisms. It first determines the current
query vertex u from a given matching order order (line 1). Then,
it obtains a set of data vertices, CR from a candidate region CR
(line 2). CR(u, v) represents the candidate vertices of a query ver-
tex u which are the children of v in CR, and P (q′, u) is the parent
of u in a query tree q′. For each candidate data vertex v, if v has
already been mapped, the current solution is rejected since it vio-
lates the injectivity constraint of the subgraph isomorphism (lines
4–6). Next, by calling IsJoinable, if the query vertex u of the
current data vertex v has non-tree edges, the existence of the corre-
sponding edges are checked in the data graph (line 7). For example,
given CR(v0) and the matching order < u0, u3, u1, u2 >, when
making the embedding for u1, we must check whether there is an
edge from M(u1) to M(u3). If the IsJoinable test is passed,
the mapping information is updated by assigning M(u) = v and
F (v) = true (line 8). After updating the mapping, if all query
vertices are mapped, a subgraph isomorphism M is reported (lines
9–10). Otherwise, further subgraph search is conducted (line 12).
Finally, all changes done by UpdateState are restored (line 14).

Algorithm 2 SubgraphSearch(q, q′, g, CR, order, dc)
1: u← order[dc]
2: CR ← CR(u,M(P (q′, u)))
3: for each v ∈ CR such that v is not yet matched do
4: if F (v) = true then
5: continue
6: end if
7: if IsJoinable(q, g,M, u, v, . . . ) then
8: UpdateState(M,F, u, v)
9: if |M | = V (q) then

10: report M
11: else
12: SubgraphSearch(q, q′, g, CR, order, dc + 1)
13: end if
14: RestoreState(M,F, u, v)
15: end if
16: end for

Modifying TurboISO for e-Graph Homomorphism. We first
explain how the generic subgraph isomorphism algorithm [14] can
easily handle graph homomorphism. The generic subgraph isomor-
phism algorithm is implemented as a backtrack algorithm, where
we find solutions by incrementing partial solutions or abandon-
ing them when it is determined that they cannot be completed.
Here, given a query graph q and its matching order (uσ(1), uσ(2),
..., uσ(|V (q)|)), a solution is modeled as a vector ~v = (M(uσ(1)),
M(uσ(2)), ..., M(uσ(|V (q)|))) where each element in ~v is a data
vertex for the corresponding query vertex in the matching order. At
each step in the backtrack algorithm, if a partial solution is given,
we extend it by adding every possible candidate data vertex at the
end. Here, any candidate data vertex that does not satisfy the fol-
lowing three conditions must be pruned.

1) ∀ui ∈ V (q), L(ui) ⊆ L(M(ui))

2) ∀(ui, uj) ∈ E(q), (M(ui),M(uj)) ∈ E(g) andL(ui, uj) =
L(M(ui),M(uj))

3) M(ui) 6=M(uj) if ui 6= uj

Note that the third condition ensures the injective condition, guar-
anteeing that no duplicate data vertex exists in each solution vector.
Thus, by just disabling the third condition, the generic subgraph
isomorphism algorithm finds all possible homomorphisms.

Now, we describe how to disable the third condition in TurboISO,
which is an instance of the generic subgraph isomorphism algo-
rithm. TurboISO uses pruning rules by applying filters in Explore-
CandidateRegion and SubgraphSearch. First, the degree filter
and the NLF filter should be modified since a data vertex can be
mapped to multiple query vertices. The degree filter qualifies data
vertices which have an equal number or more neighbors than dis-
tinct labels of their corresponding query vertices. The NLF filter
qualifies data vertices which have at least one neighbor for all dis-
tinct labels of their corresponding query vertices. Second, lines
4–6 of SubgraphSearch ensuring the third condition should be
removed in order to disable the injectivity test. As we see here,
with minimal modification to TurboISO, it can easily support graph
homomorphism.

In order to make TurboISO handle the e-graph homomorphism,
the query edge to edge label mapping, Me, should be addition-
ally added in SubgraphSearch. For this, UpdateState assigns
Me(P (q′, u), u) = L(Mv(P (q′, u)),Mv(u)) , andRestoreState
removes such mapping. From here on, let us denote TurboISO mod-
ified for the e-graph homomorphism as TurboHOM.

3. RDF QUERY PROCESSING BY E-GRAPH
HOMOMORPHISM

In this section, we discuss how RDF datasets can be naturally
viewed as graphs (Section 3.1), and thus how an RDF dataset can
be directly transformed into a corresponding labeled graph (Sec-
tion 3.2). After such a transformation, henceforth, the subgraph
isomorphism algorithms modified for the e-graph homomorphism
such as TurboHOM can be applied for processing SPARQL queries.

3.1 RDF as Graph
An RDF dataset is a collection of triples each of which consists

of a subject, a predicate, and an object. By considering triples as
directed edges, an RDF dataset naturally becomes a directed graph:
the subjects and the objects are vertices while the predicates are
edges. Figure 3 is a graph representation of triples that captures
type relationships between university organizations. Note that we
use rectangles to represent vertices in RDF graphs to distinguish
them from the labeled graphs.

student1

rdf:type

GraduateStudent

univ1
rdf:type

University

undergraduateDegreeFrom

dept1.univ1
rdf:type

Department

memberOf

subOrganizationOf

‘012-345-6789’

‘john@dept1.univ1.edu’

telephone

emailAddress

Student

rdf:subClassOf

Figure 3: RDF graph.
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3.2 Direct Transformation
To apply subgraph isomorphism algorithms modified for e-graph

homomorphism (e.g. TurboHOM) for RDF query processing, RDF
graphs have to be transformed into labeled graphs first.

The most basic way to transform RDF graphs is (1) to map sub-
jects and objects to vertex IDs and (2) to map predicates to edge la-
bels. We call such transformation the direct transformation because
the topology of the RDF graph is kept in the labeled graph after the
transformation. The vertex label function L(v)(v ∈ V (g)) is the
identity function (i.e. L(v) = {v}).

Figure 4 shows the result of the direct transformation of Figure 3
– Figures 4a, 4b, and 4c are the vertex mapping table , the edge
label mapping table, and the transformed graph, respectively.

Subject/Object Vertex
GraduateStudent v0

Student v1
University v2

Department v3
student1 v4

univ1 v5
dept1.univ1 v6

‘012-345-6789’ v7
‘john@dept1.univ1.edu’ v8

(a) vertex mapping table.

Predicate Edge Label
rdf:type a

rdf:subClassOf b
undergradDegreeFrom c

memberOf d
subOrganizationOf e

telephone f
emailAddress g

(b) edge label mapping table.

a

a

c

a

d

e

f
g

b
v1 v0

v2

v4

v5

v7

v8

v6 v3

{v1} {v0}

{v2} {v5}

{v4}

{v7}

{v8}

{v6} {v3}

(c) graph.

Figure 4: Direct transformation of RDF graph (Vertex label
function L(v) = {v}).

A query graph is obtained from a SPARQL query. A query vertex
may hold the vertex label which corresponds to the subject or object
specified in the SPARQL query. If the query vertex corresponds to
a variable, the vertex label is left blank. For example, the SPARQL
query of Figure 5a is transformed into the query graph of Figure 5b.
Here the query vertex u0, which corresponds to Student, holds
the vertex label {v1}; To the contrary, the query vertex u3, which
corresponds to the variable X , has blank (_) as the vertex label.
Similarly, a query edge may hold the edge label which corresponds
to the predicate. For example, the edge label of (u3, u4) is c as the
edge corresponds to the undergradDegreeFrom predicate.

SELECT ?X, ?Y, ?Z WHERE
{?X rdf:type Student .
?Y rdf:type University .
?Z rdf:type Department .
?X undergradDegreeFrom ?Y .
?X memberOf ?Z .
?Z subOrganizationOf ?Y.}

(a) SPARQL query.

a

a

c

a

d

e

{v2}

_

_

{v1}

_

{v3}

u0

u1

u2

u4(=?Y) u5(=?Z)

u3(=?X)

(b) query graph.

Figure 5: Direct transformation of SPARQL query.

Note that, when a variable is declared on a predicate in a SPARQL
query, a query edge has a blank edge label. An e-graph homo-
morphism algorithm can answer such SPARQL queries since an

e-graph homomorphism has edge label mapping from query edges
to their corresponding edge labels.

Consequently, the direct transformation makes it possible to ap-
ply conventional e-graph homomorphism algorithms for process-
ing SPARQL queries. In order to evaluate the performance of such
an approach, we applied TurboHOM on LUBM8000, a billion-triple
RDF dataset of Leihigh University Benchmark (LUBM) [8], after
applying direct transformation. We compared the performance of
TurboHOM against two existing RDF engines: RDF-3X [19], and
System-X2. Figure 6 depicts the measured execution time of these
three systems in log scale. (See Section 6.1 for the details of the
experiment setup)

Figure 6: Comparison between original TurboHOM with the di-
rect transformation graph and other RDF engines.

Although there is no clear winner among them, the figure re-
veals that TurboHOM performs as good as the existing RDF en-
gines. For short-running queries (i.e Q1, Q3-Q5, Q7, Q8, Q10-
Q13), TurboHOM shows faster elapsed time. As those queries spec-
ify a data vertex ID, TurboHOM only needs a small amount of graph
exploration from one candidate region with an optimal matching
order, while RDF-3X and System-X require expensive join op-
erations. For long-running queries (i.e., Q2, Q6, Q9, and Q14),
TurboHOM is slower than some of its competitors. The performance
of TurboHOM largely relies on 1) graph exploration byExploreCan-
didateRegion and 2) subgraph enumeration by SubgraphSearch.
Moreover, when a query graph has non-tree edges, IsJoinable
constitutes a large portion of SubgraphSearch. The profiling re-
sults of long running queries confirmed that 1)ExploreCandidate-
Region and SubgraphSearch are the dominating factors and 2)
for queries which have non-tree edges (Q2 and Q9), IsJoinable is
the dominating factor of SubgraphSearch. Specifically, TurboHOM

spent the most time on ExploreCandidateRegion (e.g. 46% for
Q2, 70% for Q6, 72% for Q9, and 69% for Q14) and Subgraph-
Search (e.g. 54% for Q2, 30% for Q6, 28% for Q9, and 31% for
Q14). Moreover, for queries which have non-tree edges, the most of
SubgraphSearch time was spent on IsJoinable (e.g. 81.4% for
Q2 and 77.6% for Q9). In order to speed upExploreCandidate-
Region, we propose a novel transformation (Section 4.1). Tailored
optimization techniques are proposed for improving performance
for both functions (Section 4.3).

4. TURBOHOM++
In this section, we propose an improved e-graph homomorphism

algorithm, TurboHOM++. Introduced first is the type-aware trans-
formation, which can result in faster pattern matching than direct
transformation (Section 4.1). TurboHOM++ processes the labeled
graph transformed by the type-aware transformation (Section 4.2).
Furthermore, for efficient RDF query processing, four optimiza-
tions are applied to TurboHOM++ (Section 4.3).
2We anonymize the product name to avoid any conflict of interest.
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4.1 Type-aware Transformation
To enable the type-aware transformation, we devise the two-

attribute vertex model which makes use of the type information
specified by the rdf:type predicate. Specifically, this model as-
sumes that each vertex is associated with a set of labels (the label
attribute) in addition to its ID (the ID attribute). The label attribute
is obtained by following the rdf:type predicate – if a subject
has one or more rdf:type predicates, its types can be obtained
by following the rdf:type (as well as rdf:subClassOf pred-
icates transitively). For example, student1 in Figure 3 has the
label attribute, {GradStudent, Student}.

The above two-attribute vertex model naturally leads to our new
RDF graph transformation, the type-aware transformation. Here,
subjects and objects are transformed to two-attribute vertices by
utilizing rdf:type predicates as described above. Then, the ID
attribute corresponds to the vertex ID, and the label attribute corre-
sponds to the vertex label. Figure 7 shows an example of the map-
ping tables and the data graph, which is the result of type-aware
transformation applied to Figure 3. Now, we formally define the
type-aware transformation as follows.

Definition 3. The type-aware transformation (FV , FID, FE , FV L,
FEL) converts a set of triples T (S, P,O) to a type-aware trans-
formed graph G(V,E, ID,L). Let us divide T into three disjoint
subsets whose union is T — T ′(S′, P ′, O′), T ′t (S′t , P ′t , O′t) =
{(s, rdf:type, o) ∈ T}, and T ′sc(S′sc, P ′sc, O′sc) = {(s, rdf:subClassOf,
o) ∈ T}.

1. A vertex mapping FV : S′ ∪ O′ ∪ S′t → V , which is bijective,
maps a subject in S′ ∪ S′t or an object in O′ to a vertex.

2. A vertex ID mapping FID : S′ ∪O′ ∪ S′t → N ∪ { }, which is
bijective, maps a subject in S′∪S′t or an object inO′ to a vertex
ID or blank. Here, FID(x) = if x is a variable.

3. An edge mapping FE : T ′ → E, which is bijective, maps a
triple of T ′ into an edge, FE(s, p, o) = (FV (s), FV (o)).

4. A vertex label mapping FV L : O′t ∪O′sc → V L∪ { }, which is
bijective, maps an object of O′t ∪ O′sc into a vertex label. Here,
FV L(x) = if x is a variable.

5. An edge label mapping FEL : P ′ → EL ∪ { }, which is
bijective, maps a predicate of P ′ into an edge label. Here,
FEL(x) = if x is a variable.

6. A vertex ID mapping function ID : V → N maps a vertex to a
vertex ID where ID(v) = FID ◦ F−1

V (v).
7. A labeling function L 1) maps a vertex to a set of vertex labels

such that v ∈ V ,L(v) = {FV L(o)| there is a path from F−1
V (v)

to o using triples in T ′t ∪T ′sc} and 2) maps an edge e to an edge
label such that e ∈ E, L(e) = FLE (Pred(F−1

E (e))) where
Pred(s, p, o) = p.

After finding a type-aware transformation (F ′V , F
′
ID, F

′
E , F

′
V L,

kF ′EL) for a data graph g(V ′, E′, L′, ID′), we can also convert a
SPARQL query into a type-aware transformed query graph q(V,E,
L, ID) by using another type-aware transformation (FV , FID, FE ,
FV L, FEL) such that FID = F ′ID , FV L = F ′V L, and FEL =
F ′EL. For example, Figure 8 is the query graph type-aware trans-
formed from the SPARQL query in Figure 5a. Note that a query
vertex may have multiple vertex labels like a data vertex.

Now, we explain how the generic e-graph homomorphism algo-
rithm works for type-aware transformed query/data graphs. When
appending a candidate data vertex to the current partial solution,
we additionally check the following condition for the ID attribute
of the two-attribute vertex model.

Subject/Object Vertex ID
student1 0

univ1 1
dept1.univ1 2

‘012-345-678’ 3
‘john@dept1.univ1.edu’ 4

(a) vertex ID mapping table.

Type Vertex Label
GraduateStudent A

Student B
University C

Department D

(b) vertex label mapping
table.

Predicate Edge Label
undergradDegreeFrom a

memberOf b
subOrganizationOf c

telephone d
emailAddress e

(c) edge label mapping table.

a b
c

d

e0

3

4

21

,{A,B}

,{}

,{}

,{C} ,{D}

v0

v1

v3

v2

v4

(d) data graph.

Figure 7: Type-aware transformation of an RDF graph.

a b

c_,{C}

_,{B}

_,{D}

u0

u1 u2

Figure 8: Type-aware transformation of SPARQL query of Fig-
ure 5a.

∀u ∈ {u|ID(u) 6= for u ∈ V }, ID(u) = ID′(Mv(u)).

The virtue of the type-aware transformation is that it can improve
the efficiency of RDF query processing. Since the type-aware trans-
formation eliminates certain vertices and edges by embedding type
information into the vertex label, the resulting data/query graphs
have smaller size and simpler topology than those transformed by
the direct transformation.

As an example, let us consider the SPARQL query in Figure 5a.
After direct transformation, it becomes the query graph in Figure 5b
that has a relatively complex topology consisting of six vertices
and six edges. On the other hand, the type-aware transformation
produces the query graph in Figure 8 that has a simple triangle
topology. This reduced number of vertices and edges has a positive
effect on efficiency because it results in less graph exploration.

In general, the effect of the type-aware transformation can be de-
scribed in terms of the number of data vertices in all candidate re-
gions. Consider a SPARQL query which consists of a set of triples
T , its direct transformed query graph q(V,E, L), and its type-
aware transformed query graph q′(V ′, E′, ID′, L′). Let Otype =
{o|(s, rdf : type, o) ∈ T or (s, rdf : subClassOf, o) ∈ T}. In the
direct transformation, o ∈ Otype is transformed to a query vertex.
Let Vtype a set of direct transformed query vertices from Otype.
However, in the type-aware transformation, o ∈ Otype is not trans-
formed to a query vertex, which satisfies |V ′| = |V | − |Vtype|.
Therefore, the type-aware transformation leads to less graph ex-
ploration in ExploreCandidateRegion and SubgraphSearch.
Formally, using the type-aware transformation, the number of data
vertices in all candidate regions is reduced by∑

vs

∑
u∈Vtype

|CRvs(u)|

where vs represents the starting data vertex for each candidate re-
gion, and CRvs(u) represents a set of data vertices in a candidate
region CR(vs) that correspond to u.
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4.2 Implementation
TurboHOM++ maintains two in-memory data structures – the in-

verse vertex label list and the adjacency list. Figure 9a shows the
inverse vertex label list of Figure 7d. The ‘end offsets’ records
the exclusive end offset of the ‘vertex IDs’ for each vertex label.
Figure 9b shows the adjacency list of Figure 7d for the outgoing
edges. The adjacency list stores the adjacent vertices for each data
vertex in the same way as the inverse vertex label list. One differ-
ence is that the adjacency list has an additional array (‘end offsets’)
to group the adjacent vertices of a data vertex for each neighbor
type. Here, the neighbor type refers to the pair of the edge label
and the vertex label. For example, v0 in Figure 7d, has four dif-
ferent neighbor types – (a,C), (b,D), (d, ) and (e, ). Those four
neighbor types are stored in ‘end offsets,’ and each entry points to
the exclusive end offset of the ‘adjacent vertex ID’. TurboHOM++
maintains another adjacency list for the incoming edges.

We assume that graphs in our system are periodically updated
from an underlying RDF source. For efficient graph update, a trans-
actional graph store is definitely required. We leave this exploration
to future work since it is beyond the scope of the paper.

Note also that TurboHOM++ can also handle SPARQL queries
under the simple entailment regime correctly. In order to deal with
the simple entailment regime in the type-aware transformed graph,
TurboHOM++ distinguishesLsimple(v) = {FLV (o)|there is an edge
from F−1

V (v) to o using triples in T ′} fromL(v). TurboHOM++ can
process a SPARQL query under the simple entailment regime using
Lsimple(v) instead of L(v).

4 4 5 5 5end offsets of label groups

v1 v2 v3 v4 v1adjacent vertex IDs

end offsets ((a,C),1) ((b,D),2) ((d,_),3) ((e,_),4) ((c,D),5)

1 2 3 4end offsets

v0 v0 v1 v2vertex IDs

A B C D

v0 v1 v2 v3 v4

A B C D

adj(v2)

adj(v0,(b,D))

adj(v0)

(a) inverse label vertex list.

4 4 5 5 5end offsets of label groups

v1 v2 v3 v4 v1adjacent vertex IDs

end offsets ((a,C),1) ((b,D),2) ((d,_),3) ((e,_),4) ((c,C),5)

1 2 3 4end offsets

v0 v0 v1 v2vertex IDs

A B C D

v0 v1 v2 v3 v4

A B C D

adj(v2)

adj(v0,(b,D))

adj(v0)

(b) adjacency list.

Figure 9: In-memory data structures for type-aware trans-
formed data graph of Figure 7d (adj(v) : adjacent vertices of
v, adj(v, (el, vl)) : adjacent vertices v, which have vertex label
vl and are connected with edge label el).

As the overall behavior of TurboHOM++ is similar to TurboHOM,
here, we describe how TurboHOM++ uses the data structures in
ChooseStartQueryV ertex (line 6 of Algorithm 1), Explore-
CandidateRegion (line 9 of Algorithm 1), and IsJoinable (line
7 of Algorithm 2).

ChooseStartQueryVertex. When computing rank(u) for a
query vertex u, the inverse vertex list is used to get freq(g, L(u))
(= |

⋂
l∈L(u) V (g)l|) where V (g)l is the set of vertices having ver-

tex label l. When |L(u)| = 1, Getting the start and end offset
of a specific vertex label is enough. When |L(u)| > 1, for each
l ∈ |L(u)|, all data vertices having l, V (g)l, are retrieved from the
inverse vertex list, and freq(g, L(u)) is obtained by intersecting

all V (g)l. Additionally, when a data vertex ID v is specified in u,
freq(g, L(u)) = 1 if v ∈ V (g)l for each l ∈ L(u). Otherwise,
freq(g, L(u)) = 0.

One last case is when a SPARQL query has a query vertex which
has no label or ID at all. In order to handle such queries, we main-
tain an index called the predicate index where a key is a predicate,
and a value is a pair of a list of subject IDs and a list of object IDs.
This index is used to compute freq(g, L(u)).

ExploreCandidateRegion. After a query tree is generated, can-
didate regions are collected by exploring the data graph in an in-
ductive way. In the base case, all data vertices that correspond to
the start query vertex are gathered in the same way of computing
freq(g, L(u)). In the inductive case, once the starting data ver-
tices are identified, the candidate region exploration continues by
exploiting the adjacency information stored in the adjacency list.
If one vertex label and one edge label are specified in the query
graph, we can get the adjacent data vertices directly from the adja-
cency list. If multiple vertex labels and one edge label are specified,
we collect the adjacent data vertices for each vertex label using the
adjacency list, and intersect them. In a case where the vertex label
or edge label is blank, TurboHOM++ finds the correct adjacent data
vertices by 1) collecting all adjacent vertices which match avail-
able information (either vertex label or edge label) and 2) unioning
them. Additionally, if the current query vertex has the data vertex
ID attribute, we check whether the specified data vertex is included
in the data vertices collected from the adjacency list.

IsJoinable. The IsJoinable test is equivalent to the inductive
case of ExploreCandidateRegion when a data vertex ID (previ-
ously matched data vertex) is specified.

4.3 Optimization
In this subsection, we introduce optimizations that we apply to

improve the efficiency of TurboHOM++. Even though these opti-
mizations do not change TurboHOM++ severely, they could improve
the query processing efficiency quite significantly.

Use intersection on IsJoinable test (+INT). We optimize the
IsJoinable test in SubgraphSearch. SubgraphSearch calls
the IsJoinable test by multiple membership operations. However,
the optimization allows a bulk of IsJoinable tests with one k-way
intersection operation where k is the number of edges between the
current query vertex, u in line 1 of Algorithm 2, and the previously
matched query vertices connected by non-tree edges.
SubgraphSearch checks the existence of the edges between

the current candidate data vertex and the already bounded data ver-
tices by calling IsJoinable (line 7 of Algorithm 2) when the corre-
sponding query graph has non-tree edges. Let us consider the query
graph (Figure 8), the query tree (Figure 10) and a data graph (Fig-
ure 11). Suppose that, for a given matching order u1 → u2 → u0,
the vertex v1 is bound to u1, and the vertex v2 is bound to u2.
Then, the next step is to bind a data vertex to u0. Because there
is a non-tree edge between u0 and u2, to bind a data vertex of ID
vi(i = 0, 3, 4, · · · , 1001) to u0, we need to check whether there
exists an edge vi → v2.

{C}

{D}

b

{A,B}

a

{A,B}

a

{A,B}

a

…

c a

b
_,{D}

_,{C}

_,{B}
u0

u1

u2

} }
1000 vertices

v1

v2 v0 v3 v1001

b a

_,{D}

_,{C}

_,{B}
u0

u1

u2

Figure 10: A query tree of the query graph of Figure 8.
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b
b

b

b
…

2,{D}

c

0,{A,B}

a

3,{A,B}

a

1001,{A,B}

a

…

1, {C}

1000 vertices

v1

v2 v0 v3 v1001

Figure 11: An example data graph for illustrating +INT.

IsJoinable checks for the existence of the edge between the
current data vertex and already matched data vertices by repeti-
tively calling IsJoinable. Let us consider the above example. For
each vi(i = 0, 3, 4, · · · , 1001), IsJoinable tests whether the edge
vi → v2 exists. If v2 is a member of vi’s outgoing adjacency list,
the test succeeds, and the graph matching continues.

Instead, our modified IsJoinable tests all the edge occurrences
between the current candidate vertices (CR in line 3 of Algo-
rithm 2) and the adjacency lists of the already matched data vertices
by one k-way intersection operation. Let us consider the above ex-
ample again. The modified IsJoinable finds the edge between v2
and the candidate data vertices v0, v3, · · · , v1001 at once. For this,
it is enough to perform one intersection operation between the v2’s
incoming adjacency vertices and the candidate data vertices. Since
the modified IsJoinable takes CR as a parameter, the lines 3 and
7 of Algorithm 2 are merged into one statement.

Note that this optimization can improve the performance sig-
nificantly. In the above example, since only v0 and v1001 pass
the test, we can avoid calling the original IsJoinable 998 times.
Formally speaking, let us denote 1) the candidate data vertex set
for the current query vertex u as CR, 2) the previously matched
query vertex set, which is connected to the current query vertex by
non-tree query edges, as {u′i}ki=1 and 3) the adjacent vertex set of
v′i(=Mv(u

′
i)) where u′i is connected to u with the vertex label vli

and the edge label eli, as adj(v′i, vli, eli). Suppose that CR and
adj(v′i, vli, eli) are stored in ordered arrays. Then, the complexity
of the original IsJoinable test is

Coriginal = O(|CR| ·
k∑
i=1

log |adj(v′i, vli, eli)|)

, since IsJoinable is called for each v ∈ CR, and O(log |adj
(v′i, vli, eli)|) time is required to conduct a binary search for
|adj(v′i, vli, eli)| elements. On the contrary, the complexity of the
modified IsJoinable test is

min(O(|CR|+
k∑
i=1

|adj(v′i, vli, eli)|), Coriginal)

since the modified IsJoinable can choose the k-way intersections
strategy between scanning (k + 1) sorted lists and performing bi-
nary searches.

Disable NLF Filter (-NLF). The second optimization is to dis-
able the NLF filter in ExploreCandidateRegion. The NLF
filter may be effective when the neighbor type are very ir-
regular. However, in practice, most RDF datasets are struc-
tured [7, 17]. For example, in our sample RDF dataset (Fig-
ure 3), in most case, a vertex corresponding to a graduate
student has telephone, emailAddress, memberOf, and
undergraduateDegreeFrom predicates. Accordingly, the
NLF filter is not helpful for such structured RDF datasets.

Disable Degree Filter (-DEG). The third optimization is to dis-
able the degree filter in ExploreCandidateRegion. Similar to

the NLF filter, the degree filter is effective when the degree is very
irregular while RDF datasets typically are not.

Reuse Matching Order (+REUSE). The last optimization is
to reuse the matching order of the first candidate region for all the
other candidate regions. That is, DetermineMatchingOrder
(line 6 of Algorithm 1) is called only once throughout the TurboISO

execution, and the same matching order is used throughout the
query processing. TurboHOM++ uses a different matching order for
each candidate region, because each candidate region could have a
very different number of candidate vertices for a given query path
in the e-graph homomorphism problems. However, typical RDF
datasets are regular at the schema level, i.e. well structured in prac-
tice, and generating the matching order for each candidate region
is ineffective, especially when the size of each candidate region is
small. We also performed experiments with more heterogeneous
datasets, including Yet Another Great Ontology (YAGO) [23], and
Billion Triples Challenge 2012 (BTC2012) [10]. This optimization
technique still shows good matching performance as we will see in
our extensive experiments in Section 6, since these heterogeneous
datasets do not show extreme irregularity at the schema level.

5. RELATED WORK
With the increasing popularity of RDF, the demand for SPARQL

support in relational databases is also growing. To meet such de-
mand, most open-source and commercial relational databases sup-
port the RDF store and the RDF query processing. RDF datasets
are stored into relational tables with a set of indexes. After that,
SPARQL queries are processed by translating them into the equiv-
alent join queries or by using special APIs.

To support RDF query processing, many specialized stores for
RDF data were proposed [2, 4, 18, 19, 26, 29]. Similar to RDBMS,
RDF-3X [18, 19] treats RDF triples as a big three-attribute ta-
ble, but boosts the RDF query processing by building exhaus-
tive indexes and maintaining statistics. RDF-3X processes many
SPARQL queries by using merge based join, which is efficient for
disk-based and in-memory environments. Different from RDF-3X,
Jena [26] exploits multiple-property tables, while BitMat [2] ex-
ploits 3-dimensional bit cube, so that it can also support 2D ma-
trices of SO, PO, and PS. H-RDF-3X [12] is a distributed RDF
processing engine where RDF-3X is installed in each cluster node.

Several graph stores support RDF data in their native graph stor-
ages [30, 35]. gStore [35] performs graph pattern matching us-
ing the filter-and-refinement strategy. It first finds promising sub-
graphs using the VS∗-tree index. After that, the exact subgraphs
are enumerated in the refinement step. Trinity.RDF [30] is a sub-
system of a distributed graph processing engine, Trinity [22]. The
RDF triples are stored in Trinity’s key-value store. When process-
ing RDF queries, Trinity.RDF implements special query processing
methods for RDF data.

In 1976, Ullmann [24] published his seminal paper on the sub-
graph isomorphism solution based on backtracking. After his work,
many subgraph isomorphism methods were proposed to improve
the efficiency by devising their own matching order selection al-
gorithms and filtering constraints [9, 11, 20, 21, 32, 33]. Among
those improved methods, TurboISO [9] solves the notorious match-
ing order problem by generating the matching order for each can-
didate region and by grouping the query vertices which have the
same neighbor information. The method shows the most efficient
performance among all representative methods.

Along with the backtracking based methods, the index-based
subgraph isomorphism methods were also proposed [5, 27, 28, 31,
34]. All of those methods first prune out unpromising data graphs
using low-cost filters based on the graph indexes. After filtering,

1245



any subgraph isomorphism methods can be applied to those un-
filtered data graphs. This technique is only useful when there are
many small data graphs. Thus, these index-based subgraph isomor-
phism methods do not enhance RDF graph processing since there
is only one big graph in an RDF database.

6. EXPERIMENTS
We perform extensive experiments on large-scale real and syn-

thetic datasets in order to show the superiority of a tamed subgraph
isomorphism algorithm for RDF query processing. In the experi-
ment, we use TurboHOM++. We assume that TurboHOM uses direct
transformation, while TurboHOM++ uses type-aware transforma-
tion along with all optimizations. The specific goals of the exper-
iments are 1) We show the superior performance of TurboHOM++
over the state-of-the-art RDF engines (Section 6.2), 2) We analyze
the effect of the type-aware transformation and the series of opti-
mizations (Section 6.3), and 3) We show the linear speed-up of the
parallel TurboHOM++ with an increasing number of threads (Due
to the space limit, please refer [13] for the detailed result).

6.1 Experiment Setup
Competitors. We choose three representative RDF engines as

competitors of TurboHOM++ – RDF-3X, TripleBit, and System-X.
Note that these three systems are publicly available. RDF-3X [19]
is a well-known RDF store, showing good performance for vari-
ous types of SPARQL queries. TripleBit [29] is a very recent RDF
engine efficiently handling large-scale RDF data. System-X is a
popular RDF engine exploiting bitmap indexing. We exclude Bit-
Mat [2] from performance evaluation since it is clearly inferior to
TripleBit [29]. gStore is excluded since it is not publicly available.

Datasets. We use four RDF datasets in the experiment – LUBM
[8], YAGO [23], BTC2012 [10], and BSBM [3]. LUBM is
a de-facto standard RDF benchmark which provides a synthetic
data generator. Using the generator, we create three datasets –
LUBM80, LUBM800, and LUBM8000 where the number repre-
sents the scaling factor. YAGO is a real dataset which consists of
facts from Wikipedia and the WordNet. BTC2012 is a real dataset
crawled from multiple RDF web resources. Lastly, BSBM is an
RDF benchmark which provides a synthetic data generator and
benchmark queries. BSBM uses more general SPARQL query fea-
tures such as FILTER, OPTIONAL, and UNION. Due to the space
limit, please refer [13] for the experimental results for YAGO since
the performance trends of YAGO are similar to those for BTC2012.

In order to support the original benchmark queries in LUBM, we
load the original triples as well as inferred triples into databases. In
order to obtain inferred triples, we use the state-of-the-art RDF in-
ference engine. For example, LUBM8000 contains 1068394687
original triples and 869030729 inferred triples. Note that this is the
standard way to perform the LUBM benchmark. However, regard-
ing BTC2012, we use the original triples only for database loading.
This is because the BTC2012 dataset contains many triples that vi-
olate the RDF standard, and thus the RDF inference engine refuses
to load and execute inference for the BTC2012 dataset. BSBM
contains 986410726 original triples and 11412064 inferred triples.

Table 1 shows the number of vertices and edges of the graphs
transformed by the direct transformation and the type-ware trans-
formation. The reduced number of edges in the type-aware trans-
formed graph directly affects the amount of graph exploration in
e-graph homomorphism matching.

Queries. Regarding LUBM, we use the 14 original benchmark
queries provided in the website3. Previous work such as [29] and

3http://swat.cse.lehigh.edu/projects/lubm/

Table 1: Graph size statistics (direct: direct transformation,
type-aware: type-aware transformation).

|V | direct |E| direct |V | type-aware |E| type-aware
LUBM80 2644579 19461754 2644573 12357312
LUBM800 26304872 193691328 26304863 122994224
LUBM8000 263133301 1937425416 263133295 1230263406
BTC2012 367728453 1436545556 367459811 1185887764
BSBM 223938701 997822791 1937425416 893575906

[30] modified some of the original queries because executing those
original queries without the inferred triples returns an empty result
set. Regarding BTC2012, we use the same query sets proposed
in [29], because they do not have official benchmark queries. Re-
garding BSBM, we used 12 queries in the explore use case 4 which
contain OPTIONAL, FILTER, and UNION keywords which test
the capability of more general SPARQL query support.

In order to measure the pure subgraph matching performance, (1)
we omit modifiers which reorganize the subgraph pattern matching
results (e.g. DISTINCT and ORDER BY) in all queries and (2) we
measure the elapsed time excluding the dictionary look-up time.

Running Environment. We conduct the experiments in a server
running Linux four Intel Xeon E5-4640 CPUs and 1.5TB RAM.
The server has the NUMA [15, 16] architecture with 4 sockets in
which each socket has its own CPU and local memory.

We measure the elapsed times with a warm cache. To do that,
we set up the competitors’ running environment as follows. For
RDF-3X and TripleBit, as done in [30], we put the database files in
the tmpfs in-memory filesystem, which is a kind of RAM disk. For
System-X, we set the memory buffer size to 400GB, which is suf-
ficient for loading the entire database in memory. We execute every
query five times, exclude the best and worst times, and compute the
average of the remaining three.

6.2 Comparison between TurboHOM++ and
RDF engines

We report the elapsed times of the benchmark queries using a
single thread. Since the server has a NUMA architecture, memory
allocation is always done within one CPU’s local memory.

LUBM. Table 2 shows the number of solutions for all bench-
mark queries in all LUBM datasets. Table 3 shows experimen-
tal results for LUBM80, LUBM800, and LUBM8000. Note that
Triplebit was not able to return correct answers for two queries over
LUBM80/LUBM800 and for ten queries over LUBM8000. In Ta-
ble 3, we use ’X’ or the superscript ‘*’ over the elapsed times when
TripleBit returns incorrect numbers of solutions.

In order to analyze results in depth, we classify the LUBM
queries into two types. The first type of queries has a constant num-
ber of solutions regardless of the dataset size. Q1, Q3 ˜ Q5, Q7,
Q8, and Q10 ˜ Q12 belong to this type. These queries are called
constant solution queries. The other queries (Q2, Q6, Q9, Q13,
and Q14) have increasing numbers of solutions proportional to the
dataset size. These queries are called increasing solution queries.

Regarding the constant solution queries, only TurboHOM++
achieves the ideal performance in LUBM, which means constant
performance regardless of dataset size. This phenomenon is an-
alyzed as follows. Each constant solution query contains a query
vertex whose ID attribute is set to an entity in the RDF graph. Thus,
TurboHOM++ chooses that query vertex as a starting query ver-
tex and generates a candidate region. Furthermore, in the LUBM
4http://wifo5-03.informatik.uni-mannheim.
de/bizer/berlinsparqlbenchmark/spec/
ExploreUseCase/index.html
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Table 2: Number of solutions in LUBM queries.
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

LUBM80 4 212 6 34 719 838892 67 7790 21872 4 224 15 380 636529
LUBM800 4 2003 6 34 719 8352839 67 7790 218261 4 224 15 3800 6336816

LUBM8000 4 2528 6 34 719 83557706 67 7790 2178420 4 224 15 37118 63400587

Table 3: Elapsed time in LUBM [unit: ms] (X: wrong number of solutions (# of solutions difference > 3) , ‘*’: wrong number of
solutions (# of solutions difference ≤ 3)).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
TurboHOM++ 0.09 6.37 0.09 0.13 0.13 4.43 0.05 2.26 101.42 0.09 0.10 0.10 0.06 3.08

RDF-3X 3.09 188.90 4.09 12.37 14.74 375.04 91.06 58.32 770.32 3.19 2.35 3.52 15.08 262.41
TripleBit 2.56 86.09 12.82 5.26 18.92 165.93 24.76 48.22∗ X 9.23 0.44 1.86 19.31 132.09
System-X 2.00 426.00 2.00 4.67 2.67 64.33 4.00 19.33 3512.00 2.00 2.33 4.67 5.67 47.00

(a) LUBM80.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
TurboHOM++ 0.09 124.13 0.09 0.13 0.13 25.70 0.05 2.32 1239.46 0.09 0.10 0.09 0.12 19.72

RDF-3X 4.15 2473.01 5.17 16.50 25.02 5103.35 840.16 461.80 10033.57 3.83 7.48 7.09 100.16 3607.13
TripleBit 23.32 3548.58∗ 142.29 15.76 183.46 2309.57 187.39 181.20∗ X 109.47 2.84 3.51 161.65 1818.52
System-X 2.67 4394.00 2.00 4.67 3.00 239.33 4.33 21.00 175040.33 2.00 2.33 4.00 29.00 186.33

(b) LUBM800.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
TurboHOM++ 0.10 309.74 0.09 0.12 0.13 191.52 0.05 1.61 5238.79 0.09 0.11 0.10 0.83 149.53

RDF-3X 4.31 30492.93 4.87 19.53 94.89 65453.67 8476.19 4201.81 131053.33 4.15 23.27 12.83 630.91 48285.17
TripleBit X X X X 2348.87 18974.80 X X X 1251.25 X X X 14197.47
System-X 2.67 41449.33 2.67 5.00 3.00 1519.67 4.33 42.67 3123629.67 2.67 2.33 5.00 88.00 1155.00

(c) LUBM8000.

datasets, although we increase the scaling factor in order to increase
the database size, the size of the candidate region explored by every
constant solution query remains almost the same.

In contrast, the elapsed times of RDF-3X increase as the dataset
size increases. This is because the data size to scan for merge join
increases as the dataset size increases. Thus, the performance gap
between TurboHOM++ and RDF-3X increases as the dataset size
increases. In LUBM80, TurboHOM++ is 23.50 (Q11) ˜ 1821.20
(Q7) times faster than RDF-3X. In LUBM800, TurboHOM++ out-
performs RDF-3X by 42.56 (Q10) ˜ 16803.20 (Q7) times. In
LUBM8000, TurboHOM++ outperforms RDF-3X by 43.10(Q1) ˜
169523.80 (Q7) times. TripleBit shows a similar trend as RDF-3X.
Accordingly,TurboHOM++ is 4.40 (Q11 in LUBM80) ˜ 18068.23
(Q5 in LUBM8000) times faster than TripleBit. System-X shows
constant elapsed times for these queries, although it is consistently
slower than TurboHOM++ by up to 86.60 times.

For the increasing solution queries (Q2, Q6, Q9, Q13, and
Q14), TurboHOM++ also shows the best performance in all LUBM
datasets. Overall, the elapsed times of TurboHOM++ are propor-
tional to the number of solutions for these queries. Specifically,
after type-aware transformation, Q13 has one query vertex whose
ID attribute is set to an entity in the data graph. Thus, the number
of candidate regions is one, which is similar to the constant solution
query. However, as the dataset size increases, the candidate region
size also increases. The other queries (Q2, Q6, Q9, Q14) do not
have any query vertex whose ID attribute is set to an entity in the
data graph. As the dataset increases, the number of candidate re-
gions for these queries increases, while each candidate region size
does not change. All systems show the increasing elapsed time as
the dataset size increases. RDF-3X shows 7.60 (Q9 in LUBM80)
˜ 760.13 (Q13 in LUBM8000) times longer elapsed times than
TurboHOM++. TripleBit shows 13.51 (Q2 in LUBM80) ˜ 1347.08
(Q13 in LUBM800) times longer elapsed time than TurboHOM++

when considering the queries which have the right number of solu-
tions. System-X shows 7.72 (Q14 in LUBM8000) ˜ 596.25 (Q9 in
LUBM8000) times longer elapsed time than TurboHOM++. For the
constant solution query, System-X seems to be the best competi-
tor of TurboHOM++. However, regarding the most time-consuming
queries (Q2, Q9), System-X shows poor performance.

BTC2012. Table 4 shows the exact number of solutions and
elapsed times in BTC2012. Even though BTC2012 contains over
1-billion triples, all the engines process all BTC2012 queries quite
efficiently. This is because the shapes of query graphs are simple
(tree-shaped). Furthermore, like LUBM, Q2, Q4, and Q5 in the
BTC2012 query set contain one query vertex whose ID attribute
is set to an entity in the RDF graph. Still, TurboHOM++ outper-
forms RDF-3X, TripleBit, and System-X by up to 422.60, 28.57,
and 266.18 times, respectively.

Table 4: Number of solutions and elapsed time [unit: ms] in
BTC2012.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
# of sol. 4 4 1 4 13 1 664 5996

TurboHOM++ 0.12 0.16 0.96 0.89 0.18 2.49 36.81 1.99
RDF3X 6.67 7.52 10.42 13.07 69.97 22.75 392.73 841.96
TripleBit 1.56 1.81∗ 0.98 6.94 5.20 3.52 133.64∗ X
System-X 8.00 4.67 5.00 12.33 4.67 663.67 110.67 351.67

BSBM.Table 5 shows the exact number of solutions and elapsed
times in BSBM. The open source RDF engines, RDF-3X and
TripleBit, are excluded as they do not support OPTIONAL and
FILTER. Like BTC2012, even though BSBM contains about 1-
billion triples, TurboHOM++ processes most BSBM queries less
than 5ms except Q5 and Q6. That is because they have a small
number of solutions and contain one query vertex whose ID at-
tribute is set to an entity in the RDF graph. For those ten queries,
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TurboHOM++ outperforms System-X by 2.37 ˜ 7284.47 times. Q5
and Q6 take longer than the other queries because they use expen-
sive filters such as join conditions (Q5) and a regular expression
(Q6) and filter out a large number of solutions after basic graph
pattern matching is finished. Before evaluating FILTER, Q5 (Q6)
has 178030 (2848000) solutions from the query graph pattern and
only qualifies 6803 (43508) final solutions.

Table 5: Number of solutions and elapsed time [unit: ms] in
BSBM.

Q1 Q2 Q3 Q4 Q5 Q6
# of sol. 79 17 202 142 6803 43508

TurboHOM++ 0.58 0.15 8.15 1.27 344.66 3969.18
System-X 10 1092.67 19.33 21.67 589.67 9889.00

Q7 Q8 Q9 Q10 Q11 Q12
# of sol. 2 1 21 3 10 1

TurboHOM++ 0.25 0.16 0.11 0.23 0.14 0.12
System-X 23.33 12.33 4.00 11.00 3.00 8.00

6.3 Effect of Improvement Techniques
We measure the effect of the improvement techniques including

the type-aware transformation (Section 4.1) and the four optimiza-
tions (Section 4.3). For this purpose, we use the largest LUBM
dataset, LUBM8000. We first show the effect of the type-aware
transformation because it is beneficial to all LUBM queries. We
next show the effect of the four optimizations (Section 6.3.2).

6.3.1 Effect of Type-aware Transformation
Table 6 shows the elapsed times for the LUBM queries in

LUBM8000 using the direct transformation (TurboHOM) and the
type-aware transformation (TurboHOM++ without optimizations).
Compared with the direct transformation, the type-aware transfor-
mation improves the query performance by 1.01(Q1) to 27.22(Q6).

The obvious reason for performance improvement is the smaller
query sizes after the type-aware transformation. The reduced sized
query graph leads to smaller size candidate regions and shorter
elapsed times. First of all, Q6 and Q14 benefit the most from the
type-aware transformation. After the type-aware transformation,
these queries become point-shaped. That is, solutions of these two
queries are directly obtained by iterating the data vertices which
have the vertex label of the query vertex, which corresponds to
lines 2–4 in Algorithm 1. Q13 also benefits much from the type-
aware transformation, since the type-aware transformation chooses
a better starting query vertex than the direct transformation which
chooses a query vertex having type information. Q1, Q3, Q4, Q5,
Q7, Q8, Q10, Q11, and Q12 do not benefit from the type-aware
transformation because they already have a small number of candi-
date vertices under the direct transformation.

Q2 benefits less than the other long running queries from
the type-aware transformation. The following is the pro-
filing result of Q2 with the direct/type-aware transformation.
Q2 with direct transformation takes 26774.73 milliseconds
in ExploreCandidateRegion and 31191.29 milliseconds in
SubgraphSearch. Note that, with direct transformation, the start-
ing vertex is arbitrarily chosen from u0, u1, u2 in Figure 5b
since they all have same vertex label frequency (freq(g, L(ui)) =
1, i = 0, 1, 2) and the same degree of 1. In our implementa-
tion, the first query vertex u0 is chosen and thus the label of the
non-tree edge is subOrganizationOf. However, with type-aware
transformation, the starting vertex is u1 in Figure 8, and the la-
bel of the non-tree edge is memberOf. Although the number of

candidate regions with u1 is the minimum among u0, u1, and u2,
the cost of IsJoinable calls for memberOf increases 1.30 times.
Thus, Q2 with type-aware transformation takes 9523.60 millisec-
onds in ExploreCandiateRegion and 40469.47 milliseconds in
SubgraphSearch. We achieve only 1.16 times performance im-
provement. However, the cost of the IsJoinable call is signif-
icantly reduced by using +INT. Thus, after applying type-aware
transformation and the tailored optimizations, the final elapsed time
for Q2 becomes 309.74ms, i.e., 187.15 times performance im-
provement compared with direct transformation only.

6.3.2 Effect of Four Optimizations
In this experiment, we measure the effect of four optimizations

of TurboHOM++. We use Q2 and Q9 in LUBM8000 since these two
queries in LUBM8000 are the most time-consuming and exploit all
optimizations. All the other queries are omitted since their elapsed
times are too short, so that it is hard to recognize the effect of op-
timization. Note that the elapsed times of Q1, Q3 ˜ Q5, Q7, Q8,
Q10 ˜ Q13 are too short (< 2ms), and Q6 and Q14 do not benefit
from these optimizations since they are point-shaped.

Figure 12 shows the reduced times of Q2 and Q9 in LUBM8000
after applying these optimizations separately. The optimization
techniques in X-axis are ordered by the reduced in a decreasing
manner — +INT, -NLF, -DEG, and +REUSE. Interestingly, even
though Q2 and Q9 have the same shape (i.e., trianglular), the most
effective optimizations were different. +INT was the most effective
in Q2. -NLF was the most effective in Q9 since the size of each
candidate region was very small. -DEG was more effective in Q9
than in Q2 since Q9 has more data vertices applied to the degree
filter. +REUSE was effective in Q9 which has large number of
candidate regions while Q2 did not benefit from +REUSE.

Figure 12: Reduced elapsed time of each optimization (Elapsed
time of no-optimization: 50016.13ms (Q2) and 17829.50ms
(Q9)).

7. CONCLUSION
The core function of processing RDF data is subgraph pattern

matching. There have been two completely different directions for
supporting efficient subgraph pattern matching. One direction is to
develop specialized RDF query processing engines exploiting the
properties of RDF data, while the other direction is to develop effi-
cient subgraph isomorphism algorithms for general, labeled graphs.
In this paper, we posed an important research question, “Can sub-
graph isomorphism be tamed for efficient RDF processing?” In
order to address this question, we provided the first direct and
comprehensive comparison of the state-of-the-art subgraph isomor-
phism method with representative RDF processing engines.

We first showed that a subgraph isomorphism algorithm requires
minimal modification to handle a graph homomorphism with edge
label mapping which is the RDF graph pattern matching seman-
tics. We then provided a novel transformation method, called
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Table 6: Effect of type-aware transformation in LUBM8000 (Performance gain = Direct transformation ÷ Type-aware transforma-
tion).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
Direct transformation (ms) 0.101 57966.93 0.11 0.16 0.43 5218.47 0.15 5.63 114116.33 0.10 0.21 0.30 21.48 3886.43

Type-aware transformation (ms) 0.100 50016.13 0.09 0.14 0.13 191.69 0.05 1.73 17829.50 0.09 0.11 0.10 1.33 149.60
Performance gain 1.01 1.16 1.23 1.09 3.34 27.22 2.80 3.25 6.40 1.14 1.95 3.01 16.17 25.98

type-aware transformation along with a series of optimization tech-
niques. We next performed extensive experiments using RDF
benchmarks in order to show the superiority of the optimized sub-
graph isomorphism over representative RDF processing engines.
Experimental results showed that the optimized subgraph isomor-
phism method achieved consistent and significant speedup over
those RDF processing engines.

This study drew a promising conclusion that a subgraph isomor-
phism algorithm tamed for RDF processing can serve as an in-
memory accelerator on top of a commercial RDF engine for real-
time RDF query processing as well. We believe that this approach
opens a new direction for RDF processing, so that both traditional
directions can merge or benefit from each other.
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